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Test equating sleep scales: applying the
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Abstract

Background: In most cases, the total scores from different instruments assessing the same construct are not directly
comparable, but must be equated. In this study we aimed to illustrate a novel test equating methodology applied to
sleep functions, a domain in which few score comparability studies exist.

Methods: Eight scales from two cross-sectional self-report studies were considered, and one scale was common to
both studies. The International Classification of Functioning, Disability and Health (ICF) was used to establish content
comparability. Direct (common persons) and indirect (common item) equating was assessed by means of Leunbach’s
model, which equates the scores of two scales depending on the same person parameter, taking into account several
tests of fit and the Standard Error of Equating (SEE).

Results: All items were linked to the body functions category b134 of the ICF, which corresponds to ‘Sleep functions’.
The scales were classified into three sleep aspects: four scales were assessing mainly sleep disturbance, one quality of
sleep, and three impact of sleep on daily life. Of 16 direct equated pairs, 15 could be equated according to Leunbach’s
model, and of 12 indirect equated pairs, 8 could be equated. Raw score conversion tables between each of these 23
equated pairs are provided. The SEE was higher for indirect than for direct equating. Pairs measuring the same sleep
aspect did not show better fit indices than pairs from different aspects. The instruments mapped to a higher order
concept of sleep functions.

Conclusion: Leunbach’s equating model has been successfully applied to a functioning domain little explored
in test equating. This novel methodology, together with the ICF, enables comparison of clinical outcomes and
research results, and facilitates communication among clinicians.

Keywords: Test equating, Leunbach’s model, International Classification of Functioning, Disability and Health,
Rasch models, ESS, MOS, NSI, PSQI, PROMIS-SD, PROMIS-SRI

Background
To measure functioning, several instruments are com-
monly available. Typically, one clinician or researcher uses
one instrument while another uses another instrument,
both of which measure the same concept. However, the
scores of the two instruments cannot be directly com-
pared as they may have different operational ranges, or
measure different levels of the concept, such that their
total scores are on different ordinal metrics. This restricts
their comparability and impedes research and communi-
cation among clinicians.

To be able to compare scores from different instru-
ments, they must be equated. Equating can be defined as
a statistical process used to adjust scores on test forms so
that the scores can be used interchangeably [1]. While
various equating techniques were developed during the
twentieth century, it was not until the 1980s that they be-
came popular [1]. Equating techniques include linear,
equipercentile, and Modern Test Theory (MTT) methods.
They all can be used to equate scores in different data col-
lection designs, such as those in which two or more in-
struments are administered to the same group of persons
(known as common persons design), or those in which
common items are found across different studies (known
as common items design).
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In linear equating, the standardized deviation scores of
the two forms are set to be equal by means of a linear con-
version [2]. However, the formula converting scores from
one form to the other may be non-linear. Equipercentile
equating admits non-linear relationships —it identifies
scores on one form that have the same percentile ranks as
scores on the second form— but it assumes that the scores
are continuous when they are usually discrete. Although the
data can be made continuous [3, 4], equipercentile relies on
observed scores. MTT methods —including Item Response
Theory (IRT) [5] and Rasch Measurement Theory (RMT)
[6]— assume that a common latent variable lies behind re-
sponses to the items of the instruments. MTT refers to the
outcomes of the latent variable as person parameters and
regards an estimate of the person parameter as a measure
of the respondent’s ability or trait level. IRT and RMT share
a number of assumptions, including: unidimensionality,
monotonicity of item characteristic functions, local inde-
pendence, and no Differential Item Functioning (DIF) [7].
Testing these assumptions adds strength to the equating
process, because it is possible to test that the scores of the
two instruments to be equated actually measure the same
construct. This test adds evidence to one of the require-
ments of test equating, namely construct equivalence [8].
In IRT models, the person estimate is a complex func-

tion of patterns of item responses. Compared to this, the
situation is much simpler and better suited for test
equating in RMT because there is a one-to-one mapping
of raw scores to the estimate of the person parameter,
due to the statistical sufficiency of the raw score in RMT
from which follows conditional inference where assump-
tions about person distributions and sampling are not
required, and specific objective measurement [6]. Hence,
IRT and RMT are different paradigms within MTT [9].
MTT methods have been applied to create a common

metric in health domains such as depression [10–12],
anxiety [13], pain [14], or physical functioning [15, 16].
Furthermore, Andrich [17] presented an application of
the polytomous Rasch model in equating two instru-
ments intended to assess the same trait treating the total
scores of two instruments as partial credit items from a
test with two items. This approach has been employed
in the health literature [18] together with the Inter-
national Classification of Functioning, Disability and
Health (ICF) [19] for conceptual matching. The polyto-
mous Rasch models used in these studies are formally
the same as the model described by Leunbach [20] used
in this paper.
Gustav Leunbach developed the model in 1976 to assess

whether two instruments measure the same trait, relating
their total scores to a common scale [20]. This model is
supported by a sound statistical theory on conditional infer-
ence, as well as the property of raw score sufficiency [21].
The Rasch model also possesses these properties. Although

Leunbach’s model seems promising in test equating, it has
rarely been applied, probably because it has gone unnoticed
by the scientific community. Andrich [17] acknowledged
that the model he uses came from Leunbach’s report [20],
but apart from this, Leunbach’s report has rarely been cited
and, as far as we are concerned, the model has not been
implemented in any software until recently. Hence, it can
be considered a ‘novel’ methodology which we wanted to
rediscover by applying it to a functioning domain. We con-
sidered sleep functions as a case in point because it has
been little explored in the field of equating.
Thus, the objective of our article is to illustrate an appli-

cation of a novel methodology for equating functioning
scales. Specifically, we aim (1) to rediscover Leunbach’s
model and its properties, (2) to show how to interpret
tests of fit and precision to decide on the adequateness of
the equating, and (3) to apply the model to a domain little
explored in the field of equating in health.

Methods
Sample and instruments
Secondary data were analysed from two cross-sectional
self-report studies: Trajectories of Outcome in Neuro-
logical Conditions (TONiC), and Patient-Reported Out-
comes Measurement Information System (PROMIS).
These studies were chosen because they were available at
the time when the current project was designed and they
were suitable for secondary analyses.
The TONiC study (https://tonic.thewaltoncentre.nhs.

uk/) examines the factors that influence quality of life in
patients with neurological conditions. The sample for
the current study consists of a cohort of patients with
clinical definite Multiple Sclerosis from consecutive indi-
vidual outpatient attendances in three neuroscience cen-
tres in the UK. The data were collected over the first 12
months of study recruitment, and the participants re-
ceived a questionnaire pack including sleep instruments.
The study had approval from the local research ethics
committees. All subjects received written information on
the study and gave written informed consent prior to
participation [22].
The PROMIS initiative (http://www.healthmeasures.net/

explore-measurement-systems/promis) aims to build item
pools and develop core questionnaires that measure key
health outcome domains including sleep [23]. The sample
for the current study consists of an internet (YouGov Poli-
metrix, https://today.yougov.com/solutions/overview) sam-
ple and a clinical sample [24]. The latter included patients
recruited from sleep medicine, general medicine, and psy-
chiatric clinics at the University of Pittsburgh Medical
Center.
The Epworth Sleepiness Scale (ESS) [25] was common to

both studies. The Medical Outcomes Study (MOS) [26],
and the three subscales of the Neurological Sleep Index
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(NSI) [22]—Diurnal sleepiness, Non-restorative nocturnal
sleep, and Fragmented nocturnal sleep— were only present
in TONiC. The Pittsburgh Sleep Quality Index (PSQI) [27],
PROMIS-Sleep Disturbance [28], and PROMIS-Sleep Re-
lated Impairment [28] were only present in PROMIS.
The ESS and the PSQI are the most widely used scales

in sleep medicine. However, new generic (PROMIS) and
disease-specific scales are emerging and a set of these
were available from the PROMIS and TONiC studies,
with the ESS as the link. Hence, we took advantage of
the fact of having eight sleep instruments available and
we consider that equating pairwise all of them would be
of interest to researchers and clinicians. The eight sleep
instruments as well as the study to which each instru-
ment was administered are described in Table 1.

International Classification of Functioning, Disability and
Health (ICF)
The ICF is an international standard offering a common
language to describe functioning [19]. It is based on the
integrative bio-psycho-social model of functioning, dis-
ability and health of the World Health Organization [19].
Body functions (‘b’), Body structures (‘s’), Activities and
Participation (‘d’), and Environmental factors (‘e’) are clas-
sified using an alphanumeric system. Second, third, and
fourth-level categories are found under each letter, so that,
for example, under the two-level category b134 sleep func-
tions, seven third-level categories exist: b1340 Amount of
sleep, b1341 Onset of sleep, b1342 Maintenance of sleep,
b1343 Quality of sleep, b1344 Functions involving the
sleep cycle, b1348 Sleep functions, other specified, and
b1349 Sleep functions, unspecified.
One of the key requirements of test equating is con-

struct equivalence [1]. In health, when equating scales in
functioning domains, it is recommended to first link the
items from the different tests to the ICF so that content
comparability among the scales can be established and
thus satisfy the requirement of equivalent constructs. In
addition, the International Standards Organization [29]

has prescribed the ICF as the framework for cataloguing
health in e-health informatics (the concept of health is
based on the health components of the ICF). Conse-
quently, the use of ICF codes is two-fold in the current
study: (1) to ensure concept comparability, a prerequisite
for test equating, and (2) to lay a marker for the future
when e-health informatics will be at the forefront of data
management techniques in health care.
Hence, the items from all the scales were linked to the

ICF. Two researchers performed independently the link-
ing of items to ICF categories using the latest ICF link-
ing rules [30], and then discussed possible disagreements
to come up with a final solution. As suggested by Stucki
et al. [31], the ICF Core Set for sleep disorders [32] was
taken into account.

Leunbach’s model
Leunbach [20] used a Power Series Distribution depend-
ing on an underlying common latent trait to relate the
total scores of two instruments to a common scale. A
Power Series Distribution [33] is a discrete probability
distribution over non-negative integers of the form

P X ¼ x; ξ; γð Þ ¼ ξxγx
Γ ξ; γð Þ ; x

¼ 0; 1; 2;…; ξ≥0; γx≥0; Γ ξ; γð Þ
¼

X
x

ξxγx

ð2:1Þ

where the probability of obtaining a score x depends on
a person parameter ξ and several score parameters γx.
For each score x, a score parameter is estimated.
Leunbach’s model is a test equating method for two tests

(A and B), hence only the total score in each of the tests,
not each item response, is considered. For each total score
in A, a corresponding equated total score in B is estimated.
Let X1 be a test score of A and X2 a test score of B.

(X1, X2) depend on the same person parameter ξ, and

Table 1 Description of the instruments

Instrument Complete name Number of items Item (scale) range Availability

ESS [25] Epworth Sleepiness Scale 8 0–3 (0–24) TONiC and PROMIS

MOS [26] Medical Outcomes Study 6 0–4 (0–24) TONiC

NSID [22] Neurological Sleep Index- Diurnal sleepiness 16 0–3 (0–48) TONiC

NSIN [22] Neurological Sleep Index- Non-restorative nocturnal sleep 15 0–3 (0–45) TONiC

NSIF [22] Neurological Sleep Index- Fragmented nocturnal sleep 4 0–3 (0–12) TONiC

PSQI [27] Pittsburgh Sleep Quality Indexa 14 0–3 (0–42) PROMIS

PSD [28] PROMIS-SD
(Sleep Disturbance)

27 0–4 (0–108) PROMIS

PSRI [28] PROMIS-SRI
(Sleep Related Impairment)

16 0–4 (0–64) PROMIS

aOnly the categorical items of the PSQI were considered. The sum of the individual items instead of the existing algorithm was applied
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(A, B) have maximum scores equal to (m1,m2). The two
test scores are assumed to be conditionally independent
given ξ. Under this assumption, the probability of a total
score over the test scores, r =X1 +X2, can be computed as

PðX1 þ X2 ¼ rjξÞ ¼
Xm1

x¼0

PðX1 ¼ xjξÞPðX2

¼ r−xjξÞ ð2:2Þ
Mesbah & Kreiner [34] showed that the distributions

of polytomous Rasch items can be parameterized as
Power Series Distributions as described in (2.1) and that
the same applies for the total score over several items in-
cluding the total raw score over all items. In this sense,
it is correct to regard Leunbach’s model as the joint dis-
tribution of two Rasch model super items with distribu-
tions defined by:

P Xi ¼ xjξð Þ ¼ ξxγ ixPmi
h¼0ξ

hγ ih
; γ ix ¼ 0 for x

< 0 and x > mi ð2:3Þ
Then, from (2.2) and (2.3) we can derive the distribu-

tion of the total score X1 + X2:

P X1 þ X2 ¼ r jξð Þ ¼ ξr
Pm1

x¼0γ1xγ2;r−xPm1
h¼0ξ

hγ1h
� � Pm2

h0¼0ξ
h0γ2h0

� �
¼ ξrωr

D
ð2:4Þ

where

ωr ¼
Pm1

x¼0 γ1xγ2;r−x andD ¼ ðPm1
h¼0ξ

hγ1hÞð
Pm2

h′¼0ξ
h′

γ2h′Þ ¼
Pm1þm2

r¼0 ξrωr .
The joint distribution of (X1, X2) is:

P X1 ¼ x1;X2 ¼ x2 jξð Þ ¼ ξx1γ1x1Pm1
h¼0ξ

hγ1h

ξx2γ2x2Pm2
h0¼0ξ

h0γ2h0

¼ ξrγ1x1γ2x2
D

ð2:5Þ
From this it follows that the conditional probability of

the responses (x, r − x) of a person to the two instru-
ments, given the person’s total score r, is given by the ra-
tio (2.5) and (2.4):

P X1 ¼ x;X2 ¼ r−x jrð Þ ¼ γ1xγ2;r−x
ωr

ð2:6Þ

which is independent of the person parameter ξ so that
the total score r is a sufficient statistic for ξ. It also follows
(1) that the score parameters can be estimated by the
same conditional maximum likelihood estimation proce-
dures that Andersen [35] proposed for estimates of item
parameters in Rasch models, that is, by methods that

make no assumptions on the distribution and sampling of
persons [7]; and (2) that person parameters can also be es-
timated by the same maximum likelihood procedures that
are used to calculate maximum likelihood estimates of
person parameters in Rasch models [7].
Iterative proportional fitting [36] is used to calculate

the conditional maximum likelihood estimate of score
parameters and Newton-Raphson [37] to calculate the
maximum likelihood estimates of person parameters.
Notice that Leunbach’s model fits raw scores from the

Rasch model with conditionally independent items because
the raw score over all items have Power Series Distribu-
tions. In this sense, Leunbach’s approach applies automatic-
ally. However, Leunbach’s model is more general than that,
because it may apply in situations where the items of the
two scores do not fit the Rasch model. The only require-
ment is that the two raw scores fit the Leunbach’s model.
Kreiner & Christensen [38] describe loglinear Rasch models
where uniform local dependence is permitted, and where
the raw scores do fit Leunbach’s model.
Note also that the proposed method of equating based

on Leunbach’s model could be considered as an example
of Non-linear IRT True score equating [8]. Considering
(X1, X2) from above, Nonlinear True score equating as-
sumes that X1 and X2 are raw scores summarizing the
responses to sets of items from IRT models with a com-
mon latent variable θ.
In such models, true scores τX1 and τX2 are the ex-

pected outcomes given θ,

τX1 ¼ νx1 θð Þ ¼ E X1jθð Þ and τX2 ¼ νx2 θð Þ
¼ E X2jθð Þ ð2:7Þ

The functions νx1ðθÞ and νx2ðθÞ define test characteris-
tic curves of X1 and X2. They define a monotonic but
nonlinear symmetric relationship between the true
scores given by

τX2 ¼ νx2ðν−1x1 ðτX1ÞÞandτX1 ¼ νx1ðν−1x2 ðτX2ÞÞ ð2:8Þ
Holland and Dorans [8] suggested to replace the true

scores for observed scores in (2.8) so that one has

X2 ¼ νx2 ν−1x1 X1ð Þ
� �

and X1 ¼ νx1 ν−1x2 X2ð Þ
� �

ð2:9Þ

The maximum likelihood estimates of the person
parameters in Leunbach’s model are equal to the per-
son parameters where the expected value of the total
score is the same as the observed score and therefore
defined by ν−1x1 ðX1Þ and ν−1x2 ðX2Þ . For this reason, we
may regard the observed score as an unbiased max-
imum likelihood estimate of the true score and, there-
fore, the suggestion (2.9) is justified.
Besides, the three steps of the equating process in

Leunbach’s model are the same as the steps taken in IRT

Adroher et al. BMC Medical Research Methodology          (2019) 19:141 Page 4 of 13



true score equating, namely (1) take a score on scale A,
(2) find the person parameter that corresponds to that
score, and (3) find the score on scale B that corresponds
to that person parameter. These steps are described in
Fig. 1. More details of Leunbach’s model are given in
Additional file 1.
In Leunbach’s report [20], only direct equating is ad-

dressed. In this study, we apply Leunbach’s model for
both direct and indirect test equating.

Direct equating
For direct equating (see Fig. 1), also known as common
person equating, we assume that we have two tests (A
and B), and that a number of persons responds to both.
This is the case, for instance, when we equate the ESS
(A) to the MOS (B) from the TONiC study. In this case,
the analysis by Leunbach’s model proceeds in four steps.
The first step estimates the score parameters (γx) of

the two tests by conditional maximum likelihood in the
same way that item parameters are estimated in the
Rasch model [34].
The second step tests the fit of the model to the two-

way contingency table with the joint distribution of the
raw scores of A and B. Since this table may be large and
sparse, where we cannot rely on the asymptotic distribu-
tion of the test statistics, p-values are calculated by para-
metric bootstrapping. Bootstrapping consists of taking
multiple random samples with replacement from the
sample data at hand [39]. We use three tests to assess
the fit of the model to the table that are similar to tests
used to test for multidimensionality in Rasch models.
First, (1) a conditional Likelihood Ratio Test comparing
observed and expected counts given the total score of
the two tests. Second, (2) a test comparing the observed

correlation (Goodman and Kruskal’s Gamma [40]) of the
scores to the expected value under the model. Horton et
al. describe a similar test of unidimensionality for Rasch
models [41]. Third, (3) by counting the number of per-
sons with two scores that depart significantly at a 5%
critical level from each other under the Leunbach’s
model. Since the person parameter of Leunbach’s model
can be estimated separately from the two scores, this test
is similar to a t-test of unidimensionality in Rasch
models comparing person estimates from different sub-
scores [42]. The advantage of focusing on subscores in-
stead of person parameters is that the analysis avoids the
problematic assumption that person estimates are nor-
mally distributed. A chi-square p-value is obtained for
(3) on whether the observed frequencies of persons with
significant differences is larger than 5%. Following Cox
and Snell (page 37) [43] we only regard p-values less
than or equal to 0.01 as strong evidence against the fit
of the model to the data. Moderate evidence provided by
p-values less than 5% will of course occur, but will only
be regarded as conclusive if more than one of the three
tests are significant. However, the reader is free to draw
their own conclusions concerning model fit in Table 5.
The third step equates a score on A to a score on B:

Firstly, by calculating a maximum likelihood estimate of
the person parameter given the A score, and secondly,
by calculating the expected B score for persons with a
person parameter equal to this estimate. Since the
equated B score has to be an integer instead of a real
number, the equated B score is defined as the rounded
value of the expected B score.
The final step assesses the error of equating by boot-

strapping from the observed contingency table. If the
model was accepted during step two, the variation of the

Fig. 1 Direct equating. The crosses in the contingency table indicate a non-zero value. Ai is any raw score for scale A, and Bj is any raw score for
scale B. Am1 is the maximum possible total score for A, and Bm2 the maximum possible total score for B. The equating process shows that for any
Ai, an estimate for the equated value in scale B is computed given the estimate of the person parameter for Ai
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results of the three steps on the bootstrapped data will
provide an unbiased estimate of the random error asso-
ciated with the equated results. Such error is the Stand-
ard Error of Equating (SEE) [1] and is computed for
each equated score. In other words, the SEE corresponds
to the standard deviation of equated scores over hypo-
thetical replications of an equating procedure in samples
from a population of test takers [1]. For a score xi of test
A, the SEE of the equated score on test B, beqBðxiÞ , can
be computed using the following formula

se beqB xið Þ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var beqB xið Þ½ �

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E beqB xið Þ−E beqB xið Þ½ �f g2

q

We calculated the replications of the equating proced-
ure in S = 1000 bootstrap samples. The SEE formula
using bootstrap samples is as follows:

bseboot êB xið Þ½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
s

êBs xið Þ−êB: xið Þf g2

S−1

vuut
;

where

êB: xið Þ ¼

X
s

êBs xið Þ

S

A weighted SEE mean for all the equated scores is
then calculated. We calculated a weighted instead of an
unweighted mean because we are summarizing errors
over a large number of score groups, some of them with
very few cases, and an unweighted mean would mean
that the errors in the small groups would inflate the as-
sessment of the degree of error in the population.
As explained in Table 2 and in Additional file 1, we re-

gard a weighted SEE mean below 0.91 as acceptable.

Indirect equating
For indirect equating, also known as common item
equating, imagine that we have three tests (A, B, and C);
one sample of persons responds to A and B, and another
sample responds to A and C. Equating from B to C can
be indirectly done via A, which is the ‘common item’ (or
common scale) enabling the equating. This is the case,
for instance, when we equate the MOS (B)—available
only in the TONiC sample, to the PSQI (C)—available
only in the PROMIS sample, via the common scale ESS
(A)—available in both TONiC and PROMIS samples.
The scale A should not work differently for the two

samples of persons. Therefore, Differential Item Func-
tioning (DIF) [44] for sample was assessed in each indir-
ect equating triplet A, B, C.

Indirect equating from B to C is a three-step proced-
ure. In the first step, direct equating of B to A is per-
formed. In the second step, direct equating of A to C is
performed. Then, the results of the previous steps are
used to establish a correspondence of scores from B to
C (i.e., to perform indirect equating). For example, as
shown in Fig. 2, imagine that we want to know the score
of C that corresponds to a score of 6 of B. We first have
to find in step 1 the expected score in A of 6, which is
4.5. Then in step 2 we see that the expected scores for
A = 4 and A = 5 are 3.5 and 5.3, respectively. Hence, the
expected C score lies between 3.5 and 5.3, and by inter-
polating we find that it is (3.5 + 5.3)/2 = 4.4, which corre-
sponds to a rounded integer of 4.
The tests of fit (second step in section Direct equating)

are not available for indirect equating because to evaluate
misfit the contingency table shown in Fig. 1 is needed, and
it cannot be obtained if different sets of persons have
responded to the tests. Nevertheless, in the first two steps
of indirect equating from B to C via A, it is tested whether
B and A measure the same construct, and whether A and
C measure the same construct. If both tests accept the hy-
potheses, it follows logically that B and C must measure
the same construct. On the other hand, the SEE of the in-
direct equating from B to C can be estimated by boot-
strapping in exactly the same way as for direct equating.
In addition, Additional file 1: Table S20 provides an ex-
ample where the ESS and the MOS are equated directly
and indirectly via the NSID, and the score correspon-
dences in both cases are very similar.

Table 2 Standard Error of Equating

A Expected
B

B
estimate

SEE Relative frequency of bootstrap errors

−2+ −1 0 1 2+

0 0 0 0 0 0 1 0 0

1 1.9 2 0.316 0 0.05 0.9 0.05 0

12 18.3 18 0.81 0.025 0.225 0.5 0.225 0.025

20 35.4 35 0.91 0.025 0.317 0.317 0.317 0.025

This table contains artificial values of equated scores from scale A to B, with
different distributions of the bootstrap errors. For each raw score of A an
estimated raw score of B is obtained. The SEE (Standard Error of Equating) is
computed from the second half of the table, where, for each A raw score,
1000 bootstrapped B scores are estimated in 1000 bootstrap samples. The
difference (error) between the B estimate and each of the bootstrapped B
scores is computed. The number of errors of 0 points (no error), 1 point below
(− 1), two or more points below (− 2+), 1 point above (1), and two or more
points above (2+) the B estimates are collected. Then the Relative Frequencies
(RF) of these errors are presented on the table, which allow to compute the
SEE. Four theoretical bootstrap error distributions are presented. The first row
shows an error free distribution, where RF(0) = 1 and therefore SEE = 0. The
second row shows a plausible distribution, where RF(0) = 0.9, RF(− 1) = RF(1) =
0.05, and it follows that SEE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05þ 0:05

p
=0.316. The third row shows an

acceptable distribution, where RF(0) = 0.5, RF(− 1) = RF(1) = 0.225, RF(− 2+) =
RF(2+) = 0.025, and it follows that SEE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 0:225þ 2 � 4 � 0:025p ¼ ffiffiffiffiffiffiffiffiffi

0:65
p

=
0.81. The fourth row shows the worst case that could be regarded as
acceptable, where RF(0) = RF(− 1) = RF(1) = 0.317, RF(− 2) = RF(2) = 0.025, and it
follows that SEE is 0.91. We therefore consider a weighted SEE mean below
0.91 as acceptable
Abbreviations: SEE Standard Error of Equating
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Software
Direct and indirect equating pairs among the eight sleep
instruments were assessed by the Leunbach’s model im-
plemented in DIGRAM [45], which is free and can be
downloaded from http://staff.pubhealth.ku.dk/~skm/
skm/. Additional file 1 shows how to perform Test
Equating with DIGRAM. DIF was assessed with
RUMM2030 [42]. The statistical test used for detecting
DIF in RUMM2030 is a two-way Analysis of Variance
(ANOVA) [46] of the person-item deviation residuals
with person factors (i.e. sample) and class intervals (i.e.,
strata along the trait) as factors.

Results
Sample
The TONiC sample consisted of 722 multiple sclerosis
patients, and the PROMIS sample of 2252 participants
recruited from the internet and from clinics. Of the
1993 participants from the PROMIS internet sample,
1259 reported no sleep problems and 734 reported sleep
problems. The clinical sample consisted of 259 adults
from clinics at the University of Pittsburgh Medical Cen-
ter. Table 3 shows the distribution of sex and age in the
TONiC and PROMIS samples, as well as globally.

ICF
The 106 items of the 8 instruments were linked to the sec-
ond level ICF category b134 sleep functions. Some were
also linked to a third level sleep category (b1340 Amount
of sleep, b1341 Onset of sleep, b1342 Maintenance of
sleep, b1343 Quality of sleep). The b categories in the brief
ICF Core Set for sleep disorders—b134 Sleep functions,
b130 Energy and drive functions, b140 Attention func-
tions, b110 Consciousness functions, and b440

Fig. 2 Indirect equating. This figure shows the three-step procedure to equate test B to test C indirectly via test A. The direct equating of B to A
and the direct equating of A to C are the two previous steps needed to conduct the indirect equating from B to C

Table 3 Distribution of sex and age by sample

Variable TONiC n = 722 PROMIS n = 2252 Total n = 2974

n (%) n (%) n (%)

Sex

Male 197 (27.3) 1167 (51.8) 1364 (45.9)

Female 519 (71.9) 1085 (48.2) 1604 (53.9)

Missing 6 (0.8) 0 (0) 6 (0.2)

Age

< =40 160 (22.2) 575 (25.5) 735 (24.7)

41–50 221 (30.6) 507 (22.5) 728 (24.5)

51–59 183 (25.3) 494 (21.9) 677 (22.8)

> =60 131 (18.1) 676 (30) 807 (27.1)

Missing 27 (3.7) 0 (0) 27 (0.9)
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Respiration functions, were found in our linking; while
b134 was the primary concept, the rest were secondary
concepts. Three of the four Core Set d categories—d475
Driving, d240 Handling stress and other psychological de-
mands, d230 Carrying out daily routine, were also found
as secondary concepts. More b, d, and e categories were
identified as secondary concepts, too. All these secondary
categories are the contextual parameters for items in the
sleep instruments.
Five main sleep aspects —Sleep disturbance (b1341,

b1342), Quality of Sleep (b1343), Amount of sleep
(b1340), Impact of sleep on daily life (b134), Facilitators/
barriers of sleep (b134), to which each item could belong
to, were derived. Table 4 shows the number of items per
instrument belonging to a sleep aspect.
MOS, NSIF, PSQI, PSD were assessing mainly sleep

disturbance, NSIN quality of sleep, and ESS, NSID, PSRI
impact of sleep on daily life. ESS and NSID were the sole
instruments with all the items pointing to one sleep as-
pect. NSIF and PSRI involved two aspects, MOS, NSIN,
and PSD three, and PSQI four.
The two PSQI items belonging to Facilitators/barriers

of sleep (How often have you taken medicine to help you
sleep (prescribed or ‘over the counter’)? / Do you have a
bed partner or roommate?) were not considered in the
summated score. They are Environmental factors in ICF
nomenclature, and thus cannot be summated with the
other items. The PSQI ended up with 12 items, and with
a score range of 0–36.

Leunbach’s model
For each pairwise direct equating, DIGRAM uses the esti-
mates of the score parameters to calculate the expected
counts under the Leunbach’s model and to test whether
the model fits the data. Three test of fit are available (Like-
lihood ratio test, Gamma coefficient, and the Number and
percentage of persons with significant differences between
measurements). A bootstrap p-value is provided for the
first and second tests, and an asymptotic chi square p-

value is obtained for the third. These p-values are pre-
sented in Table 5 (columns 2–4) for each directly equated
pair, highlighting the p-values with a significant level
below 0.01. The equating of ESS-PSD, ESS-PSRI, and
PSD-PSRI are presented as a percentage of persons with
significant differences between measurements. ESS-PSD
presented also a significant gamma coefficient, so there is
evidence from two tests that ESS and PSD measure differ-
ent constructs; equating these two tests or using them for
indirect equating was therefore not recommended. MOS-
NSIF and NSIN-NSIF presented a significant Likelihood
Ratio Test.
To assess the precision of the equating results, for

each equated score in each equated pair, bootstrap sam-
ples were generated in order to compute the standard
deviation of the equated scores over replications, namely
the SEE. The distribution of the SEE among the equated
scores for each equated pair is presented in the last four
columns of Table 5. The most relevant value is the
weighted mean, and values above 0.91 are highlighted.
The minimum SEE values were practically 0 for all the
pairs, and the maximum oscillated between 0.5 and 3.55.
The weighted SEE mean is below 1 in all the pairs ex-
cept ESS-PSD.
The indirect equated pairs (via ESS) excluding the PSD

ones (which involved ESS-PSD) were first tested for DIF by
sample. ESS showed DIF only for NSIF-PSQI, and the mar-
ginal value was considered not to be substantial enough to
prevent the equating. Then we assessed the tests of fit in
the first two direct equating steps: if these were acceptable,
the fit of the indirect equating was also acceptable. The fit
was acceptable for all the pairs except the ones involving
ESS-PSD. Regarding the SEE, bootstrap samples were gen-
erated and evaluated. Table 6 shows the distribution of the
SEE for each pairwise indirect equating excluding PSD
pairs. The SEE values were higher than for direct equating,
oscillating the maximum between 0.56 and 4.99, and the
highest weighted mean value was 1.4. The pairs involving
PSRI presented a weighted mean above 1.

Table 4 Number of items belonging to a sleep aspect per instrument

Instrument Sleep disturbance Quality of sleep Amount of sleep Impact of sleep on daily life Facilitators/ barriers of sleep

ESS 8

MOS 3 2 1

NSID 16

NSIN 4 9 2

NSIF 3 1

PSQI 9 1 2 2

PSD 18 8 1

PSRI 4 12

Total number of instruments 4 1 3

The numbers in bold-italics refer to the most prevalent aspect
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Table 5 Direct equating

Equated pair Likelihood
Ratio Test

Gamma
coefficient

Number (%,CI, and
p-value*) of
persons with
significant
differences
between
measurements

Bootstrap distribution of SEE

Min Median Max Weighted Mean

ESSa-MOSb

MOSb-ESSa
P = 0.604 P = 0.606 31 (4.6%) [3.0, 6.2]

P = 0.6515
0 0.48 0.75 0.39

0 0.5 0.74 0.46

ESSa-NSIDa

NSIDa-ESSa
P = 0.140 P = 0.988 33 (5.3%) [3.5, 7]

P = 0.7481
0.06 0.66 2.14 0.80

0 0.46 2.18 0.38

ESSa-NSINc

NSINc-ESSa
P = 0.112 P = 0.930 42 (6.7%) [4.7, 8.6]

P = 0.0563
0.06 0.66 2.37 0.93

0 0.47 0.82 0.43

ESSa-NSIFb

NSIFb-ESSa
P = 0.576 P = 0.658 32 (4.8%) [3.2, 6.4]

P = 0.8172
0 0.3 0.5 0.24

0 0.48 0.85 0.44

ESSa-PSQIb

PSQIb-ESSa
P = 0.027 P = 0.492 133 (6%) [5, 7]

P = 0.0362
0 0.5 1.23 0.36

0 0.43 1.02 0.23

ESSa-PSDb

PSDb-ESSa
P = 0.134 P = 0.002d 146 (6.5%) [5.5, 7.6]

P = 0.0009d
0 1.26 2.9 1.35

0 0.32 2.08 0.21

ESSa-PSRIa

PSRIa-ESSa
P = 0.064 P = 0.840 160 (7.1%) [6.1, 8.2]

P = 0.0000d
0 0.89 2.02 0.58

0 0.33 1.46 0.21

MOSb-NSIDa

NSIDa-MOSb
P = 0.020 P = 0.999 38 (6%) [4.2, 7.9]

P = 0.2428
0.03 0.78 1.67 0.81

0 0.44 0.78 0.38

MOSb-NSINc

NSINc-MOSb
P = 0.168 P = 0.883 34 (5.3%) [3.6, 7.0]

P = 0.7238
0 0.55 2.25 0.71

0 0.4 0.54 0.35

MOSb-NSIFb

NSIFb-MOSb
P = 0.006d P = 0.994 30 (4.4%) [2.9, 6]

P = 0.5205
0 0.2 0.5 0.23

0 0.31 0.53 0.29

NSID-aNSINc

NSINc-NSIDa
P = 0.060 P = 0.990 42 (6.9%) [4.9, 8.9]

P = 0.0336
0 0.6 1.55 0.58

0.06 0.71 1.48 0.60

NSIDa-NSIFb

NSIFb-NSIDa
P = 0.200 P = 1.000 34 (5.4%) [3.6,7.1]

P = 0.682
0 0.38 0.74 0.27

0.07 1.04 1.64 0.92

NSINc-NSIFb

NSIFb-NSINc
P = 0.001d P = 1.000 33 (5.1%) [3.4,6.9]

P = 0.8633
0 0.38 0.65 0.27

0 0.78 2.14 0.85

PSQIb-PSDb

PSDb-PSQIb
P = 0.300 P = 0.177 127 (5.7%) [4.7,6.7]

P = 0.1294
0 1.05 1.72 0.70

0 0.37 1.68 0.26

PSQIb-PSRIa

PSRIa-PSQIb
P = 0.234 P = 0.018 131 (5.9%) [4.9, 6.8]

P = 0.0603
0 0.70 2.04 0.48

0 0.42 1.67 0.26

PSDb-PSRIa

PSRIa-PSDb
P = 0.085 P = 1.000 177 (7.9%) [6.8,9.0]

P = 0.000d
0 0.5 2.43 0.42

0 0.87 3.55 0.68

Ideal values > 0.01 > 0.01 Lower Confidence
Interval < 5%

<0.91

Average weighted means above 0.91 are in bold
Abbreviations: P p-value, SEE Standard error of Equating
aMost prevalent aspect is Sleep disturbance
bMost prevalent aspect is Impact of sleep on daily life
cMost prevalent aspect is Quality of sleep
dSignificant at the 1% level
*The p-value of a test that the observed frequencies of persons with significant differences is larger than 5%
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Additional file 1 contains detailed results of the direct
equating of ESS and MOS and of the indirect equating
of MOS and PSQI via ESS.
Tables 5 and 6 show that pairs belonging to the same

aspect did not necessarily have better fit indices and pre-
cision than pairs from different aspects. For example,
MOS-ESS (different aspects) shows better fit values than
PSQI-PSD (same aspect). While MOS-PSQI (same aspect)
shows better SEE values than MOS-PSRI (different as-
pects), NSID-PSQI (different aspects) shows better SEE
values than NSID-PSRI (same aspect). Also, both tables
show that the SEE is lower when we equate the large scale
(in terms of scale range) to the small one than vice versa.
For example, the SEE for ESS-NSID (small to large) is
0.80 while NSID-ESS (large to small) is 0.38.
Out of the 28 possible pairs, 23 could be equated. The

exchange tables for these 23 equated pairs can be found
in Additional file 2.

Discussion
In this study we described a novel methodology for equating
functioning scales and we applied it to a domain little ex-
plored in the field of equating, sleep functions. Leunbach’s
model equates the scores of two scales considering that they

depend on the same person parameter. It has been shown
how to take into account the three tests of fit, as well as the
SEE, to decide on the adequateness of the equating.
In our case in point, 23 out of the 28 possible pairs

among 8 instruments could be equated according to the
model. The reason why the Gamma coefficient, and the
counting of the number of persons with two scores that
depart significantly at a 5% critical level from each other
under the model are significant for equating ESS-PSD,
could be due to a type 1 error. In addition, the scale
range difference between ESS and PSD, 84, is the highest
among all the direct equated pairs. The higher this dif-
ference is, the more problematic is the equating.
Issues remain for ESS-PSRI, PSD-PSRI, MOS-NSIF,

and NSIN-NSIF. Their misfit may be due to local de-
pendence between scores and/or because the latent trait
assumed by the Leunbach’s model to lie behind the
scores is measured on logit scales with different units
[47]. While equating the ESS with the PSD should be
avoided, the scores of ESS-PSRI, PSD-PSRI, MOS-NSIF,
and NSIN-NSIF could be equated. The indirect equating
was free of DIF for sample with one exception showing
marginal DIF without impeding the equating.
The SEE for indirect equating was larger than for dir-

ect equating because the former uses results from two
sets of direct equating estimates, both of which have
error. Indirect equating is, therefore, less robust than
direct. We also observed that there is less precision in
terms of SEE when we equate the small scale (having a
lower score range) to the large one (having a bigger
score range) than vice versa. This makes sense because
when going from small to large, for each score there is a
wider range of options of scores to be equated.
As explained in the Methods section, when equating

scales in functioning domains, linking the items to the
ICF enables to establish content comparability among the
scales and thus satisfy the requirement of construct
equivalence [1]. In our case in point, the instruments were
classified into three sleep aspects: sleep disturbance, qual-
ity of sleep, and impact of sleep on daily life. Given that
the pairs belonging to the same aspect did not necessarily
present better fit indices than pairs from different aspects,
it seems that the instruments map to a higher order con-
cept of sleep functions (b134). Moreover, as only 2 (ESS
and NSID) of the 8 instruments were measuring one sole
aspect, different aspects of sleep are already considered in
the existing instruments. ESS and NSID are then more
limited than the remaining instruments, which are more
content valid. Hence, the linking process helped also in
the interpretation of the results.
Sleep scales have been previously linked to the ICF

[48], and the ICF has also been used to compare the
content of health status measures, where the b134 sleep
functions category appears [49–51], or where the

Table 6 Indirect equating

Equated
pair

Bootstrap distribution of SEE

Min Median Max Weighted Mean

MOSb-PSQIb

PSQIb-MOSb
0 0.73 1.37 0.66

0 0.48 1.17 0.36

MOSb-PSRIa

PSRIa-MOSb
0 1.54 2.25 1.23

0 0.45 1.35 0.38

NSIDa-PSQIb

PSQIb-NSIDa
0 0.61 3.27 0.63

0.06 0.71 1.96 0.77

NSIDa-PSRIa

PSRIa-NSIDa
0 1.23 4.99 1.19

0 0.61 2.27 0.75

NSINc-PSQIb

PSQIb-NSINc
0 0.64 1.41 0.69

0.06 0.79 2.17 0.92

NSINc-PSRIa

PSRIa-NSINc
0 1.14 2.28 1.33

0.03 0.78 2.35 0.94

NSIFb-PSQIb

PSQIb-NSIFb
0 0.7 1.49 0.81

0 0.34 0.56 0.28

NSIFb-PSRIa

PSRIa-NSIFb
0 1.17 2.27 1.4

0 0.33 0.61 0.27

Ideal value <0.91

Pairs involving PSD are excluded because they involve the equating ESS-PSD
or PSD-ESS, which is not recommended
Average weighted means above 0.91 are in bold
Abbreviations: SEE standard error of equating
aMost prevalent aspect is Sleep disturbance
bMost prevalent aspect is Impact of sleep on daily life
cMost prevalent aspect is Quality of sleep
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content relates to sleep medicine practice and research
[52, 53]. The PSQI has also been linked to the ICF to-
gether with instruments from other health domains [54].
Problems in functioning of people with sleep disorders
have also been identified via the ICF [55–57]. However,
we are unaware of any study that uses the ICF beyond
the content comparability to formally equate sleep
scales.
Leunbach’s model, developed by Gustav Leunbach in

1976, has been rarely applied despite its desirable proper-
ties of raw score sufficiency, sound statistical theory on
conditional tests, and the similarity with Rasch models for
measurement. This similarity should not be surprising;
Leunbach collaborated with Rasch for many years (Leun-
bach translated —or, according to Rasch, transformed—
Rasch’s 1960 book [6] from Danish into English; see page
ix of the book [6]) and it is not an unreasonable conjec-
ture that the idea of using power series distributions for
measurement models came from Rasch himself. The simi-
larity between the power series distribution and the distri-
bution of test scores in Rasch’s multiplicative Poisson
model and the distribution raw score in the Rasch model
for item analysis (see formula (5.5) in Chapter X of the
Rasch’s book [6]) is also an indicator of the inspiration for
Leunbach’s model.
A limitation of this study, considering the current

implementation of the Leunbach’s model in DIGRAM,
is that only the raw scores taken by the sample ap-
pear in the equating table. In our case in point, this
is the case of MOS, which theoretical range is 0–24
but only the range 0–21 is equated, because the raw
scores 22–24 were not taken. This problem could be
solved by interpolation, and we are currently working
on how to implement it in DIGRAM with the aim
that the next version of DIGRAM will incorporate it.
Another limitation is that the ESS, the common scale
used for indirect equating, assesses only one sleep as-
pect (impact of sleep on daily life), and therefore the
indirect equating is not optimal. Nevertheless, we
have shown that it is possible to equate several sleep
scales using the Leunbach’s model. The exchange of
scores between pairs of sleep instruments available in
Additional file 2 will facilitate the comparison of clin-
ical outcomes and research results. Any clinician or
researcher can continue using the sleep scale they feel
more comfortable with and look for the correspond-
ence of each raw score to any other sleep scale.
In this study we applied a particular test equating

methodology to two specific datasets. Hence, the re-
sults obtained are not generalizable. Although the
main focus of this study was not to provide
generalizable findings, but to illustrate the application
of a novel test equating method, it would be interest-
ing to carry out in future studies simulations on

different testing conditions to assess the robustness of
Leunbach’s model. Another future research study
could compare Leunbach’s model to other equating
methods. DIGRAM also provides equating results
from the equipercentile method, and Additional file 1
includes the equipercentile results from ESS and
MOS equating.
In conclusion, we illustrated how to apply a novel test

equating methodology implemented (partly during the
current study) in the DIGRAM software which is free
and is easy to use. We encourage its use in future
applications.

Additional files

Additional file 1: Direct and indirect test equating in DIGRAM 4.06.
(PDF 699 kb)

Additional file 2: Raw score conversion tables among sleep
instruments. (XLSX 28 kb)
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