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The paper investigates the effect of the location and size of piezoelectric patches in a composite multilayer
plate on the energy input/output when the plate acts as a sensor, actuator, or an energy harvester. It is shown
that whether the process is low frequency (static) or higher frequency, for any size of the piezoelectric patches
there is always one location where the energy input/output reaches a maximum. In addition, it is shown that for
a dynamic vibrational loading the energy input/output is extremely sensitive to the operating frequency. If the
operating frequency is just below the systems resonant frequency (corresponding to the length and position of the
patches) the best location for the maximum energy input/output is significantly different from the best location
when the operating frequency is just above the systems resonant frequency. In other words, a very small change
in the systems operating frequency in the vicinity of the resonance frequency can make a significant effect on
the best locations for the patches for the energy input/output.

I. INTRODUCTION

Recent advances in wireless and micro-electro-mechanical
systems (MEMS) has increased the demand for portable elec-
tronics and wireless sensors, making power supply of these
portable devices a crucial issue. Harvesting ambient energy
from external sources can become one of the solutions of this
problem. One of the ways of harvesting external energy is
by using piezoelectric materials to convert mechanical energy
from an external source and use it to provide power for elec-
tronic devices [1, 2].

There are three typical ways of energy conversion: electro-
magnetic, electrostatic and piezoelectric [3]. Since piezoelec-
tric devices have the highest energy density and more flexibil-
ity to be integrated into a system, energy harvesting, sensing
and actuating with piezoelectric materials are the most widely
used and investigated both theoretically [4–8] and experimen-
tally [9–11].

Depending on the mechanical energy source different con-
figurations of piezoelectric energy harvesting units have been
investigated. For energy harvesting from ambient vibrations
unimorph or bimorph cantilever configurations are the most
studied structures with piezoelectric ceramic thin films or
plates incorporated into the structure. The stress induced in
a cantilever in this case is concentrated near the clamped end
and the nonstressed part of the piezoelectric layer nearly does
not contribute to power generation. Theoretical and exper-
imental studies show that a “tapered” or triangular-shaped
cantilever can produce more even strain level and more en-
ergy output throughout. A PZT bimorph cantilever of length
1.75cm was experimentally studied in [3] to harvest energy
from low level vibrations for powering wireless sensor nodes.
With a proof mass attached to the tip of the cantilever to lower
the resonance frequency, the structure was driven at 100 Hz,

the natural frequency of the energy harvester, and achieved 60
µW of power. In another experiment [12] a PZT-5H cantilever
with dimensions of 63.5mmx60.3mmx0.27mm was driven on
an electromagnetic shaker at 50 Hz (the resonance frequency
of the cantilever) charging a 1000 mAh NiMH rechargeable
battery to 90% of its capacity within 22 hours. The energy
harvesting performance of trapezoidal and rectangular PZT
cantilevers was investigated in [13]. At the resonance fre-
quency (140–180 Hz) 24.2 mW of power was obtained with
the trapezoidal PZT cantilever whereas 8.6 mW was obtained
with the rectangular one.

Different approaches have been employed to maximize the
performance including the choice of piezoelectric material
and the configuration [14]. One of the solutions is frequency
tuning of the piezoelectric element with the external source
and maximizing the converted energy using the concept of res-
onance [15]. Tuning can be achieved by changing the thick-
ness ratio of the piezoelectric patch and the host element [16].
Using finite differences, controlling the shape of a laminated
beam by an optimally placed piezo actuator for minimizing
the maximum deflection is studied in [17], [18] and [19].

The energy output/input can be extremely sensitive to the
length and location of the piezoelectric patches. A question
arises how these parameters are interconnected in generating
maximum energy input/output of the structure. Is there a lo-
cation for the patches on the host element where the structure
performs the best as a sensor, actuator or energy harvester?
Similar question arises when the structure is in dynamic op-
erating environment. It is known that energy input/output can
be maximum/minimum when the structure is in the resonance
condition[20]. In this case also the patches lengths and lo-
cations can significantly affect the energy input/output. To
the best of our knowledge these questions have not been ad-
dressed and need to be investigated.
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II. STATEMENT OF THE PROBLEM

We consider a composite piezoelectric structure consisting
of a plate-layer substrate of length L in x1 direction, a unit
width in x2 direction assuming that all the unknown functions
are independent of x2 and two piezoelectric patches of length
lp <= L running the full width of the plate, perfectly bonded
to its top and bottom surfaces (Fig.1). The substrate can be a
conductor for generating charge. The position of the patches
is defined by a and b = a+ lp and hp/2 and hm are the thick-
nesses of the piezoelectric patches and the substrate. The top
and bottom surfaces of the piezoelectric patches are metalized
to form electrodes that can be wired in series. To achieve this
they are poled in opposite directions so that they produce elec-
tric fields in the same direction (Fig.1). In the case of a par-
allel connection, piezoelectric layers are poled in the same di-
rection and produce electric fields in opposite directions. The
electrodes covering the opposite faces of the piezoelectric lay-
ers are assumed to be thin compared to the overall thicknesses
of the structure so that their contribution to the thickness can
be neglected.

FIG. 1: Schematic of the plate-layer with two piezoelectric
patches perfectly bonded to the top and bottom surfaces.

The poling directions of the piezoelectric patches are per-
pendicular to the planar direction. This means the piezoelec-
tric elements are operating in the (31) mode, corresponding
to the piezoelectric charge constant d31 which describes the
induced polarization in the poled direction per unit stress ap-
plied in stress direction.

Assuming a driving harmonic force q0eiωt , where ω is
the frequency, the transverse displacements in the regions
0 ≤ x1 ≤ a, a ≤ x1 ≤ b and b ≤ x1 ≤ L can be written in the
form Wi(x1, t) = Wi(x1)eiωt , with i = 1,2,3 corresponding to
each region. Introducing dimensionless parameters x =

x1

L
,

wi =
Wi

L
, hm =

hm

L
and hp =

hp

L
the equations describing

forced vibrations of a mid-plane transverse deflections of a
Kirchhoff-Love plate-layer take the following form:

d4w1

dx4 −λ
4
1

(
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)
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,

ρi are the mass densities, εi the damping coefficients, Di
the stiffness constants, (i = 1,2,3), for regions 0 ≤ x ≤ α ,
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,

D3 ≡ D1 and λ3 ≡ λ1, ρ3 ≡ ρ1. Em and Ep are the Young’s
moduli for the substrate and the piezoelectric patches, and
ν1 ≡ ν3 and ν2 the Poisson ratios.

The constitutive equations for the piezoelectric patches and
the substrate are [15]

T p
1 = Ep(S

p
1 −d31E3), D3 = d31T p

1 + ε
s
33E3, Sp

1 =−x3
d2w2

dx2 ,

T m
1 = EmSm

1 , Sm
1 =−x3

d2w1,3

dx2 , (4)

where the subscripts 1 and 3 represent the direction along
which the corresponding parameter is measured, T p

1 and T m
1

are the stresses, Sp
1 and Sm

1 are the strains (superscripts p and
m indicating the piezoelectric patches and the plate), d31 is
the piezoelectric constant coefficient, E3 the electric field, D3
the electric displacement and εs

33 the permittivity at constant
strain.

The total energy of the system can be written as:
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1
2
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(5)

where

Um =
1
2

Re((Sm
1 )
∗T m

1 ) U p =
1
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1 )+
1
2

Re(D∗3E0),

(6)
and ∗ indicates the complex conjugate. It follows from the
constitutive equations (4) that the expression for the total en-
ergy in dimensionless parameters can be written as

U =
D1L2

2
Re
[

θ +
D2

D1

∫
β

α
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dx2
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dx2 dx

+
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0
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dx2
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∫ 1
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]
, (7)

where θ =
ε33E2

0
D1

(1− k2
1)hp(β −α) and k2

1 =
d2

31
Sp

11ε33
is the

dimensionless electro-mechanical coupling factor. Using the
equations of motions of a composite plate and boundary con-
ditions the total energy of the system can be expressed via the
displacements:

U =
D1L2

2

(
1

D1λ̃ 4
1

)2 (
E2

0C2
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where B =
D1

D2

λ̃ 4
1
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2
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d31Ep

2

[
(hp +hm/2)2− (hm/2)2

]
,

λ̃ 4
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)
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and k2
1 = d2

31/(S
p
11ε33) is the electro-mechanical coupling fac-

tor, vi j = ∑
4
k=1 c( j)

ik eλ
(k)x
i , ( j = 1,2) are related to the displace-

ments as

wi(x) = (1/D1λ
4
1 )(q0vi1(x)+C1E0Bvi2(x)−q0pi), (12)

where pi is the i-th component of the vector p=(1,B,1) and
constants c( j)

ik are found from satisfying boundary conditions
at x = 0,α,β ,1. The total energy (8) can be used to ana-
lyze the structure as an actuator, sensor and an energy har-
vester, where Q1, Q2 and Q3 are actuating, sensing and en-
ergy harvesting coefficients [4, 5]. We will investigate Q̃3 =
max(α,β ,λ1,λ2)∈DQ3, where D is the domain of (α,β ,λ1,λ2),
Q1 and Q2 can be investigated in a similar way.

Analogous to a parallel plate capacitance the generated

charge can be expressed as Q(t) =
∂U(t)
∂V0(t)

, where V0(t) is the

voltage, Q(t) is the charge. Writing E0(t) = V0(t)/hp for the
uniform electric field in terms of the electric potential differ-
ence, the generated charge can be calculated from (8) as fol-
lows:

Q(t) = D1L2
(

1
D1

)2
(

V
C2

1
L2

Q1

h2
pλ̃ 8

1

+q0
C1

L
B

2hpλ̃ 8
1

Q3

)
.

(13)
Note that the first term inside the brackets in (13) is the

amplitude of the charge QV
gen generated by the applied voltage

V0 =V eiωt , and the second term describes the amplitude of the
charge Qq0

gen generated by the applied force q = q0eiωt . Thus

QV
gen =CVV =

1
D1

C2
1

Q1

h2
pλ̃ 8

1

V, Qq0
gen =

L4

D1
C1

BQ3

2hpλ̃ 8
1

q0 (14)

and the capacitance is

CV =
1

D1
C2

1
Q1

h2
pλ̃ 8

1

. (15)

Then the generated voltage and the generated electrical en-
ergy amplitude due to applied mechanical force q0 can be cal-
culated by

V q
gen =

Qq0
gen

CV
=

L
C1

Bhp

2
Q3

Q1
q0, and Uq

gen =
1
2

Qq
genV q0

gen.

(16)

III. DISCUSSION

A. Choice of piezoelectric material

The selection of a certain piezoelectric material for a spe-
cific energy harvesting applications is determined not only
by the piezoelectric properties but also the specific design re-
quirements such as the application frequency and the way me-
chanical energy is supplied into the structure.

Apart from good piezoelectric properties, piezoelectric ce-
ramics are commonly selected in energy harvesting devices
due to their low cost and ease to be incorporated into a energy
harvesting structure. PZT is the most frequently used piezo-
electric ceramic possessing excellent piezoelectric properties
and high Curie temperature (the critical temperature above
which piezoelectric a material loses piezoelectricity). It has
been expanded into a large family of ceramics, including PZT-
5H and PZT-5A, able to exhibit a broad range of properties.

Although piezoelectric ceramics are rigid and brittle and
less capable of sustaining large strain, overall, they can pro-
vide a higher power output than naturally flexible piezoelec-
tric polymers. Their power output normally is of the order
of milliwatts and the application frequencies of PZT ceramic-
based harvesters are usually 50 Hz or higher.

Piezoelectric polymers on the other hand are flexible, which
makes them resilient to mechanical shock and allows them
to be easily mounted to curved surfaces. Piezoelectric poly-
mers, such as PVDF, have been investigated for example for
piezoelectric energy harvesting from wearable items, such as
shoes and backpacks [21]. Although piezoelectric polymers
generally provide smaller power output, at a magnitude of mi-
crowatts or nanowatts, in some applications they may generate
better power output than PZT ceramics [22].

Here for numerical calculations of the amplitudes of the
generated charge Qq0

gen the piezoelectric PZT-5H has been
taken with material parameters Ep = 2.3 · 1010N/m2, ρ2 =

7.5 ·103kg/m3, d31 =−274 ·10−12C/N,ε33 = 277 ·10−10F/m
and for the host plate silicon (Si) is chosen with material pa-
rameters Em = 1.6 ·1011N/m2, ρ1 = 2.3 ·103kg/m3. The Pois-
son’s ratios are taken 0.3, hm+hp = 0.02 and L = 1m. The di-

mensionless length of the parches is l =
b−a

L
= β −α. Mass

proportional damping of 1% is taken. The numerical calcula-
tions have been carried out for the amplitudes of the generated
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charge which from the second equation in (14) can be written
in the following dimensionless form:

Q̃q0
gen =

D1

L4
1

C1

1
q0

Qq0
gen =

B
2λ̃ 8

1 hp
Q3. (17)

B. Static case

It is worth first to look at the dependence of the harvested
charge on the position of the piezoelectric patches for a static
case when λi → 0. For structures both simply supported at
both ends and simply supported at one end and clamped on the
other there is always a position where the piezoelectric har-
vester generates a maximum charge under the external static
force q0 (Fig.2(a),(b)).
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FIG. 2: The generated charge for the static system for
different lengths of the piezoelectric patches when the host is

(a) simply supported, (b) simply supported at one end and
clamped on the other (hm = hp = 0.01).

The increase between minimum and maximum harvested
charge can be significant. For a simply supported host plate
(Fig.2(a)), when l = 0.2 the increase can be up to 160% de-
pending on the position of the patches. For l = 0.4 the increase
can be up to 66%, and for l = 0.5 up to 42%.

For the host plate simply supported at one end and clamped
on the other these differences are more dramatic, declining
rapidly as the patches move beyond the position of maximum
harvesting (Fig.2(b)).

Figures 3(a),(b) show that the maximum charge is not nec-
essarily harvested when the patches are at the location where
the maximum displacement has its highest value. For exam-
ple, in the case of simply supported plate with l = 0.4, the
maximum charge is harvested when the patches are located at
α = 0.3 (Fig. 2(a)) whereas the maximum displacement has
its highest value when α = 0 (Fig. 3(a)).

C. Dynamic vibrational case

The question is now how the energy outcome changes in
a dynamic vibrational case when the external vibrating fre-
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FIG. 3: The displacements with the piezoelectric patches at
different locations for l = 0.4 (c) simply supported host, (d)

simply supported at one end and clamped on the other.
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FIG. 4: First resonance frequencies for different locations
and lengths of the piezoelectric patches, hp/hm = 1 for a

simply supported host.

quency is in the close vicinity of the first resonance frequen-
cies shown for different boundary conditions in Fig.4 and
Fig.5 as a function of the location of the piezoelectric patches.
For given parameters of the host plate its resonance frequency
is 3.75 corresponding to 476Hz and the PZT-5H patche’s res-
onance frequency is 101Hz. Figure 4 shows that for a simply
supported host plate the resonance frequencies have a single
minimum value for piezoelectric patches of length l ≤ 0.5 and
a single maximum when l > 0.5. For simply supported at one
end and clamped on the other host plate the resonance fre-
quencies always have a single minimum value. In the first
case these extremal positions coincide with the position of the
maximum value of the harvested charge for a static plate. In
the second case they are slightly shifted from these positions.

For a simply supported host plate and the piezoelectric
patches of length l = 0.4 attached at = 0.3 the correspond-
ing resonance frequency is λ = 2.88 (Fig.4). The gener-
ated charge in this case has a well-defined maximum value
for the external vibrating frequency λ = 2.86 just under the
minimum resonance frequencies. When the external vibrat-
ing frequency is λ = 2.90, just above the corresponding res-
onance frequency, the generated charge at the same location
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FIG. 5: First resonance frequencies for different locations
and lengths of the piezoelectric patches, hp/hm = 1 for a
simply supported at one end and clamped on the other.
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FIG. 6: (a) The generated charge at two near-resonance
frequencies. (b) The generated charge as a function of

frequency and location of the piezoelectric patches (l = 0.4).

α = 0.3 receives a minimum value, also well demonstrated in
Fig. 6(b). On the other hand this frequency is resonant for
two locations (due to the symmetry of the boundary condi-
tions in this case) of the patches hence there are two maxi-
mum peaks for the harvested charge but at different locations
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FIG. 7: (a) The generated charge for two near-resonance
frequencies. (b) The generated charge as a function of

frequency and position of the piezoelectric patches (l = 0.5).

for the patches.
Since the pattern of resonance frequencies (Fig. 4) change

for the piezoelectric harvesters with length l ≥ 0.5, the ef-
fect of the change in vibrating frequency at the maximum
of the harvested charge changes as well. For piezoelectric
patches with l = 0.5 the harvested charge is minimised when
the vibrating frequency is just below the resonance frequency
λ = 2.92 corresponding to the location of patches α = 0.26.
At this same location the harvested charge changes into max-
imum with slight change in the external vibrating frequency
becoming just above the resonance frequency.

Figures 8(a),(b) show a similar result for l = 0.7. The res-
onance frequency at α = 0.15 is λ = 3.02. When the vibrat-
ing frequency is below the resonance frequency (λ = 3) the
generated charge has a minimum value and when the vibrat-
ing frequency exceeds the resonance frequency (λ = 3.08) the
generated charge has a maximum value at the same location
of the harvester α = 0.15.

Numerical calculations have been carried out also for
a piezoelectric soft polymer PVDF with material parame-
ters Ep = 8.3 · 109N/m2, ρ2 = 1.7 · 103kg/m3, d31 = −18 ·
10−12C/N,ε33 = 3.894 · 10−8F/m. The first resonance fre-
quencies for all the lengths of the piezoelectric patches in this
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FIG. 8: (a) The generated charge for two near-resonance frequencies. (b) The generated charge as a function of frequency and
the location of the piezoelectric patches (l = 0.7).
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FIG. 9: First resonance frequencies for different locations
and lengths of the PVDF piezoelectric patches, hp/hm = 1

for a simply supported host.

case lie within a narrower region 3.01 and 3.13 (Fig.9). Fol-
lowing the discussion carried out above, it can be noticed that
as in the case of PZT-5H patches, for l = 0.2 and l = 0.3 the
harvested charge will have a maximum value if the external
vibrating frequency is just under the resonance frequencies. If
the external vibrating frequency becomes just above the cor-
responding resonance frequencies, the generated charge at the
same location will receive a minimum value. For l = 0.4 and
l = 0.5 the pattern of resonance frequencies in this case (Fig.
9) is different from that for the structure with PZT-5H patches
(Fig.4). In this case for these lengths of the PVDF patches
the generated charge will have a minimum value for vibrating
frequencies just below the resonance frequencies and a maxi-
mum value for vibrating frequencies just above the resonance
frequencies. For l ≥ 0.6 the pattern of achieving maximum
harvested charge will be similar to the case for the harvester
with PZT-5H patches.

IV. CONCLUSION

The investigation carried out in this paper allows to deter-
mine the location for piezoelectric patches hosted by a non-
piezoelectric plate-layer to maximize the performance of the
composite acting as a sensor, actuator or an energy harvester.
The expression of the total energy has been derived and used
for investigating the converted energy for any length of the
piezoelectric patches. The results show that for any size of the
piezoelectric patches in the composite plate both for a low fre-
quency (static) and higher frequency processes there is always
one location where the energy input/output reaches maximum.
In addition, it is shown that for a dynamic vibrational loading
the energy input/output is extremely sensitive to the operating
frequency. If the operating frequency is below the systems
resonant frequency, (corresponding to the length and position
of the patches), the best location for maximum energy in-
put/output is drastically different from the best location when
the operating frequency is just above the systems resonant fre-
quency. In other words, if the systems operating frequency is
close to the resonant frequency the composite does not neces-
sarily generate maximum energy imput/output. Depending on
the length of the piezoelectric patches the maximum energy
output can be achieved if the operating frequency is just under
or just above the corresponding resonance frequency.

The discussion carried out for energy harvesting can be
extended for sensing and actuating coefficients. In particu-
lar the first term in brackets in (13) can be used for inves-
tigating the structure for sensing properties. In order words

Qs(t) =
∂U(t)
∂V0(t)

∣∣∣∣
q0=0

describes the structure as a sensor. On

the other hand the middle term in (8) with the coefficient
Q2 can be used for investigating the system as an actuator(

Qa(t) =
∂U(t)
∂q0(t)

∣∣∣∣
E0=0

)
. The numerical calculations have

been carried our for sensing and actuating properties as well.
As expressions (9) and (10) for the sensing and actuating coef-
ficients Q1 and Q2 suggest, the results are qualitatively similar
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to those for the harvesting coefficient Q3 in (11) and the same
discussion can be applied to sensing and actuating properies
of the structure.
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