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Abstract  68 

While progress has been made in characterizing humoral immunity to Zika virus 69 

(ZIKV) in humans, little is known regarding the corresponding T cell responses to 70 

ZIKV. Here we investigate the kinetics and viral epitopes targeted by T cells 71 

responding to ZIKV and address the critical question of whether pre-existing dengue 72 

virus (DENV) T cell immunity modulates these responses. We find that memory T 73 

cell responses elicited by prior infection with DENV or vaccination with Tetravalent 74 

Dengue Attenuated Vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-75 

reactivity is explained by the sequence similarity of the two viruses, as the ZIKV 76 

peptides recognized by DENV-elicited memory T cells are identical or highly 77 

conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences 78 

the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute 79 

phase of infection are detected earlier and in greater magnitude in DENV-immune 80 

patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the 81 

convalescent phase in DENV-naive donors, but declines in DENV pre-exposed 82 

donors, compatible with more efficient control of ZIKV replication and/or clearance 83 

of ZIKV antigen. The quality of responses is also influenced by previous DENV 84 

exposure, and ZIKV-specific CD8 T cells form DENV pre-exposed donors selectively 85 

up-regulated granzyme B and PD1, as compared to DENV-naïve donors. Finally, we 86 

discovered that ZIKV structural proteins (E, prM and C) are major targets of both the 87 

CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in 88 

nonstructural proteins.  89 

 90 
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Importance 91 

The issue of potential ZIKV and DENV cross-reactivity  and how  pre-existing DENV 92 

T cell immunity modulates ZIKA T cell responses is of great relevance as the two 93 

viruses often co-circulate and ZIKA virus has been spreading in geographical regions 94 

where DENV is endemic or hyper-endemic. Our data show that memory T cell 95 

responses elicited by prior infection with DENV recognize ZIKV-derived peptides 96 

and that DENV exposure prior to ZIKV infection influences the timing, magnitude 97 

and quality of the T cell response. Additionally we show that ZIKV-specific 98 

responses target different proteins than DENV-specific responses, pointing towards 99 

important implications for vaccine design against this global threat. 100 

 101 

  102 
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Introduction 103 

The pandemic rise of Zika virus (ZIKV) has recently commanded the attention of the 104 

general public and medical research community alike  105 

(13, 15, 31, 33).  106 

ZIKV is a flavivirus most closely related to dengue virus (DENV)(24, 53) but also 107 

related with Japanese encephalitis virus (JEV), West Nile virus (WNV), and yellow 108 

fever virus (YF), all of which are transmitted primarily by mosquitoes (54). . 109 

Understanding host protective immunity to this virus is critical for the design of 110 

optimal vaccines, but little is currently known about the immune responses to ZIKV 111 

in humans since infections with ZIKV have not been frequent in the past (27, 29). 112 

This is in contrast to a substantial wealth of information related to T cell immunity 113 

against the closely related DENV(44, 45, 49). 114 

 115 

In the case of DENV, CD8 T cell responses target mostly non-structural (NS) proteins 116 

such as NS3, NS4B and NS5, while CD4 T cell responses are focused on the C, E and 117 

NS5 proteins, even though serotype specific differences have been noted (1, 2, 43, 118 

44, 46). The main protein targets of CD4 and CD8 T cell immunity are presently 119 

unknown for ZIKV. This dearth of information is a severe knowledge gap as robust T 120 

cell responses may be required for optimal ZIKV vaccine efficacy (29).  121 

 122 

The issue of potential ZIKV and DENV cross-reactivity is of relevance for 123 

development of both diagnostic tests and vaccines. ZIKV and DENV have significant 124 

sequence similarity, share the same arthropod host and the geographic range of 125 
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ZIKV overlaps largely with areas where DENV is endemic or hyper-endemic (53) 126 

(52). The concomitant co-circulation of DENV and ZIKV represents yet another 127 

biomedical challenge since this phenomenon of common dual exposure increases 128 

the potential for cross-reaction. Serological cross-reactivity has been addressed by 129 

several reports (5, 9, 20, 28, 36, 37). However, it is currently unknown as to what 130 

extent ZIKV and DENV may cross-react with each other at the level of T cell 131 

immunity.  132 

 133 

According to the well established phenomenon of heterologous immunity(32, 50), It 134 

is possible that pre-existing DENV immunity will affect T cell responses to ZIKV and 135 

hence influence the dynamics and severity of ZIKV epidemics. Importantly, previous 136 

DENV infection can in some instances increase severity of a second DENV infection 137 

with a heterologous serotype, likely through antibody dependent enhancement 138 

(ADE) of infection and disease (30). In the Phase IIb/III clinical trials of the first 139 

licensed tetravalent dengue vaccine, increased vaccine efficacy in DENV pre-140 

exposed as opposed to DENV-naive vaccinees was observed, suggesting a possible 141 

protective role of pre-existing cross-reactive DENV-specific T cells that are boosted 142 

upon vaccination (29). Thus, it is also possible that pre-exposure to either ZIKV or 143 

DENV infection will influence the disease course following infection with the other 144 

virus in either a favorable or detrimental fashion. For all these reasons, it is 145 

necessary to gain insight into human T cell responses to ZIKV.  146 
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Material and Methods  147 

 148 

Human blood samples  149 

All samples have been collected after informed consent and the study has 150 

been approved by the LJI IRB committee (IRB#: VD-154). An overview of the clinical 151 

and serological characteristics of all ZIKA samples is provided in Table 1. The 152 

sample allocation was provided by collaborators that collected the samples. The 153 

investigators were aware of the group allocation during the experiment and when 154 

assessing the outcome. In addition Supplementary Table 1 provides a summary of 155 

the HLA typing data of the PBMC donor and DENV infection history were available 156 

of all the donors analyzed in this study. 157 

 158 

Samples from flavivirus naive controls 159 

Healthy adult male and non-pregnant female volunteers 18–50 years of age were 160 

enrolled from Baltimore, Maryland, Washington, DC, and Burlington, Vermont and 161 

tested for the presence of serum antibodies to all DENV serotypes, yellow fever 162 

virus, West Nile virus, and St. Louis encephalitis virus, as previously described (11).  163 

 164 

Samples from DENV endemic areas 165 

Blood donations from healthy adult blood donors of both sexes between the age of 166 

18 and 65 were collected by the National Blood Center, Ministry of Health, Colombo, 167 

Sri Lanka collected in anonymous fashion between the years of 2010 and 2016 and 168 

processed at the Genetech Research Institute as previously described(45). Similarly, 169 
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National Blood Center (NBC) of the Nicaraguan Red Cross in Managua, Nicaragua 170 

has provided anonymous blood samples collected between 2010 and 2014 prior to 171 

the introduction of ZIKV to the country(46).  172 

 173 

Samples from DENV tetravalent vaccination. 174 

Healthy donors were enrolled and vaccinated with TV005, a tetravalent DENV 175 

vaccine formulation. Blood samples were collected as a part of a phase I clinical 176 

trials (registration numbers NCT01506570 and NCT01436422) at the Johns 177 

Hopkins Bloomberg School of Public Health (JHSPH) and at the University of 178 

Vermont (UVM) Vaccine Testing Center and the Center for Immunization as 179 

previously reported(3, 17, 43).  180 

 181 

Samples from ZIKV virus endemic areas 182 

Blood samples were collected from patients displaying symptoms of a suspected 183 

ZIKV infection in Brazil, Nicaragua and Mexico. Samples were also collected from 184 

blood donors identified through routine donor screening in Puerto Rico and Florida.  185 

Infection with ZIKV was confirmed using RT-PCR as described in more detail below. 186 

All samples were screened for previous DENV exposure by measuring DENV-187 

specific IgG titers and/or neutralizing antibodies or from documented history of 188 

DENV infection. Depending on the time of sample collection after onset of 189 

symptoms, samples were either classified as acute (2-14 days post onset of 190 

symptoms or hospitalization) or convalescent (more than 15 days post onset of 191 

symptoms). Blood samples collected within the Recipient Epidemiology and Donor 192 
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Evaluation Study-III (REDSIII) were collected approximately 3 months following 193 

ZIKV RNA pos. blood donation. 194 

 195 

Samples from the Nicaraguan Pediatric Dengue Cohort Study (PDCS)  196 

A total of 14 children RT-PCR-pos. for ZIKV who experienced signs and symptoms of 197 

Zika, from the Nicaraguan Pediatric Dengue Cohort Study (PDCS) were included.  198 

The PDCS is a community-based prospective study of children 2 to 14 years of age 199 

that has been ongoing since August 2004 in Managua, Nicaragua (19). Participants 200 

present at the first sign of illness to the Health Center Sócrates Flores Vivas and are 201 

followed daily during the acute phase of illness. Acute and convalescent (~14-21 202 

days after onset of symptoms) blood samples are drawn for dengue, chikungunya 203 

and Zika diagnostic testing from patients meeting the case definition for dengue or 204 

Zika (starting in January 2016) or presenting with undifferentiated febrile illness. In 205 

the PDCS, a healthy blood sample is collected annually from participants; anti-DENV 206 

antibody titers are measured in paired annual samples using an Inhibition ELISA 207 

(EI)(4, 14), and infections are defined by seroconversion or a ≥4-fold rise in anti-208 

DENV titers. In this study, confirmed ZIKV cases were classified as DENV-naïve if 209 

they entered the cohort study with no detectable anti-DENV antibodies (as 210 

measured by EI) and had no documented DENV infections (symptomatic or 211 

inapparent) during their time in the cohort or were classified as DENV-immune if 212 

they either entered the cohort with detectable anti-DENV EI antibodies or entered 213 

the cohort study with no detectable anti-DENV antibodies and had one or more 214 

documented DENV infections during their time in the cohort. All Zika suspected 215 
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cases were confirmed by RT-PCR in serum and/or urine using triplex assays that 216 

simultaneously screen for DENV and CHIKV infections (ZCD assay (42), CDC 217 

Trioplexor in some cases the CDC ZIKV monoplex assay(20) in parallel with a DENV-218 

CHIKV multiplex assay(41)).  The PDCS was approved by the Institutional Review 219 

Boards of the Nicaraguan Ministry of Health and the University of California, 220 

Berkeley. Parents or legal guardians of all subjects provided written informed 221 

consent, and subjects ≥6 years old provided assent. 222 

 223 

Samples from ZIKV virus infected US travellers  224 

Blood samples were collected at the University of North Carolina, University of 225 

Miami, Vanderbilt University and the National Institute of Health, from patients 226 

displaying symptoms of a suspected ZIKV infection following return to the US from 227 

ZIKV endemic areas. One donor had not traveled outside of the US and thus locally 228 

acquired ZIKV infection in Miami, FL. All samples were screened for previous DENV 229 

exposure by measuring DENV-specific serum IgG titers and/or neutralizing 230 

antibodies. Depending on the time of sample collection post onset of symptoms, 231 

samples were either classified as acute or convalescent as described above. 232 

 233 

PBMC isolation  234 

Peripheral blood mononuclear cells (PBMC) were isolated by density-235 

gradient sedimentation using Ficoll-Paque (Lymphoprep, Nycomed Pharma, Oslo, 236 

Norway) as previously described (44). Isolated PBMC were cryopreserved in cell 237 

recovery media containing 10% DMSO (Gibco), supplemented with 10-50% heat 238 
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inactivated fetal bovine serum, depending on the processing laboratory, (FBS; 239 

Hyclone Laboratories, Logan UT) and stored in liquid nitrogen until used in the 240 

assays. PBMC collected in Sri Lanka were stored in Synth-a-Freeze 241 

Cryopreservation medium (Cat A1254201 Thermo Fisher Scientific, USA). 242 

Volunteers from the National Institutes of health were enrolled into protocol 243 

VRC200 (NCT00067054) and leukapheresed. PBMC were processed and 244 

cryopreserved as described previously (22). 245 

 246 

Serology  247 

In general, DENV seropositivity was determined by DENV IgG or an 248 

Inhibition ELISA, as previously described(14, 16). Flow cytometry-based or Vero 249 

cell-based focus reduction neutralization assays were performed for further 250 

characterization of Pos. donors, as previously described (18, 38).  251 

 252 

rRT-PCR assays for ZIKV determination  253 

RNA was extracted from serum or urine using the QIAamp Viral RNA Mini kit 254 

(Qiagen). Samples were tested for ZIKV, and/or DENV using the ZCD assay, as 255 

previously described(42). DENV-pos. samples were serotyped, using a serotype-256 

specific DENV multiplex assay(40, 42). In some laboratories samples were tested by 257 

RT-PCR for ZIKV as previously described(20). At BSRI Blood donors were identified 258 

as ZIKV RNA pos. through routine donor screening using the cobas Zika test (Roche 259 

Molecular Systems, Inc., Pleasanton, CA (RMS) under IND. 260 

HLA typing 261 
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 Donors were HLA typed by an ASHI-accredited laboratory at Murdoch 262 

University (Western Australia) as previously described(45). HLA typing was 263 

performed for Class I (HLA A; B; C) and Class II (DQA1; DQB1, DRB1; DPB1) using 264 

locus-specific PCR amplification on genomic DNA. Primers used for amplification 265 

employed patient-specific barcoded primers. Amplified products were quantitated 266 

and pooled by subject, and up to 48 subjects were pooled. An unindexed (454 267 

technique 8-lane runs) or indexed (8 indexed MiSeq technique runs) library then 268 

was quantitated using kappa universal qPCR library quantification kits. Sequencing 269 

was performed using either a Roche 454 FLX+ sequencer with titanium chemistry or 270 

an Illumina MiSeq using a 2 x 300 paired-end chemistry. Reads were quality-filtered 271 

and passed through a proprietary allele-calling algorithm and analysis pipeline 272 

using the latest IMGT HLA allele database as a reference. 273 

 274 

MHC class I binding predictions and peptide selection 275 

 The BeH818995 ZIKV isolate (GenBank accession no. AMA12084.1) was used 276 

to perform ZIKV peptide selection. We selected a set of 9- and 10-mers ZIKV 277 

peptides predicted to bind one or more of 27 HLA class I A and B allelic variants 278 

chosen because of their high prevalence in the general population, as previously 279 

described(44). Class I binding predictions were done with Tepitool using the 280 

consensus method(26) (23). For each allele, and considering 9- and 10-mers 281 

separately, the top 2% scoring peptides (n=68) based on predicted percentile rank 282 

were selected; the final set synthetized had 1836 (68 X 27) 9-mers and 10-mers 283 

each, for a total of 3672 peptides (A&A, San Diego, CA).  For screening studies, the 284 
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class I peptides were combined into pools of approximately 10 to 11 individual 285 

peptides, according to their predicted HLA restriction, resulting in approximately 13 286 

pools per HLA allele. Table 2 lists the number of peptides synthetized for each allele 287 

as a function of protein of provenance. In addition, we synthetized a panel of 15-mer 288 

peptides, overlapping by 10 residues, spanning the entire sequence of the ZIKV 289 

BeH818995 isolate. The sequence homology between ZIKV and DENV for each 290 

protein is listed in Table 3. For screening studies, these peptides were combined 291 

into 10 megapools of 25-180 peptides according to the ZIKV protein from which 292 

they were derived (C, prM, E, NS1, NS2A, NS2B, NS3, NS4A+2k, NS4B, NS5). For 293 

deconvolution studies, pos. peptide pools were deconvoluted to identify individual 294 

epitopes, often going to an intermediate step of screening smaller pools before the 295 

individual peptide tests.  To assess DENV reactivity pools of previously identified 296 

and described DENV epitopes were utilized (i.e. DENV megapools, see 297 

references(45, 48)). Epitopes identified in this study have been submitted to the 298 

Immune Epitope Database (IEDB; Submission ID_1000720). 299 

 300 

IFNγ ELISPOT assay 301 

 A total of 20 x 104 PBMC were incubated in triplicate with 0.1 ml complete 302 

RPMI 1640 medium in the presence of peptide pools [1 μg/ml] or individual 303 

peptides [10 μg/ml]. Following a 20 h incubation at 37°C, the plates were incubated 304 

with biotinylated IFNγ mAb (mAb 7-B6-1 Mabtech, Stockholm, Sweden) for 2h and 305 

developed as previously described (44, 47).  In CD4 experiments, CD8 cells were 306 

depleted before incubation using magnetic beads and pos. selection (MACS Miltenyi 307 
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Biotec, Auburn, CA). Cells from donors with PHA values below 250 SFC / 106 PBMC 308 

have been excluded from the analysis.  309 

 310 

Flow Cytometry  311 

 Detailed information of all monoclonal antibodies used in this study is listed 312 

in Table 4. For the intracellular cytokine staining, PBMC were cultured in the 313 

presence of HLA-matched peptide pools [1 μg/ml] and Golgi-Plug containing 314 

brefeldin A (BD Biosciences, San Diego, CA for 6 hours and subsequently 315 

permeabilized, stained and analyzed with the same monoclonal antibody panel as 316 

described previously (44). Cells from donors have been excluded from the analysis if 317 

the IFNγ response to PMA and ionomycin stimulation was lower than 1% in the 318 

CD3+ cells. All data shown are background subtracted. 319 

 320 

Statistical analysis 321 

All statistical analyses were performed using the program Prism 7 (Graph-Pad 322 

Software, San Diego, CA). Data are expressed as Geometric mean with 95% CI or 323 

percent of frequency and data comparison has been performed with Mann-Whitney 324 

or Fisher test respectively.   325 
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Results  326 

 327 

DENV T cell responses are cross-reactive with ZIKV peptides 328 

 To address the interplay between DENV- and ZIKV-specific T cell responses, 329 

we studied HLA-typed PBMC donations from Sri Lanka obtained between 2010 and 330 

2016. We also studied PBMC from Nicaraguan donors obtained between 2010 and 331 

2014, thus preceding the current ZIKV epidemic(8, 44, 48). To study CD8 responses, 332 

we selected nine DENV-Pos. donors who had been infected by DENV multiple times 333 

(secondary infections) based on serum neutralization titers and whose samples 334 

showed appreciable ex vivo response to a pool of previously defined CD8 DENV 335 

epitopes (CD8-megapool)(48). A similar approach was used for CD4 responses, 336 

retrieving 5 DENV Pos. donors with ex vivo responses to a previously defined DENV 337 

CD4-megapool(45). As neg. controls, we used PBMC from donors who were DENV 338 

neg. from the same sites. 339 

 We tested PBMC from these groups for reactivity against ZIKV peptides in ex 340 

vivo IFNγ ELISPOT assays. In the case of CD8 T cell responses (HLA class I), we 341 

tested panels of ZIKV-derived peptides predicted to bind each donors HLA 342 

molecules(44). HLA restrictions were assigned based on testing short 9-10 mers 343 

that are predicted to bind with high affinity to the HLA allotypes of the responding 344 

donors. In the case of CD4 T cell responses (HLA class II), we tested a panel of 684 345 

overlapping peptides spanning the entire ZIKV proteome. CD8-depleted PBMCs 346 

were used in these experiments to avoid inadvertently identifying CD8 epitopes 347 

nested in the 15mer peptide tested. In both cases, peptide pools were tested, and the 348 
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total reactivity observed in each donor was recorded. The peptide sets used in this 349 

study are summarized in Table 2. 350 

 As expected for CD8, T cells from the DENV neg. donors did not respond to 351 

either the previously defined DENV epitopes, nor to the ZIKV peptides. The cells 352 

were viable and responsive to stimulation, as shown by vigorous responses to PHA 353 

mitogen stimulation. Interestingly, CD8 T cells from one third of  the DENV-Pos. 354 

donors recognized ZIKV-derived peptides (Figure 1A). Higher level of cross-355 

reactivity emerged from the study of the CD4 T cells, as ZIKV derived peptides were 356 

recognized by CD4 T cells from 4 out of 5 DENV-Pos. individuals (Figure 1B).  357 

 In a further series of experiments, we analyzed responses from two 358 

additional cohorts of donors, a cohort of donors recently vaccinated with a 359 

Tetravalent Dengue Attenuated Vaccine (TDLAV) and a control cohort of donors 360 

negative for responses to DENV and other flaviviruses provided for the University of 361 

Vermont Clinical site. Responses against the DENV CD8-megapool and pools of ZIKV 362 

predicted peptides matching the HLA A and B alleles expressed in each donor were 363 

tested in IFN-gamma ICS assays (Figure 1C). CD8 T cells from the Flavivirus neg. 364 

donors did not respond to either the previously defined DENV epitopes, nor to the 365 

ZIKV peptides. By contrast CD8 T cells from TDLAV donors recognized, as expected 366 

the DENV CD8 megapool, but also in more than 50% of the cases the ZIKV-derived 367 

peptides. In conclusion, analysis of ex vivo responses of ZIKV naive and DENV Pos. 368 

donors revealed substantial cross-reactivity to ZIKV derived peptides.  369 

  370 

Identification of ZIKV epitopes cross-reactive with DENV responses 371 
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 Individual epitopes were mapped in representative cases. Where sufficient 372 

cell numbers were available, pos. pools were deconvoluted to identify ZIKV-specific 373 

epitopes across the ZIKV genome including all structural and nonstructural (NS) 374 

proteins. The mapping of CD4 and CD8 response was performed by sequential 375 

testing of pools and deconvolution to identify the positive peptides (Figure 2A). The 376 

HLA-B*35:01 CD8 epitope encoded by ZIKV NS32867-2876 was recognized by PBMC 377 

from a DENV-Pos. Nicaraguan donor (Figure 2B). This epitope was found to be 378 

highly similar (a single Y>F substitution) in DENV1-4 serotypes consensus 379 

sequences obtained as previously described(44). A Sri Lankan donor recognized the 380 

B*07:02 ZIKV NS31725-1734 epitope (Figure 2C). The same epitope was also 381 

recognized by a different DENV-Pos. Sri Lankan donor (Figure 2D). The identical 382 

sequence was found in DENV2, 3 and 4. 383 

 In the case of CD4 (Figure 2E), the ZIKV NS52986-3000 epitope, 100% 384 

conserved in DENV1-4 sequences, was recognized by PBMC from a DENV-Pos. Sri 385 

Lankan donor. PBMC from a Nicaraguan donor recognized the ZIKV NS1986-1000 386 

epitope (Figure 2F). Here, the recognized 15 mer contained a core NS1989-998 387 

sequence that was also highly conserved in all DENV serotypes, with A>S and M>L 388 

conservative substitutions. A different pattern was observed for the ZIKV E486-500 389 

epitope, which was recognized by PBMC from a different DENV-Pos. Nicaraguan 390 

donor (Figure 2G). In this case the most homologous 9-mer (sequence 391 

LYYLTMNNK), shared only 4 identities, with DENV1 sequences, 2 are conservative 392 

(L>M and N>E) and 3 semiconservative (Y>V, Y>L and K>N) substitutions. 393 

Additional sequence homology analysis using Genbank sequences did not reveal any 394 
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sequences with higher homology from other common flaviviruses, such as JEV, 395 

WNV, DENV, and YFV. 396 

 In conclusion, in 5 out of 6 instances the cross-reactivity from the DENV-pos. 397 

(and presumably ZIKV-neg.) donors was directed to ZIKV sequences found to be 398 

identical or highly conserved with sequences in DENV serotypes.  399 

 400 

Recruitment of donor cohorts differing in ZIKV and DENV pre-exposure status  401 

 To address the effect of pre-existing immunity on T cell responses to 402 

secondary flavivirus infection, we investigated six donor groups, namely ZIKV acute, 403 

convalescent or neg., and for each of these cohorts we further subdivided our 404 

cohorts into DENV-Pos. or -neg. individuals. For the purpose of classification in the 405 

various cohorts, the following criteria were used. Infection with ZIKV was confirmed 406 

using RT-PCR performed on acute infection samples as described in more detail 407 

below. Depending on the time of sample collection after the onset of symptoms or 408 

ZIKV RNA-pos. blood donation, samples were either classified as acute or 409 

convalescent as described in more detail in Materials and Methods. ZIKV negativity 410 

was inferred based on donations being obtained before- or outside of the area 411 

affected by the epidemic. DENV pos. or neg. status was determined on the basis of 412 

IgG status at the time of clinical presentation or blood donation, or in the case of the 413 

Nicaraguan samples, from documented history of DENV infection in the longitudinal 414 

cohort study. The subjects studied spanned a very diverse breadth of ethnicities and 415 

clinical sites, including Brazil (Rio de Janeiro and Sao Paulo), Nicaragua, Puerto Rico, 416 

Mexico, returned US travelers, and a US flavivirus-neg. cohort. The general features 417 
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of the subjects are detailed in Table 1. The relative proportion of females across all 418 

cohorts was 60% and the average age was 34 (range 3-70).   419 

ZIKV-specific responses are modulated by previous DENV exposure 420 

 Next, we compared ZIKV T cell reactivity in the subjects described above as a 421 

function of ZIKV status (i.e. neg., acute infection or convalescent status), and also 422 

considering prior DENV infection as a variable. To assess T cell reactivity, we 423 

devised a strategy to account for the fact that in most cases the amount of PBMC was 424 

limiting. Accordingly, the overlapping 15-mers spanning the entire ZIKV proteome 425 

were divided into ten pools corresponding to the ten encoded ZIKV proteins. 426 

Intracellular cytokine staining (ICS) assays and CD8/CD4 gating allowed assessment 427 

of CD8 and CD4 responses in parallel without the need to know the HLA phenotype 428 

of the donor.  All the ZIKV CD8 responses in ZIKV samples have been assessed using 429 

these pools of overlapping peptides and gating on CD8+ responding T cells in the ICS 430 

assay. In a few instances where the number of PBMC available from each donor did 431 

not allow testing of all pools, a factorial design was utilized: while not all pools were 432 

tested in all donors, all pools were tested in the same number of donors. Whenever 433 

sufficient cell numbers were available, pos. pools were deconvoluted, and specific 434 

epitopes identified. Overall, PBMC from 17-33 donors/patients were tested for each 435 

of the different categories (Table 5). 436 

The frequency of ex vivo responses in ZIKV-infected patients was 30-40% for 437 

both CD4 and CD8 responses, with the exception of CD8 responses in acutely 438 

infected donors, which were detected in approximately 90% of the cases (Figure 3A 439 

and D left panels). Marginal CD8 responses to the ZIKV peptides were noted in the 440 
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case of the ZIKV-neg. DENV-neg. donors (Figure 3A). However, ZIKV-neg. DENV-441 

Pos. donors showed appreciable reactivity both in terms of increased frequency and 442 

magnitude of responses, confirming a degree of T cell cross-reactivity between 443 

DENV-ZIKV responses observed above (Figures 1 and 2). In the acute ZIKV-444 

pos./DENV-Pos. donors, CD8 responses to ZIKV peptides were of significantly higher 445 

magnitude compared to those acute ZIKV subjects who were DENV neg. (Figure 3B 446 

and C). After ZIKV convalescence, the CD8 responses to ZIKV-restricted peptides 447 

were still elevated as compared to ZIKV-neg. donors, but were not significantly 448 

different by DENV serostatus (Figure 3B and C). The pattern of CD4 responses to 449 

ZIKV-restricted class II peptides was remarkably similar with regard to ZIKV acute 450 

and convalescence phase and impact of DENV seropositivity, with trends for ex vivo 451 

ZIKV T cell responses being delayed in DENV neg. donors and lower frequency and 452 

magnitude of responses observed in respect to the CD8 counterpart. (Figure 3D-F). 453 

   454 

Different proteins are targeted by ZIKV versus DENV immunity 455 

 We next determined whether DENV serostatus affected the antigenic targets 456 

of ZIKV-reactive T cells across the ZIKV polyprotein.  A breakdown of ZIKV CD8 457 

responses in acute and convalescent ZIKV pos. donors (combined in this plot) as a 458 

function of the antigen targeted is presented in Figure 4. In the case of ZIKV-specific 459 

CD8 responses in DENV-neg. donors 57% of the response was directed against 460 

structural proteins (Figure 4A). In the context of a previous DENV-exposure, 461 

however, only 30% of the ZIKV-specific responses were directed against structural 462 

proteins (Figure 4B). This can be compared to historical data regarding DENV 463 
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responses from presumably ZIKV-neg. donors (since samples were collected prior to 464 

the 2015-2016 ZIKV epidemic) where only 14.9% of the response was directed 465 

against structural proteins(44). Thus, the CD8 response to ZIKV is more focused on 466 

structural proteins compared to the focus on nonstructural proteins by DENV-467 

specific T cells. Nonetheless, DENV pre-exposure modulates the ZIKV-reactive 468 

immunodominance pattern for CD8 cells, resulting in a broad recognition across the 469 

ZIKV proteome. 470 

 In the context of CD4, responses were directed in approximately equal 471 

proportions against structural and non-structural proteins (Figure 4B). Differences 472 

between DENV and ZIKV patterns of immunodominance were not prominent, which 473 

was not surprising since, according to published data, the DENV-specific response is 474 

already focused almost equally (50%) on structural and non-structural 475 

proteins(45). In the present study, the fraction of ZIKV-specific responses directed 476 

against structural proteins was 58% or 67% for DENV-neg. subjects and DENV-Pos. 477 

ZIKV-pos. donors, respectively (Figure 4C-D). 478 

 As above, whenever possible, peptides pools were deconvoluted and specific 479 

epitopes mapped using same mapping approach previously shown in Figure 2A. 480 

Two ZIKV NS5 epitopes (NS52819-2828 and NS52868-28876) both predicted to be 481 

restricted by HLA B*35:01, were recognized in an HLA matched DENV Pos. donor 482 

(Figure 5A-B). One of these epitopes was independently identified in a DENV-Pos., 483 

ZIKV-neg. donor (Figure 2B). In both cases, the ZIKV epitope differed from DENV 484 

sequences by a single conservative substitution. A second DENV pos. donor 485 

responded to the ZIKV ENV719-728 epitope (predicted B*40:01 restriction), which 486 
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differs from DENV3 sequences by one single conservative substitution (Figure 5C). 487 

Another E protein epitope was identified in the same donor (E481-495; restricted by 488 

HLA A*01:01), which in this case had more limited homology to DENV sequences 489 

(Figure 5D).  490 

 Independent experiments showed that the very same ZIKV E485-493 HLA 491 

A*01:01 epitope also was recognized in a DENV-neg. subject (Figure 5E; Ricciardi et 492 

al. manuscript submitted). Interestingly longer version of this peptide were not 493 

recognized. It is possible that both 9 mer and 10 mer bind with high affinity, but in 494 

somewhat different registers. Additional epitopes recognized in DENV-neg. donors 495 

were mapped to a ZIKV C23-32 epitope restricted by HLA A*03:01, showing again 496 

limited homology to DENV sequences, and two additional ZIKV NS3 epitopes 497 

restricted by HLA B*0801 and B*41:02 (Figure 5F-H). Additionally, we selected two 498 

ZIKV peptides TPYGQQRVF and APTRVVAAEM that were recognized by DENV 499 

seropositive donors (Figures 2A-C), and synthetized the corresponding DENV 500 

peptides. These peptides were then tested in parallel with the original ZIKV 501 

peptides with PBMCs from the donor originally utilized to map the responses in 502 

standard IFN-γ Elispot assays. Likewise we also tested the ZIKV ENV GLDFSDLYY 503 

epitope defined in a DENV seronegative donor (Figure 5E), and tested the 504 

corresponding DENV peptides in parallel with the originally identified ZIKV peptide. 505 

The ZIKV TPYGQQRVF and APTRVVAAEM peptides as well as the corresponding 506 

highly homologous DENV TPFGQQRVF and APTRVVASEM peptides were recognized 507 

by the DENV seropositive donor with comparable magnitude. In contrast, the ZIKV 508 

Env GLDFSDLYY, but not the fairly discordant corresponding DENV epitopes 509 
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GLDFNEMVL and GIDFNEMVL were recognized by the DENV seronegative donor 510 

response (Table 6). 511 

 512 

Phenotype analysis of CD8 T cell responsive to ZIKV peptides 513 

 To gain further insights into the potential biological significance of these 514 

patterns of reactivity, we determined cell surface phenotypes of the CD8 T cells 515 

producing IFNγ in response to the ZIKV peptide pools. As expected (Figure 6A), 516 

these cells were predominantly TEM (CCR7+CD45RA-; approximately 60% on 517 

average) and TEMRA (CCR7+CD45RA+; approximately 30% on average). 518 

Approximately 50% of the IFNγ+ CD8 T cells were TNFα+ as compared to less than 519 

1% of the IFNγ- cells (Figure 6B), thus establishing that a large fraction of the 520 

responding cells are polyfunctional.  Similar patterns were observed for 521 

ZIKA+DENV- and ZIKA+DENV+ donors in terms of both memory phenotypes and 522 

polyfunctionality. 523 

 By contrast, significant differences were seen between ZIKA+DENV- and 524 

ZIKA+DENV+ donors when the granzyme B and PD1 markers were considered. The 525 

expression of granzyme B in CD8 T cells from ZIKA+DENV- was not significantly 526 

increased in IFNγ+ cells as compared to the background level of approximately 30% 527 

seen in IFNγ- cells, while in the case of ZIKA+DENV+ approximately 80% of the 528 

IFNγ+ cells were also granzyme positive (Figure 6C). Similarly, PD1 was only mildly 529 

expressed in IFNγ+ cells from ZIKA+DENV-, while 60% on average of the 530 

ZIKA+DENV+ IFNγ+ cells also upregulated PD1 (Figure 6D). These data indicates 531 
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that DENV pre-exposure affect not only the quantity but also the quality of 532 

responses observed following ZIKV infection. 533 

  534 
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Discussion  535 

 We report the first characterization in humans of both ZIKV-specific and 536 

ZIKV/DENV cross-reactive T cell responses, and the influence of DENV serostatus on 537 

T cell immunity to ZIKV.  Our study established three main points. First, pre-existing 538 

T cell responses against DENV recognize peptide sequences encoded in the ZIKV 539 

proteome. Second, cross-reactivity is immunologically consequential, as DENV-Pos. 540 

individuals at the time of ZIKV infection respond more strongly to ZIKV both in 541 

terms of CD4 and CD8 T cell responses. Third, patterns of immunodominance are 542 

different in the case of DENV and ZIKV infection with, ZIKV-specific CD8 T cell 543 

responses predominantly targeting structural proteins such as E, prM, and C. Our 544 

study involves samples form ZIKV-infected donors derived from a variety of 545 

different geographical locations, including mainland USA (travelers returning from 546 

affected areas), Puerto Rico, Brazil, Nicaragua, and Mexico. As such we believe that 547 

the pattern of responses we observed is of general relevance, and not limited to a 548 

specific population or clinical context. In the present study we did not isolate 549 

representative viruses from the different cohorts and compared the sequences in 550 

terms of the percentage of similarity/differences to the peptide libraries used. Thus, 551 

it is possible that intra ZIKV sequence variation might influence some of the results, 552 

which should be interpreted with this caveat in mind. 553 

 We established that DENV-specific memory T cells recognize peptide 554 

sequences encoded in the ZIKV proteome. This point was established with a 555 

separate set of PBMC donations obtained either in Sri Lanka, where ZIKV has not 556 

been reported, as well as from Nicaragua collected between 2010 and 2014 before 557 
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the introduction of ZIKV into the country. In this study we did not test recognition of 558 

the DENV peptides corresponding to the ZIKV epitopes. We note this limitation in 559 

our interpretation, as for example, recognition of the corresponding DENV peptide 560 

could be much higher than for the ZIKV peptide. The molecular basis of this cross-561 

reactivity was established by mapping several different CD4 and CD8 epitopes. 562 

These epitopes represent the first mapping of DENV/ZIKV cross-reactive epitopes in 563 

humans, and in most cases the cross-reactivity could be explained by identity or 564 

high similarity to sequences previously identified in one or more DENV serotypes. 565 

This finding was predicted by previous analysis conducted by the IEDB analysis 566 

resource(53), and by a recent study utilizing HLA transgenic mice (51). Nonetheless, 567 

identification of specific sequences here allows for a comprehensive assessment of 568 

whether the cross-reactivity is focused on regions that are highly conserved. Most 569 

importantly, we demonstrate that DENV-specific CD8 responses induced by TDLAV 570 

vaccination recognize ZIKV derived peptides. This cross-reactivity indicates a 571 

potential for the TDLAV to provide some degree of protection against ZIKV infection.  572 

 An average homology level of 77% was observed between the sequences of 573 

DENV and ZIKV cross-reactive epitopes (defined as ZIKV sequences recognized in 574 

DENV-Pos. donors), as compared with an overall 56% level of homology detected 575 

when the overall sequences of ZIKV and DENV proteomes were compared (Table 576 

3). We conclude that sequential exposure to DENV and ZIKV sequences 577 

preferentially expands responses against conserved sites between the viruses. 578 

Similar observations were made in previous studies that showed that secondary 579 

DENV infections are associated with preferential recognition of epitopes conserved 580 
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amongst different DENV serotypes that showed that secondary DENV infections are 581 

associated with preferential recognition of epitopes conserved amongst different 582 

DENV serotypes(44). Also, sequential exposure to different DENV serotypes in 583 

animal DENV models results in expansion of T cells recognizing cross-reactive 584 

epitopes (12, 46).  It would have been interesting to examine if primary versus 585 

secondary DENV infection or the time interval between DENV and ZIKV infection 586 

influences T cell responses to ZIKV peptides. However this information is not 587 

available to us from all different sites and an analysis of this variable could be 588 

addressed in future studies specifically designed to examine this issue. 589 

 It is also noteworthy that three out of eleven of the identified epitopes were 590 

identified in multiple independent donors (ZIKV NS3-1725-1734, NS52868-2876 and E485-591 

493).  Albeit based on a limited number of subjects, these results indicate that ZIKV 592 

responses may be associated with strong immunodominance of particular epitopes.  593 

In addition, NS52868-2876 was identified in DENV+ZIKV+ and DENV+ZIKV- individuals 594 

but no reactivity was detected in pools containing this peptide in DENV-ZIKV+ 595 

donors. Conversely, ZIKA E485-493 with lower homology level with DENV, was 596 

identified in DENV+ZIKV+ and DENV-ZIKV+ individuals but not in DENV+ZIKV- 597 

donors.  598 

Significant differences in frequency or magnitude of T cell responses to ZIKV 599 

peptides in PBMCs from ZIKV-DENV+ donors compared with ZIKV-DENV- donors 600 

were detected in the acute phase of infection with ZIKV. This parallels similar 601 

observations made in terms of antibody responses that showed that ZIKV/DENV 602 

cross reactivity is most readily detected close to infection and wane afterwards (7). 603 
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We also find that DENV pre-exposure influences ZIKV responses. This could be 604 

understood in the context of the well recognized phenomenon of heterologous 605 

immunity(32, 50). Specifically, ZIKV-specific T cells responses for both CD4 and CD8 606 

T cells responses develop more rapidly in DENV-Pos. individuals and are already 607 

apparent in the acute phase of the disease. These responses subside at 608 

convalescence, but remain elevated compared to those in ZIKV-neg. individuals. The 609 

percentage of subjects with confirmed ZIKV infection who showed a positive T cell 610 

response (Figures 3A and 3D) is relatively low, consistent with a primary infection 611 

and with ZIKV being in most cases associated with a milder clinical presentation 612 

than DENV(46). This pattern is reflective and characteristic of the differences in a 613 

primary compared to a classic secondary response (55).  Here we demonstrate how 614 

prior DENV infection alters ZIKV-specific immune responses and we provide the 615 

first evidence that prior DENV infection leads to stronger and faster responses thus 616 

providing evidence of a biological outcome. This is the first evidence in humans that 617 

previous exposure to dengue virus can influence subsequent infection with ZIKA 618 

virus by mounting a cross-reactive memory T cell response against ZIKA virus. 619 

Recent data in HLA transgenic mice demonstrated that ZIKV challenge following 620 

immunization of mice with ZIKV-specific and ZIKV/DENV cross-reactive epitopes 621 

elicited CD8+ T cell responses that reduced infectious ZIKV levels, and CD8+ T cell 622 

depletions confirmed that CD8+ T cells mediated this protection (51). In addition a 623 

recent paper has shown that Zika virus pathogenesis in rhesus macaques is 624 

unaffected by pre-existing immunity to dengue virus (25). Together these data 625 

underline important implications for ZIKV vaccine development. 626 
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We have previously shown that stronger T cell responses are associated with 627 

certain HLA alleles associated with protection in case of heterologous infection with 628 

DENV pointing to a protective effect of these cross-reactive responses (44). Given 629 

that the groups were drawn from different study populations (age and genetic 630 

background), which could influence the magnitude of the T cell responses further 631 

studies will provide more evidence on the generality of our findings. It remains to be 632 

seen whether this effect will be mimicked by DENV-or ZIKV-vaccination. 633 

Importantly, our data indicates that DENV pre-exposure also alters the quality of 634 

responses. While no difference was seen between DENV pre-exposed and DENV-635 

naïve donors at the level of composition of memory subsets in the responding cells 636 

or the degree of multifunctionality, DENV specific CD8 responses from DENV pre-637 

exposed donors significantly upregulated granzyme B and PD1, suggesting a more 638 

differentiated phenotype, similar to what detected in secondary DENV infection (6, 639 

8). 640 

Our data provide an example of adaptive heterologous immunity, where 641 

cross-reactive memory Dengue-specific CD8 T cells are enhancing the T cell 642 

responses to ZIKA virus. At this time these studies do not yet address whether this 643 

will be beneficial in the majority of cases while at other times it could be detrimental 644 

based on the specific cross-reactive pattern of each patient. However identifying key 645 

cross-reactive epitopes in humans and demonstrating that they influence the 646 

characteristics of the subsequent T cell response to ZIKA virus as this study does is 647 

an important step, toward understanding potential immunopathology in ZIKA virus 648 

infection. 649 

 on A
ugust 13, 2019 at U

niversity of Liverpool Library
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 31 

An unexpected result of our analysis is that almost 60% of the ZIKV-specific CD8 650 

responses in ZIKA-pos. but DENV-neg. individuals are directed against structural 651 

proteins. This is in contrast to the relative paucity of structural protein-directed T 652 

cell responses observed in DENV infection where only 15% of CD8 T cell responses 653 

are directed against structural proteins (44), even though serotype specific 654 

differences have been noted (1, 2, 43, 44, 46).  Interestingly, the percentage of CD8 T 655 

cell responses directed against structural proteins in DENV-Pos. ZIKV patients is 656 

30%, thus suggesting that previous DENV exposure may alter the patterns of 657 

immunodominance, skewing it towards a pattern more similar (but still not 658 

identical) to that observed in DENV Pos. donors in absence of ZIKV infection.  659 

The degree of homology (conservation) between NS proteins of DENV and ZIKV is 660 

on average 51%, compared to 49% for structural proteins and 58% compared to 661 

51% when accounting for size difference, so a higher degree of homology does not 662 

itself drive or focus cross-reactive responses on these antigens. The conclusion that 663 

T cell epitopes for ZIKV and DENV differ in their distribution between structural and 664 

non-structural proteins requires the caveat that is based on comparing data 665 

generated in separate studies, which have used different methods (e.g., ELISPOT 666 

versus flow cytometry). In addition, It can not be excluded that the strong 667 

magnitude of one donor may have an substantial effect on the percent of the total 668 

response directed towards nonstructural proteins.   669 

It would have been of interest to determine the number of epitopes detected in the 670 

structural and nonstructural regions on a per donor basis. This analysis could 671 

provide additional support for the notion that pre-existing immunity to DENV 672 
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broadens recognition across the ZIKV proteome. Due to the small volume of blood 673 

samples collected we were not able to deconvolute all positive pools to identify the 674 

exact epitope. Future studies where larger amounts of blood are collected will allow 675 

to comprehensively address this point. It is also worth noting that significant CD8+ 676 

responses directed against structural proteins were reported in the case of West 677 

Nile and Japan Encephalitis (21, 39). These two flaviviruses are both associated with 678 

neurological complications(34). Further, we previously shown in an HLA-transgenic 679 

model a trend towards higher recognition of structural proteins for DENV3 (as 680 

compared to other DENV strains)(46), which previously also was reported to be 681 

associated with neurological symptoms(10, 35).  Similarly, we have previously 682 

shown that human DENV3-serotype specific CD8+ T cell responses preferentially 683 

recognize structural proteins. Conversely, DENV 1 and DENV4 serotypes 684 

preferentially recognized non-structural proteins. Finally DENV2 serotype showed a 685 

broader recognition of all proteins but still elicited the strongest CD8+ T cell 686 

response against non-structural proteins(48). As no higher level of homology is 687 

observed between ZIKV and DENV3 respect to the other DENV serotypes that could 688 

explain the preferential recognition of structural proteins (Table 3), we could 689 

hypothesize that common processing pathways or similar CD8+ T cell elicitation 690 

might occur that differs from the other DENV serotypes and will need further 691 

investigation.  692 

 Mapping of over ten different ZIKV epitopes suggest that DENV-Pos. donors 693 

tend to recognize DENV/ZIKV highly conserved epitopes, while DENV neg. subjects 694 

may recognize more divergent targets. An average 76% level of homology existed 695 
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between DENV and ZIKV sequences among cross-reactive epitopes (defined as ZIKV 696 

sequences recognized in DENV-Pos. donors), as compared with an average 55% 697 

level of homology between DENV and ZIKV sequences at the level of ZIKV epitopes 698 

recognized in DENV-neg. donors, and an overall 56% level of homology detected 699 

when the overall sequences of ZIKV and DENV proteomes were compared. These 700 

results emphasize that previous exposure to DENV influences the fine repertoire of 701 

epitopes being recognized. It remains to be seen if cross-reactivity of T cells can also 702 

be detected between ZIKV and other related flaviviruses. In the present study we 703 

have not characterized WNV or JEV exposure. It is possible that cross reactivity at 704 

the T cell level may exist between ZIKV and other more distantly related 705 

flaviviruses, and this point will be address in future studies. 706 

 In the majority of cases, the degree of homology between ZIKV and DENV 707 

was very high, suggesting that a ZIKV diagnostic assay based on T cell responses is 708 

not immediately practical, and conversely reemphasizing that DENV pre-exposure 709 

(or vaccination) might influence ZIKV immunity. Vaccines against ZIKV that are 710 

currently under development and focus on structural protein antigens rather than 711 

live virus may have logistical (no need for cold chain) and safety (no risk of virulent 712 

reversion and safe to administer to pregnant and immune-compromised patients) 713 

advantages; however, these vaccines may not comprise the full set of antigens 714 

required to induce protective immunity. Our results that approximately 55-60% of 715 

the ZIKV-specific CD4 and CD8 response is directed against structural proteins is 716 

encouraging that cellular responses necessary to directly limit ZIKV infection and 717 
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support T-dependent antibody responses may be achievable with vaccine 718 

approaches being pursued. 719 
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Figure Legends 972 

Figure 1. Ex-vivo reactivity to ZIKV derived peptides and previously defined 973 

DENV epitopes in DENV-Pos., -neg. donors and DENV vaccines.  CD8 (A) and CD4 974 

(B) T cell reactivity to DENV epitopes and ZIKA peptides in ELISPOT ex-vivo 975 

experiments are shown for donors DENV Pos. (red) or neg. (black). Responses were 976 

expressed as the number of IFN secreting cells per 106 PBMC and were considered 977 

pos. if the net spot-forming cells (SFC) per 106 were 20, had a stimulation index of 978 

2, and a p<0.05 in a t test or in Poisson test comparing replicates with those from 979 

the neg. control. Donors with PHA values <250 SFC per 106 PBMC have been 980 

excluded from the analysis. Data are expressed as geomean with 95% CI. CD8 (C) T 981 

cell reactivity to DENV megapool and ZIKA HLA-restricted pools in ICS experiments 982 

are shown in DENV vaccinees (green) in comparison with flavivirus naïve donors 983 

(black). Data are expressed as average ± SD of the percentage of CD3+CD8+IFNγ+ 984 

cells.  985 

 986 

Figure 2. Mapping of CD8 and CD4 cross-reactive DENV-ZIKV T cell epitopes. 987 

Panel A shows an example of the mapping strategy. CD8 (B-D) and CD4 (E-G) 988 

restricted epitopes were mapped by peptide deconvolution in ELISPOT ex-vivo 989 

experiments in individual donors.  ZIKV epitope sequences were aligned with 990 

consensus sequences of DENV1, 2, 3 and 4 serotypes. Amino acid mismatches 991 

between the ZIKV sequence and the DENV consensus sequences are shown in red.  992 

 993 
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Figure 3. Ex-vivo reactivity of ZIKV donors to ZIKV peptides. CD8 (A-C) and CD4 994 

(D-F) ZIKV-restricted responses in ZIKV-neg., acute and convalescent donors are 995 

shown in intra cellular cytokine experiments. Each group is further divided in 996 

DENV-Pos. (red) or -neg. (black). Each donor has been tested with at least 5 protein 997 

pools (C-NS2A or NS2B-NS5) or the full set of protein pools depending on the 998 

availability of cells (A-B; D-E). Each data points represents the response of a single 999 

donor response if all 10 protein have been tested or the combined response of two 1000 

donors tested with the two different sets of 5 protein pools. Panels C and F show all 1001 

the responses against individual pools regardless of the donor it has been tested. 1002 

Statistical significance for differences in frequency of responders (left panels) was 1003 

performed using a Fisher test. Magnitude of responses (central and right panels) is 1004 

expressed as geometric means with 95% CI, and statistical analyses were performed 1005 

with Mann-Whitney U test. 1006 

 1007 

Figure 4. Immunodominance pattern of CD8 and CD4 responses against ZIKV-1008 

derived peptides. ZIKV CD8 (A and B) and CD4 (C and D) responses to 10 ZIKV 1009 

proteins are shown in ZIKV-pos. DENV-neg. subjects (left panels, A and C), or DENV-1010 

Pos. subjects (right panels, B and D). Structural (C, prM, E) and non-structural (NS1, 1011 

NS2A, NS2B, NS3, NS4A, NS4B, NS5) proteins are divided by a dotted line, and their 1012 

magnitude in percentage shown in each graph. The total magnitude of the responses 1013 

has been calculated and the resulting percentage of responses for structural and non 1014 

structural proteins shown respectively in the upper left and right of each figure 1015 

panel. Data are expressed as geometric means with 95% CI.  1016 

 on A
ugust 13, 2019 at U

niversity of Liverpool Library
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 43 

 1017 

Figure 5. Mapping of CD8 ZIKV epitopes in ZIKV-pos. donors. 1018 

ZIKV-restricted epitopes mapped by peptide deconvolution in ELISPOT ex-vivo 1019 

experiments in DENV-Pos. (A-D) or DENV-neg. (E-H) individuals.  ZIKV epitope 1020 

sequences were aligned with consensus sequences of DENV1, 2, 3 and 4 serotypes. 1021 

Amino acid mismatches between the ZIKV sequence and the DENV consensus 1022 

sequences are shown in red. Boxes indicate the optimal epitope restricted by the 1023 

specific HLA phenotype present in this donor. 1024 

 1025 

Figure 6. Phenotype characterization of CD8- ZIKV specific immune responses 1026 

in ZIKV -pos. donors. 1027 

Memory phenotype (A) and polyfunctionality (B-D) of ZIKV CD8 T cells were 1028 

compared in donors ZIKV-pos. DENV-neg (black) and ZIKV-pos. DENV-pos (red). A) 1029 

Average of percentage of memory phenotype populations (naïve: CD45RA+CCR7+, 1030 

central memory: CD45RA-CCR7+, effector memory: CD45RA-CCR7- and Temra: 1031 

CD45RA+CCR7-) in CD8-ZIKV specific IFNγ producing cells. IFNγ- (oblique lines) 1032 

and IFNγ+ (blank pattern) CD8 T cells were analyzed for the co-expression of TNFα 1033 

(B), Granzyme B (C) and PD1 (D). Data were expressed as average ± SD of the 1034 

percentage of CD3+CD8+ cells. Statistical analysis was performed with Mann-1035 

Whitney U test. * P<0.05, ** P<0.01, ***P<0.005, ****P<0.001.  1036 
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Table 1: General features of the ZIKV infected cohorts 1037 

Site Country # Age a) Sex b) DENV+ c) 

University of São Paulo Brazil 7 45 (25-61) 85 85 

Fundação Oswaldo Cruz Brazil 12 35 (22-60) 20 100 

PDCS d) Nicaragua 14 7 (3-14) 78 14 

REDSIII e) Puerto Rico/US 20 46 (21-70) 35 85 

Universidad Veracruzana Mexico 19 38 (6-69) 63 26 

University of North Carolina Unites States 8 37 (18-53) 71 50 

University of Miami United States 2 29(26-32) 100 50 

Vanderbilt University United States 9 42 (19-62) 56 11 

National Institutes of Health  United States 7 29 (26-40) 42 71 

Overall  98 34 (3-70) 60 54 

 1038 

a) expressed as the average age of the cohort (range) 1039 

b) expressed as the relative proportion of females in the cohort (%) 1040 

c) expressed as percentage of DENV Pos. individuals in the cohort  1041 

d) Pediatric Dengue Cohort Study  1042 

d) Recipient Epidemiology and Donor Evaluation Study-III 1043 

  1044 
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Table 2: ZIKV peptides used in this study 1045 

 1046 

a) ZIKV predicted peptide set composed by 9-and 10-mer peptides.  1047 

Allele C pr M E NS1 NS2A NS2B NS3 NS4A 2K NS4B NS5 Total 

HLA-A*01:01 0 10 5 21 6 8 6 21 4 0 17 38 136 

HLA-A*02:01 7 0 6 20 3 23 5 17 10 3 26 16 136 

HLA-A*02:03 9 0 6 16 3 23 8 20 9 4 23 15 136 

HLA-A*02:06 4 2 2 14 6 25 5 17 17 6 25 13 136 

HLA-A*03:01 12 4 4 11 10 17 4 22 5 0 8 39 136 

HLA-A*11:01 14 6 2 11 9 6 7 23 6 0 11 41 136 

HLA-A*23:01 5 2 4 20 7 7 1 21 7 0 21 41 136 

HLA-A*24:02 4 3 4 16 5 9 2 16 7 0 24 46 136 

HLA-A*26:01 6 5 1 15 6 10 15 16 9 3 17 33 136 

HLA-A*30:01 9 3 1 18 16 8 3 26 3 0 10 39 136 

HLA-A*30:02 1 10 5 17 11 2 8 24 1 0 21 36 136 

HLA-A*31:01 10 3 8 8 18 11 2 25 1 0 5 45 136 

HLA-A*32:01 6 3 6 21 9 18 6 16 7 1 11 32 136 

HLA-A*33:01 9 1 5 6 15 12 3 22 2 0 5 56 136 

HLA-A*68:01 9 4 5 12 13 8 3 35 3 0 7 37 136 

HLA-A*68:02 7 5 5 17 6 11 7 18 8 5 22 25 136 

HLA-B*07:02 4 2 6 12 15 16 5 35 6 2 11 22 136 

HLA-B*08:01 11 4 2 13 13 16 0 24 10 0 7 36 136 

HLA-B*15:01 4 7 7 18 6 12 7 17 6 1 23 28 136 

HLA-B*35:01 4 5 3 14 5 12 9 23 7 2 26 26 136 

HLA-B*40:01 2 4 4 17 17 4 8 25 10 0 6 39 136 

HLA-B*44:02 1 4 1 15 18 3 7 32 7 0 5 43 136 

HLA-B*44:03 3 3 2 14 20 3 7 33 7 0 4 40 136 

HLA-B*51:01 4 0 8 13 6 19 9 17 9 5 17 29 136 

HLA-B*53:01 6 3 2 18 13 12 6 18 8 2 17 31 136 

 on A
ugust 13, 2019 at U

niversity of Liverpool Library
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 46 

HLA-B*57:01 3 5 4 15 16 12 3 13 4 0 13 48 136 

HLA-B*58:01 7 1 5 17 16 14 3 11 5 0 11 46 136 

Total 161 99 113 409 288 321 149 587 178 34 393 940 3672 

 1048 

b) 15-mer peptides spanning the ZIKV polyprotein 1049 

Allele C pr M E NS1 NS2A NS2B NS3 NS4A 2K NS4B NS5 Total 

HLA class II 25 18 15 100 70 46 26 123 25 5 50 180 683 

  1050 
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Table 3: Sequence homology between ZIKV and DENV .  Homology analysis 1051 

between BeH818995 ZIKV isolate (GenBank accession no. AMA12084.1) and DENV1, 2, 3, 4 1052 

consensus sequences obtained as previously reported(44, 45).  1053 

a) Average of structural and non-structural proteins based on average of the different 1054 

homology values in the four DENV serotypes for each protein.  1055 

b) Average conservation on a per-residue based of structural and non-structural proteins 1056 

accounting for size. 1057 

  1058 

 

ZIKV 

Serotype Polyprotein C prM E NS1 NS2A NS2B NS3 NS4A+2k NS4B NS5 

DENV1 55% 50% 43% 57% 54% 30% 35% 66% 43% 51% 67% 

DENV2 56% 41% 41% 55% 54% 27% 41% 67% 52% 53% 67% 

DENV3 57% 50% 42% 58% 55% 29% 38% 67% 39% 52% 67% 

DENV4 57% 49% 47% 56% 54% 34% 41% 67% 44% 49% 68% 

Average 56% 47% 43% 58% 55% 31% 39% 67% 44% 51% 67% 

Average of structural proteins a) 49% Average of non-structural proteins a) 51% 

Average of structural proteins accounting for 

size  b) 
51% 

Average of non-structural proteins accounting for 

size  b) 
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Table 4:  Monoclonal antibodies used in this study. 1059 

 1060 
  1061 

Target Color Clone Company 

CD3 AlexaFluor700 UCHT1 eBioscience 

CD4 APC-eFluor780 RPA-T4 eBioscience 

CD8 BV650 RPA-T8 Biolegend 

CD14 V500 M5E2 BD Biosciences 

CD19 V500 HIB19 BD Biosciences 

Live/Dead ef506 
 

eBioscience 

IFNγ FITC 4S.B3 eBioscience 

CD45RA eFlour450 HI100 eBioscience 

CCR7 PerCPCy5.5 G043H7 Biolegend 

TNFα PE-Cy7 Mab11 EBioscience 

PD1 PE-CF594 EH12.1 BD Biosciences 

Granzyme B PE GB11 EBioscience 
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Table 5: Donors tested in each category 1062 

# of samples ZIKV status a) DENV status c) Country of origin 

18 Acute Pos. Brazil /Mexico 

17 Acute Neg. Nicaragua/Mexico 

33 Convalescent Pos. Brazil/US travelers/ blood bank donors 

30 Convalescent Neg. US travelers/ blood bank donors 

20 Neg. b) Pos. Nicaragua/ Sri Lanka 

20 Neg. Neg. US 

a) Infection with ZIKV was confirmed by RT-PCR 1063 

b) ZIKV-neg. samples were collected before the onset of the ZIKV epidemic 1064 

c) Previous exposure to DENV was determined by the presence of detectable DENV-1065 

specific IgG titers. 1066 

1067 
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Table 6. Testing of DENV corresponding peptides for ZIKV NS52868-2876 NS31725-1068 

1734, and E485-493 peptides.  1069 

 1070 

Donor 
DENV 

Status 

ZIKV 

Status 
Protein Source 

Peptide 

Sequence 
SFC/10

6 a)
 

GN0101 pos neg NS52868-2876 
ZIKV TPYGQQRVF 353 ± 240

 
 

DENV1-4 TPFGQQRVF 366 ± 120 
  
   

GS0157 pos neg NS31725-1734 
ZIKV APTRVVAAEM 330 ± 75

 
 

DENV1  APTRVVASEM 219 ± 64 

2894 neg pos  E485-493 

ZIKV GLDFSDLYY 287 ± 50 

DENV1-3 GLDFNEMVL 0 

DENV4 GIDFNEMVL 0 
a)Average and Standard deviation of net responses from 6-9 independent wells for donors GN0101 and GS0157, 1071 

and 3 independent wells for donor 2894. 1072 
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