
ar
X

iv
:1

51
1.

01
13

8v
2

 [c
s.

D
S

]
28

 S
ep

 2
01

6

Why Is Dual-Pivot Quicksort Fast?

Sebastian Wild(A)

(A)Fachbereich Informatik, TU Kaiserslautern
wild@cs.uni-kl.de

Abstract

I discuss the new dual-pivot Quicksort that is nowadays usedto sort arrays of primitive
types in Java. I sketch theoretical analyses of this algorithm that offer a possible, and in my
opinion plausible, explanation why (a) dual-pivot Quicksort is faster than the previously
used (classic) Quicksort and (b) why this improvement was not already found much earlier.

1. Introduction

Quicksort became popular shortly after its original presentation by Hoare [7] and many authors
contributed variations of and implementation tricks for the basic algorithm. From a practical
point of view, the most notable improvements appear in [17, 15, 2, 14].

After the improvements to Quicksort
in the 1990’s, almost all programming li-
braries used almost identical versions of
the algorithm: the classic Quicksort im-
plementation had reached calm waters.

It was not until 2009, over a decade
later, that previously unknown Russian de-
veloper Vladimir Yaroslavskiy caused a
sea change upon releasing the outcome of
his free-time experiments to the public: a
dual-pivot Quicksort implementation that
clearly outperforms the classic Quicksort
in Oracle’s Java 6. The core innovation
is the arguably natural ternary partitioning
algorithm given to the right.

Yaroslavskiy’s finding was so surpris-
ing that people were initially reluctant to
believe him, but his Quicksort has finally
been deployed to millions of devices with
the release of Java 7 in 2011.

How could this substantial improve-
ment to the well-studied Quicksort al-
gorithm escape the eyes of researchers
around the world for nearly 50 years?

DUAL PIVOTQUICKSORT(A, left, right) // sortA[left..right]

1 if right− left≥ 1
// Take outermost elements as pivots (replace by sampling)

2 p := min{A[left],A[right]}
3 q := max{A[left],A[right]}
4 ℓ := left+1; g := right−1; k := ℓ

5 while k ≤ g

6 if A[k]< p

7 SwapA[k] andA[ℓ]; ℓ := ℓ+1
8 else if A[k]≥ q

9 while A[g]> q andk < g

10 g := g−1
11 end while
12 SwapA[k] andA[g]; g := g−1
13 if A[k]< p

14 SwapA[k] andA[ℓ]; ℓ := ℓ+1
15 end if
16 end if
17 k := k+1
18 end while
19 ℓ := ℓ−1; g := g+1
20 A[left] := A[ℓ]; A[ℓ] := p // p to final position

21 A[right] := A[g]; A[g] := q // q to final position

22 DUAL PIVOTQUICKSORT(A, left , ℓ−1)
23 DUAL PIVOTQUICKSORT(A, ℓ+1,g−1)
24 DUAL PIVOTQUICKSORT(A,g+1, right)
25 end if

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/226756598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1511.01138v2

2 Sebastian Wild

For programs as heavily used as library sorting methods, it is advisable to back up experi-
mental data with mathematically proven properties. The latter consider however only amodel
of reality, which may or may not reflect accurately enough thebehavior of actual machines.

The answer to above question is in part a tale of the pitfalls of theoretical models, so we
start with a summary of the mathematical analysis of Quicksort and the underlying model in
Section 2. We then briefly discuss the “memory wall” metaphorand its implications for Quick-
sort in Section 3, and finally propose an alternative model inSection 4 that offers an explanation
for the superiority of Yaroslavskiy’s Quicksort.

2. Analysis of Quicksort

The classical model for the analysis of sorting algorithm considers the average number of key
comparisons on random permutations. Quicksort has been extensively studied under this model,
including variations like choosing the pivot as median of a sample [7, 4, 15, 10, 3]: Letcn denote
the expected number of comparisons used by classic Quicksort (as given in [16]), when each
pivot is chosen as median of a sample of 2t+1 random elements.cn fulfills the recurrence

cn = n−1 + ∑
0≤j1,j2≤n−1
j1+j2=n−1

(

j1
t

)(

j2
t

)

(

n
2t+1

) (cj1 + cj2) (1)

sincen− 1 comparisons are needed in the first partitioning step, and we have two recursive
calls of random sizes, where the probability to have sizesj1 andj2 is given by the fraction of
binomials (see [9] for details). This recurrence can be solved asymptotically [4, 15] to

cn ∼
1

H2(t+1)−Ht+1
·n lnn,

whereHn=∑n
i=11/i is thenth harmonic number andf(n)∼ g(n)means limn→∞ f(n)/g(n)=

1. The mathematical details are beyond the scope of this abstract, but a rather elementary
derivation is possible [10]. Large values oft are impractical; a good compromise in practice is
given by the “ninther”, the median of three medians, each chosen from three elements [2]. This
scheme can be analyzed similarly to the above [3].

The author generalized Equation (1) to Yaroslavskiy’s Quicksort [19, 18, 9]. Note that
unlike for classic Quicksort, the comparison count of Yaroslavskiy’s partitioning depends on
pivot values, so its expected value has to be computed over the choices for the pivots. We
obtain for tertiles-of-(3t+2)

cn =

(

5
3
−

1
9t+12

)

·n+O(1) + ∑
0≤j1,j2,j3≤n−2
j1+j2+j3=n−2

(

j1
t

)(

j2
t

)(

j3
t

)

(

n
3t+2

) · (cj1 + cj2 + cj3); (2)

with solution

cn ∼
5
3 −

1
9t+12

H3(t+1)−Ht+1
·n lnn.

Why Is Dual-Pivot Quicksort Fast? 3

Oracle’s Java runtime library previously used classic Quicksort with ninther, and now uses
Yaroslavskiy’s Quicksort with tertiles-of-five; the average number of comparisons are asymp-
totically 1.5697n lnn vs. 1.7043n lnn. According to the comparison model, Yaroslavskiy’s al-
gorithm is significantlyworsethan classic Quicksort! Moreover, this result does not change
qualitatively if we considerall primitive instructions of a machine instead of only compar-
isons [19, 9]. It is thus not surprising that researchers found the use of two pivots not promis-
ing [15, 6].

But if Yaroslavskiy’s algorithm actually uses more comparisons and instructions, how comes
it is still faster in practice? And why was this discrepancy between theory and practice not
noticed earlier? The reason is most likely related to a phenomenon known as the “memory
wall” [20, 13] or the “von-Neumann bottleneck” [1]: Processor speed has been growing consid-
erably faster than memory bandwidth for a long time.

3. The Memory Wall

1991 1995 2000 2005 2010 2015

100

101

102

Figure 1: Development of CPU speed
against memory bandwidth over the last 25
years. Each point shows one reported re-
sult of the STREAM benchmark [12, 11],
with the date on thex-axis and the ma-
chine balance (peak MFLOPS divided by
Bandwidth in MW/s in the “triad” bench-
mark) on a logarithmicy-axis. The fat line
shows the linear regression (on log-scale).
Data is taken fromwww.cs.virginia.edu/
stream/by_date/Balance.html.

Based on the extensive data for the STREAM
benchmark [12, 11], CPU speed has increased
with an average annual growth rate of 46% over
the last 25 years, whereas memory bandwidth, the
amount of data transferable between RAM and
CPU in a given amount of time, has increased by
37% per year. Even though one should not be too
strict about the exact numbers as they are averages
over very different architectures, a significant in-
crease inimbalanceis undeniable. Figure 1 gives
a direct quantitative view of this trend.

If the imbalance between CPU and memory
transfer speed continues to grow exponentially, at
some point in the future any further improvements
of CPUs will be futile: the processor is waiting for
data all the time; we hit a “memory wall”.

It is debatable if and when this extreme will
be reached [5, 13], and consequences certainly de-
pend on the application. In any case, however, the
(average) relative costs of memory accesses have
increased significantly over the last 25 years.

So when Quicksort with two pivots was first studied, researchers correctly concluded that it
does not pay off. But computers have changed since then, and so must our models.

4. Scanned Elements

Our new cost model for sorting counts the number of“scanned elements”. An element scan
is essentially an accesses “A[i]” to the input arrayA, but we count all accesses as one that
use the same index variablei and the same value fori. For example, a linear scan overA

http://www.cs.virginia.edu/stream/by_date/Balance.html

4 Sebastian Wild

entailsn scanned elements, and several interleaved scans (with different index variables) cost
the traveled distance, summed up over all indices, even whenthe scanned ranges overlap. We
do not distinguish read and write accesses.

We claim that for algorithms built on potentially interleaved sequential scans, in particular
for classic and dual-pivot Quicksort, the number of scannedelements is asymptotically propor-
tional to the amount of data transfered between CPU and main memory [9].

Scanned elements are related to cache misses [8], but the latter is a machine-dependent
quantity, whereas the former is a clean, abstract cost measure that is easy to analyze: One
partitioning step of classic Quicksort scansA exactly once, resulting inn scanned elements. In
Yaroslavskiy’s partitioning, indicesk andg together scanA once, but indexℓ scans the leftmost
segment a second time. On average, the latter contains a third of all elements, yielding43n
scanned elements in total.

Using these in recurrences (1) resp. (2) yields 1.5697n lnn vs. 1.4035n lnn scanned ele-
ments; the Java 7 Quicksort saves 12% of the element scans over the version in Java 6, which
matches the roughly 10% speedup observed in running time studies.

5. Conclusion

Memory speed has not fully kept pace with improvements in processing power. This growing
imbalance forces us to economize on memory accesses in algorithms that were almost entirely
CPU-bound in the past, and calls for new cost models for the analysis of algorithms. For sorting
algorithms that build on sequential scans over their input,the proposed “scanned elements”
counts serve as such a model and give a good indication of the amount of memory traffic caused
by an algorithm. It is exactly this data traffic where dual-pivot outclasses classic Quicksort,
offering a plausible explanation for its superiority in practice.

References

[1] J. BACKUS, Can Programming Be Liberated from the Von Neumann Style? A Functional Style
and Its Algebra of Programs.Communications of the ACM21 (1978) 8, 613–641.

[2] J. L. BENTLEY, M. D. MCILROY, Engineering a sort function.Software: Practice and Experience
23 (1993) 11, 1249–1265.

[3] M. D URAND, Asymptotic analysis of an optimized quicksort algorithm.Information Processing
Letters85 (2003) 2, 73–77.

[4] M. H. VAN EMDEN, Increasing the efficiency of quicksort.Communications of the ACM(1970),
563–567.

[5] M. A. ERTL, The Memory Wall Fallacy. 2001.
https://www.complang.tuwien.ac.at/anton/memory-wall.html

[6] P. HENNEQUIN, Analyse en moyenne d’algorithmes : tri rapide et arbres de recherche. PhD Thesis,
Ecole Politechnique, Palaiseau, 1991.

[7] C. A. R. HOARE, Quicksort.The Computer Journal5 (1962) 1, 10–16.

https://www.complang.tuwien.ac.at/anton/memory-wall.html

Why Is Dual-Pivot Quicksort Fast? 5

[8] S. KUSHAGRA, A. LÓPEZ-ORTIZ, A. QIAO, J. I. MUNRO, Multi-Pivot Quicksort: Theory and
Experiments. In:ALENEX 2014. SIAM, 2014, 47–60.

[9] C. MARTÍNEZ, M. E. NEBEL, S. WILD , Analysis of Pivot Sampling in Dual-Pivot Quicksort.
Algorithmica(2015).
http://arxiv.org/abs/1412.0193

[10] C. MARTÍNEZ, S. ROURA, Optimal Sampling Strategies in Quicksort and Quickselect. SIAM Jour-
nal on Computing31 (2001) 3, 683–705.

[11] J. D. MCCALPIN, STREAM: Sustainable Memory Bandwidth in High Performance Computers.
Technical report, University of Virginia, Charlottesville, Virginia, 1991-2007. Continually updated
technical report.
http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/bandwidth.html

[12] J. D. MCCALPIN, Memory Bandwidth and Machine Balance in Current High Performance Com-
puters.IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter
(1995), 19–25.
http://www.cs.virginia.edu/~mccalpin/papers/balance/index.html

[13] S. A. MCKEE, Reflections on the Memory Wall. In:Proceedings of the first conference on com-
puting frontiers. 2004, 162–167.

[14] D. R. MUSSER, Introspective Sorting and Selection Algorithms.Software: Practice and Experi-
ence27 (1997) 8, 983–993.

[15] R. SEDGEWICK, Quicksort. Ph. D. Thesis, Stanford University, 1975.

[16] R. SEDGEWICK, Implementing Quicksort programs.Communications of the ACM21 (1978) 10,
847–857.

[17] R. C. SINGLETON, Algorithm 347: an efficient algorithm for sorting with minimal storage [M1].
Communications of the ACM12 (1969) 3, 185–186.

[18] S. WILD , Java 7’s Dual Pivot Quicksort. Master thesis, University of Kaiserslautern, 2012.
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-34638

[19] S. WILD , M. E. NEBEL, Average Case Analysis of Java 7’s Dual Pivot Quicksort. In:L. EPSTEIN,
P. FERRAGINA (eds.),ESA 2012. LNCS 7501, Springer, 2012, 825–836.
http://arxiv.org/abs/1310.7409

[20] W. A. WULF, S. A. MCKEE, Hitting the Memory Wall: Implications of the Obvious. 1995.

http://arxiv.org/abs/1412.0193
http://www.cs.virginia.edu/~mccalpin/papers/bandwidth/bandwidth.html
http://www.cs.virginia.edu/~mccalpin/papers/balance/index.html
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-34638
http://arxiv.org/abs/1310.7409

	1. Introduction
	2. Analysis of Quicksort
	3. The Memory Wall
	4. Scanned Elements
	5. Conclusion
	References

