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Abstract

In this paper we present a �nite di�erence method on a staggered grid for solving
two-dimensional free surface �ows of liquid crystalline polymers governed by the
Ericksen-Leslie dynamic equations. The numerical technique is based on a projec-
tion method and employs Cartesian coordinates. The technique solves the governing
equations using primitive variables for velocity, pressure, extra-stress tensor and the
director. These equations are nonlinear partial di�erential equations consisting of the
mass conservation equation and the balance laws of linear and angular momentum.
Code veri�cation and convergence estimates are e�ected by solving a �ow problem
on 5 di�erent meshes. Two free surface problems are tackled: a jet impinging on
a �at surface and injection molding. In the �rst case the buckling phenomenon is
examined and shown to be highly dependent on the elasticity of the �uid. In the
second case, injection molding of two di�erently shaped containers is carried out and
the director is shown to be strongly dependent on its orientation at the boundaries.
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1 Introduction

Nematic liquid crystals and nematic liquid crystalline polymers (LCPs) are
anisotropic materials; they are important engineering materials because of
the wide range of their applications ([5,51]). For example, nematic LCPs have
been spun into high strength �bers which were used as airbags that cushioned
the landing of NASAs highly successful missions to Mars ([17]). When nematic
liquid crystalline polymers are used for industrial products, the molecular ori-
entation within the products is important because their characteristics are
dependent on their arrangement. Polymer processing principally involves in-
jection molding. The direction or alignment of the molecules is dependent on
the �ow process and, after solidi�cation, this alignment is maintained. Since
the material and the mechanical strength of the �nished product are highly de-
pendent on their molecular alignment, it is vital to have a good understanding
of the history of both the �ow pattern and the molecular orientations.

Ericksen's [18,19,20,21] transversely isotropic �uid, which was the �rst con-
tinuum theory for liquids with an intrinsic orientation, has been the basis for
all subsequent developments of the continuum theory. The common feature of
all such theories is that the stress depends on an orientational �eld in addi-
tion to the velocity gradients; the orientation is described by the distribution
of a unit vector known as the director in some theories, and by the distri-
bution of an orientation tensor in others. By making use of Ericksen's ideas,
Leslie [38,39] managed to formulate the constitutive equations and therefore
complete the dynamic theory for nematic liquid crystals. This led to the cele-
brated Ericksen-Leslie dynamic theory of nematic liquid crystals about which
this paper is concerned.

At present, Ericksen-Leslie theory [56] and Doi's theory [16,32] have become
the two most popular constitutive theories describing the behavior of liquid
crystals. Nematic liquid crystals have both elastic and viscous properties, and
their molecular orientation is a�ected by the particular �ow �eld. Many studies
employing the Ericksen-Leslie equations have been undertaken (e.g. [9,11]).
Others like Forest et al. [23,24] have employed Ericksen-Leslie equations to
analise the �ow induced behavior of nematic LCPs. Doi and Edwards [16]
derived their model from microscopic molecular theory: it is a kinetic model
for rod-like polymers. In the limit of low shear rates they demonstrated that it
could be reduced to the Ericksen-Leslie theory. However, the Doi and Edwards
model is complicated and not particularly suited for large scale simulations of
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complex problems.

There have been a number of experimental and theoretical studies of �ow of
low molar mass liquid crystals in complex geometries (e.g. [2,31,33,47]). With
regard to the �ow of liquid crystalline polymers, Kawaguchi and Denn [34]
performed visualization of the �ow of a thermotropic �uid in a tube with
conical contraction while Cinader and Burghardt [13] used wide-angle X-ray
crystalography to study LCP orientation in plane contraction and expansion.
Many other authors have employed the Ericksen-Leslie equations to compute
the �ow behavior of LCPs (and nematic liquid crystals) (e.g. [3,7,9,10]). Cruz
et. al. ([15]) developed a methodology for nematic liquid crystal �ows in a
con�ned region. This work extends Cruz et. al. ([15]) method to nematic LCPs
with free surface �ows; the extension, however, is non-trivial.

This paper, therefore is concerned with the development of a �nite di�erence
algorithm capable of e�ciently solving complex free surface �ows using the
Ericksen-Leslie model. It is organised as follows: Section 2 presents the gov-
erning equations; Section 3 discusses the boundary conditions; while Section
4 describes the details of the numerical algorithm. In Section 5 a jet hitting a
�at rigid plate is simulated on �ve di�erent meshes to provide an indication
that the code is working correctly and converging. Section 6 studies the jet
buckling phenomenon and in particular addresses the role of elasticity in LCPs
while Section 7 treats the problems of mold �lling and shows how the director
orientation is a�ected by the boundary conditions. Concluding remarks are
then provided in Section 8.
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2 Governing equations

To facilitate the presentation of the equations, we shall employ the Einstein
summation convention by which a comma between indices indicates partial
di�erentiation with respect the variable it precedes. For example, u,x, nj,y de-
note ∂u/∂x, ∂nj/∂y and so on.

The governing equations for two-dimensional Cartesian incompressible �ows of
nematic liquid crystalline polymers are the nondimensional mass conservation
and momentum equations which can be written as (for details, see Cruz et al.
[15], equations (41)-(49) with the term involving H omitted).

u,x + v,y = 0 , (1a)

ut + uu,x + vu,y = −p,x − wF,x +Rjnj,x

+
1

Re
[u,xx + u,yy] +

1

Re

[
Φxx
,x + Φxy

,y

]
+

1

Fr2
gx, (1b)

vt + uv,x + vv,y = −p,y − wF,y +Rjnj,y

+
1

Re
[v,xx + v,yy] +

1

Re

[
Φyx
,x + Φyy

,y

]
+

1

Fr2
gy, (1c)

where the terms Rjnj,x and Rjnj,y, are given by

Rjnj,x =
1

Re
{−γ1φ,x

[
φ,t + uφ,x + vφ,y + 1

2
(u,y − v,x)

]
− 1

2
[γ2φ,x cos(2φ)(u,y + v,x) + γ2φ,x sin(2φ)(u,x − v,y)]}, (2a)

Rjnj,y =
1

Re
{−γ1φ,y

[
φ,t + uφ,x + vφ,y + 1

2
(u,y − v,x)

]
− 1

2
[γ2φ,y cos(2φ)(u,y + v,x) + γ2φ,y sin(2φ)(u,x − v,y)]}, (2b)

Equations (1a)-(1c) must be complemented with the elastic energy and the
angular momentum equations given by (see [15])

wF =
1

2

1

Re

1

Er

[
(φ,x)

2 + (φ,y)
2
]
, (3)



φt = F (u, v, φ)

F (u, v, φ) = −uφ,x − vφ,y +
1

Er γ1
[φ,xx + φ,yy]

− 1

2

γ2
γ1

[
(u,y + v,x) cos(2φ) + (v,y−u,x) sin(2φ)

]
− 1

2
(u,y − v,x).

(4)
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The constants appearing in equations (1a)-(4) are: φ0 is a given constant
angle, γ1 is the twist or rotational viscosity and γ2 is the torsion coe�cient of
viscosity.

In equations (1a)-(4), the nondimensional numbers are the Reynolds number
(Re = ρU L

η
), the Ericksen number (Er = U L η

K
) and the Froude number

(Fr = U√
g L

). The appropriate scalings U , L, ρ and η are associated with ve-
locity, length, density and viscosity, respectively, whileK is an elastic constant
and g is the gravitational constant. Complete details about the derivation of
these equations are provided in Cruz et al. [15] and for this reason they are
not presented here.

In equations above, ui = (u(x, y, t), v(x, y, t)) is the velocity �eld, p = p(x, y, t)
is the pressure, wF (x, y, t) is the elastic energy density and φ = φ(x, y, t) is
the orientation angle of the director ni = (cos(φ), sin(φ)).

The momentum equations (1b) and (1c) were obtained after the viscous stress
tensor was split into the sum of a Newtonian and a non-Newtonian stress
tensor, Φml, as follows:

Φml =

Φxx Φxy

Φyx Φyy

 ,

Sxx =
1

Re
[2u,x + Φxx] , (5)

Sxy =
1

Re
[(u,y + v,x) + Φxy] , (6)

Syx =
1

Re
[(u,y + v,x) + Φyx] , (7)

Syy =
1

Re
[2 v,y + Φyy] , (8)

where Φxx, · · · ,Φyy are the components of the non-Newtonian stress tensor
Φml given by (for details, see [15])
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Φxx = α1 cos2φ
[
u,x cos2φ+ v,y sin2φ+ 1

2
(u,y + v,x) sin(2φ)

]
− (α2 + α3) sinφ cosφ

[
φt + uφ,x + vφ,y + 1

2
(u,y − v,x)

]
+ (α5 + α6)

[
u,x cos2φ+ 1

2
sinφ cosφ(u,y + v,x)

]
, (9a)

Φxy = α1 sinφ cosφ
[
u,x cos2φ+ v,y sin2φ+ 1

2
(u,y + v,x) sin(2φ)

]
+ (α3 cos2φ− α2 sin2φ)

[
φt + uφ,x + vφ,y + 1

2
(u,y − v,x)

]
+ 1

2
(α5 sin2φ+ α6 cos2φ)(u,y + v,x)

+ (α5u,x + α6v,y) sinφ cosφ , (9b)

Φyx = α1 sinφ cosφ
[
u,x cos2φ+ v,y sin2φ+ 1

2
(u,y + v,x) sin(2φ)

]
+ (α2 cos2φ− α3 sin2φ)

[
φt + uφ,x + vφ,y + 1

2
(u,y − v,x)

]
+ 1

2
(α5 cos2φ+ α6 sin2φ)(u,y + v,x)

+ (α5v,y + α6u,x) sinφ cosφ , (9c)

Φyy = α1 sin2φ
[
u,x cos2φ+ v,y sin2φ+ 1

2
(u,y + v,x) sin(2φ)

]
+ (α2 + α3) sinφ cosφ

[
φt + uφ,x + vφ,y + 1

2
(u,y − v,x)

]
+ (α5 + α6)

[
v,y sin2φ+ 1

2
sinφ cosφ(u,y + v,x)

]
. (9d)

In the equations (9a)-(9d) above, the Leslie viscosities α1, . . . , α6 have been
scaled by the factor η.

In order to simulate the �ow of a nematic liquid crystal or nematic LCPs
one needs to be able to solve the incompressibility condition (1a) together
with equations (1b), (1c) and (4) subject to appropriate initial and boundary
conditions.
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3 Boundary conditions

Four types of boundaries are considered: rigid boundaries, prescribed in�ows,
out�ows, and free surfaces. The boundary conditions are speci�ed as follows.
For two-dimensional �ows, let ν = (νx, νy)

T and µ = (−νy, νx)T denote
unit normal and tangential vectors to the boundary, respectively. Then, the
velocity u = (u, v)T , on the boundary, is speci�ed according to:

• rigid boundaries : uT · ν = 0 and uT · µ = 0. This implies that u = v = 0
on the boundary.
• prescribed in�ows: uT ·ν = Uinf and uT ·µ = 0 which gives the (2×2) linear
system (since µx = −νy and µy = νx)u νx + v νy = Uinf ,

−u νy + v νx = 0.


which yields

u = Uinf νx

v = Uinf νy

• out�ows: Neumann conditions are imposed, (∇u) · ν = 0 and (∇v) · ν = 0,

speci�cally,
∂u

∂x
νx +

∂u

∂y
νy = 0 and

∂v

∂x
νx +

∂v

∂y
νy = 0.

• free surfaces: On free surfaces we neglect surface tension forces so that the
correct boundary conditions to be satis�ed are (see Batchelor [4]):

νT · t · ν = 0, (10a)

µT · t · ν = 0, (10b)

where the total stress tensor tml is given by

tml = −pδml +
1

Re

[
um,l + ul,m

]
+

1

Re
Φml. (11)

Thus, for two-dimensional Cartesian �ows, conditions (10a) and (10b) can
be rewritten as

p̃ =
2

Re

[
u,xν

2
x + v,yν

2
y + νxνy(u,y + v,x)

]
+

1

Re

[
Φxxν2x + Φyyν2y + νxνy(Φ

xy + Φyx)
]

(12a)

0 =
1

Re

[
2(u,x − v,y)νxνy +

(
u,y + v,x

)
(ν2y − ν2x)

]
+

1

Re

[
Φxyν2y − Φyxν2x + νxνy(Φ

xx − Φyy)
]
. (12b)
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Figure 1 illustrates the types of boundaries within a computational domain.

Fluid

Rigid Boundary

Rigid Boundary

OutflowInflow

Free Surface

Figure 1. Types of boundaries considered.

4 GENSMAC-ERL-Model2D - ERicksen-Leslie

A typical cell is displayed in Fig. 2a and a staggered grid is employed whereby
pij, φij and Φij are placed at the centre of the cell while the velocities are
displaced by half a grid length and sit on the cell faces. For �ows containing
free surfaces, a technique that de�nes the �uid contour is required. The tech-
nique employed in this work is a modi�ed Marker-and-Cell method that was
initially introduced by Harlow and Welch [30] and was further developed by
Tomé et al. [57,60] who have simulated free surface �ows of Newtonian [59]
and non-Newtonian [63] �uids. The markers or massless particles are only re-
tained in the surface cells: this necessitates removal and addition of particles
while maintaining mass conservation (for details see [41]). In this technique,
the contour of the �uid (and, in particular, the free surface) is de�ned by a set
of massless particles that moves with the local �uid velocity. The free surface
of the �uid is visualized by connecting these particles by straight lines and the
corresponding volume of �uid is that encapsulated area de�ned by the closed
surface (see Fig. 2a). When surface tension is present a more sophisticated ap-
proach is required (see [41]). To implement this methodology it was necessary
to categorise the cells within the domain into several groups as follows: (see
Fig. 3):

� Rigid boundary (B): cells that de�ne the location of rigid contours;
� In�ow boundary (I): cells that model `�uid entrances' (`in�ows');
� Out�ow boundary (O): cells that de�ne `�uid exits' (`out�ows');
� Empty cells (E): cells that do not contain �uid;
� Full cells (F): cells that contain �uid but have no contact with E-cell

faces;
� Surface cells (S): cells that contain �uid and have at least one face in

contact with E-cell faces.
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The solution of equations (1a), (1b)-(1c), (3) and (4) is obtained by splitting
the calculational cycle into two sequential phases: in the �rst phase, the veloc-
ity �eld um(xk, tn) and the orientation angle of the director φ(xk, tn) are used
to calculate the new velocity �eld um(xk, tn+1) and the new pressure p(xk, tn+1)
while, in the second phase, the updated velocity �eld is employed to determine
the orientation angle of the director φ(xk, tn+1) and the non-Newtonian stress
tensor Φml(xk, tn+1).

p

φ
Φ

ij

ij

ij

v

v

u ui−1/2,j

i,j−1/2

i+1/2,j

i,j+1/2

(a) (b)

Figure 2. (a) Representation of �uid free surface (line conecting the particles) and
volume of �uid (grey area), (b) Description of the staggered cell.

I

I

I

I

I

B B B B B B

B B B B B B B B B B B B B B B B

O

O

O

O

O

F

F

F

F

F F

F

F

F

F F

F

F

F

F

F

F

F

B B B B B B B BBB

F

F

F

F

F

E

E

E

E

E

S

S

S

S

S

Figure 3. Type of cells considered within the computational domain.

4.1 Calculation of um(xk, tn+1) and p(xk, tn+1)

Equation (1a) together with equations (1b)-(1c) are solved by an implicit
method used by Oishi et al. [43] to simulate �ows of XPP �uids. This technique
solves two linear systems to obtain a tentative velocity �eld ũm, followed by
the solution of a Poisson equation to ensure incompressibility throughout.
One feature of the solution of the Poisson equation is that it is coupled with
the pressure condition on the free surface (12a) through the incompressibility
condition (1a) allowing the calculation of the pressure implicitly. This results
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in a nonsymmetric system of linear equations which are solved by the bi-
conjugate gradient method. Details of the algorithm employed are given next.

Let um(xk, tn) = um
(n), p(xk, tn) = p(n), Φml(xk, tn) = Φml

(n) and the mark-
ers' positions xk(tn) = xk

(n) be known. Then um(xk, tn+1) = um
(n+1) and the

pressure p(xk, tn+1) = p(n+1) at time tn+1 are obtained as follows.

Step 1:Using the values of um(xk, tn) and φ(xk, tn), solve Eq. (3) for wF (xk, tn)
and calculate the derivatives wF,m(xk, tn) and compute Φml(xk, tn) from equa-
tions (9a)-(9d) and Rlnl,m(xk, tn) using equations (2a) and (2b), respectively.

Step 2: Calculate an intermediate velocity �eld ũm by

∂ũm
∂t

= −(ul um),l−p(n),m −wF,m+Rlnl,m+
1

Re

[
(um,l),l +Φml,l

]
+

1

Fr2
gx , (13)

The boundary conditions for ũ(n+1)
m are those imposed on um

(n+1).

This equation is applied to each F and S-cells within the domain leading to
two sparse symmetric positive de�nite linear systems that are solved by the
conjugate gradient method, using the velocity value at the previous time step
as an initial guess which, in practice, if δt is small enough, precludes the need
for preconditioning. It can be shown that ũ(n+1)

m contains the correct vorticity
at time tn+1 [58] but it does not ensure incompressibility. For that reason, a
potential function ψ(n+1) is employed such that

(ψm,l)
(n+1)
,l = (ũm)(n+1)

,m . (14a)

um
(n+1) = ũ(n+1)

m − ψ(n+1)
,m , (14b)

Thus, after solving the Poisson equation (14a) the velocity is obtained from
equation (14b). This Poisson equation is applied to every F-cell subject to
a homogeneous Neumann condition on in�ows and rigid boundaries and a
homogeneous Dirichlet condition (ψ = 0) on out�ows and free surfaces. The
pressure is given by (see Tomé et al. [58])

p(n+1) = p(n) +
ψ(n+1)

δt
. (15)

Step 3: Implicit calculation of the pressure on the free surface
When solving the Poisson equation (14a), the Dirichlet boundary condition
for ψ on the free surface determines that it is zero on surface cells S. In this
work we employ the implicit technique of Oishi et al. [43] in which additional
equations for ψ(n+1) on surface cells S are obtained. This is achieved by writing
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equation (12a) in the form

p(n+1) =
2

Re

[
ν2xu

(n+1)
,x + ν2yv

(n+1)
,y + νxνy

(
u(n+1)
,y + v(n+1)

,x

)]
+

1

Re

[
ν2xΦxx + ν2yΦyy + νxνy

(
Φxy + Φyx

)]
.

(16)

and making use of the mass conservation equation (1a), together with equa-
tions (14b) and (15); then equation (16) may be rewritten as

ψ(n+1)

δt
− 2

Re

[
ψ(n+1)
,yy ν2x + ψ(n+1)

,xx ν2y − 2ψ(n+1)
,xy νxνy

]
=

2

Re

[
− ṽ(n+1)

,y ν2x − ũ(n+1)
,x ν2y + ũ(n+1)

,y + ṽ(n+1)
,x νxνy

]
+

1

Re

[
Φxxν2x + νxνy

(
Φxy + Φyx

)
+ Φyyν2y

]
− p(n).

(17)

This equation is applied to every S-cell. It is assumed that the mesh is suf-
�ciently �ne so that the free surface will cut a S-cell either on two-opposite
faces (see Fig. 4a) or will intercept the cell on two adjacent faces (see Fig. 4b).
In both cases, an approximation for the normal vector is determined by ex-
amining the S-cell neighbours. For instance, considering the cell Si,j displayed
in Fig. 4a, we assume that the free surface is horizontal and then de�ne the
normal vector as ν = (0, 1) so that equation (17) reduces to

Re

δt
ψ

(n+1)
i,j − 2(ψi,j)

(n+1)
,xx = −2(ṽi,j)

(n+1)
,x + Φyy

i,j −Re p
(n)
i,j , (18)

while if we consider the cell Si,j shown in Fig. 4b, then a 45o-sloped surface

is assumed and we take ν =
(√

2

2
,

√
2

2

)
. In this case, equation (17) becomes

Re

δt
ψ

(n+1)
i,j + 2(ψi,j)

(n+1)
,xy =

(
(ũi,j)

(n+1)
,y + (ṽi,j)

(n+1)
,x

)
+

1

2

(
Φxx + Φxy + Φyx + Φyy

)
i,j
−Re p(n)i,j .

(19)

The code contains a check: if any one cut by the free surface does not fall
clearly into one or other of these categories then a �ag indicates that the
mesh should be further re�ned.

These approximations simplify equation (17) which is then approximated by
local �nite di�erences. For other types of surface approximations (vertical or
variations of 45o-sloped surfaces), the normal vector is obtained in a similar
manner. The equations for ψ on each F and S-cells are grouped into a non-
symmetric sparse linear system that is solved by the bi-conjugate gradient
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method. Details of the �nite di�erence equations (and the preconditioning
applied) are provided in the works of Oishi et al. [43] and Tomé et al. [65].

Once the �nal velocities have been calculated, the positions of the markers(
xp = (xp, yp)

)
that describe the �uid surface are updated by solving the

ordinary di�erential equations

dxp
dt

= u(n+1)
p and

dyp
dt

= v(n+1)
p (20)

by the second order improved Euler's method. The velocities up and vp are
found from bilinear interpolation involving the nearest values of up and vp.
Connecting these particles using straight lines provides the new �uid surface.
Details on the particles' movement are given in Tomé and McKee [57].

S
i,j S

E E E

S S
i,j

45 o

E

E

(a) (b)

Figure 4. Free surface orientations. (a) horizontal surface: ν = (0, 1)T and

µ = (−1, 0)T ; (b) 45o sloped surface: ν =

(√
2

2
,

√
2

2

)T
and µ =

(
−
√
2

2
,

√
2

2

)T
.

Step 4: Calculation of the time-step size: The use of an implicit method for
the calculation of the velocities, while it is a distinct improvement over the
explicit method previously employed, does not yield an unconditionally stable
algorithm over all. There are essentially two restrictions on the choice of the
time step: a viscous restriction that arises from a �Von Neumann� like condi-
tion and a Courant-Friedrichs-Lewy restriction; the latter really requiring that
marker particles should only move, at most, from one cell to a neighbouring
cell.

12



We have found empirically that a good choice is

δt = Γ ∗min
{
δtMESH , δtCFL

}
,

where


δtMESH =

h2

4
(where, h = δx = δy),

δtCFL = min
{

h

max |u|
,

h

max |v|

}
,

(21)

and Γ is a positive number such that 0 < Γ < 1.

4.2 Computation of the angle φ and the non-Newtonian tensor Φ

By using um(xk, tn+1), the angle of the director φ(xk, tn+1) is obtained from
equation (4); it is solved by the following second-order Runge-Kutta scheme:

K1 = F (u(n+1), v(n+1), φ(n))

φ̂ = φ(n) + δtK1

K2 = F (u(n+1), v(n+1), φ̂(n))

φ(n+1) = φ(n) +
δt

2

[
K1 +K2

]
,

(22)

where the boundary conditions for φ will be discussed in the next section. The
function F is given in equation (4).

After calculating the angle of the director, the components of the non-Newtonian
tensor Φ are computed from equations (9a)-(9d).

5 Simulation of a jet hitting a rigid plate

In order to verify the code and demonstrate the convergence of the numerical
method, a jet of diameter D = 0.4 mm containing the nematic LCP MBBA 2

impacting a rigid surface was simulated and mesh re�nement studies were
performed. In these simulations, a computational domain of dimensions W
by H (W=4mm, H=6 mm) was utilized (see Fig. 5), and the �ve di�erent
meshes de�ned in Table 1 were employed. The properties of the nematic LCP
�uid are displayed in Table 2. The remaining data used are displayed in Table
3. The boundary conditions employed to calculate the director angle are those
depicted in Fig. 5b.

2 MBBA or N-(4-Methoxybensylidene)-4-butylaniline is an organic compound often
used as a liquid crystal
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The results obtained in these simulations are presented in Fig. 6 which shows
several snapshots taken at selected times during the simulation. By examining
Fig. 6 we can observe that the surface pro�les obtained on the coarse meshes
approximate the surface pro�le of mesh M5. Furthermore, the surface pro�les
of meshesM3,M4 andM5 appear very close to each other. Therefore, these re-
sults give the impression at least that the numerical method for this particular
free surface �ow problem converges.

Rigid surface

D

Fluid

Inflow

H

W Rigid Surface

Inflow

(a) (b)

Figure 5. (a) Description of the domain used in the simulation, (b) Boundary con-
ditions for the computation of the Director angle φ.

Table 1
Meshes employed in the simulation of a jet hitting a rigid plate.

Meshes

δx = δy

D = 0.4mm

M1 :

δx = D
8

80× 120

M2 :

δx = D
16

160× 240

M3 :

δx = D
20

200× 300

M4 :

δx = D
32

320× 480

M5 :

δx = D
40

400× 600

Table 2
De�nition of the �uid used in the results of this paper. Physical parameters are in
SI units.

ρ=1088 kg m−3

Leslie viscosities α1 α2 α3 α4 α5 α6

MBBA near 25oC -0.0181 -0.1104 -0.001104 0.0826 0.0779 -0.0336

Table 3
Data used in the simulation of a jet hitting a rigid plate.

D U H W H/D Re K Er Fr

0.4 mm 0.04 ms−1 6 mm 4 mm 15 0.4 3.3×10−8 20 0.64
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Figure 6. Free surface pro�les obtained in the simulation of a jet �owing onto a rigid
surface, using the nematic LCP �uid MBBA. Fluid �ow visualizations at selected
times on meshes M1,M2,M3,M4 and M5.
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6 Numerical simulation of jet buckling of nematic LCP �uids

To demonstrate that the numerical method is capable of predicting free surface
�ow instabilities, we have explored numerically the phenomenon known as
jet buckling. An example of this phenomenon is the coiling and folding of a
thin thread of viscous �uid falling onto a rigid horizontal surface (see Fig.
7). It has been intensively studied by many researchers (e.g.[14,52,53]). This
phenomenon is characterized by the formation of a physical instability that
occurs after a viscous �uid jet impinges upon a rigid plate. This problem was
experimentally and theoretically studied by Cruickshank and Munson [14] for
Newtonian �uids, who discovered that this instability is in�uenced by the
height H between the nozzle and the rigid plate, jet width D and Reynolds
number Re. In their analyses, Cruickshank and Munson [14] found that a two-
dimensional Newtonian jet will undergo �jet buckling� if the conditions below
are approximately satis�ed

Re < 0.56 and H/D > 10. (23)

W

H

D

H1

(a) (b)

Figure 7. a) Description of the domain used in the simulation. b) Example of jet
buckling of a Newtonian jet (from Tomé et al. [64]).

A number of researchers simulated this phenomenon in two and three di-
mensions employing Newtonian �uids and con�rmed the conditions given by
inequalities (23). Numerical simulations have been carried out by Tomé et

al. [64] using a marker-and-cell �nite di�erence method for Newtonian and
Oldroyd-B �uids while Ra�ee et al. [48], in the context of the SPH method,
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also presented numerical simulations of the jet buckling phenomenon for New-
tonian and Oldroyd-B jets. More recently, Roberts and Rao [54], carried out
an interesting computational study of continuous jets of shear thinning �uids
impinging on a �uid surface.

We consider the simulation of the �lling of a square container depicted in Fig.
7a. We are interested in whether Nematic Liquid Crystalline Polymers will
undergo buckling during the �lling process. The properties of the nematic LCP
�uid employed in this simulation are described in Table 2 and the dimensions
of the computational domain are displayed schematically in Fig. 7a. The mesh
spacing was de�ned to be δx = δy = D/8 = 0.05mm where D = 0.4mm was
the inlet diameter from which the jet issued. Gravity forces acted downwards
with gy = −9.81 ms−2. The values of the nondimensional numbers, Re, Fr, Er
and the velocity U and the elastic constant K, involved in these simulations,
are given in Table 4. Using the scaling velocities U = 0.0285 and U = 0.057
ms−1 leads to Re = 0.3 and Re = 0.6, respectively, and so the Cruickshank
and Munson conditions (23) are satis�ed only for U = 0.0285. Thus, it is
anticipated that a Newtonian jet will undergo buckling when U = 0.0285
ms−1, but will not when U = 0.057. For the jet containing the nematic LCP
�uid, there would appear to be no asymptotic analysis of jet buckling.

The results of these simulations are presented in Figs. 8 and 9. We observe,
from Fig. 8, that both Newtonian and nematic LCP jets buckle when Re = 0.3.
However, for Re = 0.6, Fig. 9 shows that the Newtonian jet does not buckle
while nematic LCP jet does: this is likely to be due to the elasticity of the
�uid. To con�rm this hypothesis, additional simulations were performed and
are presented in the next section.

Table 4
Data employed in the simulation of an impinging jet of a nematic LCP �uid.

D = 0.4 mm, H = 6 mm, H/D = 15, ρ = 1088 kgm−3, η =
1

2
α4

Nematic LCP �uid

U Re Fr K Er

0.0285 ms−1 0.3 0.455 9.4E−8 5

0.057 ms−1 0.6 0.91 1.88E−7 5

17



N
e
w
to
n
ia
n

L
C

P
 n

e
m

a
ti

c

t = 0.06s t = 0.08s t = 0.14s t = 0.18s t = 0.20s

Figure 8. Numerical simulation of a jet �owing onto a rigid surface of Newtonian and
nematic LCP �uids with Re = 0.3 and Er = 5. Fluid �ow visualization at selected
times.
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Figure 9. Numerical simulation of a jet �owing onto a rigid surface of Newtonian and
nematic LCP �uids with Re = 0.6 and Er = 5. Fluid �ow visualization at selected
times.
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6.1 The e�ect of the parameter K on jet buckling

To demonstrate that jet buckling is strongly a�ected by the parameter K we
show that for high values ofK, the Ericksen-Leslie model can produce buckling
results similar to the Newtonian case.

With Re = 0.6 and Fr = 0.91, we carried out four simulations with the data
shown in Table 5. Figure 10 exhibits the results obtained at times t = 0.07s,
0.10s and 0.14s. The �rst simulation shows a Newtonian jet impinging on
the bottom of the container while the second displays a nematic LCP jet for
Ericksen number Er = 0.05. To demonstrate that the elastic parameter K
can a�ect this problem, three more simulations using Er = 10, 20 and 50 were
performed. As shown in Fig. 10, the di�erences between the results of these
simulations are quite dramatic. The Cruickshank and Munson's conditions
are not satis�ed and the Newtonian jet did not buckle, as anticipated. The
results from the simulation using Er = 0.05 display a �ow behaviour similar
to the Newtonian case, while in the simulations with Er = 10, 20 and 50
the jets buckled. These results indicate that there is a greater propensity for
nematic liquid crystalline polymers to buckle as the e�ect of the viscoelasticity
diminishes, that is, as K increases.

Table 5
Data employed in the simulation of jet buckling study varying K.

D = 0.4 mm, H = 6 mm, H/D = 15, δx = δy = 0.05 mm

U = 0.057 ms−1, ρ = 1088 kgm−3, η =
1

2
α4

K Er

1.884E−5 0.05

9.420E−8 10

4.710E−8 20

1.884E−8 50
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t = 0.07s

t = 0.10s

t = 0.14s
Newtonian Er = 0.05 Er = 10 Er = 20 Er = 50

Figure 10. Numerical simulation of a jet �owing onto a rigid surface of LCP Nematic
�uids with Re = 0.6. Fluid �ow visualization.

To con�rm that the results obtained with Re = 0.6 were due to elastic ef-
fects, additional simulations were performed using the elastic constant K =
0.0000001569 N, U = 0.095 ms−1; the values of δx, δy, ρ, η and D are given
in Table 5, resulting in Re = 1, F r = 1.51 and Er = 10. Also, corresponding
simulations were performed with a Newtonian jet with Re = 1 which does
not satisfy the Cruickshank and Munson's conditions for jet buckling. Indeed,
as can be seen in Fig. 11, the Newtonian jet was stable without any buckling
while the nematic LCP jet was unstable displaying the buckling phenomenon.
Again, these results tend to con�rm that elasticity, represented by the parame-
ter K of the Ericksen-Leslie Model, can lead to jet buckling while a Newtonian
one does not.
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Figure 11. Numerical simulation of a jet �owing onto a rigid surface of Newtonian
and LCP Nematic �uids with Re = 1 and Er = 10. Fluid �ow visualization at
selected times.
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7 Numerical simulation of injection molding with nematic LCPs

The simulations presented below focuses on LCPs �ows during injection mold-
ing into thin-walled molds. These �ow �elds have one dimension (z-direction)
that is much smaller in comparison with the other two dimensions (x and y-
directions), so they can be approximated as two-dimensional shear �ows. The
properties of the nematic �uid employed are displayed in Table 2.

In the next two subsections we present the results obtained from the simulation
of the �lling of the two molds, Mold A and Mold B, which are depicted in
Fig. 13. The simulations were performed assuming that the molds were totally
empty of air so that the initial pressure inside the molds was p = 0. In practice,
molds tend to have weep holes which would allow any air to escape.

7.1 Mesh independency test

To demonstrate the convergence of the numerical method for this problem, we
considered Mold A and performed a mesh re�nement study using the input
data: L = 5mm and U = 0.0075ms−1, together with the data de�ning the
LCP MBBA given in Table 2. With these data, we have Re = 1.0 (η = α4/2
was used) and Er = 1.0 and gravity was not considered (g = 0.0). The meshes
employed are de�ned in the Table 7.1 below. A total of four simulations were
carried out until time tfinal = 25.0. Figure 12 displays the free surface pro�les
obtained from these simulations at times (shown in Fig. 12) t = 5, 9, 15, 25.
By analysing Fig. 12, one concludes that the solutions obtained on meshes
M0, M1 and M2 converge to that of mesh M5 which shows that the method
is convergent.

Table 6
Meshes employed in the mesh re�nement study of injection molding of Mold A.

Meshes M0 M1 M2 M3

δx = δy L/8 L/10 L/16 L/20

Mesh sizes 68× 56 86× 70 136× 112 172× 140
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Figure 12. Mesh re�nement study using Re = 1 and Er = 1. Free surface pro�les
obtained on meshes M0, M1, M2 and M3 at selected times shown.
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b) Mold B
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Figure 13. Mold geometries employed.
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7.2 Simulation of the �lling of Mold A

We present the results obtained in the simulation of the �lling of Mold A
where a square obstacle of dimensions 3.5L × 3.0L is placed in its interior
(see Fig. 13a). The dimensions of this mold are 7L by 8.5L, where L denotes
the size of the inlet injection nozzle (see Fig. 13a). The boundary conditions
for the velocity �eld were those speci�ed in Section 3 while, at the in�ow, we
employed the fully developed nematic pro�le, that was derived by Cruz et al.
[15] for channel �ow under the assumption of small director angles:

u(y) =
Re

2
[
1 +

1

2
(α3 + α6)

] p,x y(y − 1), (24a)

u,y =
Re

2[1 +
1

2
(α3 + α6)]

p,x (2y − 1), (24b)

φ(y) =
Er

2
(γ1 + γ2)

Re

2
[
1 +

1

2
(α3 + α6)

] p,x
[
y(1− y)(1− 2y)

6

]
. (24c)
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Figure 14. De�nition of the boundary conditions (represented by the arrows) used
for the calculation of the orientation angle φ.
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The boundary conditions for the angle φ were speci�ed as follows (see Fig.
14):

1. At the injection nozzle (entrance of the mold) φ = 0.
2. Along the horizontal walls, the anchoring angle was set to zero, implying

parallel alignment to the walls.
3. At the vertical walls we employed:
a) φ = −90◦ at x = 0.5L and 0L ≤ y ≤ 3L;
a) φ = 90◦ at x = 0.5L and 4L ≤ y ≤ 7L;
a) φ = −90◦ at x = 3.5L and 2L ≤ y ≤ 3.5L;
b) φ = 90◦ at x = 3.5L and 3.5L ≤ y ≤ 5L;
c) φ = 90◦ at x = 7.0L and 2L ≤ y ≤ 3.5L;
d) φ = −90◦ at x = 7.0L and 3.5L ≤ y ≤ 5L;
e) φ = −90◦ at x = 8.5L and 0L ≤ y ≤ 3.5L;
f) φ = 90◦ at x = 8.5L and 3.5L ≤ y ≤ 7L.

Table 7
Data employed in the simulation of the �lling of Mold A.

U = 0.003 ms−1, ρ = 1088 Kg m−3, ρ = 1088 kgm−3, η =
1

2
α4

LCP Nematic �uid

L (m) Re Fr K (N) Er

0.003 0.24 0.018 3.72E−7 1

0.005 0.40 0.014 6.20E−7 1

0.007 0.55 0.012 8.67E−7 1

The parameters specifying the �ow are given by Table 7. The simulations were
performed using the following computational domain: 119 cells × 98 cells with
grid spacing δx = δy = 0.5 mm. Figs. 15 and 16 display the isolines of u and
v at times t = 40s and t = 76s, where the length scale was L = 0.007m giving
Re = 0.55 and Er = 1. Although not shown explicitly, the mold (e.g. Fig.
14) is assumed to have weep holes which allow air to escape. Since the �ow is
relatively slow, it is not unreasonable to assume that any air within the mold
is at atmospheric pressure (i.e. p = 0).

Figure 17 presents the locations of the free surface at various times during
the �lling operations of Mold A for the three sizes of the cross-section of the
injection inlet nozzle. The �lling time for L = 0.003m was approximately 178
seconds while for L = 0.005m and L = 0.007m the �lling times were 107s and
76s, respectively.
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Figure 15. Numerical simulation of the �lling of Mold A with L = 7mm, Re = 0.55
and Er = 1. Isolines of u and v at time t = 40s.
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Figure 16. Numerical simulation of the �lling of Mold A with Re = 0.55 and
Er = 1. Isolines of u (above) and v (below) at time t = 76s.
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a) L1 = 0.003m

b) L2 = 0.005m

c) L3 = 0.007m

Figure 17. Development of the free surface using three sizes of injection points
(L = 3, 5, 7mm).
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The �lling time (tf in seconds) would appear to be inversely proportional to
the square of the cross-section of the inlet nozzle (L in S.I. units). This relation
can be approximated by the equation

tf =
c

L2
, (25)

where c is a constant that was determined by the least squares method which
gave c ≈ 0.002. The predicted �lling time, as a function of the cross-section
of the injection nozzle is given in Fig. 18.

Figure 18. Prediction of the �lling time (tf ) as function of the cross-section of the
inlet nozzle (L).

Figure 19 displays the �ow directions for L = 0.005m near the completion of
the �lling stage. It can be seen that the velocity �eld generally agrees with
the direction of the moving free surface and no recirculation is observed. A
similar result was obtained with the other nozzle sizes (L). A possible weld
line is visible where the two �uid fronts meet in the right vertical channel.

The distribution of the director orientations are displayed in Figs. 20, 21 and
22 where two zoom-in zones are shown. The three di�erent inlet nozzle sizes
do not have a great e�ect on the director orientation, although it is noticeable
that for the larger nozzle (Fig. 22) the director on the left wall, above and
below the nozzle inlet, are tilted at, respectively, an angle of approximately
135o and -135o, whereas those in the smaller nozzle (Fig. 20) lie between 45o

and 90o (above the nozzle) and 270o (below the nozzle) and are shifted more
to the left.
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Figure 19. Velocity vectors obtained in the simulation of the �lling of Mold A at
time t = 76s.

Figure 20. Director orientations in the simulation of the �lling of Mold A. Inlet
cross-section = 0.003m.

Figure 21. Director orientations in the simulation of the �lling of Mold A. Inlet
cross-section = 0.005m.
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Figure 22. Director orientations in the simulation of the �lling of Mold A. Inlet
cross-section = 0.007m.

7.3 Numerical simulation of the �lling of Mold B.

We applied the method of Section 4 to simulate the �lling ofMold B as shown
in Fig. 13(b). The boundary conditions for the velocity �eld are described in
Section 3 while at the channel entrance the x−component of the velocity was
given by the analytic expression (24a).

The following boundary conditions were speci�ed (see also Fig. 23):

1. Along the horizontal walls, the anchoring angle was set to zero, implying
parallel alignment to the walls.

2. At the contraction entrances, we used:
a) (BC1 and BC2) φ = −45◦; b) (BC3) φ = 45◦;

3. At the expansion entrances, we used:
a) φ = −45◦; b) φ = 45◦;

4. At the vertical walls (i e, the contraction walls and �nal walls), we employed:
BC1) φ = −90◦ at x = 2.4L and 1.5L ≤ y ≤ 2.5L, and φ = 90◦ at x = 2.4L

and 2.5L ≤ y ≤ 5L;
BC2) φ = −90◦ at x = 2.4L and 1.5L ≤ y ≤ 5L;
BC3) φ = 90◦ at x = 2.4L and 1.5L ≤ y ≤ 5L;

φ = 90◦ at x = 8.9L and 0L ≤ y ≤ 5L;
5. At the vertical walls (or the expansion walls), we employed:
a) φ = −90◦ at x = 0.9L and 0 ≤ y ≤ 2L;
b) φ = 90◦ at x = 0.9L and 3L ≤ y ≤ 5L;
b) φ = 90◦ at x = 7.4L and 1.5L ≤ y ≤ 5L;

6. At the channel entry de�ned by x = 0 and 2L ≤ y ≤ 3L, we set φ = 0.

The physical parameters, speci�c to this nematic LCP problem, are presented
in Table 2. The remaining input parameters are given in Table 8. The simu-
lations were performed using the following computational domain 4.45mm ×
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2.5mm with grid spacing δx = δy = 0.5mm.

Table 8
Data employed in the simulation of the �lling of Mold B.

U = 0.005 ms−1, ρ = 1088 Kg m−3, η =
1

2
α4 Pa.s

L (m) Re Fr K (N) Er

0.005 0.66 0.023 1.03E−6 1

To demonstrate that the boundary conditions on the orientation angle φ can
a�ect the director and the velocity �elds, three simulations using Re = 0.7
and Er = 1 were performed. In the �rst simulation we used the boundary
conditions BC1 displayed in Fig. 23(a) while in the second and third simu-
lations the boundary conditions were BC2 and BC3 described in Figs. 23(b)
and 23(c), respectively. The solutions obtained for the director orientation are
shown in Fig. 25.

It is seen that the particular angle of the anchored director on the boundary
has an e�ect on the �ow. If we examine Fig. 24 and focus on the free surface at
t = 12s, then we see a distinct di�erence between the three diagrams. Clearly
BC3 with its anchoring on the right side wall of the �rst vertical channel all in
the positive y−direction is the slowest, while BC2 with its anchoring all in the
negative y−direction is the fastest. The internal orientation of the director in
the �rst vertical channel (see Fig. 25) is also markedly di�erent in the three
cases. The di�erence between BC2 and BC3 is the most noticeable just after
the �uid emerges from the nozzle where the orientation of the directors di�er
by approximately 90o.
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a) BC1
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b) BC2
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c) BC3
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Figure 23. Description of the domain for the simulation of the �ow. The red arrows
represent the boundary conditions used for the calculation of the angle φ.
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a) BC1

b) BC2

c) BC3

Figure 24. Development of free surface at selected times for di�erent boundary con-
ditions on the angle φ.
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a) BC1

b) BC2

c) BC3

Figure 25. Director orientations in the simulation of the �lling of Mold B for dif-
ferent boundary conditions on the angle φ.
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8 Concluding Remarks

This paper has been concerned with the development of a numerical tech-
nique for solving free surface �ows of liquid crystalline polymers described by
the Ericksen-Leslie dynamic equations. The governing equations were written
down and a discussion of the boundary conditions on both rigid and free sur-
faces boundaries then followed. The �nite di�erence algorithm was based on
the marker-and-cell (MAC) philosophy and developed from the ideas of the
earlier work of Cruz et al. [15] for con�ned �ows. Several improvements to this
paper were included: a technique for dealing with moving free surfaces was im-
plemented; the momentum equations were solved by the implicit Euler method
and the pressure condition on the free surface was computed implicitly.

Numerical veri�cation of the method was indicated by running the code using
several mesh sizes demonstrating that it was capable of solving free surface
�ows governed by the Ericksen-Leslie dynamic equations. The problem of a
jet impinging on a rigid surface was simulated for various values of Ericksen
numbers. The results showed the occurrence of the phenomenon of jet buckling
over a range of viscoelastic polymer �uids. This was in contrast to Newtonian
�uids where both the experimental and theoretical work of Cruickshank and
Munson provided a good indication as to when buckling would occur. Injec-
tion molding of liquid crystalline polymers were also studied. The simulations
predicted the location of the melt front during the injection process. The di-
rector orientation on the boundaries were seen to have a substantial in�uence
on the �ow and the director orientation within the �uid. Finally, we observed
that the �lling time, at least for the aspect ratio of the particular mold, was
inversely proportional to the square of the entrance nozzle width.
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