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1 Introduction

The observation of a Higgs boson by the ATLAS and the CMS Collaborations [1–3] repre-

sents a major step towards the understanding of the mechanism for electroweak symmetry

breaking [4–6]. All measurements within the Higgs boson sector have so far been in gen-

eral agreement with the predictions of the standard model (SM) [7, 8]. However, the

SM cannot address several crucial issues, such as the hierarchy problem, the origin of the

matter-antimatter asymmetry in the universe, and the nature of dark matter [9–12]. The-

ories beyond the SM have been proposed to address these open questions. Many of these

predict the existence of more than one Higgs boson, or new resonances that preferentially

decay to a pair of third-generation fermions, including τ leptons.

In this analysis, a search for several scenarios of low-mass resonances that decay to a

pair of τ leptons of opposite charge is performed. In particular, we define multiple signal

regions that are optimized based on two benchmark models that have final states with

different kinematic properties. We consider a mass range between 20 and 70 GeV, as we
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Figure 1. Feynman diagrams of (left) a low-mass pseudoscalar Higgs boson (A) produced in

association with bottom quarks, and (right) a bottom-like quark produced in t channel, which

decays into X and a bottom quark. The particle X decays into a τ-lepton pair.

are bounded below by our kinematic requirements, and above 70 GeV by the background

of the Z boson mass peak.

The first model describes a low-mass pseudoscalar Higgs boson A, produced in as-

sociation with two bottom quarks (bbA), and decaying to a τ-lepton pair. This is one

of the preferred scenarios in the Two-Higgs-Doublet Models (2HDMs) [13–17]. Searches

for signatures of bbA or A pair production containing τ leptons in the final state have

been performed using pp collision data at a center-of-mass energy of 8 TeV collected by

CMS [18, 19] and ATLAS [20], as well as with data at 13 TeV by CMS [21, 22]. Other

searches by CMS and ATLAS for low-mass bosons exploit final states containing muons

and b quarks [23–25], but also electrons [26, 27] or photons [28]. For this model, we choose

events with a τ-lepton pair and a central jet that is consistent with the decay of a b hadron

(“b-tagged jet”). A Feynman diagram of this signal process at leading order (LO) is shown

in figure 1 (left panel).

The second model describes a low-mass boson X decaying to a τ-lepton pair in a process

where the X boson is created through the decay of a vector-like quark (VLQ) [29–32]. In the

scenario considered here, a heavy bottom-like quark B is produced in a t-channel process

in association with a light quark, where an X boson acts as the propagator. It then decays

via B → bX, so that the final state topology is qbX. The B is typically scattered in

the forward direction, and two categories of event selection are optimized to target this

signature. Both categories require a jet consistent with the decay of a b hadron, with one

category requiring an additional central jet with pseudorapidity |η| < 2.4, and one category

requiring an additional forward jet with |η| > 2.4. With this selection, the analysis provides

new sensitivity to vector-like quarks by targeting previously unexplored decays of heavy

bottom-like quarks. The Feynman diagram of this signal process that is dominant at LO

is also shown in figure 1 (right panel).

A number of other scenarios beyond the SM produce signatures similar to the two

models considered. For example, Hidden Valley models [33, 34] predict a spin-one resonance

decaying to lepton pairs; dark-force models [35] include the decay of a top quark to a bottom
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quark and two GeV-scale bosons, W ′ and Z′, that decay to leptons [36, 37]; and new flavor

changing neutral current interactions of the top quark, in which a new light X boson is

produced in association with a single top quark and decays to lepton pairs [38]. Although

these new physics scenarios are not considered in this analysis, the results can be applied

to most of these cases in the kinematic regions explored in this work.

A previous analysis of proton-proton (pp) collision data taken at a center-of-mass

energy of 8 TeV, exploring a similar final state focusing on dimuon resonances, has observed

excesses at an invariant mass of 28 GeV that correspond to local significances of 4.2 and 2.9

standard deviations in the two event categories defined by the analysis [39]. Reference [39]

also reports an analysis of data with a center-of-mass energy of 13 TeV, and finds both a

2.0 standard deviation excess and a 1.4 standard deviation deficit in the same two event

categories, respectively. If there were a new heavy particle that had Yukawa-like couplings

proportional to mass, the rate would be enhanced in the ττ final state considered in this

work, and would provide additional information on the couplings of such a new particle.

Therefore, the results of this analysis are compared to those of ref. [39].

This analysis is based on pp collision data delivered by the LHC at CERN at a center-

of-mass energy of 13 TeV. The data set corresponds to an integrated luminosity of 35.9 fb−1,

collected by the CMS detector during 2016. Only the semileptonic final states eτh and µτh

are considered, where one of the τ leptons decays into light leptons (electron or muon), and

the other decays hadronically, denoted as τh.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are a silicon

pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and

a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap

sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel

and endcap detectors from |η| < 3.0 to |η| < 5.2. Muons are measured in gas-ionization

detectors embedded in the steel flux-return yoke outside the solenoid.

Events of interest are selected using a two-tiered trigger system [40]. The first level,

composed of custom hardware processors, uses information from the calorimeters and muon

detectors to select events at a rate of around 100 kHz within a time interval of less than

4µs. The second level, known as the high-level trigger, consists of a farm of processors

running a version of the full event reconstruction software optimized for fast processing,

and reduces the event rate to about 1 kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the

coordinate system used and the relevant kinematic variables, can be found in ref. [41].

3 Simulated samples

Samples of simulated events are used to devise selection criteria, and estimate and validate

background predictions. The main sources of background are the pair production of top
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quarks (tt), single top quark production, W and Z boson production in association with

jets, denoted as “W + jets” and “Z + jets”, diboson (WW, WZ, ZZ) production, and

quantum chromodynamics (QCD) production of multijet events. The W + jets and Z + jets

processes are simulated using the MadGraph5 amc@nlo [42] generator (2.2.2 and 2.3.3)

at LO precision with the MLM jet matching and merging scheme [43]. The same generator

is also used for diboson production simulated at next-to-leading order (NLO) precision

with the FxFx jet matching and merging scheme [44], whereas powheg [45–47] 2.0 and

1.0 are used for tt and single top quark production at NLO precision, respectively [48–51].

The Z + jets, tt, and single top processes are normalized using cross sections computed at

next-to-next-to-leading order (NNLO) in perturbative QCD [52–54].

The bbA samples are produced with the pythia 8.212 [55] generator with the pseu-

doscalar mass (mA) ranging from 25 to 70 GeV.

The qbX signals are generated with MadGraph5 amc@nlo, using the same produc-

tion mechanism as for producing single top quarks in the t-channel. The b quark that

initiates the qbX process is predominantly produced in gluon splittings, and is modeled by

the four-flavor scheme (4FS), such that the b quark is not contained in the proton parton

distribution functions. A previous comparison with data has shown that the absolute value

of the transverse momentum (pT = |~pT|) and η distributions of the top quark in simulated

t-channel events is better modeled in the 4FS than in the five-flavor scheme [56]. Several

samples with different values of mX, ranging from 20 to 70 GeV, are generated. Mass values

of 170, 300, and 450 GeV are considered for the B particle.

The event generators are interfaced with pythia to model the parton showering and

fragmentation, as well as the decay of the τ leptons. The pythia parameters affecting the

description of the underlying event are set to the CUETP8M1 tune [57]. The NNPDF3.0

parton distribution functions [58] with the order matching that of the matrix element calcu-

lations are used with all generators. Generated events are processed through a simulation

of the CMS detector based on Geant4 [59], and are reconstructed with the same algo-

rithms used for data. The simulated samples include additional pp interactions per bunch

crossing, referred to as “pileup”. The effect of pileup is taken into account by generating

concurrent total inelastic collision events with pythia. The simulated events are weighted

such that the distribution of the number of pileup interactions matches that in data, with

an average of approximately 23 interactions per bunch crossing [60].

4 Event and object reconstruction

The reconstruction of observed and simulated events relies on the particle-flow (PF) al-

gorithm [61], which combines information from the CMS subdetectors to reconstruct and

identify the particles emerging from the pp collisions: charged and neutral hadrons, pho-

tons, muons, and electrons. This section describes how these PF objects are combined to

reconstruct other physics objects such as jets, τh candidates, or missing transverse momen-

tum (~pmiss
T ). The primary pp interaction vertex of an event is taken to be the reconstructed

vertex with the largest value of summed physics-object p2
T.
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After being reconstructed by the PF algorithm, electrons are identified with a multi-

variate analysis (MVA) [62] discriminant that combines several quantities describing the

track quality, the shape of the energy deposits in the ECAL, and the compatibility of the

measurements from the tracker and the ECAL [63]. Selected electrons must pass a dis-

criminant requirement that rejects electrons coming from photon conversions. Muons are

identified with requirements on the quality of the track reconstruction and on the num-

ber of measurements in the tracker and the muon system [64]. To reject nonprompt or

misidentified leptons, a relative lepton isolation I` (` = e, µ) is defined as follows:

I` ≡

∑
charged pT + max

(
0,
∑

neutral pT − 1
2

∑
charged, PU pT

)
p`T

.

In this expression,
∑

charged pT is the scalar pT sum of the charged hadrons originating from

the primary vertex, and located in a cone of size ∆R = 0.3 (0.4) centered on the electron

(muon) direction, where ∆R =
√

(∆η)2 + (∆φ)2, ∆η is the difference in pseudorapidity,

and ∆φ is the difference in azimuthal angle in radians. The sum
∑

neutral pT represents

the same quantity for neutral hadrons and photons. The contribution of pileup photons

and neutral hadrons is estimated from the scalar pT sum of charged hadrons originating

from pileup vertices,
∑

charged, PU pT. This sum is multiplied by a factor of 1/2, which

corresponds approximately to the ratio of neutral- to charged-hadron production in the

hadronization process of inelastic pp collisions, as estimated from simulation. In this

analysis, Ie < 0.10 (Iµ < 0.15) is used as the isolation requirement for the electron (muon).

Jets are reconstructed from PF candidates using the anti-kT clustering algorithm with

a distance parameter of 0.4, implemented in the FastJet library [65–67]. Charged PF

candidates not associated with the primary vertex of the interaction are not considered

when reconstructing jets. An offset correction is applied to jet energies to take into ac-

count the contribution from additional pp interactions within the same or nearby bunch

crossings [68]. The energy of a jet is calibrated based on simulation and data through

correction factors [68]. Further identification requirements are applied to distinguish gen-

uine jets from those arising from pileup [69], and additional selection criteria on the energy

fractions and multiplicity of charged and neutral particles are applied to each event to

remove spurious jet-like features originating from isolated noise patterns in certain HCAL

regions [70]. In this analysis, jets are required to have pT > 30 GeV and |η| < 4.7, and must

be separated from the selected leptons by ∆R > 0.5. Jets originating from the hadroniza-

tion of bottom quarks are identified using the combined secondary vertex algorithm [71],

which exploits observables related to the long lifetime and large mass of b hadrons. The

chosen b-tagging working point corresponds to an identification efficiency of approximately

60% with a misidentification rate of approximately 1% for jets originating from light quarks

or gluons, and about 13% for jets originating from charm quarks.

The τh candidates are reconstructed with the hadron-plus-strips algorithm [72], which

is seeded with anti-kT jets. This algorithm reconstructs τh candidates based on the number

of charged hadrons and on the number of strips of ECAL crystals with energy deposits in

the one-prong, one-prong + π
0, and three-prong decay modes. An MVA-based discrimi-
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nant, including the isolation and lifetime information, is used to reduce the incidence of

jets being misidentified as τh candidates. The typical working point of this MVA-based

isolation discriminant, as used in this analysis, has an efficiency of about 60% for a gen-

uine τh, with about a 0.1% misidentification rate for quark and gluon jets. Electrons and

muons misidentified as τh candidates are suppressed using dedicated criteria based on the

consistency between the measurements in the tracker, calorimeters, and muon system.

The vector ~pmiss
T is defined as the negative vectorial sum of the ~pT of all PF candi-

dates [73, 74] originating from the primary vertex. The ~pmiss
T is adjusted for the effect of jet

energy corrections. Recoil corrections are applied to account for the mismodeling of ~pmiss
T

in simulated events of the Z + jets and W + jets processes. The corrections are performed

on the variable that is defined as the vectorial difference between the measured ~pmiss
T and

the total ~pT of neutrinos originating from the decay of the W or Z boson. On average, this

reduces the ~pmiss
T obtained from simulation by a few GeV.

5 Event selection

The search is performed in events containing eτh or µτh (collectively `τh) candidates, pro-

duced in association with a b-tagged jet.

In order to select the eτh (µτh) final states of the τ-lepton pair, the trigger requirements

are at least one isolated electron (muon) with pT > 25 (22) GeV, or the combination of

at least one isolated electron (muon) with pT > 24 (19) GeV and one τh candidate with

pT > 20 GeV. In addition to the trigger requirements, a common “baseline selection” is

applied, requiring the events to be consistent with the `τh signature. Additional event

selections to target the bbA and qbX signatures are described in the following sections.

5.1 Baseline selection

The eτh channel requires one electron candidate with pT > 25 GeV, |η| < 2.1, and relative

isolation (defined in section 4) less than 0.10. The electron should be within a longitudinal

distance dz of 0.2 cm and a radial distance dxy of 0.045 cm with respect to the primary

vertex. One τh candidate is required to have pT > 20 GeV, |η| < 2.3, and to pass the

working point of the MVA-based isolation, as detailed in section 4. The selected electron

and τh should have an opening angle of ∆R > 0.5 and have opposite-sign (OS) electric

charges. If multiple τh candidates are found, the one with the best MVA-based isolation

is selected.

Similarly, µτh events are selected by requiring one muon candidate with pT > 20 GeV

and |η| < 2.1. The relative isolation is taken to be less than 0.15. The same dz and

dxy requirements as those imposed on electron candidates are applied to muons. The

τh-candidate selection is the same as for eτh events.

For both the eτh and µτh channels, events with additional isolated electrons (or muons)

with pT > 10 GeV and |η| < 2.5 (2.1) that pass the same dz and dxy requirements, but

a looser identification requirement, are discarded to reduce Z + jets, tt production, and

diboson backgrounds, as well as to keep orthogonality between the eτh and µτh channels.
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5.2 Additional selection for the bbA search

Signal events of the bbA process are characterized by a τ-lepton pair and two bottom

quarks. In order to increase the signal purity, candidate events are required to have at

least one b-tagged jet with pT > 30 GeV and |η| < 2.4. To further remove tt background,

events are required to have a transverse mass (mT) less than 40 GeV, where mT is defined as

mT =

√
2p`T|~p

miss
T |(1− cos ∆φ),

in which p`T is the pT of the lepton and ∆φ is the azimuthal angle between the lepton

direction and the ~pmiss
T vector, which here is assumed to be due to the momenta of unde-

tected neutrinos.

In addition, events are required to satisfy pmiss
ζ − 0.85pvis

ζ > −40 GeV, where pmiss
ζ is the

component of the ~pmiss
T along the bisector of the ~pT of the lepton and τh, while pvis

ζ is the sum

of the parallel components of the lepton and τh-candidate ~pT [75]. This variable quantifies

the compatibility of events with the topology wherein the direction of neutrinos from the

τ-lepton decays are aligned with the direction of the visible τ-lepton decay products. This

requirement is optimized to remove a substantial amount of tt as well as W + jets events.

5.3 Additional selection for the qbX search

The final-state bottom quark from qb → q′B→ q′bX tends to be more centrally produced

with a hard pT spectrum, whereas the final-state light quark tends to be more forwardly

scattered. This motivates two mutually exclusive categories of events. The first category

requires one forward jet and one b-tagged jet, and is labeled as “1b1f”. Namely,

• one b-tagged jet with pT > 30 GeV and |η| < 2.4;

• at least one forward jet with pT > 30 GeV and 2.4 < |η| < 4.7;

• no other jets with pT > 30 GeV and |η| < 2.4.

The second category, labeled as “1b1c”, has only two central jets:

• one b-tagged jet with pT > 30 GeV, |η| < 2.4;

• exactly one other central jet with pT > 30 GeV and |η| < 2.4;

• no forward jets with pT > 30 GeV and 2.4 < |η| < 4.7.

In order to further reduce the dominant tt background, an additional requirement of mT <

60 GeV is applied to events in both categories. This selection helps to reduce the tt

background by a factor of five in 1b1f, and by a factor of two in the 1b1c category, while

maintaining a signal acceptance of 91 and 98%, respectively. Of all selected data events,

18% fall into 1b1f, and 82% into 1b1c.

After applying the event selection, an excess of events over the SM backgrounds is

searched for using the distribution of the invariant mass of the τ-lepton pair, constructed

using the SVfit mass algorithm [76, 77]. This algorithm approximates the invariant mass of
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the ττ system by exploiting information on the four-vectors of the lepton and τh, combined

with the xy-components of ~pmiss
T and its covariance matrix. For better energy resolution,

the τh decay modes (one-prong, one-prong + π
0, and three-prong) are treated separately.

Although the visible mass of the lepton and τh system, defined as the invariant mass of the

sum of four-vector from the visible particles, can be also used as a discriminant, the SVfit

mass mττ is preferred since its peak position locates the resonance mass, while performing

equally well in terms of the expected sensitivity. Considering that the typical resolution

of the mττ distribution is 10–15% [76, 77], a bin width of 5 GeV is chosen. The maximum

likelihood fit method [78] is performed for the signal extraction, as detailed in section 8.

6 Background estimation

The dominant background in all search channels and categories comes from tt production

because of the presence of genuine electrons, muons, τ leptons, and bottom quark jets from

tt decays. At lower masses, the QCD multijet background also becomes relevant, while

around 90 GeV, there is a considerable Z + jets contribution. Additional small backgrounds

are W + jets, diboson, and single top quark events.

For the bbA search, simulated events are used to model tt backgrounds, both for

the normalization and the shape of the SVfit mass distribution. The normalization of

the tt background is checked by defining a control region with a high tt purity and little

signal contamination by requiring |~pmiss
T | > 60 GeV and mT > 60 GeV. All other selection

requirements stay the same. The data and simulation show close agreement within statisti-

cal uncertainty. Therefore, simulated events are used to predict the yield of tt background

processes in the signal region without scaling, as well as the associated uncertainties in the

cross section.

For the qbX search, on the other hand, additional requirements on the jet multiplicity

can cause mismodeling of the tt background. A control region is defined with the same jet

category selections as described in section 5.3, as well as |~pmiss
T | > 60 GeV and mT > 60 GeV

requirements. The data-to-simulation scale factors for the tt events are then calculated

such that the simulated number of events agrees with data in these sidebands. In the

eτh (µτh) channel, the scale factor is found to be 0.82 (0.85) for the 1b1f category, and

1.02 (0.97) for the 1b1c category. The statistical uncertainties in these scale factors are up

to 6% and considered as nuisance parameters in the combined fit.

The QCD multijet background, in which one jet is misidentified as a τh candidate

and another as a lepton, is small and is estimated using a control region where the lepton

and the τh candidate have same-sign (SS) electric charges. In this control region, the

QCD multijet yield is obtained by subtracting from the data the contribution from the

Z + jets, tt, W + jets, and other SM background processes, as determined from simulation.

The expected contribution of the QCD multijet background in the OS signal region is

then derived by rescaling the yield obtained in the SS control region by a factor of 1.1,

which is measured using a high-purity QCD multijet sample obtained by inverting the

lepton isolation requirement. The QCD multijet background estimation results in up to

20% rate uncertainties, accounting for the statistical precision in the region where the
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extrapolation factor from the SS to OS region is measured. This uncertainty also covers

potential dependencies of the OS/SS extrapolation factors on the invariant ττ mass.

For the W + jets background, the shape is modeled on the basis of simulated events,

while its normalization is determined from data using a sideband with mT > 80 GeV.

The W + jets simulation is normalized such that the overall yield of the simulated events,

including the QCD contribution estimated above, matches the data yield in the sideband

with mT > 80 GeV after the baseline selection but before any jet selection. The scale factor

necessary for the W + jets simulated events is found to be 0.95. The uncertainties in the

W + jets event yields estimated from data are as large as 5%. This uncertainty accounts

for the statistical limitation of data in the high-mT sideband, the statistical limitation of

the simulated W + jets sample, the systematic uncertainties of other processes in the same

region, and the extrapolation from high- to low-mT regions.

Minor backgrounds, such as diboson and single top quark processes, are estimated

from simulation.

7 Systematic uncertainties

A binned maximum likelihood fit of the observed mττ distribution is used to search for a

possible signal over the expected background. The mττ range from 0 to 350 GeV is used,

such that the backgrounds can be constrained by data in the high mass sideband, where

the signal is not expected.

Systematic uncertainties may affect the normalization or the shape of the mττ distri-

bution of the signal and background processes. These uncertainties are represented by

nuisance parameters in the fit, as described below, and summarized in table 1. We note

that systematic uncertainties play a small role in this analysis, as the measurement is

ultimately limited by the size of the data sample.

7.1 Normalization uncertainties

The uncertainty in the integrated luminosity amounts to 2.5% [60] and affects the normal-

ization of the signal and background processes that are based on simulation. Uncertainties

in the electron or muon identification and trigger efficiency amount to 2% each [79]. The

τh identification and trigger efficiency have been measured using the “tag-and-probe” tech-

nique [72] and an overall rate uncertainty of 10% is assigned. For events where electrons or

muons are misidentified as τh candidates, predominantly Z → ee events in the eτh channel

and Z → µµ events in the µτh channel, a rate uncertainties of 12 and 25% [80], respec-

tively, are applied, as determined by a tag-and-probe method. The acceptance uncertainty

because of the b tagging efficiency (mistag rate) has been determined to be 3 (5)%. The

momentum scale uncertainty in |~pmiss
T | [73, 74] affects the event yields due to selection

requirements on the mT variable and is estimated to be up to 4%. The uncertainties in the

W + jets event yields estimated from data can be as large as 5%, as detailed in section 6.

The QCD multijet background estimation is found to have rate uncertainties up to 20%.

The normalization uncertainty on the Z + jets yield is estimated using a dedicated control

region in events with two τh candidates and at least one b-tagged jet. A 20% uncertainty is

– 9 –
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assigned to the Z + jets normalization on the basis of the expected fluctuations in the total

number of data events in this control region. For the tt background, an uncertainty of 6%

in the cross section is computed for the 1 b tag category [53], while in the 1b1f and 1b1c

categories, a 6% uncertainty is determined from a control region, as previously described.

The uncertainties in the cross section for the diboson and single top quark processes are 6

and 5.5%, respectively.

Finally, theoretical uncertainties in the bbA cross section calculation due to NNLO

corrections for A masses below 50 GeV increase significantly, as is shown in figure 263 of

ref. [81]. Therefore, a conservatively estimated uncertainty of 50% is assigned to the bbA

signal yield.

7.2 Shape uncertainties

The stability of the shape and the normalization of the mττ distribution are tested with

respect to the uncertainties in the τh and jet energy scales for the signal and background

processes. The uncertainty is estimated by varying the τh and jet energies within their

respective uncertainties and recomputing mττ after the final selection. The uncertainty in

the τh energy scale amounts to 3% [72], and the uncertainties in the jet energy scale are up

to 4%, depending on the jet pT and η [68]. However, the variation of the mττ distribution

due to the jet energy scale is found to be negligible, and therefore, only normalization

uncertainties of 4% are considered. Similarly, for events where a jet, muon, or electron is

misidentified as a τh candidate, a shape uncertainty is derived by varying the reconstructed

pT of the τh candidate by 3%, and recomputing mττ after the final selection. The variations

due to the electron and muon momentum scales are found to be negligible.

Finally, uncertainties related to the limited number of simulated events are taken into

account. They are considered for all bins of the distributions that are used to extract the

results. They are uncorrelated across the different samples and across the bins of a single

distribution.

8 Results

Figure 2 (3) shows the SVfit mass distributions in the eτh and µτh channel for the bbA

(qbX) search. Two signal contributions from a pseudoscalar (an X boson) are overlaid

assuming a mass of 40 or 60 GeV, normalized to an arbitrary cross section times branching

fraction. The uncertainty bands on the histograms of simulated events represent the sum

in quadrature of statistical and systematic uncertainties, taking the full covariance matrix

of all nuisance parameters into account. However, uncertainties related to simulated events

play a small role as the measurement is ultimately limited by the size of the data sample.

The data are consistent with the background-only hypothesis of the SM, therefore, we

set an upper limit on the cross section by using the asymptotic CLs modified-frequentist

criterion [78, 82–84]. Figure 4 shows the observed and expected upper limits, at 95%

confidence level, on the cross section of bbA production times branching fraction of A → ττ

as a function of the pseudoscalar mass, mA . Representative 2HDMs with varied sets of the

– 10 –



J
H
E
P
0
5
(
2
0
1
9
)
2
1
0

Systematic source Involved processes Change in acceptance or shape

eτh µτh

Integrated luminosity Simulated processes 2.5%

Electron ident. & trigger Simulated processes 2% —

Muon ident. & trigger Simulated processes — 2%

τh ident. & trigger Simulated processes 10%

e misidentified as τh Z → ee 12% —

µ misidentified as τh Z → µµ — 25%

b tagging efficiency, mistag rate Simulated processes 3–5%

|~pmiss
T | scale Simulated processes Up to 4%

W + jets normalization W + jets 5%

QCD multijet normalization QCD multijet 20%

Z + jets normalization Z → ττ 20%

tt normalization tt (1b1f, 1b1c only) 6%

tt cross section tt (bbA only) 6%

Diboson cross section Diboson 6%

Single top quark cross section Single top quark 5.5%

bbA cross section Signal (bbA only) 50%

τh energy scale Simulated processes Shape

e/µ → τh energy scale Simulated processes Shape

Jet energy scale Simulated processes 4%

Jet misidentified as τh Z + jets Shape

Limited event count All processes Shape

Table 1. Sources of systematic uncertainties and their effects on the acceptance or shape resulting

from a variation of the nuisance parameter equivalent to one standard deviation.
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Figure 2. Measured mττ distribution in the eτh (left), and µτh (right) channel, compared to the

expected SM background contributions. The signal distributions for bbA with a pseudoscalar mass

of 40 and 60 GeV are overlaid to illustrate the sensitivity. They are normalized to the cross section

times branching fraction of 800 pb. The uncertainty bands represent the sum in quadrature of

statistical and systematic uncertainties obtained from the fit. The lower panels show the ratio

between the observed and expected events in each bin.
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Figure 3. Measured mττ distribution in the eτh (left), and µτh (right) final states, for the 1b1f

(upper) and 1b1c (lower) categories, compared to the expected SM background contributions. The

signal distributions for the VLQ model with X boson masses of 40 and 60 GeV are overlaid to

illustrate the sensitivity. They are normalized to the cross section times branching fraction of 20 pb.

The uncertainty bands represent the sum in quadrature of statistical and systematic uncertainties

obtained from the fit. The lower panels show the ratio between the observed and expected events

in each bin.

tanβ and mA parameters are also shown for two types of Yukawa couplings to the down-

type fermions: one which is SM-like, and one in which the Yukawa coupling is negative

and referred to as “wrong-sign” [85]. We consider a tan β range of 0.6 to 2.0 (1.6 to 37) for

the SM-like (wrong-sign) Yukawa coupling scenario with mA < 65 GeV. The cross sections

for the wrong-sign Yukawa couplings are up to several orders of magnitude larger and have

larger tan β. Most of the cross sections for these models with tan β > 3 are excluded by the

current data. For signal events with an mA ranging from 30 to 70 GeV and A decaying to

a pair of τ leptons, the efficiency to pass the final selection criteria of the 1 b tag category

of the µτh final state, including detector acceptance, selection efficiency, and branching

fraction of A → ττ, ranges from 0.002 to 0.022%. Figure 5 shows the same for the qbX

process in the VLQ model, but as a function of the X boson mass mX, for B masses of 170,
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300, and 450 GeV. For both searches, the sensitivity is lower in the low-mass region because

of the soft pT spectrum of the τh candidate yielding a lower signal detection efficiency. In

addition, as the boson mass decreases, the trajectories of the two τ leptons are in close

vicinity and start to spoil each other’s isolation requirement. For the qbX search, the 1b1f

category drives the sensitivity, as can be inferred from figure 3. For signal events in which

mB = 170 GeV, with an X mass ranging from 30 to 70 GeV and decaying to a pair of τ

leptons, the efficiency to pass the final selection criteria of the 1b1f category of the µτh final

state ranges from 0.03 to 0.06%. These values range from 0.02 to 0.10% for the same final

state of the 1b1c category.

We proceed to make a comparison with ref. [39], that is based on the same data set as

this paper, and defines two similar signal event categories, but with a dimuon pair in the

final state instead of a τ-lepton pair. Upper limits are set at 95% confidence level on the

fiducial cross section for the production of a 28 GeV particle decaying to two muons. Be-

cause the analysis does not consider a signal model that specifies the kinematic acceptance,

it defines the fiducial cross section as

σfid =
NS

Lεµµ

reco

,

whereNS is the number of signal events extracted from the fit to the dimuon mass spectrum,

L is the integrated luminosity, and εµµ

reco = 0.28 is the reconstruction efficiency, which

takes into account the muon trigger, identification and isolation, as well as the b-tagging

efficiency. To compare these results to the present analysis with a τ-lepton pair in the final

state, we consider only the most sensitive final state, µτh. The reconstruction efficiency εµτh
reco

for this final state is estimated to be 0.10. This includes the muon trigger, identification

and isolation, as well as the τh identification and b tagging efficiency. Taking into account

εµτh
reco, the upper limit on the fiducial cross section is 0.029 (0.057) pb for 1b1f (1b1c), while

for the dimuon search, the upper limit is 0.0037 (0.0032) pb for similar event categories. As

expected, this analysis is less sensitive than the dimuon search to a hypothetical signal that

decays equally to all flavors of leptons. However, if there were a Yukawa-type enhancement

between the signal and the τ leptons, then the constraints on the signal production cross

section by this analysis would improve by a factor of m2
τ/m

2
µ .

9 Summary

This paper presents a general search for a low-mass τ
−

τ
+ resonance produced in association

with a bottom quark. After defining the signal region by the presence of an electron or

muon consistent with the decay of a τ lepton, a hadronically decaying τ lepton, and a jet

originating from a bottom quark, an excess over standard model background is searched

for in the reconstructed invariant mass distribution of the inferred ττ system. The data are

consistent with the standard model background. We set upper limits at 95% confidence

level on the cross section times branching fraction for two signal models: a light pseu-

doscalar Higgs boson decaying to a pair of τ leptons produced in association with a bottom

quark, and a low-mass boson X decaying to a τ-lepton pair that is produced in the decay
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of a bottom-like quark B as B→ bX. For both scenarios, X boson masses between 20 and

70 GeV are probed. Upper limits at 95% confidence level ranging from 250 to 44 pb are set

on the light pseudoscalar, and from 20 to 0.3 pb on B masses between 170 and 450 GeV.

This is the first search for an X resonance in this final state using the center-of-mass energy

of 13 TeV. Since many extensions of the standard model have similar event kinematics as

this analysis, these results could also be applied to put constraints on other low-mass ττ

resonances. If there were a Yukawa-type enhancement between the signal and the τ leptons,

then the constraints on the signal production cross section by this analysis would improve

by a factor of m2
τ/m

2
µ .

The optimized selection of this analysis targets previously unexplored decays of heavy

bottom-like quarks, providing new sensitivity to vector-like quarks.
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E.A. Yetkin61

Istanbul Technical University, Istanbul, Turkey

M.N. Agaras, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen62

Institute for Scintillation Materials of National Academy of Science of Ukraine,

Kharkov, Ukraine

B. Grynyov

– 33 –



J
H
E
P
0
5
(
2
0
1
9
)
2
1
0

National Scientific Center, Kharkov Institute of Physics and Technology,

Kharkov, Ukraine

L. Levchuk

University of Bristol, Bristol, United Kingdom

F. Ball, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher,

J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold63, S. Paramesvaran,

B. Penning, T. Sakuma, D. Smith, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom

K.W. Bell, A. Belyaev64, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan,

K. Harder, S. Harper, J. Linacre, K. Manolopoulos, E. Olaiya, D. Petyt, T. Reis, T. Schuh,

C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley

Imperial College, London, United Kingdom

R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, D. Colling,

P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, P. Everaerts, G. Hall, G. Iles,

T. James, M. Komm, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, J. Nash65,

A. Nikitenko7, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott,

C. Seez, A. Shtipliyski, G. Singh, M. Stoye, T. Strebler, S. Summers, A. Tapper, K. Uchida,

T. Virdee16, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid,

L. Teodorescu, S. Zahid

Baylor University, Waco, U.S.A.

K. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. McMaster, N. Pastika,

C. Smith

Catholic University of America, Washington, DC, U.S.A.

R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, U.S.A.

A. Buccilli, O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, U.S.A.

D. Arcaro, T. Bose, Z. Demiragli, D. Gastler, S. Girgis, D. Pinna, C. Richardson, J. Rohlf,

D. Sperka, I. Suarez, L. Sulak, D. Zou

Brown University, Providence, U.S.A.

G. Benelli, B. Burkle, X. Coubez, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan66,

K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, S. Sagir67, R. Syarif,

E. Usai, D. Yu

University of California, Davis, Davis, U.S.A.

R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez,

M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, J. Gunion,

– 34 –



J
H
E
P
0
5
(
2
0
1
9
)
2
1
0

W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi,

D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, U.S.A.

M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, S. Erhan, A. Florent, J. Hauser,

M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, U.S.A.

E. Bouvier, K. Burt, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapos-

toli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang,

H. Wei, S. Wimpenny, B.R. Yates

University of California, San Diego, La Jolla, U.S.A.

J.G. Branson, P. Chang, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi,

A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, S. May,

D. Olivito, S. Padhi, M. Pieri, V. Sharma, M. Tadel, J. Wood, F. Würthwein, A. Yagil,

G. Zevi Della Porta

University of California, Santa Barbara — Department of Physics, Santa

Barbara, U.S.A.

N. Amin, R. Bhandari, C. Campagnari, M. Citron, V. Dutta, M. Franco Sevilla, L. Gouskos,

R. Heller, J. Incandela, H. Mei, A. Ovcharova, H. Qu, J. Richman, D. Stuart, S. Wang,

J. Yoo

California Institute of Technology, Pasadena, U.S.A.

D. Anderson, A. Bornheim, J.M. Lawhorn, N. Lu, H.B. Newman, T.Q. Nguyen, J. Pata,

M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, U.S.A.

M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, U.S.A.

J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, E. MacDonald, T. Mulholland, R. Patel,

A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, U.S.A.

J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman,

J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao,

J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, U.S.A.

S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee,

L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa,

G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira,

J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche,

J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani,

M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln,

R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride,

– 35 –



J
H
E
P
0
5
(
2
0
1
9
)
2
1
0

P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, C. Pena, O. Prokofyev, G. Rakness,

F. Ravera, A. Reinsvold, L. Ristori, A. Savoy-Navarro68, B. Schneider, E. Sexton-Kennedy,

A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk,

N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang,

H.A. Weber

University of Florida, Gainesville, U.S.A.

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes,

D. Curry, R.D. Field, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K.H. Lo, P. Ma,

K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Wang, S. Wang,

X. Zuo

Florida International University, Miami, U.S.A.

Y.R. Joshi, S. Linn

Florida State University, Tallahassee, U.S.A.

A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg,

G. Martinez, T. Perry, H. Prosper, A. Saha, C. Schiber, R. Yohay

Florida Institute of Technology, Melbourne, U.S.A.

M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, M. Rahmani,

T. Roy, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, U.S.A.

M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer,

O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, C. Mills,

M.B. Tonjes, N. Varelas, H. Wang, X. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, U.S.A.

M. Alhusseini, B. Bilki69, W. Clarida, K. Dilsiz70, S. Durgut, R.P. Gandrajula, M. Hayt-

myradov, V. Khristenko, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman,

H. Ogul71, Y. Onel, F. Ozok72, A. Penzo, C. Snyder, E. Tiras, J. Wetzel

Johns Hopkins University, Baltimore, U.S.A.

B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung,

P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao

The University of Kansas, Lawrence, U.S.A.

A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil,

A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, S. Sanders,

E. Schmitz, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, U.S.A.

S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak,

A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, U.S.A.

F. Rebassoo, D. Wright

– 36 –



J
H
E
P
0
5
(
2
0
1
9
)
2
1
0

University of Maryland, College Park, U.S.A.

A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen,

G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, S. Nabili, F. Ricci-Tam, M. Seidel,

Y.H. Shin, A. Skuja, S.C. Tonwar, K. Wong

Massachusetts Institute of Technology, Cambridge, U.S.A.

D. Abercrombie, B. Allen, V. Azzolini, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali,

M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute,

D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov,

S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans,

K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, U.S.A.

A.C. Benvenuti†, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, S. Kalafut,

M. Krohn, Y. Kubota, Z. Lesko, J. Mans, R. Rusack, M.A. Wadud

University of Mississippi, Oxford, U.S.A.

J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, U.S.A.

E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Ka-

malieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, U.S.A.

A. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker,

S. Rappoccio, B. Roozbahani

Northeastern University, Boston, U.S.A.

G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, D.M. Morse,

T. Orimoto, A. Tishelman-charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, U.S.A.

S. Bhattacharya, J. Bueghly, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung,

M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, U.S.A.

R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Kar-

mgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko38,

M. Planer, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman,

M. Wolf, A. Woodard

The Ohio State University, Columbus, U.S.A.

J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, C. Hill, W. Ji,

A. Lefeld, T.Y. Ling, W. Luo, B.L. Winer

Princeton University, Princeton, U.S.A.

S. Cooperstein, G. Dezoort, P. Elmer, J. Hardenbrook, N. Haubrich, S. Higginbotham,

A. Kalogeropoulos, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei,
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