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Abstract
Modeling and simulation are essential for the devel-
opment of complex engineering systems, such as wind
turbines. Thus, Fraunhofer IWES (Fraunhofer Institute
for Wind Energy Systems) has developed the MoWiT
(Modelica for Wind Turbines) library for fully-coupled
aero-hydro-servo-elastic simulations of wind turbine
systems. To meet the needs for detailed assessment and
design development of such sophisticated engineering
systems, which imply iterative steps for design opti-
mization, a Python-Modelica framework is set up and
presented in this paper. By means of this, the simulation
of MoWiT models can easily be managed, including
redefinition of model parameters, specification of output
sensors and simulation settings, integration of optimiza-
tion algorithms, post-processing of simulation results,
as well as parallel execution of several simulations. The
application of this Python-Modelica framework is shown
based on the example of a design optimization task of a
floating wind turbine support structure.

Keywords: Modelica, OneWind, MoWiT, Python, wind
turbines, automated design optimization

1 Introduction
The development process of engineering systems is
very complex, labor-intensive, and extensive. System
simulation, analysis, and of course optimization are
of high importance in, for example, power, control,
automotive, aerospace, marine, material, or building
engineering. The focus of interest could range from
general design optimization, through performance or
efficiency enhancement, including for example flow
properties or comfort aspects, to a commonly envisaged
cost reduction. Regardless of objectives, constraints,
criteria, and engineering system, design processes always
implicate several iterations, in which the evolving designs
are tested, analyzed, and modified accordingly until
an optimized design is achieved. Thus, an automated
simulation framework is essential to cope with the large
number of simulations, required to assess and develop
such an engineering system design in detail, but also to

support design optimization processes, in which iterative
simulations have to be executed.

Good examples for such intricate engineering sys-
tems and their extensive development process are wind
turbines. These power plants have to comply with require-
ments from standards, such as IEC 61400-3 (International
Electrotechnical Commission, 2009) or DNVGL-ST-0437
(DNV GL AS, 2016), and need to be tested on their per-
formance in various environmental conditions, including
loads and system responses. However, the complexity of
wind turbine systems, with their non-linear system behav-
ior and couplings between aerodynamics, hydrodynamics
(if offshore), control system, and structural dynamics,
makes modeling and simulation indispensable.

Thus, at Fraunhofer IWES (Fraunhofer Institute for
Wind Energy Systems) a computational model for wind
turbine load calculations has been developed in the
open-source object-oriented and equation-based modeling
language Modelica. This modeling language has the
power to deal with multi-physics problems and, hence,
can be used for simulation of various engineering systems.
The MoWiT (Modelica for Wind Turbines) library1 is
capable of fully-coupled aero-hydro-servo-elastic simu-
lations of wind turbine systems - onshore, bottom-fixed
offshore, or even floating offshore. The hierarchical pro-
gramming and the multibody approach in Modelica allow
representation of the entire wind turbine system through
models for single components. This component-based
structure of the MoWiT library simplifies the adaption
and modification of a wind turbine model because single
components can easily be exchanged or customized.
(Leimeister and Thomas, 2017; Thomas et al., 2014;
Strobel et al., 2011)

Even if MoWiT can model the non-linear system
behavior, a large number of simulations are required for
the design of an optimized wind turbine system. For
this purpose a Python-Modelica framework is developed
for automated execution of simulations and optimization
tasks.

1formerly OneWind Modelica library
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In this paper, first the simulation framework in Python,
interfacing with models created in MoWiT, is presented
in detail in Section 2, followed by the extension of the
framework for automated optimization applications,
covered in Section 3. Afterwards, the application of this
Python-Modelica framework is shown exemplarily on
the design optimization of a floating wind turbine system
(Section 4). Conclusions are given at the end in Section 5.

2 Simulation Framework in Python
The framework for automated simulation of wind turbine
models requires

1. a modeling environment, which is the MoWiT library
building upon the Modelica modeling language;

2. a tool for executing the time-domain simulations
(Dymola2);

3. and a programming interface (Python3) for external
and automated control of the simulations.

The tools, which are selected to be incorporated in one
framework for automated simulation, stand in perfect
mutual complement. The Modelica based modeling
environment in combination with the Dymola simulation
engine is very suitable for time-domain simulations
of complex multi-physics engineering problems. Pro-
gramming in Python, on the other hand, facilitates the
management and handling of simulations, controls the
entire simulation process, and creates a set framework for
automated application to engineering systems models and
problems.

A schematic representation of the simulation frame-
work in Python is presented in Figure 1. In Modelica,
using the MoWiT library, the considered wind turbine
system is specified and all parameters are set, so that the
model can be simulated in Dymola. With setting up the
MoWiT model, a Modelica package is created. This is

2https://www.3ds.com/products-services/catia/products/dymola/
(Accessed: 5 October 2018)

3https://www.python.org/ (Accessed: 26 October 2018)

Figure 1. Simulation framework in Python.

the main input to the Python-Modelica framework as it
contains all necessary information about the simulated
model (structure, components, parameters, equations,
states, ...). Due to the fact that the Python-Modelica
framework should also be used to set and modify parame-
ter values according to specific simulation requirements,
it is important to add annotation(Evaluate=false)
to these parameters, when defining them in the MoWiT
model.

The simulation framework in Python itself works
on different levels, as shown in Figure 1. It contains a
Model Wrapper for processing the Modelica package
and establishing the interface to Modelica based on the
Python package BuildingsPy4. On the next level, the
Simulation Manager handles the instances from the
Model Wrapper and manages the simulations. Finally,
a main script is required to execute the simulation task
and define additional commands, for example for writing
result files or for post-processing.

2.1 Processing the Modelica Package
The Modelica package of the created MoWiT wind
turbine system model is given as input to the Model
Wrapper. The Python-Modelica interface is defined
based on the available interface between Python, Mod-
elica, and Dymola, provided by the Python package
BuildingsPy4. Within this package, the main class,
which is finally required to simulate a Modelica model, is
the Simulator.

2.1.1 The Simulator

The Python script for the class Simulator is taken
from the Python package BuildingsPy and slightly
modified to make it compatible with the used Python
3.x version. The Simulator provides the interface
between Python and Modelica to run simulations with
Dymola. Based on the inputs for model name and the
path to the Modelica package of the MoWiT model, the
used simulation engine (Dymola) and the path to the
executable, as well as optional inputs for working and

4http://simulationresearch.lbl.gov/modelica/buildingspy/
(Accessed: 9 October 2018)



output directories, the methods for setting paths, directo-
ries, but also simulation parameters and commands are
defined. Furthermore, methods for adding pre-processing
statements when translating or simulating the model, as
well as post-processing statements before writing the
log-file are specified. Finally, the methods to simulate a
model, translate a model, or simulate a translated model
are declared.

2.1.2 The Model Wrapper
The Simulator is called within the Model Wrapper,
which specifies parameters, paths, and simulation settings
for Dymola to be used in the Simulator. Besides this,
also parameters to be set for translation or to be redefined
before simulation, pre-processing statements to be added
ahead of translation or simulation, as well as a list of
output sensor names are defined.

The basic Model Wrapper class directly processes a
Modelica package of a MoWiT model and modifies, if
required, specified parameters and settings. Additionally,
a method is defined to write Dymola commands for
generating a ∗csv output file after completion of the
simulation. Furthermore, the total number of simulations
to be executed is specified. This is especially relevant
when running several simulations, which could be pro-
cessed in parallel or successively. This is managed by the
Simulation Manager, which is introduced in the next
Subsection 2.2.

2.2 Managing the Simulation
Wrapped models are then further processed in the
Simulation Manager. The input list of wrapped mod-
els could contain

• one instance of a Model Wrapper class, corre-
sponding to just one MoWiT model;

• one instance of a Model Wrapper class, based on
one and the same model, however, comprising sev-
eral simulations with different parameter settings;

• or several different instances of a Model Wrapper
class for working with various MoWiT models.

These models in the list of wrapped models can be han-
dled either successively or in parallel, while for the lat-
ter the number of processors used for multi-processing
in a pool can be specified as additional input to the
Simulation Manager. Both forms of management are
available for different processing methods:

• translating a wrapped model;

• simulating a translated wrapped model;

• creating a turbulent wind file.

The first two methods are calling functions in the
Simulator. The latter method is only relevant for simu-
lations with turbulent wind. This is defined through the
turbulence intensity, as well as the wind spectrum type
(Kaimal, von Karman, or Mann). In this Python-Modelica
framework application, TurbSim (Jonkman, 2009) is used
for generating a turbulent wind field. A file containing the
time series of the wind speed could

• either already exist and the path to this file has to be
specified directly in the MoWiT model or is given as
input to the Simulation Manager;

• or still has to be generated, which requires the path
to the TurbSim executable, as well as the wind
turbine and simulation case specific TurbSim input
file.

2.3 Executing the Task
Finally, a main script is required to execute the simulation
task and define additional commands, for example for
writing result files or post-processing calculations. This
script highly depends on the application case. Hence,
for running a large number of simulations, such as in the
case of design load case simulations, only the simulations
to be executed, as well as simulation settings, paths,
and input parameters are to be specified. However, for
applying the Python-Modelica framework to automated
optimization tasks, additional code, in which design
variables and objective functions are defined and linked
to existing Python packages for optimization, has to be
written in the main script. More detailed information
on the Python-Modelica framework extension for the
use for automated optimization is given in the following
Section 3.

3 Extension for Automated Optimiza-
tion

The Python-Modelica framework, as presented in Sec-
tion 2, serves as basis for further applications, apart
from automated simulation, such as the realization of
optimizations. The extension of the Python-Modelica
framework for automated optimization is of significant
importance, as optimization tasks are highly iterative.
This finds profitable use in the design and optimization
of wind turbine systems. Due to the complexity of an
(offshore) wind turbine model, comprising a huge number
of parameters, and the non-linear system behavior,
optimization problems cannot directly be solved and a
large number of iterations has to be gone through.

The wind turbine system model, which should be
used for optimization purposes, has to be wrapped and
processed with the Model Wrapper and Simulation
Manager, respectively, according to the explanations



in Subsections 2.1 and 2.2. This, together with further
definitions regarding the optimization process, is passed
to the main script, by which means finally the execution of
the optimization algorithm is started (see Subsection 2.3).
Additional information on the optimization itself is pro-
vided by separate classes, clustered into the optimization
problem, the optimizer, and the optimization algorithm,
which are introduced in the following Subsections 3.1 to
3.3.

3.1 The Optimization Problem

Based on the model from the Simulation Manager, the
optimization problem has to be described. This comprises
definitions of design (also called optimization) variables,
objective functions, as well as additional constraints. As
the Python-Modelica framework works without a GUI,
all input has to be provided in the programming scripts.
These, however, are coded in such a way, that they all
internally use variables, which are only once defined in
the main script and assigned their values by means of the
user input.

The optimization variables are the design parameters
of the wind turbine model, which are to be modified
during the optimization iterations. The parameter names
must be provided according to the Modelica dot-notation
and following the structure within the MoWiT model.
Since these parameters are assigned new values during
the optimization, it is important that they are still existing
in the compiled model (see the remark at the beginning of
Section 2).

As important as optimization variables for an optimiza-
tion procedure are objective functions. These describe
the goals, which are to be obtained by means of the
optimization. Mostly, optimization routines are defined
to minimize the objective functions, thus, these have to
be provided accordingly. Depending on the optimization
routine type, only one or several objective functions can
be processed. For multi-objective optimizers, each goal
can be defined separately. However, if the optimizer
can handle only one objective function, all goals have
to be combined in one expression, in which weight can
be incorporated to rank the importance of the single
objectives.

The two key elements of the optimization problem are
already specified by means of the optimization variables
and the objective functions; however, further input can
be given in form of constraints. These apply either for
the goals and specify if only certain values are allowed
or if dependencies or relations exist, or for the design
parameters and define the allowable ranges of values
which they can take on.

3.2 The Optimizer
The optimization problem is given to an optimizer, which
then executes the optimization task and algorithm. There
are several open-source optimizers available for the use in
a Python environment, such as optimization routines from
OpenMDAO (Multi-disciplinary Design, Analysis, and
Optimization), an open-source framework for efficient
multi-disciplinary optimization, (openmdao.org, 2016);
PyGMO (Python Parallel Global Multi-objective Opti-
mizer), focussing on multi-objective (MO) optimization,
(Izzo and Biscani, 2015); or Platypus with a special
focus on MOEAs (MO Evolutionary Algorithms) (Hadka,
2015) - just to name a few examples.

In the presented Python-Modelica framework, op-
timization routines from Platypus (Hadka, 2015) and
OpenMDAO (openmdao.org, 2016) are implemented.
Only gradient-free optimizers can be used for the applica-
tion to wind turbine models in MoWiT, as these models
represent too complex systems, which cannot be reduced
to one single equation by means of minimization tech-
niques. Furthermore, the high complexity also attributes
greater importance to multi-objective optimizers.

Apart from optimizer-specific inputs, a criterion has to
be specified for limiting the number of iterations within
the optimization process. This could be defined for
instance through the number of optimization cycles to be
performed or a convergence tolerance for the results.

3.3 The Optimization Algorithm
Using the defined optimization problem and the specified
optimizer, as described in Subsections 3.1 and 3.2, respec-
tively, the optimization algorithm is executed. In each run,
the design variables are modified, based on the objective
results from previous simulations, complying with the
defined value ranges of the optimization variables, and
following the optimizer-specific routine. The iterative
optimization simulations are terminated as soon as the
specified stop criterion is fulfilled. Figure 2 visualizes this
process schematically. Furthermore, depending on the
specified processing method, as set in the Simulation
Manager (see Subsection 2.2), several simulations within
the optimization routine may be executed in parallel.

Due to the fact that - especially at the beginning of the
optimization routine - also suboptimal settings might be
selected by the optimizer, it could happen that simulations
of individual models are aborted before the specified
simulation duration. To handle these or similar failures
a query condition can be incorporated when analysing
the results for evaluating the objective functions. One
possible approach is to check if the simulation was
successful by evaluating the last entry in the time output.
In case of aborted simulations, the goals might not be



Figure 2. Automated optimization algorithm in Python.

derived as defined, but set to undesireable values to ensure
that these unsuccessful and thus suboptimal individuals
are excluded and not considered further by the optimizer.

During the execution of the optimization algorithm,
the simulation results are written in ∗csv output files ac-
cording to the defined method in the Model Wrapper, as
outlined in Paragraph 2.1.2. By means of supplementary
code, additional outputs, such as the objectives of each
solution, can be written and exported subsequent to the
optimization.

4 Application Example: Design Opti-
mization of Wind Turbine Systems

Optimization tasks in the development of wind turbine
systems are wide-ranging. Mostly costs, and thus indi-
rectly also performance and material demand, are the
main drivers, but optimization problems can for instance
as well be related to noise emissions, dimensions, and
lifetime. In the following the Python-Modelica framework
is exemplarily applied to automated design optimization
of a floating offshore wind turbine system.

In this optimization task, the floating spar-buoy wind
turbine system from phase IV of the Offshore Code
Comparison Collaboration project OC3 (Jonkman, 2010)
is used. The floating wind turbine system consists
of a spar-buoy platform, which supports the NREL
5 MW reference wind turbine (Jonkman et al., 2009).
The visualization of the MoWiT model in Dymola
is presented in Figure 3. There, also the coordinate
system of the wind turbine, as well as the nomenclature
of the six degrees of freedom of movement are introduced.

The optimization algorithm is defined based on the fol-
lowing problem and settings:

• Three parameters of the spar-buoy floating plat-
form are selected as design variables with their cor-

responding allowable value ranges: the diameter
(between 6.5 m and 10.0 m) and the height (be-
tween 68.0 m and 108.0 m) of the spar-buoy col-
umn, as well as the density of the ballast (between
1281.0 kg/m3 and 2600.0 kg/m3). A fourth indi-
rect variable, the amount of ballast (filling height in
the column), is internally determined and adjusted,
based on the design parameters and to ensure floata-
tion of the system.

• Three objective functions and corresponding con-
straints are defined to limit the maximum system
inclination (pitch) to 10◦, limit the maximum na-
celle or tower-top acceleration to 1.962 m/s2, and to
minimize the floater translational motion (combined
surge, sway, and heave).

• The optimizer NSGAII5 from Platypus (Hadka,
2015) is used due to the multi-objective optimization
task and the optimization algorithm is executed for
25 generations with 36 individuals each.

The variation of the floater design within the opti-
mization algorithm is shown in Figure 4. The black
shape represents the original geometry and corresponding
ballast height (indicated by the dashed line). A few
exemplary geometries of individuals obtained during the
optimization are presented in different green tones and
reveal the ranges of the design variables.

A more detailed analysis of the simulation results
shows that both the spread of the design parameters and
the spread of the optimization objectives converge, with
having a minimum spread in generation number 13, as
indicated in Figure 5. From this, the final optimum ge-
ometry is selected, which is displayed in red in Figure 4.
With this design, the objectives are achieved, while still
fulfilling the prescribed boundaries and constraints for the
design parameters.

5Non-dominated Sorting Genetic Algorithm II



Figure 3. Floating spar-buoy wind turbine system in MoWiT, including coordinate system and
system degrees of freedom, as well as wind inflow direction.

Figure 4. Interim (green
tones) and final (red) results
from the floater design opti-
mization procedure, in com-
parison with the original de-
sign (black).

(a) Development of the design variables column diameter (blue), col-
umn height (cyan), and ballast density (green), together with the original
values (red).

(b) Development of the objectives for system inclination (violet), na-
celle acceleration (orange), and floater translation (brown).

Figure 5. Results from the floater design optimization procedure, arrows indicate the generation from which the final optimum
design is selected.

5 Conclusion
In this paper, a Python-Modelica framework is presented,
by which means Modelica models can be managed and
simulations executed automatically, using scripts pro-
grammed in Python. Models for entire wind turbine sys-
tems (onshore, bottom-fixed offshore, or even floating off-
shore) are created in the MoWiT library, which are then
simulated in Dymola. The external and automated control
of the simulations is taken over by various Python scripts.

These are split up into methods for processing the Model-
ica package of the MoWiT model, methods for managing
the simulation, and the main script for executing the task
and performing further (post-)processing. By means of
this Python-Modelica framework iterative simulations
can automatically be performed, which is very relevant
for the assessment, design, and optimization of wind
turbine systems. For the latter application, the framework
is extended to cover also definitions for optimization al-
gorithms, including optimization problem and optimizer.



An exemplary optimization task for design optimization
of a floating wind turbine support structure demonstrates
that the presented Python-Modelica framework automates
the execution of a large number of simulations, is capable
of handling non-linear system behaviors, and thus is a
valuable tool for detailed assessment of wind turbine
system designs.
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