
Dynamic Programming Optimization in Line of Sight

NetworksI

Pavan Sanghaa, Prudence W. H. Wonga, Michele Zitoa,∗

aDepartment of Computer Science
University of Liverpool

Liverpool L69 3BX, United Kingdom

Abstract

Line of Sight (LoS) networks were designed to model wireless communica-

tion in settings which may contain obstacles restricting node visibility. For

fixed positive integer d, and positive integer ω, a graph G = (V,E) is a (d-

dimensional) LoS network with range parameter ω if it can be embedded in

a finite cube of the d-dimensional integer grid so that each pair of vertices in

V are adjacent if and only if their embedding coordinates differ only in one

position and such difference is less than ω.

In this paper we investigate a dynamic programming (DP) approach

which can be used to obtain efficient algorithmic solutions for various com-

binatorial problems in LoS networks. In particular DP solves the Maximum

Independent Set (MIS) problem in LoS networks optimally for any ω on nar-

IThe research described in this paper is partially supported by the Net-
works Sciences & Technologies (NeST) initiative of the University of Liverpool
(https://www.liverpool.ac.uk/network-science-technologies/). A preliminary
version of this work appeared in [1].
∗Corresponding author
Email addresses: pavan@liverpool.ac.uk (Pavan Sangha),

pwong@liverpool.ac.uk (Prudence W. H. Wong), michele@liverpool.ac.uk (Michele
Zito)

Preprint submitted to Journal of LATEX Templates August 2, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/226756656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

row LoS networks (i.e. networks which can be embedded in a k×k . . .×k×n

region, for some fixed k independent of n). In the unrestricted case it has

been shown that the (decision version of the) problem is NP-hard when

2 < ω = O(n1−δ), for fixed 0 < δ < 1. We describe how DP can be used

as a building block in the design of good approximation algorithms in this

case. In particular we present a semi-online polynomial-time approximation

scheme for the MIS problem in narrow d-dimensional LoS networks, as well

as a polynomial-time 2-approximation algorithm and a fast polynomial time

approximation scheme for the MIS problem in arbitrary d-dimensional LoS

networks. Finally we comment on how the approach can be adapted to prove

similar results for a number of important optimization problems in LoS net-

works.

Keywords: Networks, Dynamic Programming, Optimization,

Approximation Algorithms

1. Introduction

A wireless network typically consists of devices that communicate using

radio frequencies, bluetooth or other wireless protocols. Geometric graphs

often provide a good model for such networks with vertices representing the

devices, and edges associated to the communication ability between pairs of5

devices. A number of issues reduce the potential of wireless communication.

First of all there is typically a communication range restriction: devices

should be close in distance in order to be able to communicate. Also, real

world wireless networks are typically prone to line of sight restrictions, often

due to the presence of a large number of obstacles, like those found in urban10

2

settings. A group of devices can only communicate if they are both close and

also there is no obstacle between them. While the presence of obstacles can

be difficult to model, it is clear that a good model of wireless network should

ideally incorporate both communication range restrictions and line of sight

restrictions.15

Frieze et al. [2] introduced the notion of (random) 2-dimensional Line

of Sight (LoS) networks and studied connectivity problems in this setting.

Since then connectivity in higher dimensions, percolation and communication

problems have been analyzed [3, 4, 5] in the same model. For positive integers

d, k and n, let Zdn be the d-dimensional cube {1, . . . , n}d. From now on we20

assume that d > 1 is a fixed integer independent of n and k. We will also work

with narrow “cubes” {1, . . . , x1}× . . .×{1, . . . , xd−1}×{1, . . . , n}, where the

xi are positive integers bound by k, a positive integer constant independent

of n, which we denote by Zdn,k. We say that distinct points p1 and p2 in one

of these cubes share a line of sight if their coordinates differ in a single place.25

In this paper we mainly work with (vertex) weighted graphs: these will be

described by triples (V,E,w) where as usual V is the set of nodes, E is the

set of edges, and w is a function assigning a positive weight to each element

of V . An unweighted graph is a weighted graph whose weighting function is

the constant w(v) = 1 for all v ∈ V . A graph G = (V,E,w) is said to be30

a Line of Sight (LoS) network (with parameters n, k and ω) if there exists

an embedding fG : V → Zdn such that {u, v} ∈ E if and only if fG(u) and

fG(v) share a line of sight and the (Manhattan) distance between fG(u) and

fG(v) is less than ω. We refer to ω as the range parameter of the network. A

narrow LoS network is a LoS network such that fG(V) ⊆ Zdn,k. LoS networks35

3

keep the distance constraints of other geometric models [6] but also provide

a simple mechanism to model communication in an environment containing

obstacles.

In this work we mainly focus on the well-known Maximum Independent

Set problem. In fact we work with the weighted version of it, where one is40

after an independent set of the largest possible totalk weight, defined as the

sum of the weights of the elements of the chosen set (precise definitions of

both problems are given in Section 2). (Narrow) unweighted LoS networks

could be seen as simplistic models of urban environment (e.g. a portion of

Manhattan, where junctions correspond to nodes and range constraints de-45

fine the possible connections). In this context large independent sets could be

used to assign police officers to junctions so as to maximize the police pres-

ence (but still guarantee that two officers cannot shoot each other, assuming

their gun’s firing range is at most ω − 1 blocks). In general finding large

independent sets in a graph is NP-hard [7] and even finding good approxi-50

mate solutions in polynomial time is difficult [8]. On LoS networks, in the

unweighted case, if ω ≤ 2 or d = 2 and ω = n the problem can be solved opti-

mally in polynomial time: in the former case the graph is bipartite and MIS

can be reduced to the maximum matching problem [9], in the latter the par-

ticular LoS networks are also known as gridline graphs and the result can be55

found in [10]. However, Sangha and Zito [11] showed that the (decision ver-

sion of the) general problem is NP-hard for d ≥ 2 and 2 < ω = O(n1−δ) where

0 < δ < 1 is fixed, and that it admits a polynomial-time d-approximation

and an efficient polynomial time approximation scheme (or EPTAS, following

[12]) for constant ω.60

4

In this paper we describe two algorithms that are guaranteed to output

good quality solutions for the MIS in LoS networks when ω is a constant in-

dependent of n. The first one is a polynomial-time approximation algorithm

that returns a solution whose total weight is at least half the weight of an

optimal solution on any LoS network admitting a d-dimensional embedding.65

For d > 2 no such algorithm was known. The second one is a new efficient

polynomial-time approximation scheme for the same problem that is faster

than the one in [11]. The two results hinge on a dynamic programming strat-

egy that can be used to solve optimally the MIS problem on narrow instances,

for any ω. A similar approach was recently proposed by Jallu and Das [13] in70

the context of unit disk graphs (which in many ways represent a continuous

version of the LoS network model). But they only consider a 2-dimensional

model, we deal with a general range parameter, and the polynomial-time

approximation scheme that they present is slower than ours.

The technique described in this paper, also finds application [14] in the75

following scheduling problems. Suppose that a company manages advertise-

ments from some k clients over a long period of n discrete time points. At

any time advertisements of some subset of clients are available to be aired

but the company can only select a certain number l of them to advertise due

to resource limitation. In addition some “advertisement diversity” policy re-80

quires that advertisements from the same client cannot be aired more than

once in a given period of ω − 1 time instants. The goal of the company is

to schedule the airing of these advertisements satisfying the constraints and

maximising the number of advertisements aired. This problem (which from

now on will be referred to as AdsSched) has one slight difference from the85

5

MIS problem on narrow 2-dimensional LoS networks, in the sense that the

“proximity” restriction only applies to one dimension (the time dimension)

but not the other (the client dimension). Nevertheless, as we show later, the

solution we develop can be adapted to solve this problem.

It is important to stress that, in what follows, we always assume that90

the various LoS networks are provided along with an embedding in Zdn (and

in fact this is a crucial feature exploited by the algorithms in this paper).

Therefore, the results on general LoS networks presented here should be

compared with the ones in [11] where the knowledge of such embedding was

not assumed. For completeness we mention that, since we started our work,95

others [15] have investigated the problem of deciding whether a graph admits

a particular line of sight embedding.

Finally, we remark that the approximation strategies described in the

context of the MIS apply to a number of other optimization problems in

LoS networks. These include Vertex Cover, Min Dominating Set, Min Edge100

Dominating Set, Max Triangle Packing, Max H-matching, Max Tile Salvage.

The rest of the paper is organized as follows. After a section containing

some useful definitions, in Section 3, we describe our main technical tool: a

dynamic programming approach that solves optimally the MIS problem in

narrow (LoS network) instances. We present the algorithm, a proof of cor-105

rectness and a simple application to the AdsSched problem defined above.

The remaining sections present further applications of this idea. Section 4

describes how the dynamic programming algorithm can be incorporated in

a semi-online [16] algorithm which always returns a good quality feasible

solution to the MIS problem on narrow instances. Section 5 presents the110

6

approximation algorithm for the MIS problem in general d-dimensional LoS

networks, whereas Section 6 focuses on the EPTAS for the 2-dimensional

case, and some additional applications. Section 7 wraps up the paper with a

summary of the results presented and some directions for future work.

2. Problem Definitions and Preliminaries115

Although all the techniques described in this work can be applied, with

minor changes, to a number of graph-theoretic optimization problems, the

paper mainly focuses on the Maximum Independent Set problem. To keep

the presentation self-contained we spell-out the definition of this problem.

Maximum Independent Set. (MIS)120

INSTANCE: A graph G = (V,E).

FEASIBLE SOLUTIONS: All sets of vertices U ⊆ V such that

no two vertices in U are joined by an edge in E.

COST: The cardinality of the chosen solution U .

OPTIMIZATION: we are interested in solutions of MAXIMUM125

cost.

In fact our results apply to the weighted version of the same problem

where one is after independent sets of the large possible weight.

Maximum Weighted Independent Set. (MWIS)

INSTANCE: A weighted graph G = (V,E,w).130

FEASIBLE SOLUTIONS: All sets of vertices U ⊆ V such that

no two vertices in U are joined by an edge in E.

7

COST: The sum of the weights of the elements of the chosen

solution U .

OPTIMIZATION: we are interested in solutions of MAXIMUM135

cost.

In this paper arrays will be d-dimensional tables of non-negative numbers.

In particular, for fixed k > 0, narrow arrays are tables of size x1×. . .×xd−1×y

where the xi ∈ {1, . . . , k} for all i ∈ {1, . . . , d − 1} whereas y is a positive

integer no larger than n + ω. It will be convenient to group the first d − 1140

indices and so we will often write xd−1 × y instead of x1 × . . .× xd−1 × y or

A[i, j] instead of A[i1, . . . , id−1, j]. In this context the jth column of array A

will be the collection of elements A[i, j] for all possible values of i.

• For any array A and j1, j2 ∈ {1, . . . , n} with j1 ≤ j2, denote by A[j1 : j2]

the sub-array containing columns j1, . . . , j2. When j1 = j2 = j we use145

A[j] instead of A[j : j] unless ambiguity arises.

• For any two arrays A1, A2 of size xd−1 × y, we say that A1 agrees with

A2, denoted by A1 ≤a A2, if A1[i, j] ≤ A2[i, j] for all i and j.

• For any array A, we denote by h(A) (resp. t(A)) the head (resp. tail)

subarray of A containing all but the last column (resp. all but the first150

column) of A. In other words, h(A) and t(A) have y − 1 columns if A

has y columns.

• We say that A1 is consistent with A2 (in symbols A1 � A2) if t(A1) is

the same as h(A2).

8

Figure 1: Figure (i) is a graph G and Figure (ii) is its LoS embedding in an 8×4 rectangle
in Z2 with ω = 4. Figure (iii) represents the array layout of G (ignoring the leftmost
ω columns of zeroes) and Figure(iv) is an independent array of largest array sum, corre-
sponding to the largest independent set in the graph G.

• Let the column sum of an array A at column j be the quantity

||A||j =
∑
i

A[i, j].

We refer to the quantity
∑

j ||A||j as the array sum of A, and we denote155

it by ||A||.

Given a weighted narrow LoS network G = (V,E,w), let array(G) be

a kd−1 × (n + ω) array satisfying array(G)[i, j] = w(v) (resp “0”) if and

only if location (i, j) ∈ Zn,k, for some j ∈ {1, . . . , n}, corresponds (resp.

does not correspond) to a vertex v ∈ V in the LoS embedding of G. Also,160

array(G)[i, j] = 0 for any i and j ∈ {−(ω − 1), . . . , 0} (the left-most ω

columns of array(G) will be needed at the start of the dynamic programming

process described in Section 3). Figure 1 provides an example. In this setting

an independent array I of array(G) is any array of size kd−1×(n+ω) satisfying

1. I ≤a array(G) and165

2. for distinct columns j1, j2 if I[i, j1] > 0 and I[i, j2] > 0 then |j1−j2| ≥ ω

and for distinct rows indexed by i1 and i2 if I[i1, j] > 0 and I[i2, j] > 0

then either i1 and i2 do not share a line of sight or they do but the gap

9

between the values of the differing co-ordinate is at least ω.

A feasible array W is an array of size kd−1 × ω only containing zeros170

or ones and such that there exists a kd−1 × ω independent array IW such

that W [i, j] = 1 (resp = 0) if and only if IW [i, j] > 0 (= 0). The array

IW is a witness of W . Note that IW is a sub-array of array(G) and as such

its elements could be arbitrary non-negative numbers. The feasible arrays,

however, only contain zeroes and ones. More importantly, since any feasible175

array has exactly ω columns, it contains at most one non-zero entry per row.

We denote by F the set of all feasible arrays of size kd−1 × ω, and for each

j ∈ {0, . . . , n}, FG,j ⊆ F is the set of feasible arrays W satisfying W ≤a
array(G)[j − ω + 1 : j]. Note that in particular for any independent array

I of array(G)[j − ω + 1 : j] for 1 ≤ j ≤ n is in fact the witness of some180

W ∈ FG,j.

We observe that I is an independent set of G if and only if I is an indepen-

dent array of array(G). Thus finding a maximum total weight independent

set in G is equivalent to finding the independent array of array(G) with the

largest array sum (we refer to such an array as a largest independent array).185

In Section 3 we show how a simple DP algorithm finds an independent array

of array(G) with the largest array sum by working with the feasible arrays

of array(G). Because of this correspondence, in the next section we refer to

array(G) as G and we work with arrays instead of graphs.

3. Dynamic Programming190

Given the array G of size kd−1 × (n + ω), the main idea of the optimal

algorithm we describe in this section is to be guided in its choices by a

10

Algorithm 1 Computing the largest independent array in G
1: /* Initialisations */

2: MIS[0,
−→
0] = 0, where

−→
0 is the kd−1 × ω array of all 0’s, the only element of FG,0.

3: for j = 1, . . . , n do
4: for W ∈ F do
5: MIS[j,W] = 0
6: end for
7: end for
8:
9: /* Array sums computation */

10: for j = 1, . . . , n do
11: for W ∈ FG,j do
12: let W ∗ be the feasible array in FG,j−1, W ∗ � W , maximizing MIS[j − 1,W ∗]
13: MIS[j,W] = W [ω] ·G[j]+ MIS[j − 1,W ∗]
14: pred[j,W] = W ∗

15: end for
16: end for
17:
18: /* Retrieving the independent set */
19: Find W ∗ ∈ FG,n that maximizes MIS[n,W]
20: Set I as the rightmost column of W ∗

21: for j = n downto 2 do
22: W ∗ = pred[j,W ∗]
23: Redefine I as the rightmost column of pred[j,W ∗] concatenated with I
24: end for
25: return I

table containing array sums of independent arrays of portions of G. For each

j ∈ {0, . . . , n}, the process manages a table MIS[j,W], indexed by j as well as

all possible kd−1×ω feasible arrays W . At the of each execution of Algorithm195

1, MIS[j,W], for j ∈ {1, . . . , n} will contain the size of the maximum weight

independent sets in the portion of graph G that is embedded in columns

one through to j in Zdn,k. During each iteration of the main loop in the

Algorithm (lines 10 to 16) the process runs through all W ∈ FG,j, and tries

to extend the independent arrays in G[−(ω − 1) : j − 1] to independent200

arrays in G[−(ω − 1) : j] witnessing W . Let I ′ be an independent array in

G[−(ω−1) : j−1] such that I ′[j−ω : j−1] is a witness for some W ′ ∈ FG,j−1

11

Figure 2: Figure (i) shows 8 columns of an array G and the independent array I ′ of G[1 : 8]
with the largest array sum satisfying I ′[6 : 8] ≡W ′. In Figure (ii) the independent array I
is the independent array of G[1 : 9] which has the largest array sum satisfying I[7 : 9] ≡W .
Note W ′ � W and that I can be obtained from I ′ by appending the last column of W to
I ′.

and assume that W ′ is consistent with W . By considering the next column

of G, we extend I ′ to an independent array I of G[−(ω − 1) : j] which is a

witness to W . MIS[j,W] contains the array sum of an independent set whose205

right-most ω columns are witnessed by W . The expression W [ω] · G[j] on

line 13 is the Frobenius product of W [ω] and G[j], the sum of all elements of

G[i1, . . . , id−1, j] such that W [i1, . . . , id−1, ω] = 1. Figure 2 shows an example

in the two dimensional case. Array pred[j,W] keeps track of the extension

that maximizes the size of I ′.210

Once this is completed for all j’s the information in the array pred can be

used to retrieve an actual independent set. The following result summarizes

the computational properties of Algorithm 1.

Theorem 1. Algorithm 1 computes a maximum independent set of a weighted

narrow LoS network G in time

O

(
n
(

(ω + 1) k
d−1
ω

)kd−1

k(d−1)·k
d−2

)
.

Proof. The proof that the Algorithm 1 is correct, i.e. it returns an optimum

independent set, is by a simple reductio ad absurdum for each j (similar,

12

say, to the one described in [17, Theorem 15.1] in the context of the longest

common subsequence problem). Denote by I an independent array of G of

maximum array sum. There must be an independent array I ′ of G[−(ω−1) :

n− 1] such that:

||I|| = ||I||ω+n + ||I ′||.

Furthermore t(I ′[n−ω : n− 1]) = h(I[n−ω+ 1 : n]), in other words the two

independent arrays must be consistent. But then we are safe to assume that

||I ′|| = max
W ′∈FG,n−1:W ′�W

MIS[n− 1,W ′])

(where W is witnessed by I[n− ω + 1 : n]) for otherwise replacing I ′ by the

independent set on the right hand side would give us a larger set for I contra-215

dicting its optimality. By the same token, I[n−ω+ 1 : n] must be a witness

of the feasible array W maximizing W [ω] ·G[j]+maxW ′∈FG,n−1:W ′�W MIS(n−

1,W ′). Therefore the independent set returned by Algorithm 1 is at least as

large as I.

Moving to the complexity analysis, for each j, |FG,j| = O((ω + 1)k
d−1

) as

the elements of this set are kd−1 × ω tables with at most a single non-zero

entry in each row: each row can be filled in at most ω+1 ways, and there are

kd−1 rows: at most (w + 1)k
d−1

possibilities. Hence the double loop between

line 10 and 16 is executed O(n (ω+1)k
d−1

) times. The most expensive step in

the aforementioned loop is in line 12. Let t =
⌈
k
ω

⌉
. Each column of a feasible

array W is a d−1 dimensional cube of side length k. The maximum number

of non-zero elements in dimension one, say, is t. Furthermore the cube is a

d − 1 dimensional object, hence an obvious upper bound on the number of

13

non-zero elements of IW is

t× kd−2.

From this, we claim, the maximum number of elements of FG,j that are

consistent with a given W ∈ FG,j−1, for each j, is at most

(
kd−1

t · kd−2

)
.

To see this notice that, starting from an arbitrary W , we get an element of

FG,j−1 by chopping off the first column of W and adding an extra column

at the other end. A column is a d− 1 dimensional cube with kd−1 positions

and there’s at most t · kd−2 non-zero positions to be placed in that. Finally

note that (
kd−1

t · kd−2

)
≤
(
kd−1

)t·kd−2

and t ≤ k
ω

+ 1. Hence

(
kd−1

t · kd−2

)
≤
(
kd−1

) k
ω

d−1 (
kd−1

)kd−2

=
(
k

d−1
ω

)kd−1 (
kd−1

)kd−2

.

By the counting argument above, the loop between line 10 and 16 can be

completed in time

O

(
n
(

(ω + 1) k
d−1
ω

)kd−1 (
kd−1

)kd−2
)

and the result follows. �220

Extensions. The DP algorithm described in this section can be adapted to

solve optimally a host of other optimization problems in narrow LoS net-

14

works. The smallest vertex covers or dominating sets, the largest triangle

packings, or H-matchings and many other “hard” combinatorial structures

can all be found in polynomial time by using obvious modifications of the225

strategy described above. Here we show that even problems of a slightly

different nature can be solved optimally by our DP approach. An instance of

the AdsSched problem defined in Section 1 can be encoded by an array G

exactly like the MIS in LoS networks. The only difference is in the definition

of feasible solution. Therefore Algorithm 1 can also be used to solve the230

AdsSched problems, provided the definition of FG,j is slightly modified. In

this case the elements of this set are k× ω arrays W satisfying the following

conditions

(i) W ≤a G[j − ω + 1 : j]

(ii) W contains at most one non-zero element in each row.235

(iii) W contains at most l non-zero elements in each column.

Theorem 2. Algorithm 1 solves AdsSched optimally in time O(n kl (ω +

1)k).

Proof. The correctness of the process follows from that of Algorithm 1 as

proved in Theorem 1. As to the running time, the bound is derived in the240

same way as the running time bound in Theorem 1. Here d = 2, and the

only other difference is in the maximum number of elements of FG,j that are

consistent with a given W ∈ FG,j−1, for each j: there are at most
(
k
l

)
of

them. The result follows. �

15

4. Semi-online Approximation Algorithms245

The DP algorithm in Section 3 solves optimally the offline version of the

MIS problem in narrow LoS networks and several other related problems,

where the entire input is known in advance. This is unrealistic in various

practical settings. For example if the time parameter n in the scheduling

problem is large, possibly spanning a year or more, then it is likely the input250

evolves over time. In such sitations it may be desirable to take a differ-

ent approach, aiming for online algorithmic solutions with good performance

guarantees. In this section we study online algorithms [18] which are shown

the input graph and corresponding embedding column by column. In par-

ticular, we consider semi-online algorithms which are given further partial255

information and in this case we allow a semi-online algorithm to observe the

input up to a certain look-ahead distance denoted by ∆, i.e., to observe up

to ∆ columns. Semi-online algorithms and the ability to look-ahead have

been considered in other problems [19, 20]. We show that we can achieve

(1 + ε)-approximation with a look-ahead distance dependent on ε > 0. We260

state our main result in terms of the MIS problem, but the strategy can be

applied to any of the optimization problems described at the end of Section

3.

Theorem 3. There is a semi-online algorithm, Online AS, that for any

ε > 0 computes a feasible solution for the MIS problem in a narrow LoS

network in dimension d that is a (1 + ε)-approximation of the optimum, in

time

O

(
n
(

(ω + 1) k
d−1
ω

)kd−1

k(d−1)·k
d−2

)

16

and look-ahead distance at most
(

1 + 2k
ε2
d−1
)
ω.

The main idea of algorithm Online AS is similar to that of the EPTAS

described in [11] for general LoS networks. The algorithm builds an indepen-

dent set I of G in stages. Initially I is empty. Let G[j1 : j2] where j1 < j2

describe the subgraph of the narrow LoS network G consisting of vertices

which are embedded in the region

{1, . . . , k} × . . .× {1, . . . , k}︸ ︷︷ ︸
d−1 times

×{j1, . . . , j2}

and their induced edges. A phase in the algorithm starts by computing a

maximum independent set I0 in a subgraph of G consisting of some column

j0 and proceeds to compute a maximum independent set Ir, for r ≥ 1, in

G[j0 : j0+r(ω−1)] provided |Ir| ≥ (1+ε)|Ir−1|. Thus each Ir in the sequence

satisfies |Ir| ≥ (1 + ε)r|I0|. In addition, using the structural properties of a

LoS network embedding, we may infer that |Ir| ≤ kd−1r: at most r vertices

can be added to Ir in every row, and there are kd−1 rows altogether. Let r∗

be the least r for which

|Ir∗+1| < (1 + ε)|Ir∗| (1)

We refer to this as the stopping point of the current phase. When condition

(1) is reached the process adds Ir to I, removes G[j0 : j0 + (r∗ + 1)(ω − 1)]

from G, and starts a new phase from column j′0 = j0 + (r∗ + 1)(ω − 1) + 1

of the original graph. Note that, if ∆i = 1 + (r∗i + 1)(ω − 1) is the number

of columns of G processed during phase i, it follows from Theorem 1 that

17

phase i runs in time

O

(
∆i

(
(ω + 1) k

d−1
ω

)kd−1

k(d−1)·k
d−2

)
.

In fact, for ε = 0 the Online AS reduces to Algorithm 1 and the complexity265

bound above to the bound stated in Theorem 1. For ε > 0 there may be

different phases, and different phases work on vertex disjoint portions of G.

Therefore
∑

i ∆i = n. The complexity bound stated Theorem 3 follows.

The proof of the Theorem will be completed once we have argued about

the performance guarantees of algorithm Online AS and given some upper270

bound on the look-ahead distance.

Claim 1. For any ε > 0, algorithm Online AS computes a feasible solution

for the MIS problem in a narrow LoS network in dimension d that is a (1+ε)-

approximation of the optimum.

Proof. As in [11], the performance guarantees for algorithm Online AS

can be proved by a simple inductive argument. Let Gr∗+1 be the graph

removed from G at the end of the first phase of the process and denote

by Gr∗+1 the remaining graph. If I ′ is the independent set obtained from

applying the procedure to Gr∗+1 then, by the inductive hypothesis, the size

of the largest independent set in Gr∗+1 is at most (1 + ε)|I ′|. Furthermore

Ir∗+1 is a maximum independent set in Gr∗+1 and, by construction,

|Ir∗+1| ≤ (1 + ε)|Ir∗|.

But it is also true that the elements of Ir∗ have no neighbour in Gr∗+1 as, in275

18

fact Ir∗ is a subgraph of Gr∗ . Therefore Ir∗ ∪ I ′ is an independent set of G

and a (1 + ε)-approximation for the largest ones. �

We complete our analysis of algorithm Online AS by proving a simple

upper bound on r∗ which depends on the inverse of ε. Inequality (2) below

can then be used to quantify the trade-off between approximation quality280

and look-ahead window width.

Claim 2. In each phase of the algorithm Online AS

r∗ ≤ 1 +
2k

ε2

d−1
. (2)

Proof. Throughout a phase we have |Ir| ≥ (1 + ε)r|I0|. Thus r∗ is bounded

above by the smallest positive integer r for which

kd−1r < (1 + ε)r. (3)

By the binomial theorem

(1 + ε)r >

(
r

2

)
ε2 =

r2 − r
2

ε2.

Hence inequality (3) is satisfied if

kd−1r < r2
ε

2

2

− r ε
2

2

which is equivalent to

kd−1 +
ε

2

2

< r
ε

2

2

and the result follows. �

19

Additional Remarks. The same framework can be used to devise semi-online

(1 + ε)-approximation heuristics for finding smallest vertex covers or domi-

nating sets, the largest triangle packings, or H-matchings. The analysis of285

the approximation performance is largely unchanged. The run-time in each

case is affected by the run time of the specific DP algorithm used to com-

plete each phase. The approximation heuristics are semi-online since at any

moment in time we never work on more than r∗ω columns of the input data.

5. Approximation Algorithms for Unrestricted LoS Networks290

In this section we show how the DP approach described in Section 3 can

be exploited to define an effective approximation strategy for the MIS in

arbitrary d-dimensional LoS networks, for d ≥ 2. To avoid cluttering the

presentation we first describe and analyze the algorithm for the special case

d = 2. Then we outline the modifications necessary to extend the algorithm295

to the general d-dimensional case. Definitions and notations related to ap-

proximation algorithms can be found in standard textbooks like [21] or the

more recent [22]. In particular all algorithms described in this section run in

time that is polynomial in the input size.

In 2-dimensions, we are given a LoS network (embedded in Z2
n) with range300

parameter ω > 2. The main idea is to split the input data into strips, each

being a narrow LoS network, apply the DP algorithm to each strip, and then

combine the solutions obtained for the strips into a solution for the whole

instance.

In what follow let k = ω−1 and let G[i] be the strip formed by the vertices305

of G embedded in rows ki + 1, . . . , k(i + 1) of Z2
n, for i ∈ {0, . . . , n/k − 1}

20

(assume k divides n for simplicity). Parameter i in this context is the strip

index.

k

n

Figure 3: Splitting G into n/k strips (k = 3, in the given example, array cells represented
as small circles).

Clearly two nodes from different strips with indices having the same parity

cannot be adjacent as even if they share a line of sight they are far from each310

other. Therefore the union of a collection of independent sets found in all odd

(resp. even) indexed strips is an independent set of the whole network. The

sought approximation algorithm, which we call StripIndependentSet, returns

H, the largest of these two sets.

Theorem 4. For any fixed ω independent of n, StripIndependentSet is a315

2-approximation algorithm for the MIS in a 2-dimensional LoS network.

Proof. Let’s call Odd (Even) the collection of all odd (even) indexed strips.

We can use dynamic programming to find an optimal independent set in each

21

strip. Let DP(Odd) (resp. DP(Even)) be the independent set found using

Algorithm 1 on each Odd (resp Even) strip. Let I be an independent set of320

maximum size in the whole graph. I∩ Odd is an independent set of Odd so

it must be

|DP(Odd)| ≥ |I∩ Odd|

and

|DP(Even)| ≥ |I∩ Even|325

Hence

|I| = (|I∩ Odd|) + (I∩ Even|) ≤ |DP(Odd)|+ |DP(Even)| ≤ 2 · |H|.

The process requires O(n/k) DP computations, each running in time

O

(
n
(

(ω + 1) k
1
ω

)k
k

)
.

(this comes from Theorem 1 substituting d = 2). The overall run time is

therefore

O
(
n2 (ω + 1)k k

k
ω

)
.

�

Generalization to d dimensions. Two of the authors [11] already provides a 2-

approximation algorithm for the MIS problem in 2-dimensional LoS networks.

The main advantage of the approach described above lies in the fact that

algorithm StripIndependentSet can be generalized to arbitrary dimension

d > 2. The general strategy is unchanged but the notion of Odd (resp.

22

Even) strip is slightly more elaborate. As in Section 3, it is convenient to

think of the network nodes as the elements of a d-dimensional table. In this

context a strip is a collection of elements

G[k(i1 − 1) + j1, . . . , k(id−1 − 1) + jd, id]

where jh ∈ {1, . . . , k} and the vector (i1, . . . , id−1) satisfies ih ∈ {1, . . . , n/k},

for h ∈ {1, . . . , d−1} (whereas id ∈ {1, . . . , n}). The vector i = (i1, . . . , id−1)

is the strip index. A vertex belongs to an odd (resp. even) strip if its strip

index satisfies:
d−1∑
h=1

ih mod 2 = 1 (resp. 0).

Figure 4 attempts to give an idea of the partitioning for d = 4.

444

111 112 113 114

121 122 123 124

131

141

211 212

244

344

Figure 4: Splitting G into strips. Here is one of the n 3-dimensional “bases” (each small
cube is labelled by the corresponding triple (i1, i2, i3)). For d = 2, one dimension is split
into n/k intervals. For d = 4, three dimensions are split into (n/k)3 cubes of side size k.
DP gives an optimal solution in each k3 × n strip.

Claim 3. Vertices belonging to different strips whose indices have the same330

23

parity are not connected by an edge in G.

It follows from the claim above that algorithm StripIndependentSet re-

turns an independent set in any LoS network embedded in d dimensions and

the following result complete our argument.

Theorem 5. For any fixed ω and d independent of n, StripIndependentSet335

is a 2-approximation algorithm for the MIS in a d-dimensional LoS network.

Proof. The same argument used to prove Theorem 4 applies. This time

O((n/k)d−1) DP computations are needed and each of them requires time

O

(
n
(

(ω + 1) k
d−1
ω

)kd−1

k(d−1)·k
d−2

)
.

Therefore the running time of the process is:

O

(
nd (ω + 1)k

d−1

k
(d−1)kd−1

ω k(d−1)·(k
d−2−1)

)
.

�

6. Polynomial Time Approximation Schemes

The DP approach in Section 3 can also be exploited to obtain an EPTAS

for the MIS problem in general LoS networks, for any d ≥ 2. As in the340

previous section we first present the idea for the case d = 2. In this section

again k = ω − 1.

The algorithm works on the given network (which, as usual in this paper,

is provided with its embedding in Z2
n) decomposed into strips, as in Figure

24

3, however we need one additional concept. Let h be a positive integer. Its

value will be fixed later on in our analysis, but for now we require that h

be a fixed constant independent of n. A block is a collection of contiguous

strips (note that the number of rows in each block is a multiple of k). For

each i ∈ {0, . . . , h}, let Bh,i be the partition of G into blocks such that the

top one contains i× k rows, and all the others (except perhaps the last one)

contain h × k rows. Successive blocks are separated by a single strip. Let

∂Bh,i be the union of these “excluded” strips. Let B be an arbitrary block of

Bh,i. Since the product h × k is independent of n, a maximum independent

set IB in B can be found in polynomial time using Algorithm 1. The set

Ii =
⋃

B∈Bh,i

IB

is a maximum independent set of Bh,i. The algorithm returns the largest

among I0, I1, . . . , Ih. Let’s call U such set. Let I be a maximum independent

set of the whole network. A key property of independent sets is that a

maximum independent set in any strip S of G cannot have less than |I∩V (S)|

vertices (as the vertices in each strip in isolation are less constrained than

when they are considered as part of the whole graph). Also, we can write

|I| =
h∑
i=0

|I ∩ V (∂Bh,i)|.

But then by a simple counting argument there must be ı̂ ∈ {0, . . . , h} such

that |I ∩V (∂Bh,̂ı)| ≤ |I|/(1+h). This implies that a maximum independent

25

h

k

n

i

h

Figure 5: Splitting G into blocks. The larger picture on the left hand side describes the top
part of B5,3. The smaller picture on the right presents a similar schematic representation
of B5,1. In both cases the greyed strips belong to the union of the excluded strips (i.e.
∂B5,3 and ∂B5,1 , respectively).

set Iı̂ in Bh,̂ı (which will be eventually found by the algorithm) mu1¡st satisfy

|Iı̂| ≥ |I ∩ V (Bh,̂ı)| = |I| − |I ∩ V (∂Bh,̂ı)| >
h

1 + h
|I|.

Thus we have
|I|
|U|
≤ |I|
|Iı̂|
≤ 1 +

1

h

and the (1 + ε)-approximation is obtained setting h = d1/εe.

For each i ∈ {0, . . . , h}, the MIS can be solved exactly in each block of

26

the given partition in time

O

(
n
(

(ω + 1) (hk)
1
ω

)hk
(hk)

)

and there are O(n/(hk)) blocks. The overall running time is therefore

O
(

(h+ 1) n2 (ω + 1)hk (hk)
hk
ω

)
as the process will need to try all h+ 1 partitions Bh,̂ı.

We have proved the following:345

Theorem 6. There is a polynomial time approximation scheme for the MIS

problem in 2-dimensional LoS networks.

6.1. Arbitrary dimension d > 2

A key feature of the approximation scheme for d = 2 is that the collection

of strips ∪hi=0V (∂Bh,i) is a partition of the given graph vertex set. For d > 2350

the construction needs to be a bit careful. Figure 6 provides a diagrammatic

picture of a possible construction for d = 3.

Let b be an integer less than d. We say that a cube isomorphic to

{1, . . . , x1} × . . .× {1, . . . , xb}︸ ︷︷ ︸
b terms

×{1, . . . , n} × . . .× {1, . . . , n}

(where each of the xi ∈ {1, . . . , k}) is a size n cube narrow with respect to

b of its dimensions. In what follows a size n, b-narrow, d-dimensional LoS

network is a LoS network whose nodes can be embedded in a size n cube355

that is narrow with respect to b of its dimensions.

27

Figure 6: The whole LoS network partitioned into narrow LoS networks, for d = 3. Note
that the sizes of the narrow cubes may vary. The black portions represent the vertices
that are part of the excluded strips.

Claim 4. Let d and b be fixed positive integers with b < d, and n be an arbi-

trary integer. For any ε > 0, a (1 + ε)d−b−1-approximation for the MIS in a

size n, b-narrow, d-dimensional LoS network can be found in time polynomial

in n but exponential in ε−1.360

Proof. The claim can be proved by induction on d−b. LetG be an arbitrary

size n, b-narrow, d-dimensional LoS network. If d − b ≤ 1 we can use the

dynamic programming strategy described in Section 3 to solve the problem

exactly. For arbitrary d − b, without loss of generality assume that G is

NOT narrow with respect to dimension one. Any part of G that spans the

full length of the unrestricted dimensions, and is also narrow with respect

to dimension 1 is a size n, b + 1 narrow, d dimensional LoS network. By

the inductive hypothesis, the largest independent set of such network can

be approximated within (1 + ε)d−b−2. For any given ε let h = d1/εe. Let

i ∈ {0, . . . , h}. Given G, we partition it into blocks containing all nodes

28

whose co-ordinates in Zdn have the first element in the set {1, . . . , ki} or of

the form

ki+ (k + kh)(j − 2) + l

where j ∈ {2, . . . , 2 + b(n− ki)/(k+ kh)c} and l ∈ {1, . . . , kh}, except when

j takes its largest value (in that case the largest value for l is the remainder

of the integer division between n− ki and k + kh). This defines a partition

Bh,i whose blocks are size n, b+ 1 narrow, d-dimensional LoS networks. For

one choice of i, which we denote again by ı̂, we must have

|I ∩ V (∂Bh,̂ı)| ≤
|I|
h+ 1

(where I is a maximum independent set of the whole network). Therefore,

reasoning like in the 2-dimensional case we have

|I| ≤
(

1 +
1

h

)
|Iı̂|

where Iı̂ is the maximum independent set of Bh,̂ı. This independent set is

the union of disjoint sets Iı̂ ∩ Bh,̂ı(j). By the inductive hypothesis there is

an algorithm that finds a set Uı̂(j) in the jth block of Bh,̂ı that satisfies

|Iı̂ ∩ Bh,̂ı(j)| ≤ (1 + ε)d−b−2 |Uı̂(j)|

Therefore

|I| ≤
(

1 +
1

h

)
(1 + ε)d−b−2

∑
j

|Uı̂(j)|

and the claim follows. �

29

Theorem 7. There is a polynomial time approximation scheme for the MIS

problem in d-dimensional LoS networks.

Proof. For any fixed ε > 0, define ε′ = (1 + ε)
1

d−1 − 1. By Claim 4 (with

b = 0) there is an algorithm that returns an independent set whose size is at

least (1 + ε′)1−d that of a largest independent set in any given LoS network.

As to the running time, argument is similar to the 2-dimensional case and

based again on using the analysis in Theorem 1 as a building block. For each

tuple i1, . . . , id−1, the MIS can be solved exactly in each block of the given

partition in time

O

(
n
(

(ω + 1) (hk)
d−1
ω

)(hk)d−1

(hk)(d−1)·(hk)
d−2

)

and there are O((n/(hk))d−1) blocks. �

Further Comments. It is perhaps instructive to compare the algorithm pre-

sented in this section with the approximation scheme described in [11] for

the MIS in general d-dimensional LoS networks. The algorithm in that paper

runs in time

O(nd(fd,ω(ε))d(fd,ω(ε))
d/ω)

where

fd,ω(ε) =
2 · (d+ 1)!

ω

(
ω

ε− ε2/2

)d+1

.

Since f2,ω(ε) = 12·ω2

(ε−ε2/2)3 , for d = 2, the algorithm running time reduces to

essentially

O(n2 ω9(4ω/ε2)3 (
12

ε− ε2/2
)36(2ω/ε

2)3)

30

which is much slower than the bound in Theorem 6, particularly for small ε365

and moderate ω.

The approximation scheme described in this section is quite general and

can be applied to several optimization problems when the input is a 2-

dimensional LoS network that is presented along with its embedding in Z2
n.

In particular, simply browsing through [7] Vertex Cover, Min Dominating370

Set, Min Edge Dominating Set, Max Triangle Packing, Max H-matching,

Max Tile Salvage can all be solved to within 1 + ε of the optimum in a

2-dimensional LoS network, if ω is a fixed constant independent of n.

7. Conclusions

In this paper we study the maximum independent set problem on narrow375

LoS networks. We propose an approach that solves this optimazion problem

exactly in polynomial time on narrow LoS network, presented with their d-

dimensional embedding. We also describe how such algorithm can be used as

a subroutine in a semi-online process that is guaranteed to return a heuristic

solution that is guaranteed to be only at most a factor 1 + ε away from380

optimality, for any ε > 0, in a 2-approximation algorithm, and in a novel

polynomial time approximation scheme, all of these for the MIS problem in

arbitrary d-dimensional networks, for fixed ω independent of n.

We believe that the algorithmic ideas described here can be generalized

and applied to other optimisation problems on LoS networks.385

31

References

[1] P. Sangha, P. W. H. Wong, M. Zito, Independent sets in restricted

line of sight networks, in: A. Fernández Anta, T. Jurdzinski, M. A.

Mosteiro, Y. Zhang (Eds.), Algorithms for Sensor Systems, 13th Inter-

national Symposium on Algorithms and Experiments for Wireless Sen-390

sor Networks, ALGOSENSORS 2017, Vol. 10718 of Lecture Notes in

Computer Science, Springer Verlag, 2017, pp. 211–222.

[2] A. Frieze, J. Kleinberg, R. Ravi, W. Debany, Line-of-sight networks,

Combinatorics, Probability and Computing 18 (1-2) (2009) 145–163.

[3] L. Devroye, L. Farczadi, Connectivity for line-of-sight networks in higher395

dimensions, Dicrete Mathematics and Theoretical Computer Science

15 (2) (2013) 71–86.

[4] B. Bollobás, S. Janson, O. Riordan, Line-of-sight percolation, Combina-

torics, Probability and Computing 18 (1-2) (2009) 83–106.

[5] A. Czumaj, X. Wang, Communication problems in random line-of-sight400

ad-hoc radio networks, in: International Symposium on Stochastic Al-

gorithms, Springer, 2007, pp. 70–81.

[6] S. N. Chiu, D. Stoyan, W. S. Kendall, J. Mecke, Stochastic geometry

and its applications, John Wiley & Sons, 2013.

[7] M. R. Garey, D. S. Johnson, Computers and intractability: A guide to405

the theory of NP-completeness (1979).

32

[8] J. H̊astad, Clique is hard to approximate within n1−ε, Acta Mathematica

182 (1) (1999) 105–142.

[9] L. Lovász, M. D. Plummer, Matching Theory, Vol. 29 of Annals of Dis-

crete Mathematics, North Holland, 1986.410

[10] D. Peterson, Gridline graphs: a review in two dimensions and an ex-

tension to higher dimensions, Discrete Applied Mathematics 126 (2–3)

(2003) 223–239.

[11] P. Sangha, M. Zito, Independent sets in Line of Sight

networks, Discrete Applied MathematicsIn Press. DOI:415

https://doi.org/10.1016/j.dam.2019.03.029 Published on-line

30/04/2019.

[12] M. Cesati, L. Trevisan, On the efficiency of polynomial time approxi-

mation schemes, Information Processing Letters 64 (4) (1997) 165–171.

[13] R. K. Jallu, G. K. Das, Improved algorithm for maximum independent420

set on unit disk graph, in: S. Govindarajan, A. Maheshwari (Eds.), Al-

gorithms and Discrete Applied Mathematics; Third International Con-

ference CALDAM 2016, Vol. 9602 of Lecture Notes in Computer Science,

Springer Verlag, 2016, pp. 212–223.

[14] R. Bellman, A. O. Esogbue, I. Nabeshima, Mathematical Aspects of425

Scheduling and Applications, Elsevier, 2014.

[15] M. Milanič, P. Muršič, M. Mydlarz, Induced embeddings into hamming

graphs, in: K. G. Larsen, H. L. Bodlaender, J.-F. Raskin (Eds.), 42nd

33

International Symposium on Mathematical Foundations of Computer

Science (MFCS 2017), Leibniz International Proceedings in Informatics,430

Dagstuhl Publishing, Germany, 2017, pp. 28:1–28:15.

[16] S. Albers, Online algorithms: a survey, Mathematical Programming

97 (1-2) (2003) 3–26.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to

Algorithms, 3rd Edition, M.I.T. Press, 2009.435

[18] A. Borodin, R. El-Yaniv, Online computation and competitive analysis,

Cambridge University Press, 2005.

[19] H. Kellerer, V. Kotov, M. G. Speranza, Z. Tuza, Semi on-line algorithms

for the partition problem, Oper. Res. Lett. 21 (5) (1997) 235–242.

[20] S. Albers, M. Hellwig, Semi-online scheduling revisited, Theor. Comput.440

Sci. 443 (2012) 1–9.

[21] D. Hochbaum (Ed.), Approximation Algorithms for NP-Hard Problems,

PWS Publishing Company, 1997.

[22] D.-Z. Du, K.-I. Ko, X. Hu, Design and Analysis of Approximation Al-

gorithms, Springer, 2011.445

34

