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ABSTRACT (294) 

Objective: Multiple organ dysfunction syndrome (MODS) is characterised by simultaneous 

multiple organ failure, which is the leading cause of death in acute critically ill patients. 

However, what mediates MODS is not fully understood. The discovery of toxic effects by 

extracellular histones on different individual organs strongly suggests their involvement in 

MODS. In this study, we investigate whether circulating histones are major mediators of 

MODS in acute critical illnesses.  

Design: Combination of retrospective clinical studies and animal models with intervention. 

Setting: Intensive Care Unit (ICU) in a tertiary hospital and research laboratories 

Patients: 420 ICU patients, including sepsis (140), severe trauma (63), severe pancreatitis 

(89) and other admission diagnoses (128).  

Laboratory investigation: Cells from major organs treated with calf thymus histones or 

histone-containing sera. Animal models for sepsis, trauma and acute pancreatitis treated with 

anti-histone reagents.  

Intervention: Anti-histone reagents in in vitro, ex vivo and animal models. 

Measurement and Main Results:  Retrospective analysis of a prospectively recruited ICU 

cohort demonstrated a strong correlation between circulating histones and organ injury 

markers and Sequential Organ Failure Assessment (SOFA) scores. Ex vivo experiments 

showed that patient sera containing high histone levels were toxic to cultured cells from 
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different origins, suggesting their universal toxicity to multiple organs. Animal models of 

sepsis, trauma and pancreatitis further demonstrated a temporal correlation between histone 

levels and disease severity and multiple organ injury. Importantly, anti-histone reagents, i.e. 

anti-histone single-chain variable fragment (ahscFv) and non-anticoagulant heparin, could 

dramatically reduce multiple organ injury, particularly of the heart and lungs, and improve 

survival in mouse models.   

Conclusions: High levels of circulating histones are major mediators of MODS. Our results 

indicate that monitoring upon ICU admission could inform on disease severity and 

developing anti-histone therapy holds great potential of reducing MODS and improving 

survival of critically ill patients.   
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INTRODUCTION 

Multiple organ dysfunction syndrome (MODS) is characterised by dysfunction of two or 

more organs in acute critically ill patients who require intervention to maintain homeostasis 

in Intensive Care Units (ICU)(1, 2) . Affected patients have high mortality rates of around 30-

100%, depending on the number of dysfunctional organs. Therefore MODS has become the 

leading cause of morbidity and mortality in current ICU practice (3). Sepsis is the most 

common primary disease of MODS and causes more deaths than any single type of cancer (4). 

In the UK, sepsis alone causes 44,000 deaths and costs over 7.6 billion pounds annually.  The 

incidence of sepsis continues to increase by over 30% in the last 2 years (5). Recently, the 

third international consensus definitions for sepsis have altered previous focus on 

inflammation to life-threatening multiple organ dysfunction (6). This change reflects the 

importance of MODS in sepsis. 

MODS is mediated by harmful simultaneous effects to multiple organs rather than a chain 

reaction from one organ to another (7).  However, the identification of common mediators 

remains undefined. Coagulation activation, microcirculatory failure and oxygen deprivation as 

well as bacterial toxins have been proposed as potential mediators but have not been fully 

proven (8). In the last decade, the secondary hit theory by damage-associated molecular 

patterns (DAMPs) (9), particularly histones released from damaged cells, has attracted 

attention. Histones are well-conserved proteins essential in DNA packaging and gene 

regulation (10). During cell damage, nuclear chromatin is cleaved into nucleosomes, which 

are released extracellularly (11) and further degraded into individual histones (12). 

Nucleosomes/histones are rapidly cleared by the liver (13) and are rarely detected in blood, 

unless extensive tissue damage or cell death occurs in a short time period, e.g in acute critical 

illnesses.  
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Histones are highly cationic proteins that are able to interact with negatively charged 

phosphate groups of double-stranded DNA and phospholipid bilayers to condense chromatin 

and disrupt cell membranes, respectively (14, 15). Histone disruption of cell membranes cause 

abnormal ion flow, leading to loss of membrane potential with calcium overload and 

consequent cell damage (15). Histones are also the natural ligands of TLR-2, -4 and -9 

receptors (16, 17) and serve as the most important DAMPs in activating immune cells, 

inflammasomes, and release of pro-inflammatory cytokines (18, 19), and enhancing thrombin 

generation through platelet activation and aggregation (20, 21). Low levels of histones 

activate endothelium to release von Willebrand factor (VWF) (22), recruit leucocytes/platelets 

and reduce thrombomodulin-dependent protein C anticoagulant effects (23, 24), whilst  high 

histone levels directly cause endothelial damage (15, 25) and are strongly associated with the 

development of disseminated intravascular coagulation (DIC) (26).  

Although extracellular histones have been reported to damage single organs (15-17, 25, 27-31) 

and anti-histone reagents, such as neutralizing antibodies (15, 25), heparins (29, 32, 33) and 

C1 esterase inhibitors (34) are able to reduce histone toxicity, it is not fully clear whether 

circulating histones are the major secondary hit by mediating MODS development. In this 

study, we aligned clinical studies with animal models for severe trauma, acute pancreatitis 

and sepsis, to clarify the roles of circulating histones in MODS development in these common 

acute critical illnesses.   

METHODS 

Study design and patients 

We retrospectively assessed a prospectively recruited cohort of adult patients admitted to the 

general ICU at the Royal Liverpool University Hospital (RLUH) between Jan 2008 and Jan 

2014. Patients with preconditions that may cause biases were excluded (Supplemental Figure 
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1). Clinical data and blood samples were collected on admission and then daily up to day 4 in 

accordance to protocol (Ref: 07/H1009/64) approved by Northwest Research and RLUH 

Ethics Committees and protocol (Ref: 13/NW/0089) approved by NRES Committee North 

West-Haydock. MODS was defined as SOFA scores ≥5. Blood samples were also collected 

from healthy donors according to protocol (RETH000685) approved by Committee on 

Research Ethics, University of Liverpool. All normal control and patient plasma samples 

were snap frozen and stored at -80oC until analysis. Samples used for assays in this study had 

not previously been thawed and re-frozen.  

Mice  

C57/BL6 male, 8-10 week old mice from Beijing Vital River Laboratory Animal Technology 

were housed and used in sterile conditions at the Research Centre of Genetically Modified 

Mice, Southeast University, China. All procedures were performed according to State laws 

and monitored by local inspectors in compliance with British Home Office laws. CZX holds 

the full animal license for use of mice.  

Disease-specific models 

The mouse trauma model by fall of a heavy object (15), sepsis model by Cecal Ligation and 

Puncture (CLP) (35), and acute pancreatitis models using cerulein and sodium taurochlorate 

(TCL) (36, 37) was generated with different severities. The detailed procedures are described 

in Supplemental Data.  

Statistical analysis 

Human data are presented as median and interquartile ranges [1st, 3rd quartiles]. Differences 

in medians of continuous clinical variables between two (Mann Whitney U test) or more 

groups (Kruskall-Wallis test) were tested. Continuous variables used in ex vivo and in vivo 
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experiments were normally distributed and are presented as mean ± standard deviation (SD). 

Differences in means between more than two groups were compared using ANOVA test 

followed by Student-Newman-Keuls test. Correlation between circulating histone and organ 

injury markers utilized Spearman’s rank test for human data and linear regression for mouse 

data based on the distribution of the data. To test whether circulating histones were predictors 

of MODS development (48-72h post ICU admission) and 28-day mortality, logistic 

regression and Receiver Operating Characteristic (ROC) analysis were performed. Survival 

time comparison was performed using Log rank test. P value (two-tailed) <0.05 was 

considered statistically significant. 

RESULTS 

Elevated circulating histone levels in human critical illnesses are associated with MODS 

To determine the clinical relevance of circulating histones, we examined a cohort of 

prospectively recruited 420 ICU patients and their clinical characteristics are described in 

Supplemental Table 1. Collectively, the data demonstrated that circulating histone levels 

(median 24.7µg/ml [quartiles 8.0µg/ml, 46.7µg/ml]) are significantly elevated compared to 

normal healthy donors (1.3 µg/ml [0, 2.1]) (Figure 1A) (P<0.001). Among the subgroups of 

critical illnesses, circulating histone levels on admission were significantly higher in patients 

with either an admission diagnosis of sepsis (n=140) (34.0µg/ml [13.2, 60.5]), severe trauma 

(n=63) (23.8 µg/ml [11.1, 45.2] and severe pancreatitis (n=89) (28.7µg/ml [11.6, 63.8]), 

compared to others (n=128) (9.2 µg/ml [1.3, 30.0]) (P<0.05). There were no statistical 

differences in terms of circulating histone levels between sepsis, trauma and pancreatitis 

patients (Figure 1B). Using Spearman’s rank correlation, we found strong correlations 

between circulating histone levels and clinical organ injury biomarkers, including blood urea 

nitrogen (BUN for renal function, r=0.496, P<0.0001), alanine aminotransferase (ALT for 
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liver injury, r=0.545, P<0.0001), cardiac troponin T (cTnT for cardiac injury, r=0.607, P<0.01) 

and PaO2/FiO2 (P/F ratio for lung function, r=0.360. P=0.015).   

Strong correlation between circulating histones and Sequential Organ Failure Assessment 

(SOFA) scores was also observed (r=0.574, P<0.0001). The levels of circulating histones in 

patients with MODS (SOFA score ≥5) were significantly higher than those without (median 

30.1µg/ml [quartiles 7.3, 63.2] vs 10.8µg/ml [4.3, 30.1], P<0.0001) (Figure 1C). Similarly, 

circulating histones were higher in patients who died within 28 days of ICU admission than 

patients who survived (32.7µg/ml [14.4, 66.9] vs 20.1µg/ml [6.7, 40.5], P< 0.0001) (Figure 

1D). These data suggest that levels of circulating histones reflect severity of disease and their 

presence may contribute to MODS and mortality, particularly at high levels. ROC analysis 

demonstrated that admission histone levels could predict MODS development 48-72h after 

ICU admission (AUC 0.617, P=0.001), which is supported by a logistic regression model 

(odds ratio = 1.012 [1.003, 1.020] (P=0.005)). Similarly, ICU admission histone level could 

predict 28 day mortality (AUC 0.625 (P<0.001), odds ratio = 1.006 (1.002, 1.010) 

(P<0.001)).Sera from patients with high histone levels are cytotoxic and not cell-type 

specific  

Histone-spiked normal sera from healthy donors were found toxic to cultured human 

endothelial (EAhy926) cells in a dose-dependent manner. At or above 30µg/ml histones, cell 

viability was significantly reduced, which could be reversed by addition of either 50µg/ml 

heparin or ahscFv (Figure 2A). When endothelial cells were incubated with ICU patient sera 

containing circulating histones >30µg/ml, their viability was significantly reduced (Figure 

4B). Conversely, cell viability was not significantly reduced when they were incubated with 

sera with undetectable histones or <30μg/ml. Importantly, addition of ahscFv or non-
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anticoagulant heparin could significantly reduce the cytotoxicity by over 90% (Figure 2B), 

demonstrating that the major toxic factors in these patients’ sera were elevated histones.  

To demonstrate that circulating histones are also toxic to primary cells from different organs, 

primary kidney epithelial cells, immortalized liver cells, primary lung epithelial cells, and 

cardiomyocytes were incubated with 50μg/ml calf thymus histones or pooled patients’ sera 

containing about 50μg/ml circulating histones. Figure 2C shows that cell viability was 

reduced to comparable levels in all cell types. This data indicates that histones are non-

selectively toxic to all tested cells and high histone levels may damage most organs 

simultaneously.  

Circulating histone levels increase with increasing disease severity in mouse models 

To comprehensively investigate the role of elevated circulating histones in vivo, we used 

different mouse models for the major acute critical illnesses and found circulating histone 

levels increased significantly with increasing severity of trauma, sepsis and pancreatitis 

(Figure 3A-C). In the trauma model, circulating histones increased significantly 1h after 

trauma to peak at 8h (Supplemental Figure 2A). At 8h, circulating histones were 

22.7±8.3µg/ml (Mean±SD) in mild, 80.3±14.2µg/ml in moderate and 242.3±132.9µg/ml in 

the severe model (Figure 3A, P<0.01). In the sepsis models, elevated histone levels were 

significantly elevated 2h after CLP induction and peaked at 16h (Supplemental Figure 2B). At 

this time, circulating histone levels were 74.3±15.9µg/ml in less severe and 129.3±43.7µg/ml 

in severe sepsis (Figure 3B). In the pancreatitis models, cerulein (4x) and cerulein (12x)-

induced pancreatitis, circulating histones showed a significant increase at around 6h after the 

first dose of cerulein and peaked at approximately 14-20h. In TCL-induced severe pancreatitis, 

circulating histones began to increase 2h following induction and peaked at approximately 
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16h (Supplemental Figure 2C). At 16h, circulating histones were 3.7±3.5µg/ml in cerulein 

(4x), 90.2±35.9µg/ml in cerulein (12x) and 155.0±79.1µg/ml in the TCL model (Figure 3C).  

Circulating histone levels strongly correlate with organ injury markers in mouse models 

Circulating biomarkers for liver, renal and cardiac injury as well as lung injury scores based 

on H&E stained sections were significantly elevated in these mouse models compared to 

mock controls (Supplemental Table 2). Typical H&E stained lung sections are presented in 

Supplemental Figure 3, showing increased thickness of alveolar walls, extensive neutrophil 

infiltration and hyaline membrane formation. In contrast, mock procedures did not cause 

obvious changes in lung morphology. No obvious morphological changes were identified in 

heart, liver and kidney sections (Data not shown).  No substantial numbers of apoptotic cells 

were observed by immuno-histochemical staining (using anti-active caspase-3 from Abcam) 

of the lungs, liver, heart and kidneys but substantial numbers were found in the spleen and 

thymus (Supplemental Figure 4).  Linear regression analysis demonstrated that elevations in 

circulating biomarkers for liver (ALT, r=0.588, P<0.001) (Figure 4A), for renal (BUN, 

r=0.539, P<0.001) (Figure 4B), for cardiac (cTnI, r=0.605, P<0.001) (Figure 4C) and lung 

injury scores (r=0.726, P<0.001) (Figure 4D), strongly correlated with circulating histone 

levels in these mouse models.  

Anti-histone reagents significantly reduce multiple organ injury and mortality in mouse 

models 

To examine for a causal relationship between elevated circulating histones and MODS, 

ahscFv and non-anticoagulant heparin were used (Figure 5A-C, Supplemental Table 2). We 

found that anti-histone reagents significantly reduced organ injury in severe trauma (5A), 

severe sepsis (5B) and TCL pancreatitis (5C) models.   The cTnI was most affected by anti-

histone treatment and its levels were reduced by about 90% compared to untreated models, 
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whereas BUN and ALT were only reduced by 30-60%. Morphologically, lung injury as 

indicated by increased alveolar wall thickness, extensive neutrophil infiltration in interstitial 

tissues and alveoli, and hyaline membrane formation, was also significantly improved by anti-

histone treatments (Supplemental Figure 5). Accordingly, lung injury scores were 

significantly reduced (Figure 5D).  In terms of mortality, anti-histone reagents significantly 

increased the survival time and reduced mortality in 72h after CLP in the severe sepsis model. 

Administration of anti-histone reagents before CLP (Figure 5E) appeared more effective than 

at 6h after CLP (Figure 5F) but there was no statistical difference. This data demonstrates that 

elevations in circulating histones are major mediators of MODS and also contribute to 

mortality.   

DISCUSSION 

Multiple but not single organ dysfunction is the most common pathological feature of critical 

illnesses and appears to be the major contributor of lethality. However, mediators of 

simultaneous dysfunction of multiple organs are unclear and not fully clarified. In this study, 

we have investigated the roles of circulating histones in 3 of the most common human critical 

illnesses in alignment with corresponding animal models where anti-histone treatment could 

be used. Extracellular histones are not detectable in healthy donors but high histone levels 

were found in all the 3 common acute critical illnesses, i.e. sepsis, trauma and pancreatitis in 

both human and animal models. Nearly all critically ill patients showed elevated circulating 

histones compared to healthy donors. In nearly two-thirds of our ICU population, histone 

levels were above 30µg/ml, a previously determined threshold for cytotoxicity (26). 

Furthermore, circulating histone levels were significantly associated with disease severity and 

MODS as well as to adverse clinical outcomes. The fact that anti-histone reagents could 

detoxify circulating histones to significantly alleviate MODS and improve survival rates 
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strongly indicates that high circulating histone levels are not only biomarkers of disease 

severity but act as a secondary hit to directly contribute to MODS and poor outcomes.  

The source of circulating histones is still not clearly defined in the different critical illnesses. 

It is most likely that in trauma, circulating histones are released from extensively damaged 

tissues. The early elevation of circulating histones (within 1h) and its significant correlation 

with the extent of injury strongly supports this argument. In severe pancreatitis, the source of 

histones is not so obvious. Necrosis of the pancreas is very likely a major source of circulating 

histones. However, histone levels increase within 24h of onset but no obvious pancreatic 

necrosis can usually be detected in patients at this time point (38). There may be therefore 

other sources of histones. We had previously observed that extensive neutrophil loss occurs 

prior to pancreatic necrosis and correlates with circulating histone levels, within 24h of 

admission of patients with acute pancreatitis (39). This data could suggest that neutrophil 

death or NETosis could be another major source of circulating histones, particularly in the 

early stage of severe pancreatitis. In sepsis, the source of circulating histones also remains 

unclear. Organ injury may be the source of circulating histones but limited cell death was 

observed in major organs (Supplemental Figure 4), which therefore suggests that this is not 

the major source. NETosis or immune cell death, particularly in spleen and thymus was 

extensive (Supplemental Figure 4) and this might be the major contributor (40-42) but further 

investigation is required. Since histones themselves can cause cell injury by forming pores on 

cell membrane, similar to pyroptosis, it is likely that a vicious cycle may exist to damage 

more cells and release more histones.  

The mechanisms of histone-mediated MODS may be divided into direct and indirect effects. 

In behaving like endogenous pore-forming toxins, circulating histones are non-selectively 

toxic to cells from different organs (Figure 2) and thereby injure multiple organs 
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simultaneously (27, 28, 43). Indirect effects may be due to activation of immune responses or 

coagulation activation (44, 45). An extensive pro-inflammatory state with microcirculatory 

impairment may especially compromise multiple organs (19). Conversely, histone release also 

triggers protective mechanisms to recalibrate homeostasis, such as increase in acute phase 

protein,  C-reactive protein, to neutralise histone toxicity, and interaction with complement 

component 4 to inhibit complement activation (46, 47).  

Identification of severely ill patients is important in clinical practice, particularly those that 

require intensive care support. Irrespective of the source of circulating histones, high levels 

could represent severe inflammation, infection or tissue damage (15, 25, 36, 48), highlighting 

their clinical usefulness as a biomarker of disease severity. Previously, we demonstrated that 

high histone levels in a non-ICU setting could identify patients with pancreatitis at risk of 

developing persistent organ failure (39). This current ICU-based study demonstrates that this 

approach could be extended to the majority of critical illnesses. While this study is limited to 

a single ICU, our demographics and performance are consistent with comparable units 

according to the Intensive Care National Audit and Research Centre (ICNARC) data. 

Measuring circulating histones could identify those deteriorating patients that need critical 

attention.  

Anti-histone therapy has been proposed for many years (25) but no specific therapy has 

become clinically available. One option would be the development of anti-histone antibodies, 

but there are limitations in terms of production, purification and the risk of host auto-

antibodies.  Non-anticoagulant heparin has been demonstrated to be a viable and effective 

alternative anti-histone reagent in histone infusion models (33, 49). Our data in patient ex-

vivo experimentation complemented by relevant in vivo modelling advances the translational 
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potential of neutralising circulating histones using non-anticoagulant heparin to reduce 

MODS and mortality in critically ill patients. 
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Figure legends 

Figure 1. Circulating histones are elevated in sepsis, pancreatitis and trauma patients. 

(A) Circulating histones were quantified in the plasma of normal healthy donors (n=10) and 

ICU patients (n=420). Mann-Whitney U test shows significant increases in circulating 

histones in ICU patients compared to healthy controls, P<0.0001. (B) Patients were stratified 

based on an admission diagnosis and circulating histone levels were examined. Kruskall-

Wallis test shows significantly elevated circulating histones in sepsis (n=140), pancreatitis 

(n=89) and trauma (n=63) patients compared to those with other admission diagnoses (n=128), 

P<0.01. Circulating histones levels were analyzed in ICU patients who developed MODS and 

those who did not (C) along with those who survived and died (D). Mann–Whitney U test 

shows significant difference. 

Figure 2. Sera from patients with high levels of histones are cytotoxic. (A) Sera from 

healthy donors spiked with calf thymus histones (A) or sera isolated from patients with high 

levels of circulating histones (B) were used to treat cultured EAhy926 endothelial cells in the 

absence or presence of anti-histone reagents, heparin or ahscFv (50 µg/ml) for 1h and then 

viable cells were detected.  (C) Cells derived from different organs, including cardiomyocytes 

(Heart), lung epithelial cells (Lung), liver cells (Liver) and kidney cells (Kidney), were treated 

with calf thymus histones (50 µg/ml) or pooled patients’ sera with approximately 50 µg/ml 

endogenous histones. Sera with undetectable histones were used as controls and their resultant 

cell viability was set as 100%. Means±SD of cell survival rates from at least 3 independent 

experiments are presented. ANOVA test, *P<0.05 when compared to sera without histones. 

#P<0.05 when compared to histone in sera alone at the indicated concentrations.  
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Figure 3. Circulating histones are elevated in mouse models along with increasing 

severity. Comparison of the peak circulating histone levels in normal mice (N=3), mild 

(N=12), moderate (N=12) and severe (N=15) trauma (A), mock CLP (N=3), less severe 

(N=12) and severe (N=15) sepsis (B) and saline control (N=3), mock TCL (n=3), cerulein (4x, 

N=10), cerulein (12x, N=11) and TCL (N=11) pancreatitis (C) mouse models are presented as 

Means±SD. ANOVA test *P<0.05 when compared to 0h. #P<0.05 when compared to the less 

severe model.  

Figure 4. Circulating histones strongly correlate with organ injury markers in mouse 

models.  The correlation of circulating histones in all 3 mouse disease models (excluding all 

controls) with parameters of organ injury, ALT for liver (r=0.588, N=92, P<0.001) (A), BUN 

for renal (r=0.539, N=92, P<0.001) (B), cTnI for cardiac (r=0.605, N=92, P<0.001) (C) and 

lung injury scores (r=0.726, N=46 (randomly selected from each group), P<0.001) (D) were 

analyzed using linear regression. 

Figure 5. Anti-histone reagents reduce organ injury and mortality in mouse models. 

Anti-histone reagents, i.e. non-anticoagulant heparin (Sigma, 25 mg/kg) and ahscFv (20 

mg/kg) were used to treat mice with severe trauma (A), severe sepsis (B) and taurochlorate 

(TCL)-induced pancreatitis (C). Changes of organ injury markers are presented as percentage 

by setting that without anti-histone treatment as 100%. Means±SD are presented. ANOVA 

test, * P<0.05 when compared to untreated. (D) Changes in lung injury scores before and after 

treatments are shown. ANOVA test, *P<0.05 when compared with mock group, #P<0.05 

when compared with model alone group. (E-F) Survival curves of severe sepsis model 

untreated or treated with anti-histone reagents starting before CLP (E) or 6h after CLP (F) 

over a 72h period. Log rank test, P<0.01 when compared to CLP alone. 

 



C
irc

ul
at

in
g 

H
is

to
ne

s
(µ

g/
m

l)

0
20
40
60
80

100

Normal ICU patients

P<0.0001

Figure 1
A B

120
140
160

C
irc

ul
at

in
g 

H
is

to
ne

s
(µ

g/
m

l)

0
20
40
60
80

100

Absent Present

P<0.0001

120
140
160

MODS

C
irc

ul
at

in
g 

H
is

to
ne

s
(µ

g/
m

l)

0
20
40
60
80

100

Survived Died

P<0.0001

120
140
160

Survival

C D
C

irc
ul

at
in

g 
H

is
to

ne
s

(µ
g/

m
l)

0
20
40
60
80

100

Sepsis

ICU admission diagnosis

P<0.0001

120
140
160

Panc Trauma Other

P<0.0001
P<0.0001

P=0.526
P=0.097

P=0.296

Figure 1



0 20 40 60 80

100

120

0
27

37
57

73
121

Serum
Serum

+heparin
Serum

+ahscFv

Figure 2

0 20 40 60 80

100

120

0
10

20
30

40
50

60
70

80
90

100

Histones
Histones+Heparin
Histones+ahscFv

H
istones spiked in norm

al sera
(µg/m

l)

Cell viability (%)

*

*
*

#
#

#
#

*

A
B

H
istones in patient sera

(µg/m
l)

Cell viability (%)

*
*

*
*

#
#

#
#

#
#

#
#

C

Cell viability (%)

0 20 40 60 80

100

120

H
eart

Lung
Liver

 Kidney

Control
Histones

Pooled sera

* *
* *

* *
* *

Figure 2



Figure 3

0 50

100

150

200

250

Saline
TC

L m
ock

C
erulein
(4X)

C
erulein
(12X)

TC
L

Circulating histones
(µg/ml)

Pancreatitis (16h)

0 20 40 60 80
100
120
140
160
180
200

M
ock

Less severe
 Severe

Circulating histones 
(µg/ml)

C
LP (16h)

A
B

C
Circulating histones

(µg/ml)

Traum
a (8h)

0 50
100
150
200
250
300
350
400

M
ock

M
ild

M
oderate

Severe

#

Saline
TC

L
m

ock
(4x)

(12x)
TC

L
C

eruleinC
erulein

*
*

#*
#*

*

#*

#*

*

Figure 3



Figure 4

A
B

C
D

0

100

200

300

400

500

0
100

200
300

400

C
irculating histones (µg/m

l)

ALT (IU/L) 

R = 0.588

0 20 40 60 80

100

120

0
100

200
300

400

C
irculating histones (µg/m

l)

BUN(mg/dL)

R = 0.539

0 5 10 15 20 25

0
100

200
300

400

C
irculating histones (µg/m

l)

cTnI (ng/ml)

R = 0.605

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0
100

200
300

400

C
irculating histones (µg/m

l)

Lung Injury Score

R =0.726

Figure 4



0 20 40 60 80
100
120
140
160

ALT
BU

N
cTnI

TCL
TCL+heparin
TCL+ahscFv

Percentage

Blood (16h after TC
L)

**
*

*
*

*

Figure 5
A

B

0 20 40 60 80

100

120

140

ALT
BU

N
cTnI

Severe Traum
a

Traum
a+Heparin

Traum
a+ahscFv

Blood (8h after traum
a)

Percentage

*
*

*
*

*
*

0 20 40 60 80

100

120

140

ALT
BU

N
cTnI

CLP
CLP+Heparin
CLP+ahscFv

Percentage

Blood (16h after C
LP)

*
*

*
*

*
*

E
D

F

Survival fraction

Tim
e after severe C

LP (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0
12

24
36

48
60

72

CLP N=8
CLP+heparin N=8
CLP+ahscFv N=8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0
12

24
36

48
60

72

CLP N=10
CLP+heparin N=6
CLP+ahscFv N=7

Tim
e after severe C

LP (h)

Survival fraction

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Severe
traum

a
Severe
sepsis

Severe
Pancreatitis

M
ock

M
odel

M
odel+heparin

M
odel+ahscFv

Lung injury score

#
#

#

#

#
#

*
*

*

* *
* *

* *

Treatm
ents 6h post-C

LP
Treatm

ents pre-C
LP

C

Figure 5



  

Supplemental Table 1

Click here to access/download
Supplemental Data File (.doc, .tif, pdf, etc.)

Supplemental Table 1 20180920.docx



  

Supplemental Table 2

Click here to access/download
Supplemental Data File (.doc, .tif, pdf, etc.)

Supplemental Table 2 20180920.docx



  

Supplemental Figure

Click here to access/download
Supplemental Data File (.doc, .tif, pdf, etc.)
Supplemental Figures CCM 20180920.pptx



  

Supplemental Data File (.doc, .tif, pdf, etc.)

Click here to access/download
Supplemental Data File (.doc, .tif, pdf, etc.)
Supplemental data CCM 20190212.docx


