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Wideband Loop Antenna with Split Ring Resonators for  
Wireless Medical Telemetry 

Zhenzhen Jiang, Zhao Wang, Mark Leach, Eng Gee Lim, Jingchen Wang, Rui Pei and Yi Huang 

Abstract—This letter presents a wideband flexible loop 
antenna with split ring resonators (SRRs) for use in wireless 
medical telemetry. This design covers the entire MedRadio band 
(401-406 MHz) and four Industrial Scientific Medical ISM bands 
(433.1–434.8, 868.0–868.8, 902.8–928.0 MHz and 2.4-2.48 GHz). 
The SRRs improve the loop antenna return loss and reduce the 
power absorbed inside the human body over the multiband 
frequency ranges; they also result in increased radiation 
efficiency, gain and transmission coefficient. A human body 
model has been used to study and optimise antenna performance 
in a realistic environment and shows a reduction in specific 
absorption rate (SAR) when the SRRs are used. Measurements 
are conducted in a tissue-simulating liquid phantom and show 
good agreement with the simulations. This novel antenna could 
be used for a range of implantable applications such as wireless 
data transmission and wireless power transfer. 

Index Terms—Implantable antennas, wideband antennas, split 
ring resonators (SRRs), biomedical applications. 

I. INTRODUCTION 

IRELESS telemetry has become increasingly popular for 
sensing, monitoring and diagnosis in biomedical 

applications such as peacemakers, defibrillators and capsule 
endoscopes [1] - [5], as they can detect inner conditions of the 
human body and wirelessly transmit associated bio-
information in real-time to an external receiver over a link 
distance of typically a few meters. An essential component for 
any wireless biomedical communication system is an 
implantable antenna. Considering the volume and types of 
potential data that could be obtained from the human body 
and the fact that these types would differ in relation to factors 
such as age, gender or other physical conditions, it is of 
interest to maximise the available bandwidth of such a system 
and ensure that any detuning that may arise due to variable 
environmental factors does not affect performance. 

 

In addition, implantable antennas also need to be light 
weight and low profile to minimise patient impact as well as 
saving space for other essential system components [6] – [8]. 
Using high permittivity substrates, fractal structures and 
shorting pins are some popular techniques in antenna 
miniaturisation [9] - [12]. Recently, the synthesised 
metamaterial split-ring resonator (SRR) and complementary 
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split-ring resonator (CSRR) proposed by Pendry et. al. [13], 
which possess negative permittivity or negative permeability 
at a desired frequency have been used for miniaturization 
[14] [15] [16]. These structures have also been shown to 
reduce the specific absorption rate (SAR), which is a desired 
characteristic for implantable antennas [17]. A conformal 
patch antenna with ground plane loaded CSRR was proposed 
in [17]. However, this design has a very narrow bandwidth 
centred at 1.2 GHz. As a result, a flexible implantable antenna 
that covers multibands of interest, with good radiation 
performance and robustness are desired to accommodate 
frequency detuning in a realistic environment and maintain 
stable operation inside the human body. 

In this letter, an implantable loop antenna with SRRs that 
cover the entire MedRadio band (401-406 MHz) and four 
ISM bands (433.1-434.8, 868.0-868.8, 902.8-928.0 MHz and 
2.4-2.48 GHz) is proposed, which offers the choice of 
operating at different frequencies across all medical related 
bands for different functions, such as communication and 
wireless charging. The antenna is designed on a flexible 
substrate making it adaptable to multiple applications. This 
investigation focusses on application in wireless capsule 
endoscopy, in which, real-time images of the human intestinal 
tract are wirelessly communicated as a pill type capsule 
passes through the digestive system. Capsule endoscopes 
typically consist of a transceiver, camera, LEDs, antennas and 
batteries [7]. Compared to antennas of planar geometry 
[18] [19], the antenna is usually designed conformal to the 
capsules cylindrical shape saving internal space. Use of SRRs 
leads to improved radiation efficiency and increases realised 
gain. 

The paper is structured as follows: Section II details the 
selection and design of the implantable antenna. The structure 
is specified, and other factors considered such as the effect of 
the necessary biocompatible insulation on performance. In 
Section Ⅲ, the antenna radiation properties and SAR are 
investigated. Measurement setup and results inside a tissue-
simulating liquid are presented in Section IV and conclusions 
are offered in Section V. 

II.  CAPSULE LOOP ANTENNA WITH SRRS 

The proposed antenna is designed to work within the human 
body environment. The design has been produced using CST 
Microwave Studio 2017. The requirements for this antenna 
are small size, light weight, wide bandwidth and stable 
radiation performance. According to [20], compared to other 
electrical type antennas in the near field, the loop antenna has 
a smaller electric field and wider operating bandwidth, which 
allows it to maintain stable performance and good efficiency 
inside the human body. Therefore, the loop antenna is 
selected as the fundamental structure in this work. 

W
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A. Antenna Structure 

The proposed loop antenna is designed on RO3010 
substrate. The antenna structure is substrate, copper 
superstrate; the substrate and superstrate are the same material 
with relative permittivity εr = 10.2, loss tangent tanδ = 0.0035 
and thickness 0.6 mm. The copper layer is 0.035 mm thick. 
SRRs are added at both sides of the loop. The dimensions of 
the SRR unit cell are optimised to provide maximum antenna 
matching and radiation efficiency with S11 < -10 dB for all 
bands of interest. The overall dimension of the planar antenna 
is 18 x 18 x 1.235 mm3 (including superstrate). Fig. 1 shows 
the main structure and Table I details the optimised 
geometrical parameters of the proposed antenna. To avoid 
direct contact between the radiator and body tissues, a 
biocompatible polyamide layer is added to the capsule surface. 

   
 (a) (b) 
Fig. 1: (a) Geometric design of proposed antenna. (b) Physical layout model 
of designed antenna.  

 
Fig. 2: S11 with and without SRRs in the simplified body phantom. 

TABLE I 

OPTIMISED ANTENNA DIMENSIONS (UNITS: MILLIMETRES) 

Parameter Value Parameter Value 

L 18 w2 6.5 

W 18 w3 4.0 

la 3.5 wf1 0.5 

lb 7.0 wf2 0.5 

lc 3.5 gap 0.5 

w1 1.8 a 0.6 

 
Initially to shorten simulation time a simplified 

homogeneous human body phantom is used based on an 
elliptical cylinder 120 × 80 ×100 mm3 with εr = 56 and 
conductivity σ = 0.8 S/m [6] [21]. The design was later 
optimised using a more accurate anatomical body model. The 
simulated reflection coefficient (S11) of the basic loop antenna 
with and without SRRs in a cylindrical geometry with internal 
radius 3.2 mm is shown in Fig. 2. The SRRs reduce loop 
inductance, improving the antenna match. Fig. 3 shows cross-

sectional contour plots of the scalar electric near field (E-field) 
across the centre of the antenna with and without SRRs. The 
E-field is reduced when the SRRs are employed, leading to a 
decrease in absorbed power and SAR value (only shown at 
403 MHz for brevity but the conclusion is general to other 
frequencies). Accordingly, the radiated power increases and 
the radiation efficiency and gain are enhanced. 

 
Fig. 3: Top view of the E-field distribution around the proposed antenna in 
the simplified body phantom at 403 MHz: (a) with SRRs, (b) without SRRs. 

B.  Effect of Internal Batteries 

A conformal antenna on the outer wall of a capsule 
endoscope saves space for other essential components inside 
the shell and offers better performance than an antenna inside 
the capsule [22] [23]. The main solid component of the inner 
structure is the battery which may influence antenna 
performance [24]. To investigate the impact of locating a 
battery inside the capsule surface, a perfect electric conductor 
is added to the model representing the battery. Simulated S11 
results with and without a battery are shown in Fig. 4, for 
different battery sizes and locations. Inclusion of a battery is 
seen to give rise to a frequency shift. The lower resonant 
frequencies are shifted from 477 MHz and 0.96 GHz to 
577 MHz and 1.28 GHz respectively and the resonant 
frequency at 2.5 GHz is upshifted by 150 MHz. The operating 
bandwidth remains almost the same covering all frequency 
bands of interest despite the frequency shifts. 

 
Fig. 4: Simulated S11 with internal batteries of different heights. 

C.  Effect of Biocompatible Insulation 

In real implantation cases, the surface of the device is 
required to be biocompatible. The encapsulation layer reduces 
the conducting influence of the human body and coupling 
between the antenna and the surrounding tissue [25]. The 
proposed antenna is designed on RO3010 substrate which is 
not biocompatible, therefore the outer surface of the antenna 
is covered with a thin layer of a low-loss biocompatible 
polyamide (εr = 3.5, tanδ = 0.004). The effects of different 
coating thicknesses are demonstrated in Fig. 5, which shows 
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that frequency shifts due to the coating material increase with 
coating thickness. Optimisation of S11, leads to a polyamide 
thickness of 0.017 mm. Alternatively, biocompatible 
materials could be used for the antenna design [26], replacing 
the substrate and copper with Al2O3 (εr = 9.8, tanδ = 0.008) 
and silver palladium (Ag/Pd) respectively. Simulation results 
show that in comparison the resonant frequencies are shifted 
upwards approximately 40-55 MHz with the antenna covering 
all bands of interest. However, the RO3010 substrate remains 
the preferred choice due to the relative ease of manufacture 
and costs. 

 
Fig. 5: Effects on S11 with different thicknesses of the coating material. 

D.  Effect of Different Human Tissues 

Different from an in-body antenna with a specific implant 
location, a capsule antenna will travel through the human 
body, as a result, the influences of different body tissues such 
as stomach, colon and small intestine should be examined 
[27]. Fig. 6 illustrates the resultant S11 with the same body 
model shown in Fig. 2 and structure from Fig. 5 but for 
different body tissues. The resonant frequencies for both the 
stomach and the small intestine are almost the same as their 
relative permittivities are close. However, there is a slight 
upshift in S11 for the colon, which has a significantly smaller 
relative permittivity. 

 
Fig. 6: Effects on S11 with different biological tissues. 
 
The proposed antenna has also been evaluated using the 

same elliptical cylinder shape body model but with muscle 
equivalent properties (e.g. εr = 59.2, 51.9, and σ = 0.77, 
1.74 S/m at 403 MHz and 2.45 GHz, respectively) for 
comparison with simulation on the arm of the anatomical 
body model. Corresponding results for S11 are plotted in Fig. 7. 
The radiation pattern in Fig. 9 (b) shows that the proposed 
antenna provides desirable performance on the arm which 
suggests muscle is also suitable operating environment. 

 
Fig. 7: Simulated S11 when putting the antenna on human arm. 

Ⅲ.  RADIATION EFFICIENCIES AND SAR VALUE 

Two-dimensional (2-D) realised gain patterns of the 
proposed antenna at 403 MHz in the simplified body model 
(small intestine) and at 2.45 GHz in the anatomical body 
model (on the arm) are given in Fig. 8 and Fig. 9 respectively 
(only 2 selected for brevity). The anatomical body model, 
Gustave from the CST Voxel family is used, (male, height 
176 cm, weight 69 kg). The model provides a more accurate 
simulation environment, allowing SAR values to be obtained. 

 
 (a) (b) 

Fig. 8: Simulated 2-D realised gain patterns of proposed implantable antenna 
at 403 MHz in the simplified body model on: (a) XOZ plane (b)YOZ plane. 

 
 (a) (b) 

Fig. 9: Simulated 2-D realised gain patterns at 2.45 GHz on the arm in the 
anatomical body model on: (a) XOZ plane (b)YOZ plane. 

 
Radiation efficiency and realized gain for the antenna with 

and without SRRs are summarised in Table Ⅱ. The SRRs 
improve both parameters across the spectrum. In IEEE 
standards, the simulated maximum 1 g average SAR value for 
a transmitter are 216 and 203 W/kg at 403 MHz and 
2.45 GHz respectively at an input power of 1 W. Use of SRRs 
here decreases the SAR by 88 and 62 W/kg at those 
frequencies respectively, allowing increased transmit powers 
of 7.41 and 7.88 mW (8.70 and 8.97 dBm) respectively, with 
SAR limits of 1.6 W/kg [28] [29]. The asymmetric body 
model, means antenna performance is location dependent. 
The radiation efficiency and realized gain compared with 
other works are shown in Table Ⅲ and an SRR/CSRR 
functionality comparison to other work is shown in Table Ⅳ. 
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TABLE Ⅱ 

SIMULATED RADIATION EFFICIENCY AND REALISED GAIN WITH AND 

WITHOUT SRRS 

TABLE Ⅲ 

Comparisons of the Proposed Antenna with Other Work 

TABLE Ⅳ 

Comparisons of the Proposed Antenna with Other Metamaterial Work 

IV. MEASUREMENT SETUP AND RESULTS 

The fabricated antenna is shown in Fig. 10(a). It was 
measured using a homogeneous mixture method proposed in 
[35] using a calibrated vector network analyser (VNA) port 
with a 50 Ω RF cable. The tissue-simulating liquid recipes at 
403 MHz and 2.45 GHz are summarised in TABLE V. The 
measurement setup is shown in Fig. 10(b), where the antenna 
is placed at the centre of a plastic container filled with the 
mixture. Reflection coefficient results from the VNA are 
shown in Fig. 11. The blue line represents S11 using the liquid 
phantom recipe at 403 MHz; the green line shows S11 with the 
2.45 GHz liquid recipe. In comparison to the simulated values 
the resonant frequencies shift and some discrepancies are seen 
while both the simulated and measured results are well below 
-10 dB and in good agreement at all frequencies of interest. 
Frequency shifting may be caused by the air gap between the 

superstrate and antenna, fabrication errors or connection 
issues. 

TABLE Ⅴ 

RECIPES FOR THE TISSUE-SIMULATING LIQUIDS 

 

  
 (a) (b) 
Fig. 10: (a) Photograph of the fabricated superstrate and antenna 
(b) Measurement of the proposed antenna in the tissue-simulating liquid. 

 
Fig. 11: Measured and simulated S11 of the proposed antenna. 

V. CONCLUSION 

In this letter, an ultra-wideband flexible loop antenna with 
SRRs has been proposed, designed, fabricated and tested for 
wireless medical telemetry. It was simulated and measured in 
both a homogeneous tissue phantom and the Gustave human 
body model showing acceptable performance. The proposed 
antenna works over the full MedRadio band and four ISM 
bands making it suitable for use in low power or passive 
implant systems. Two SRRs are loaded on the radiator and 
lead to improved matching and increased radiation efficiency. 
The influence of capsule dimension, internal batteries and 
biocompatible insulation on antenna performance is 
acceptable in terms of band requirements making this a good 
candidate for implantable applications. 
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f (MHz) 

Radiation 
Efficiency (%) 

Realised Gain (dBi) Max 1g-avg 
SAR (W/kg) 

With 
SRRs 

No 
SRRs 

With 
SRRs 

No 
SRRs 

With SRRs 

403 0.025 0.023 -34.3 -35.7 216 

433 0.077 0.033 -30.6 -33.9 213 

868 0.248 0.116 -26.6 -27.6 211 

915 0.264 0.190 -26.0 -28.0 205 

2450 0.414 0.284 -18.4 -19.1 203 

Ref. f (MHz) 
Size 

(L x R) 
mm2 

Port 
No. 

Realised Gain 
(dBi) 

Max 1g-avg SAR 
(W/kg) 

[6] 284~825 17 х 3 1 -31.5 (at 403) 913 (at 403) 

[30] 2290~2530 15 х 5 1 -44.5 (at 2450) 368.7 (at 2450) 

[31] 321~532, 
(MIS) 

2150~2740 
(ISM) 

17.2 х 5 1 -30.5 
 

-22.2 
 

72 (over 10g) 
 

48.8 (over 10g) 

[32] 296~589 15 х 4.6 2 -33.6 (at 434) 340.6 at port 1 
322.3 at port 2 

(at 434) 
This 
work 

307~3500 18 х 3 1 See TABLE Ⅱ 

Ref. f (MHz) Type Function of metamaterial unit (s) 

[17] 1200 CSRR Miniaturise size 

[33] 2400~2480 CSRR Miniaturise size 

[34] 402~455, 
2400~2480 

SRR Miniaturise size & 
obtain a new resonance frequency 

by coupling to a spiral 
This 
work 

307~3500 SRR Reduce E-field & power loss 
& enhance radiation efficiency 

f 
(MHz) 

Sugar NaCl 
De-ionized 

water 
HEC 

Diacetin 
and 

Glycol 

Triton 
X-100 

403 45.17% 2.98% 51.3% 0.5% 0.05% -- 

2450 -- -- 58.2% -- 5.1% 36.7% 
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