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We consider two measures of entanglement, the logarithmic negativity and the entanglement
entropy, between regions of space in excited states of many-body systems formed by a finite
number of particle excitations. In parts I and II of the current series of papers, it has been shown
in one-dimensional free-particle models that, in the limit of large system’s and regions’ sizes, the
contribution from the particles is given by the entanglement of natural qubit states, representing
the uniform distribution of particles in space. We show that the replica logarithmic negativity
and Rényi entanglement entropy of such qubit states are equal to the partition functions of
certain graphs, that encode the connectivity of the manifold induced by permutation twist
fields. Using this new connection to graph theory, we provide a general proof, in the massive free
boson model, that the qubit result holds in any dimensionality, and for any regions’ shapes and
connectivity. The proof is based on clustering and the permutation-twist exchange relations,
and is potentially generalisable to other situations, such as lattice models, particle and hole
excitations above generalised Gibbs ensembles, and interacting integrable models.
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1 Introduction

The study of entanglement measures in many-body systems, such as the entanglement entropy
[1] and the logarithmic negativity [2, 3, 4, 5, 6, 7], has led to many universal results, showing
that entanglement encodes in a natural fashion fundamental aspects of quantum states at large
scales [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] (see also [24, 25, 26])).

Early results identified partition functions on certain Riemann surfaces in conformal field
theory (CFT) as playing a fundamental role in the calculation of the von Neumann entanglement
entropy of one-dimensional systems via the replica trick [8, 9, 13]. In a modern language, such
partition functions give the nth Rényi entropy. This concept was later generalised to massive
quantum field theory (QFT) [14], where branch-point twist fields were identified, twist fields
associated with cyclic permutation symmetries of models composed of n independent copies.
It is known that permutation twist fields of the n-copy replica model generate the Riemann
surface connectivity [27, 28]. The same idea also holds in spin chains and quantum lattices of
any dimensionality [29], where, likewise, “permutation twists” are involved, which are products
of permutation operators on strings or higher-dimensional regions in the chain or lattice. Similar
ideas can be used to evaluate the logarithmic negativity [21, 22].
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Partition functions on Riemann surfaces and branch-point twist fields have been used to
obtain many results concerning the entanglement structure of vacuum states. Recently, attention
has been given to the entanglement contribution of excitations above the vacuum, the increment
of entanglement, as a probe for the nature of quantum excitations. This was first investigated
in low-lying excitations of CFT [19, 20]. Excitations in massive QFT are generically believed
to be of quite a different nature to low-lying states in CFT, having quasiparticle properties. In
the first parts of this series of papers [30, 31, 32], we argued that the entanglement offers a clear
indication of the quasiparticle nature of massive excitations and of excitations with small de
Broglie’s wavelengths.

In excited states formed of a finite number of quasiparticle excitations, in the limit where
the system’s and regions’ volumes are large, the increment of Rényi entanglement entropies due
to the quasiparticles equates the entanglement entropy of certain “quasiparticle qubit states”,
where qubits associated to the interior and exterior of the entanglement regions represent the
presence or not of quasiparticles there, and amplitudes, their uniform distribution in space. This
was proven [31] for connected entanglement regions in the one-dimensional relativistic massive
free boson and in the free Majorana fermion, using the form factor expansions of branch-point
twist fields developed in [14] and the finite-volume form factor theory developed in [33, 34]. It
was also numerically verified in higher dimensions and shown in certain states of interacting
models [30]. The result is thus expected to be quite general. The idea of the result – identifying
entanglement measure’s increments with that of qubit states – was also shown to hold for the
“replica logarithmic negativity” in the one-dimensional massive free boson and for the Rényi
entropies of multiple disconnected regions [32], again from a form factor analysis.

The goal of this paper is twofold. First, we show that the replica logarithmic negativity
and Rényi entanglement entropy in quasiparticle qubit states are equal to partition functions,
or generating functions, of certain families of graphs. These are weighted sums of graphs sat-
isfying certain conditions, related to the connectivity of the (abstract) manifold induced by the
permutation-twist representation of the entanglement measures. This works for arbitrary com-
binations of permutation twists, which might not have an immediate entanglement-measure
interpretation.

Second, we show that the results of [30, 31, 32] for the replica logarithmic negativity and
Rényi entanglement entropy are valid in free bosonic quantum field theory of any dimension,
and with regions of any shape and connectivity. The proof is based on the result on graph
partition functions, and uses a very different approach from that of form factors. Instead, it
uses the expression of many-particle excited states in terms of local operators, and the basic
exchange relations of permutation twists and clustering properties. Again, the proof makes a
number of generalisations immediate, for instance to other combinations of permutation twists
and perhaps to their descendants, to other quasiparticle excitations such as the particle and hole
excitations above thermal or generalised Gibbs ensembles [35] as considered in free models in
[36, 37, 38], and, potentially, to interacting integrable models.

For completeness, we provide here the general statement concerning the graph partition
functions. We consider the graph partition function associated to a certain combination of
permutation twists in the system’s manifold M, and to a certain set of particles’ momenta. For
m,m′ ∈ {1, . . . , n}, we denote by Rm,m′ ⊂M the total region where the permutations connect
copy m to m′. In the expressions of the qubit states, the volumes are only involved through the
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ratios of volumes Rm,m′ = Vol(Rm,m′)/Vol(M) via the uniform-distribution interpretation, see
for instance (7) below. The graphs satisfy the following rules.

• The graphs are composed of two disjoint finite sets of vertices of equal cardinality.

• Each vertex is characterised by a copy label and a particle label, each copy being repre-
sented an equal number of times in both sets, and each particle being an equal number of
times in each copy.

• Each edge of the graph connects one vertex in a set to one in the other. Therefore there
is no link between vertices in the same set.

• All vertices are connected exactly once. Therefore there is no unpaired vertex.

• Only vertices with labels of particles which have equal momenta can be connected.

• Every edge connecting copy m to m′ contributes to the evaluation of a graph g a factor
Rm,m′ .

Figure 1: The three building blocks for all connection rules in G1,n. The dots represent excita-
tions. The connectivity of the particular entanglement measures considered dictates that these
can only be connected horizontally or diagonally to another dot in the previous or the next row.
In a generic graph (for k = 1), the number of dots in each column is n and each dot on the left
must be connected to a single dot on the right. Since only three types of link exist, this restricts
the number of contributing graphs. The rules are analogous for Gk,n, but in this case we have k
copies of this structure which we may represent by having dots of different colours. Then each
dot on the left is connected to a dot on the right corresponding to the same copy number but
possibly different k (colour), see e.g. Fig. 4.

That is, the graph partition function is∑
g

∏
m,m′

(Rm,m′)
Nm,m′ (g) , (1)

where the power Nm,m′(g) is the number of edges connecting copies m to m′ in the graph g.
In the present paper, for clarity we concentrate on entanglement measures, so that only cyclic
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permutations are involved, with m = m′ + ` and ` ∈ {1, 0,−1}; however the above general
statement will be clear from the proofs.

The paper is organised as follows. In section 2 we state and prove the connection between
replica negativity and Rényi entanglement entropy of quasiparticle qubit states and graph par-
tition functions. In section 3 we show the general result in a free bosonic quantum field theory
of arbitrary dimension. We conclude, and briefly discuss some generalisations, in section 4. In
appendix A we analyse some examples of the replica logarithmic negativity and the correspond-
ing graph representation. In appendix B we reproduce the analytic result of the single particle
replica negativity presented in [32] through a recursion relation of the graph partition function.

2 Graph partition functions for qubit entanglement

2.1 Definitions and main statement

2.1.1 Graphs

Consider the family of graphs described above (1) in the introduction. As mentioned, we spe-
cialise it to the cases which are of immediate use to the evaluation of the replica logarith-
mic negativity and the Rényi entanglement entropy, giving a precise definition for these cases.
Throughout, for every m ∈ N we denote Im = {1, . . . ,m}.

Let k ∈ N and n ∈ N. With respect to the description above (1), k is the number of particles,
assuming they all have equal momenta, and n is the number of copies. Consider the set Gk,n of
all graphs as follows. They are formed by the 2kn vertices V = {V ε

j,m : j ∈ Ik, m ∈ In, ε ∈ {l, r}}
– two sets, “left” and “right”, of kn vertices – and kn edges. The edges join left to right vertices,
and are within the set E = E1 ∪ E0 ∪ E−1 formed by the union of E` = {(V l

j,m, V
r
j′,m+`) : j, j′ ∈

Ik, m ∈ In} (under the identification V l,r
j,n+1 = V l,r

j,1 , V l,r
j,0 = V l,r

j,n), with the rule that each vertex
must be attached to one and only one edge. Note that if n = 2, then E1 = E−1, and thus in this
case E = E1 ∪ E0. For a graph g ∈ Gk,n, denote by N`(g), ` ∈ {1, 0,−1} the number of edges of
the graph that are in E`. We define the following polynomial in three variables r1, r0, r−1, the
partition function of Gk,n,

pk,n(r1, r0, r−1) =
∑

g∈Gk,n

·


∏

`∈{1,0,−1}

r
N`(g)
` (n > 2)

r
N0(g)
0 (r1 + r−1)N1(g) (n = 2).

(2)

Note that for n = 2, it is the sum r1 + r−1 that is raised to the power of the number of edges in
E1 = E−1.

Below we make the precise connection with entanglement measures and permutation twists.
Let us mention already that (2) agrees with (1), if the permutation-twist configuration is such
that on a region of volume ratio r1, every copy m permutes to m+ 1 mod n, on a distinct region
of volume ratio r0, every copy m permutes to m (identity element), and on a still distinct region
of volume ratio r−1, every copy m permutes to m− 1 mod n. Making the connection with (1),
with n > 2 we have Rm,m+` = r` with n = 2 we have R1,1 = r0, R1,2 = R2,1 = r1 + r−1, and in
all cases N`(g) =

∑
mNm,m+`(g).
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We will also consider the subset G′k,n ⊂ Gk,n, composed of all graphs where all edges lie
within the set E1 ∪ E0, with labels ` = 0, 1. This is a strict subset only if n > 2. Its partition
function is the following polynomial in two variables r1, r0:

pk,n(r1, r0, 0) =
∑

g∈G′k,n

∏
`∈{1,0}

r
N`(g)
` . (3)

2.1.2 Replica negativity and entanglement entropy

We now define more precisely the entanglement measures we consider.
Consider the Hilbert space H = L2(N3

0) (where N0 = {0, 1, 2, . . .}). Let us consider the
orthonormal basis {|k〉 : k = (k1, k0, k−1) ∈ N3

0}. This orthonormal basis naturally extracts the
structure H = H1 ⊗ H0 ⊗ H−1, with H` ' L2(N0), ` ∈ {1, 0,−1} all isomorphic to each other
(and to H), whose orthonormal bases are naturally chosen as {|k`〉 : k` ∈ N0}. On the subspace
H1,−1 = H1⊗H−1, we define as usual the partial transpose of an operator A ∈ End(H1⊗H−1)
by 〈k1, k−1|AT−1 |k′1, k′−1〉 = 〈k1, k

′
−1|A|k′1, k−1〉. On H, we also define, as usual, the partial

trace TrH0 : H → H1,−1 of a trace-class operator B ∈ End(H) by 〈k1, k−1|TrH0(B)|k′1, k′−1〉 =∑∞
k0=0〈k1, k0, k−1|B|k′1, k0, k

′
−1〉.

Using these, the “n-replica logarithmic negativity” E |ψ〉n of tensor factors H1 and H−1 in the
state |ψ〉 ∈ H (with 〈ψ|ψ〉 = 1) is defined as follows:

exp
[
E |ψ〉n

]
= TrH1,−1

[((
TrH0(|ψ〉〈ψ|)

)T−1
)n]

. (4)

The logarithmic negativity provides a partial measure of the entanglement between H1 and H−1

[2, 3, 4, 5, 6, 7] and its replica version was first proposed in [21, 22]. The logarithmic negativity

can be obtained as the unique analytic continuation of E |ψ〉2m from integer values of m to the value
1/2, under appropriate specifications on its analytic structure as a function of m.

The Rényi entanglement entropy can be defined as a special case of the n-replica negativity.
The Rényi entanglement entropy between tensor factors H1 and H0 in a vector |ψ〉′ ∈ H1 ⊗H0

is simply obtained using the replica negativity of the vector |ψ〉′ ⊗ |0〉 (or any such factorised
vector in H) as follows:

S|ψ〉
′

n =
E |ψ〉

′⊗|0〉
n

1− n
. (5)

In this factorised case, the trace on tensor factor H−1 is trivial, and we obtain

exp
[
(1− n)S|ψ〉

′
n

]
= TrH1

[(
TrH0(|ψ〉′ ′〈ψ|)

)n]
. (6)

2.1.3 Qubit states

We next specify the specific states in H whose entanglement measures give graph partition
functions.

For k ∈ N and r1, r0, r−1 ∈ [0, 1] with r1 + r0 + r−1 = 1, we define the vector

|Ψk(r1, r0, r−1)〉 =
∑

k=(k1,k0,k−1)∈N30
k1+k0+k−1=k

√
k!rk11 r

k0
0 r

k−1

−1

k1!k0!k−1!
|k〉 ∈ H . (7)
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Note that this vector is normalised:

〈Ψk(r1, r0, r−1)|Ψk(r1, r0, r−1)〉 =
∑

(k1,k0,k−1)∈N30
k1+k0+k−1=k

k!rk11 r
k0
0 r

k−1

−1

k1!k0!k−1!
= (r1 + r0 + r−1)k = 1 . (8)

This vector represents the “qubit state” for a flat distribution of k indistinguishable particles
amongst three complementary regions labelled by ` ∈ {1, 0,−1}, which have lengths r` adding
to 1. The vector |k〉 is associated with the presence of k` particles in region `, and the square

of the coefficient, the number
k!r

k1
1 r

k0
0 r

k−1
−1

k1!k0!k−1! , with k1 + k0 + k−1 = k, is the associated probability
that this configuration occurs if we were to place randomly and independently, with uniform
distribution, k particles on the interval [0, 1] covered by three non-intersecting subintervals of
lengths r1, r0, r−1.

In the case where r−1 = 0, then the distribution of the particles is over two non-intersecting
regions labelled ` ∈ {1, 0}. The resulting vector is of the form

|Ψk(r1, r0, 0)〉 = |Ψk(r1, r0)〉′ ⊗ |0〉 . (9)

2.1.4 Theorems

In [32] the following formulae for the n-replica logarithmic negativity and the Rényi entropy of
the state |Ψk(r1, r0, r−1)〉 were proven, starting with the state (7):

Theorem 2.1. Let k ∈ N, n ∈ N and r1, r0, r−1 ∈ [0, 1] with r1 + r0 + r−1 = 1. Then

exp
[
E |Ψk(r1,r0,r−1)〉
n

]
=

k∑
p=−k

[n
2

(k−p)]∑
σ=max(0,−np)

Ap,σrnp+σ1 r
n(k−p)−2σ
0 rσ−1 . (10)

The coefficients Ap,σ are

Ap,σ =
∑

{k1,...,kn}∈Pn(σ)

n∏
j=1

k!

(p+ kj)!(k − p− kj+1 mod n − kj)!kj+1 mod n!
, (11)

where Pn(σ) represents the set of integer partitions of σ into n non-negative parts, and by
convention the product is set to zero whenever any argument of the factorials is negative. Further,

exp
[
(1− n)S|Ψk(r1,r0)〉′

n

]
=

k∑
j=0

(
k!

j!(k − j)!
rj1r

k−j
0

)n
. (12)

Note that if n is even, n = 2m with m ∈ N, then (10) can be written in a more symmetric
fashion,

exp
[
E |Ψk(r1,r0,r−1)〉

2m

]
=

k∑
p=−k

mk∑
σ=|mp|

Ap,σ−mpr
σ+mp
1 r

2(mk−σ)
0 rσ−mp−1 . (13)
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Note also that the case r−1 = 0 of (10) immediately gives (12).
The main goal of this section is to prove the following theorem: The n-replica negativity of

the state |Ψk(r1, r0, r−1)〉 is proportional to the polynomial (2) up to a simple numerical factor;
entanglement is thus related to the combinatoric problem of counting the graphs Gk,n, and this
counting problem leads to the explicit formula (10). The precise mathematical statement is:

Theorem 2.2. Let k ∈ N, n ∈ N and r1, r0, r−1 ∈ [0, 1] with r1 + r0 + r−1 = 1. Then

exp
[
E |Ψk(r1,r0,r−1)〉
n

]
=
pk,n(r1, r0, r−1)

(k!)n
, (14)

and

exp
[
(1− n)S|Ψk(r1,r0)〉′

n

]
=
pk,n(r1, r0, 0)

(k!)n
. (15)

We note that, again, (15) immediately follows from (14) using (5) and (9), hence below we
only prove (14).

2.2 Proof

In this section we will use the notation k
(j)
` where j is the replica number, and for notational

convenience, we make the identifications

k
(0)
` ≡ k

(n)
` , k

(n+1)
` ≡ k(1)

` . (16)

In order to show Theorem 2.2, we show two lemmas.

2.2.1 Permutation twists

First, we re-write the n-replica logarithmic negativity in terms of a quantum average, in the
state represented by |ψ〉⊗n on the n-replica Hilbert space H⊗n, of a particular product of per-
mutation operators, permuting the copies and acting on the individual tensor factors H` – these
are the permutation twists. For the entanglement measures, it is sufficient to consider cyclic
permutations. We define the operators P±` for ` ∈ {1, 0,−1}, acting on H⊗n as

Pε
`

n⊗
j=1

|k(j)
1 , k

(j)
0 , k

(j)
−1〉 =

n⊗
j=1

|k(j−εδ1,`)
1 , k

(j−εδ0,`)
0 , k

(j−εδ−1,`)
−1 〉, ε ∈ {+,−} , (17)

where
⊗n

j=1 |k
(j)〉 = |k(1); . . . ; k(n)〉 ∈ H⊗n, and with the identifications (16). These operators

perform cyclic permutations of the n copies of the individual tensor factors H`; with ε = +

(−), they shift them rightwards (leftwards). With the notation that the operator O(j)
` acts

nontrivially only on the jth tensor factor of H⊗n, and on this factor, nontrivially only on the
tensor factor H` of H, as O ∈ End(H`), the permutation operators satisfy the exchange relations

Pε
`O

(j)
`′ =

{
O(j+ε)
`′ Pε

` (` = `′)

O(j)
`′ Pε

` (` 6= `′)
. (18)

The following holds:

8



Lemma 2.3. Let |ψ〉 ∈ H with 〈ψ|ψ〉 = 1. Then

exp
[
E |ψ〉n

]
= ⊗n〈ψ|P+

1 P−−1|ψ〉
⊗n . (19)

Let |ψ〉′ ∈ H1 ⊗H0. Then

exp
[
(1− n)S|ψ〉

′
n

]
= ⊗n ′〈ψ|P+

1 |ψ〉
′⊗n , (20)

where by a slight abuse of notation, P+
1 is the natural restriction to End(H1 ⊗H0).

Proof. The proof is obtained by a direct evaluation of both sides. From [32, Eq 3.20], writing
|ψ〉 =

∑
k∈N3

0
ck|k〉, we have

exp
[
E |ψ〉n

]
=

∑
{k(j)
`
∈N0:

`∈{1,0,−1},j∈In}

n∏
j=1

c
k
(j+1)
1 ,k

(j)
0 ,k

(j)
−1

c∗
k
(j)
1 ,k

(j)
0 ,k

(j+1)
−1

, (21)

with the convention (16). This gives the left-hand side of (19). On the other hand, we have

P+
1 P−−1|ψ〉

⊗n =
∑

{k(j)
`
∈N0:

`∈{1,0,−1},j∈In}

n∏
j=1

c
k
(j)
1 ,k

(j)
0 ,k

(j)
−1

n⊗
j=1

|k(j−1)
1 , k

(j)
0 , k

(j+1)
−1 〉 , (22)

which gives rise to

⊗n〈ψ|P+
1 P−−1|ψ〉

⊗n =
∑

{k(j)
`
∈N0:

`∈{1,0,−1},j∈In}

n∏
j=1

c
k
(j+1)
1 ,k

(j)
0 ,k

(j)
−1

c∗
k
(j)
1 ,k

(j)
0 ,k

(j+1)
−1

, (23)

showing the first part of the lemma. The second part is obtained immediately by using (5).
Lemma 2.3 makes it clear that, despite the partial transpose used in the definition of the n-

replica negativity, the result is invariant under unitary transformations of the individual tensor
factors of H (this is a well-known fact):

Corollary 2.4. The n-replica negativity is invariant under unitary transformations of its fac-

tors, E |ψ〉n = EU1U0U−1|ψ〉
n for any unitary U` acting nontrivially on H`.

2.2.2 Fock space representation

Second, we establish using (19), for rational values of r`, a representation of the replica loga-
rithmic negativity of the state |ψ〉 = |Ψk(r1, r0, r−1)〉, as that of a new state in a Fock space
representing particles on a chain. The Fock-space state is the kth power of a uniform sum, over
all positions of the system, of position-labelled particle creation operators, representing the idea
that particles are uniformly distributed in space. This makes the interpretation of the quasi-
particle qubit state (7) clearer, and will directly lead, by the exchange relation (18) and Wick’s
theorem, to the graph partition functions (2).
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Let L ∈ N, set X−2 = 0 and X1 = L, and let X−1, X0 ∈ {1, . . . , L} such that X`−1 < X`

for ` = −1, 0, 1. Consider the non-intersecting subsets R` = {X`−1 + 1, . . . , X`} for ` = −1, 0, 1,
which have cardinalities L` = |R`| = X` −X`−1 summing to L1 + L0 + L−1 = L. Set

r` =
L`
L
, ` = −1, 0, 1. (24)

Construct the Fock space F with the canonical commutation relations for the operators ax, ay ∈
End(F), x, y ∈ {1, . . . , L},

[ax, a
†
y] = δx,y, [ax, ay] = [a†x, a

†
y] = 0, x, y ∈ {1, . . . , L} , (25)

and with the vacuum |0〉〉 satisfying ax|0〉〉 = 0 ∀x. This factorises as F = F1⊗F0⊗F−1 into Fock

spaces F` for the generators {ax, a†x : x ∈ R`}. As any two countable-dimensional Hilbert spaces
are isomorphic, we have isomorphisms F` ' H` for ` = −1, 0, 1, and therefore F ' H. Let us
denote one such isomorphism by φF : F → H, with φF (F`) = H`. We define the permutation
twists

Pε,F
` := φ−1

F ◦Pε
` ◦ φF (26)

on F⊗n. This acts, in the natural way, by permutation of the copies on the individual tensor
factors F`, and is independent of the choice of φF . Then, following Lemma 2.3, for any |ψ〉〉 ∈ F ,
we define the n-replica logarithmic negativity on F by1

exp
[
E |ψ〉〉n

]
= ⊗n〈〈ψ|P+,F

1 P−,F−1 |ψ〉〉
⊗n . (27)

Let

|Ψk(r1, r0, r−1)〉〉 =
1√
k!Lk

( ∑
x∈{1,...,L}

a†x

)k
|0〉〉 ∈ F . (28)

Writing
∑

x∈{1,...,L} =
∑

x∈R1
+
∑

x∈R2
+
∑

x∈R3
, one can regroup the terms in the following

way:

|Ψk(r1, r0, r−1)〉〉 =
1√
k!Lk

∑
k1,k0,k−1∈{0,...,k}
k1+k0+k−1=k

k!

k1!k0!k−1!

∏
`∈{1,0,−1}

( ∑
x∈R`

a†x

)k`
|0〉〉

=
∑

k1,k0,k−1∈{0,...,k}
k1+k0+k−1=k

√
k!r1!r2!r3!

k1!k0!k−1!

∏
`∈{1,0,−1}

1√
k`!L

k`
`

( ∑
x∈R`

a†x

)k`
|0〉〉 . (29)

We see that this has the structure of the vector |Ψk(r1, r0, r−1)〉 defined in (7). This allows us to
show the following lemma, which makes the correspondence explicit. Via this correspondence,
the nontrivial combinatoric factors in (29) are seen explicitly to occur, using the expression (28),
from a uniform distribution of particles in space. This is what will lead, in paragraph 2.2.3, to
the proof of the relation with graph partition functions.

1By a slight abuse of notation, we use the same symbol for the replica negativity, the difference being in the
symbol used for the vector, which specifies the space in which it lies.
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Lemma 2.5.
E |Ψk(r1,r0,r−1)〉
n = E |Ψk(r1,r0,r−1)〉〉

n . (30)

Proof. In F`, construct the vectors

|k`〉〉` =
1√
k`!L

k`
`

( ∑
x∈R`

a†x

)k`
|0〉〉 =

∑
x1,...,xk`∈R`

(∏
j∈Ik`

a†xj

)
|0〉〉√

k`!L
k`
`

∈ F` .

These are orthonormal, `〈〈k`|k′`〉〉` = δk`,k′` . Construct the following vectors in F :

|k1, k0, k−1〉〉 = |k1〉〉1 ⊗ |k0〉〉0 ⊗ |k−1〉〉−1 ∈ F , (31)

which are also orthonormal 〈〈k1, k0, k−1|k′1, k′0, k′−1〉〉 = δk1,k′1δk0,k′0δk−1,k′−1
. Finally, consider the

subspace
V = span

(
|k1, k0, k−1〉〉 : k1, k0, k−1 ∈ N0

)
⊂ F . (32)

Clearly, there is an isomorphism from V onto H, which can be explicitly written as

φV : V → H
|k1, k0, k−1〉〉 7→ |k1, k0, k−1〉 .

(33)

We define Pε,V
` , the permutation twists on V, in a similar way to (26), using, say, the isomorphism

φV . Clearly, from this definition, Pε,V
` |ψ〉〉

⊗n = Pε,F
` |ψ〉〉

⊗n for all |ψ〉〉 ∈ V. Therefore,

exp
[
E |ψ〉n

]
= ⊗n〈ψ|P+

1 P−−1|ψ〉
⊗n = ⊗n〈ψ|φVP+,V

1 P−,V−1 φ
−1
V |ψ〉

⊗n = ⊗n〈ψ|φVP+,F
1 P−,F−1 φ−1

V |ψ〉
⊗n

= exp
[
E |ψ〉〉n

]
, |ψ〉〉 = φ−1

V |ψ〉 ∈ V ⊂ F . (34)

Finally, as is clear from (29),

φ−1
V |Ψk(r1, r0, r−1)〉 = |Ψk(r1, r0, r−1)〉〉. (35)

This shows the lemma.

2.2.3 Proof of theorem 2.2

We use Lemma 2.5 along with (28) and write

exp
[
E |Ψk(r1,r0,r−1)〉
n

]
= ⊗n〈〈Ψk(r1, r0, r−1|P+,F

1 P−,F−1 |Ψk(r1, r0, r−1〉〉⊗n . (36)

The right-hand side is, explicitly,

1

(k!)nLkn

( ∑
y1,...,yk∈IL

〈〈0|
∏
j∈Ik

ayj

)⊗n
P+,F

1 P−,F−1

( ∑
x1,...,xk∈IL

∏
i∈Ik

a†xi |0〉〉
)⊗n

. (37)

Let us denote by apy and
[
amx
]†

the annihilation and creation operators on copy p,m ∈ {1, . . . , n}.
Using the exchange relation (18) and the invariance of the state |0〉〉⊗n under permutations, we
pass the creation operators to the left of the permutation operators and obtain

1

(k!)nLkn

∑
{yj,p∈IL}

∑
{xi,m∈IL}

〈〈0|
∏

j∈Ik, p∈In

apyj,p

∏
i∈Ik,m∈In

[
a
m+χ(xi,m∈R1)−χ(xi,m∈R−1)
xi,m

]†
|0〉〉 , (38)
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where χ(c) is the indicator function for condition c, that is 1 if c is true and 0 otherwise. We
evaluate this expression by Wick’s theorem. Accordingly, the quantity∑

{yj,p∈IL}

∑
{xi,m∈IL}

〈〈0|
∏

j∈Ik, p∈In

apyj,p

∏
i∈Ik,m∈In

[
a
m+χ(xi,m∈R1)−χ(xi,m∈R−1)
xi,m

]†
|0〉〉 , (39)

is a sum of Wick terms, each term being a product of Wick contractions between creation and
annihilation operators, which simply evaluates to 1. We organise this sum as follows. Recall
subsection 2.1.1 where we introduced the graphs in Gk,n. We identify each pair j, p of labels
in the product

∏
j∈Ik, p∈In a

p
yj,p with the vertex V r

j,p in V; and likewise we identify each pair

i,m of labels in the product
∏
i∈Ik,m∈In

[
a
m+χ(xi,m∈R1)−χ(xi,m∈R−1)
xi,m

]†
with the vertex V l

j,p in V.

We also identify each Wick contraction in a Wick term with an edge between these vertices.
Thus each Wick term is unambiguously a graph with edges connecting vertices in V. There

is a contraction between apyj,p and
[
a
m+χ(xi,m∈R−1)−χ(xi,m∈R1)
xi,m

]†
if and only if yj,p = xi,m and

p = m + χ(xi,m ∈ R1)− χ(xi,m ∈ R−1). Therefore, either p = m, or p = m + 1, or p = m− 1.
There are no other contractions. Hence, each edge is in E1∪E0∪E−1 (and p = m+` corresponds
to an edge in E`), as illustrated by Fig. 1. Further, by Wick’s theorem, every vertex is the end-
point of one and only one edge. Therefore, each Wick term is identified with a graph in Gn,k,
and each such term evaluates to 1.

We now need to count how many times N(g) a given graph g ∈ Gn,k occurs in the sum of
Wick terms; then the result is written as∑
{yj,p∈IL}

∑
{xi,m∈IL}

〈〈0|
∏

j∈Ik, p∈In

apyj,p

∏
i∈Ik,m∈In

[
a
m+χ(xi,m∈R−1)−χ(xi,m∈R1)
xi,m

]†
|0〉〉 =

∑
g∈Gn,k

N(g) .

For every edge (V l
i,m, V

r
j,p), there is a factor coming from the sum over the possible values of yj,p

and xi,m leading to this edge. Because of the condition yj,p = xi,m, we only need to consider
one sum. Because of the condition p = m + χ(xi,m ∈ R1) − χ(xi,m ∈ R−1), the values of yj,p
leading to this edge are all values yj,p ∈ R0 if p = m, all values yj,p ∈ R1 if p = m + 1, and all
values yj,p ∈ R−1 if p = m− 1. Thus, if n > 2, for each edge in E`, there is a factor |R`| = L`;
and if n = 2, then for each edge in E1 = E−1, there is a factor L1 +L−1. Since there are exactly
kn edges, we obtain, for n > 2,∑
{yj,p∈IL}

∑
{xi,m∈IL}

〈〈0|
∏

j∈Ik, p∈In

apyj,p

∏
i∈Ik,m∈In

[
a
m+χ(xi,m∈R−1)−χ(xi,m∈R1)
xi,m

]†
|0〉〉 = Lkn

∑
g∈Gn,k

r
N`(g)
` ,

where we recall r` = L`/L and N`(g) is the number of edges in g that lie in E`; and thus

exp
[
E |Ψk(r1,r0,r−1)〉
n

]
=

1

(k!)n

∑
g∈Gk,n

r
N`(g)
` =

pk,n(r1, r0, r−1)

(k!)n
. (40)

For n = 2, a similar argument leads again to
pk,2(r1,r0,r−1)

(k!)2
.
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3 Entanglement of particle excitations in free bosonic quantum
field theory

3.1 Main statement

Consider the massive free boson of mass m on the hypertorus M = ×dj=1[0, Lj ] ⊂ Rd of dimension
d ≥ 1 (space-time having dimension d + 1). For simplicity we assume that there is some UV
regularisation, for instance a harmonic lattice. We will not need to specify any particular
regularisation, since the derivation holds true as long as the general properties stated below
remain valid. This in fact serves to illustrate the generality of the method, beyond the realm of
UV-completed field theory.

We denote by λM the hypertorus scaled by the factor λ > 1. Consider two non-intersecting
open subsets R1, R−1 ⊂ M, of any connectivity, and similarly denote by λR1 and λR1 the
scaled subsets of λM. For simplicity of the argument, we assume that the regions R1, R−1 have
piecewise smooth boundaries.

It is a simple matter to construct the vacuum state |vac〉 and multi-particle excited states
|p1, . . .pk〉 in this theory via the Fock space H over the canonical algebra of annihilation and

creation operators Ap and A†p at momenta p ∈ Λd ⊂ Rd. The momenta are quantised to the
square lattice Λd = ×dj=1(2πL−1

j Z), and on λM they are quantised to λ−1Λd. We have

[Ap, A
†
p′ ] = δp,p′ , Ap|vac〉 = 0, |p1, . . .pk〉 = A†p1

· · ·A†pk |vac〉 . (41)

These operators can be written in terms of the Klein-Gordon field Φ(x) and its canonical con-
jugate Π(x) as

Ap =
1√

Vol(M)

∫
M

ddx e−ip·xOp(x) , (42)

where

Op(x) =
EpΦ(x) + iΠ(x)√

2Ep

, (43)

with Ep the energy. In the relativistic boson, it obeys the relativistic dispersion relation Ep =√
m2 + p2, but this is not necessary for the proof; other dispersion relations, such as that from

the harmonic lattice, can be used. All states are normalised to 1.

We are interested in the increment of entanglement between two regions due to the presence of
a finite number of particles. Thus we would like to evaluate the difference of replica logarithmic
negativities, and of Rényi entropies, between a k-particle state and the vacuum |vac〉. The
clearest way to define the replica entanglement negativity and the Rényi entanglement entropy
in QFT is to use their general expressions in terms of permutation twists, shown in Lemma 2.3.
We simply identify the tensor factors H` with the spaces of field configurations on the regions
R`, ` ∈ {1,−1}; in general we will denote by Pε(R) the permutation twists associated to the
tensor factors of field configurations supported on R. As we have assumed that there is some UV
regularisation, no divergence occurs in averages of such permutation twists. In 1+1-dimensional
quantum field theory, Pε(R) is the product of appropriate branch-point twist fields positioned
at the boundary points of R [13, 14].
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Consider a set of momenta p = {p1, . . . ,pk} with pj ∈ Λd. We wish to evaluate, in an
appropriate limit, the following replica logarithmic negativity and Rényi entropy increments,

exp
[
∆E |p〉n (R1,R−1;M)

]
=

⊗n〈p|P+(R1)P−(R−1)|p〉⊗n
⊗n〈p|p〉⊗n ⊗n〈vac|P+(R1)P−(R−1)|vac〉⊗n

, (44)

and

exp
[
(1− n)∆S|p〉n (R1;M)

]
=

⊗n〈p|P+(R1)|p〉⊗n
⊗n〈p|p〉⊗n ⊗n〈vac|P+(R1)|vac〉⊗n

, (45)

respectively.

In order to study these objects, we need some facts about the permutation twists in the
n-copy massive free boson.

The main properties of the operators Pε(R`) are the exchange relations (18), which here can
be written

Pε(R`)O(j)(x) =

{
O(j+ε)(x)Pε(R`) (x ∈ R`)

O(j)(x)Pε(R`) (x ∈M \R`) .
(46)

In this notation, O(j)(x) is defined by acting nontrivially only on the jth tensor factor of H⊗n,
and on this factor, it acts as the local operator O(x) ∈ End(H) positioned at x ∈M. The set of
fields formed by O(j)(x) with O(x) ∈ {1, Op(x),Op(x)† : p ∈ Λd, x ∈ M} and their products
spans a dense subset of End(H)⊗n.

Because the theory has nonzero mass, all correlation functions of local operators factorise
into products of correlation functions exponentially fast with the distance between operators.
Something similar is expected (and verified in one dimension) to hold for the permutation
operator. Let us express some of these clustering properties more precisely, in a way that is
convenient for the proof below.

Consider the normalised correlation function

P〈O
(j1)
p1 (x1) · · · O(jk)

pk (xk)〉P =
⊗n〈vac|O(j1)

p1 (x1) · · · O(jk)
pk (xk)P

+(R1)P−(R−1)|vac〉⊗n
⊗n〈vac|P+(R1)P−(R−1)|vac〉⊗n .

.

The insertion of permutation operators is seen as changing the state (the measure) over which
we take the average2.

The first expected clustering property is that, when the points xj are far from the boundaries
of the regions ∂R1 and ∂R−1, we recover the vacuum state. That is, for every k ≥ 1 and every
set {p1, . . . ,pk} of elements of Λd, there exists a function U(x1, . . . ,xk) > 0 and a number
V > 0 such that for every set {x1, . . . ,xk} of elements of M, and for every regions R1 and R−1

as described above,∣∣∣P〈O(j1)
p1 (x1) · · · O(jk)

pk (xk)〉P − ⊗n〈vac|O(j1)
p1 (x1) · · · O(jk)

pk (xk)|vac〉⊗n
∣∣∣

< U(x1, . . . ,xk) exp
[
− V dist({xi : i ∈ Ik}, ∂R1 ∪ ∂R−1)

]
. (47)

2By cyclic permutation invariance of both the permutation twists and the n-copy vacuum state, we may put the
permutation twists on the left or on the right, without changing the result. Therefore, the state still is real-valued
on hermitician operators.
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This clustering at large distance between the points xi and the boundary of the regions R1 and
R−1 indicates that the operator P+(R1)P−(R−1) is essentially supported on ∂R1∪∂R−1. This
is expected, as the cyclic permutation of copies is a symmetry of the n-copy QFT, and thus
P+(R1)P−(R−1) is a twist operator supported on the boundary of the permutation region.

Second, the function U(x1, . . . ,xk) can also be bounded. This is because we expect the new
state P〈· · ·〉P, like the vacuum, to still satisfy the clustering property of local fields. The initial
observation is that, if the points xi are all very far from each other, the normalised correlation
function factorises into the averages, in this new state, of each local observable. By the Z2

symmetry of the Klein-Gordon theory, acting as Op(x) 7→ −Op(x) and preserving the vacuum
and the permutation operators, the result vanishes. This vanishing is also exponential. We then
conclude that the only way not to have a vanishing result is if for every i ∈ Ik there exists
a j ∈ Ik such that dist(xi,xj) is finite, so that clustering occurs in groups of local fields with
nonzero averages. In order to bound the resulting exponential decay due to these various groups,
we can simply sum over every minimal distance between a point xi and the rest. Hence there
exists a U0 > 0 and W > 0 such that

U(x1, . . . ,xk) < U0 exp
[
−W

∑
i∈Ik

dist
(
xi, {xj : j ∈ Ik \ {i}}

)]
, (48)

for all {xi ∈M}.
Using these properties, we show the following, which gives results for the replica logarithmic

negativity increment for the entanglement between the scaled regions λR1 and λR−1, and the
Rényi entanglement entropy increment for the entanglement between the scaled regions λR1

and λM \ λR1, in the limit where the scaling λ tends to infinity.

Theorem 3.1. Let p = {p1, . . . ,pk} with pj ∈ Rd, and denote by [pj ]λ the point in λ−1Λd that
is nearest to pj, and by [p]λ = {[p1]λ, . . . , [pk]λ}. Without loss of generality, assume that p is
formed by groups of identical momenta, p1 = . . . = pk1, pk1+1 = . . . = pk1+k2, · · · with

∑
i ki =

k, and with momenta belonging to different groups being different. Let r` = Vol(R`)/Vol(M) for
` ∈ {1,−1} and r0 = 1− r1 − r−1. Then

lim
λ→∞

∆E |[p]λ〉
n (λR1, λR−1;λM) =

∑
i

E |Ψki (r1,r0,r−1)〉
n . (49)

Let r1 = Vol(R1)/Vol(M) and r0 = 1− r1. Then

lim
λ→∞

∆S|[p]λ〉
n (λR1;λM) =

∑
i

S
|Ψki (r1,r0)〉′
n . (50)

Recall the expressions for the qubit entanglement quantities E |Ψki (r1,r0,r−1)〉
n and S

|Ψki (r1,r0)〉′
n

in Theorems 2.1 and 2.2.

3.2 Proof

We concentrate on the replica negativity; the entanglement entropy is obtained again as a special
case. The idea of the proof is to use the expression (44), where the particle states are explicitly
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written in terms of local operators as per (42). We then use the exchange relations (46) on
the local operators, and evaluate the leading large-λ behaviour using the clustering properties.
There, the expression is transformed into a vacuum expectation value, with appropriately shifted
copy indices, very similar to (39) obtained in the qubit analysis. The creation and annihilation
operators are instead local fields, but the evaluation is again by Wick’s theorem. We then analyse
the Wick contractions, finding a structure similar to that obtained by evaluating (39). Besides
the re-writing into local fields, there is one additional subtlety, as particles carry momenta. We
show that particles with different momenta, in the large-λ limit, do not Wick contract, and thus
the result factorises into groups of equal momenta. In each group, the ensuing graph analysis
goes through essentially unchanged.

Using (42),

⊗n〈[p]λ|P+(λR1)P−(λR−1)|[p]λ〉⊗n

=
1

λdknVol(M)kn

 k∏
j=1

n∏
i=1

∫
λM

ddx
(i)
j

∫
λM

ddy
(i)
j

 e−i
∑k
j=1

∑n
i=1[pj ]λ·(x

(i)
j −y

(i)
j ) ×

× ⊗n〈vac|

(
k∏
j=1

n∏
i=1

O(i)
[pj ]λ

(x
(i)
j )

)(
k∏

j′=1

n∏
i′=1

[
O

(i′+χ(y
(i′)
j′ ∈λR1)−χ(y

(i′)
j′ ∈λR−1))

[pj′ ]λ
(y

(i′)
j′ )

]†)
×

× P+(λR1)P−(λR−1)|vac〉⊗n .

The first step is to show that, in the large λ limit, the expectation in the integrand can be
factorised into a vacuum expectation value of the local observables, times that of the permutation
twists. This is done by using (47), and arguing that the integration over the bulk of the regions,
far from the boundaries ∂R1,−1, is that which dominates. We therefore consider the difference

Dλ({x(i)
j ,y

(i′)
j′ }) =

⊗n〈vac|

(
k∏
j=1

n∏
i=1

O(i)
[pj ]λ

(x
(i)
j )

)(
k∏

j′=1

n∏
i′=1

[
O

(i′+χ(y
(i′)
j′ ∈λR1)−χ(y

(i′)
j′ ∈λR−1))

[pj′ ]λ
(y

(i′)
j′ )

]†)
×

× P+(λR1)P−(λR−1)|vac〉⊗n / ⊗n〈vac|P+(λR1)P−(λR−1)|vac〉⊗n

− ⊗n〈vac|

(
k∏
j=1

n∏
i=1

O(i)
[pj ]λ

(x
(i)
j )

)(
k∏

j′=1

n∏
i′=1

[
O

(i′+χ(y
(i′)
j′ ∈λR1)−χ(y

(i′)
j′ ∈λR−1))

[pj′ ]λ
(y

(i′)
j′ )

]†)
|vac〉⊗n ,
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and, recalling (47), we have∣∣∣∣∣∣ 1

λdknVol(M)kn

 k∏
j=1

n∏
i=1

∫
λM

ddx
(i)
j

∫
λM

ddy
(i)
j

 e−i
∑k
j=1

∑n
i=1[pj ]λ·(x

(i)
j −y

(i)
j )Dλ({x(i)

j ,y
(i′)
j′ })

∣∣∣∣∣∣
<

1

λdknVol(M)kn

 k∏
j=1

n∏
i=1

∫
λM

ddx
(i)
j

∫
λM

ddy
(i)
j

 ∣∣∣Dλ({x(i)
j ,y

(i′)
j′ })

∣∣∣
< Eλ =

1

λdknVol(M)kn

k∏
j=1

n∏
i=1

(∫
λM

ddx
(i)
j

∫
λM

ddy
(i)
j

)
×

×
k∏
j=1

n∏
i=1

(
U({x(i)

j ,y
(i)
j }) exp

[
− V dist({x(i)

j ,y
(i)
j : j ∈ Ik, i ∈ In}, ∂R1 ∪ ∂R−1)

])
,

(51)

where the function U is bounded as per (48). We now show that

lim
λ→∞

Eλ = 0 . (52)

Thanks to the bound (48), the integrals over the variables x
(i)
j ’s and y

(i)
j ’s, lying on the manifold

(λM)×2kn of dimension 2dkn, are supported, with exponential accuracy, over a submanifold
which is at most of dimension dkn. Indeed, since every variable must lie near to at least one
other, one forms pairs or larger groups of nearby variables; forming pairs leads to the largest
submanifold, and the dimension of this submanifold is that of the original integration manifold
(λM)×2kn divided by 2. Further, thanks to the exponential in (51), one further restricts all
variables to lie near the boundary of R1 or R−1, thus near a submanifold of codimension 1. The
remaining integration region is therefore an effectively finite neighborhood (thanks to exponential
accuracy) of a submanifold of (λM)×2kn of dimension dkn−1. As λ→∞, this scales like λdkn−1.
Because of the factor λdkn in the denominator in (51), the result vanishes as λ→∞.

Therefore, using (47), we find

⊗n〈[p]λ|P+(λR1)P−(λR−1)|[p]λ〉⊗n
⊗n〈vac|P+(λR1)P−(λR−1)|vac〉⊗n

=
1

λdknVol(M)kn

 k∏
j=1

n∏
i=1

∫
λM

ddx
(i)
j

∫
λM

ddy
(i)
j

 e−i
∑k
j=1

∑n
i=1[pj ]λ·(x

(i)
j −y

(i)
j ) ×

× ⊗n〈vac|

(
k∏
j=1

n∏
i=1

O(i)
[pj ]λ

(x
(i)
j )

)(
k∏

j′=1

n∏
i′=1

[
O

(i′+χ(y
(i′)
j′ ∈λR1)−χ(y

(i′)
j′ ∈λR−1))

[pj′ ]λ
(y

(i′)
j′ )

]†)
|vac〉⊗n

+ O(λ−1) . (53)

The correlation function in (53) is evaluted by Wick’s theorem. Every Wick contraction between

operators O(i)
[pj ]λ

(x
(i)
j ) and O[pj̃ ]λ

(x
(̃i)

j̃
) gives exactly, under integrations over x

(i)
j and x

(̃i)

j̃
, the
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overlap 〈vac|ApjApj̃ |vac〉, which vanishes. Hence all operators O(i)
[pj ]λ

(x
(i)
j ) must be contracted

with operators

[
O

(i′+χ(y
(i′)
j′ ∈λR1)−χ(y

(i′)
j′ ∈λR−1))

[pj′ ]λ
(y

(i′)
j′ )

]†
.

These contractions may be evaluated as follows. We note that

δi,i′δ[p]λ,[p′]λ = ⊗n〈vac|A(i)
[p]λ

(
A

(i′)
[p′]λ

)†|vac〉⊗n

=
1

λdVol(M)

∫
λM

ddx

∫
λM

ddy e−i[p]λ·x+i[p′]λ·y ⊗n〈vac|O(i)
[p]λ

(x)
[
O(i′)

[p′]λ
(y)
]†
|vac〉⊗n .

Further, as per the discussion above (48), by standard results in the massive free boson, the

function ⊗n〈vac|O(i)
[p](x)

[
O(i′)

[p′]

]†
(y)|vac〉⊗n is exponentially decaying with dist(x,y), and, by

translation invariance of the vacuum and factorisation into the n copies, it is a function of x−y
only and vanishes if i 6= i′. In particular, we obtain∫

λM
ddx e−i[p]λ·x ⊗n〈vac|O(i)

[p]λ
(x)

[
O(i)

[p]λ
(0)
]†
|vac〉⊗n = 1 . (54)

Because of diagonality in the space of copy indices, in any given Wick contraction between

O(i)
[pj ]λ

(x
(i)
j ) and

[
O

(i′+χ(y
(i′)
j′ ∈λR1)−χ(y

(i′)
j′ ∈λR−1))

[pj′ ]λ
(y

(i′)
j′ )

]†
occurring in (53), for any fixed i, i′, j, j′

giving rise to a nonzero Wick contraction, the region of integration of the y
(i′)
j′ coordinate is

restricted to a region within M, as per the condition of equality of copy numbers,

i = i′ + χ(y
(i′)
j′ ∈ λR1)− χ(y

(i′)
j′ ∈ λR−1).

Let us therefore consider one such integrated contraction, say with y restricted to some region
λR:

Ci,i
′

p,p′(R) = lim
λ→∞

1

λdVol(M)

∫
λM

ddx

∫
λR

ddy e−i[p]λ·x+i[p′]λ·y ⊗n〈vac|O(i)
[p]λ

(x)
[
O(i′)

[p′]λ
(y)
]†
|vac〉⊗n .

(55)
By the properties of the two-point function mentioned above, this equals

Ci,i
′

p,p′(R) = lim
λ→∞

Gλ

∫
λM

ddx e−i[p]λ·x ⊗n〈vac|O(i)
[p]λ

(x)
[
O(i′)

[p′]λ
(0)
]†
|vac〉⊗n , (56)

where

Gλ =
1

λdVol(M)

∫
λR

ddy ei([p′]λ−[p]λ)·y . (57)

We now show that

Gλ =


Vol(R)

Vol(M)
(p = p′)

0 (otherwise) .
(58)

The idea is that in the integral (57), if the momenta are different, then the integrand is oscillatory,
and it integrates to zero on every complete period. As λ → ∞, the period stays finite while
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the region grows. The integral is zero within the bulk of the region λR, and it receives nonzero
contributions only on an integration region near the boundary of λR, where the integration is
not on a full period (the period being broken by the region’s boundary).

A precise proof is as follows. If p 6= p′, then for all λ large enough, [p]λ 6= [p′]λ. Consider λ
large enough, and one direction j ∈ {1, . . . , d} where there is a difference: [pj ]λ 6= [p′j ]λ. Let us
divide the region λM, in this direction, into slices α (which extend in all directions j′ 6= j) of
width δyj = 2π|[pj ]λ− [p′j ]λ|−1; this is the period of the oscillatory exponential in this particular
direction. The slices are the subsets [0, λL1]× · · · × [αδyj , (α+ 1)δyj ]× · · · × [0, λLd] ∈ λM and
α is in a subset of Z such that these cover M (note that M is built out of an integer number
of complete slices). On every slice α, at every point along it where the width is fully contained
within λR, that is (y1, . . . , [αδyj , (α+1)δyj ], . . . , yd) ⊂ λR, the contribution to the above integral
vanishes by integration over yj . As λ → ∞, the set of all such segments (y1, . . . , [αδyj , (α +
1)δyj ], . . . , yd) ⊂ λR covers all of R excepts for a neighbourhood of width at most δyj of its
boundary ∂R. That is, if p 6= p′, for λ large enough, we can bound Gλ as

|Gλ| <
2π

|[pj ]λ − [p′j ]λ|
1

λdVol(M)

∫
λ∂R

dd−1y
λ→∞

= 0 . (59)

On the other hand, clearly, for p = p′, we have

Gλ =
Vol(R)

Vol(M)
. (60)

As a consequence, using (54), we obtain

Ci,i
′

p,p′(R) = δi,i′δp,p′
Vol(R)

Vol(M)
. (61)

From this point on, using the Wick contraction (61), the discussion following (39) goes
through, up to two differences: (1) the extra condition that momenta in a contraction must take

the same value, and (2) the contribution Vol(R`)
Vol(M) for every edge, instead of L`. The requirement

that momenta must agree gives a product, over different groups of equal momenta, of the result
obtained there, in terms of graph partition functions:

lim
λ→∞

exp
[
∆E |[p]λ〉

n (λR1, λR−1;λM)
]

=
∏
i

pki,n(r1, r0, r−1)

(ki!)n
. (62)

From Theorem 2.2 the result (49) follows. Setting R−1 = ∅, (50) follows similarly.

4 Conclusion

We have established exact relations between the replica logarithmic negativity and Rényi entan-
glement entropy of certain qubit states representing uniform distribution of particles, and certain
graph partition functions. The vertices and edges of the graphs have a natural interpretation
in terms of the connectivity of the manifold, that naturally emerges in QFT, associated to the
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permutation-twist representation of entanglement measures. The result is however general, and
applies to qubit states without the need for a QFT.

We have also evaluated the increment of replica logarithmic negativity and Rényi entropy in
many-particle states with respect to the vacuum, in free bosonic QFT of any dimension on the
hypertorus, in the limit where the volumes of the hypertorus and of the regions are large. The
result is exactly that found in [32] in the one-dimensional case (and proposed there to be more
general), equating these to the same quantities for the qubit states we discussed. The present
paper thus gives a full proof of the general result in free bosonic QFT, showing that it holds
independently of the connectivity, dimensionality and shape of the regions.

The proof involves different principles from those used in [32], where the results were based
on form factors of twist fields. Instead, here we use clustering properties of local fields along with
the fundamental exchange relations characterising permutation twists in a given twist sector.

A number of generalisations should be immediate. First, the QFT proof is based on very
general properties. These properties are expected to hold in states other than the vacuum,
and in other free models. It is a simple matter to generalise, for instance, to cases with many
particle types. More interestingly, we expect similar results to hold in the so-called generalised
Gibbs ensembles [35], with density matrix of the form exp

[
−
∑

p∈Λd
w(p)A†pAp

]
for appropriate

w(p). There, “particle” and “hole” excitations can be defined naturally as action of creation and
annihilation operators [36, 37, 38], essentially via the Gelfand-Naimark-Segal mechanism where
the space of operators is seen as the Hilbert space of the theory and the vacuum represents the
original mixed state itself. This is relevant, as the negativity is a good measure of entanglement
in mixed states such as GGEs.

Second, it does not seem to be essential to take the fundamental operator in the twist
sector in order to get the result: “generalised” types of replica logarithmic negativities and
Rényi entropies, defined via descendants of such operators in the same twist sector, might lead
to the same increment results. They would be related to more general partition functions in
multi-sheeted manifolds, with insertion of fields at the boundaries of the regions R1, R−1.

Third, a generalisation of the results and proofs to integrable models appears to be possible
as well. Indeed, in integrable models, because of the presence of stable quasi-particles, one can
construct fields which create asymptotic states and which, although not local, have strong enough
quasi-locality properties. One could then use such fields, along with clustering properties, in
order to adapt the proof we presented here. One might also hope that the same works in certain
non-integrable models, below the particle-creation threshold or if there is particle conservation.

Finally, it is also a simple matter to generalise to any other product of permutation twists
associated to more complicated connectivities. In all cases, the uniform-particle qubit states will
lead to graph partition functions (1), and the QFT increments, in the large volume limit, will
again be equal to the qubit-state results.
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A Graphs, partitions and negativity: examples

In this section we discuss in details two examples of the formula (10).

A.1 The case k = 1: a single particle excitation

For k = 1 we have that

E |Ψ1(r1,r0,r−1)〉
n = log

 1∑
p=−1

[
n(1−p)

2
]∑

σ=max(0,−np)

Ap,σr
np+σ
1 r

n(1−p)−2σ
0 rσ−1

 , (63)

where the sums have now been restricted only to non-vanishing contributions, and

Ap,σ =
∑

{k1,...,kn}∈Pn(σ)

n∏
j=1

1

(p+ kj)!(1− p− kj+1 − kj)!kj+1!
, (64)

where here and below, kn+1 ≡ k1. Therefore there are only three possible values of p to consider.

1. If p = 1 then the only way the product in (64) can be non-vanishing is if all the kj = 0
(otherwise, the middle factorial will involve a negative value for some j). In this case σ = 0
and A0,0 = 1 and this gives the contribution rn1 .

2. If p = 0 then 1− p− kj+1 − kj ≥ 0 if and only if the partition consists entirely of 0s and
1s, with the 1s being non-consecutive. This can only be achieved if 0 ≤ σ ≤ n

2 . We then
have that A0,σ is exactly the number of partitions of σ into n parts, all of which are either
0 or 1 and where there are no consecutive 1s. It is easy to show this number is precisely

A0,σ := Qσ =
n

n− σ

(
n− σ
σ

)
, (65)

and the sum over σ in (63) for p = 0 then becomes

[n
2

]∑
σ=0

Qσr
n−2σ
0 rσ1 r

σ
−1 . (66)

Above we introduced the notation Qσ because this coefficient will feature several times
from now on.

3. If p = −1 then the presence of the factorial (−1 + kj)! requires that kj ≥ 1 for all j. The
presence of the factorial (2 − kj+1 − kj)! restricts this condition to simply kj = 1. From
this condition is follows that σ = n and that, in this case, only the partition {1, 1, . . . , 1}
contributes. The corresponding coefficient is A−1,n = 1 and this gives the contribution
rn−1.
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Therefore, for k = 1 we can write the replica logarithmic negativity as

E |Ψ1(r1,r0,r−1)〉
n = log

rn1 + rn−1 +

[n
2

]∑
σ=0

A0,σr
n−2σ
0 rσ1 r

σ
−1

 , (67)

which is the formula reported in [32], where it was derived from a form factor calculation and
also from the explicit diagonalization of the partially transposed reduced density matrix.

The various terms in (67) admit also a graphical representation, where different elements of
the graphs are assigned weights r1, r0, or r−1 as shown in Fig. 1. Let us consider as an example,
the case k = 1, n = 4. In this case

E |Ψ1(r1,r0,r−1)〉
4 = log

(
r4

1 + r4
−1 + r4

0 + 4r2
0r1r−1 + 2r2

1r
2
−1

)
, (68)

The terms in this formula are generated from the graphs in Fig.2.

Figure 2: All contributing graphs for k = 1, n = 4. In this case the simple addition of individual
contributions reproduces the exponential of the function (68).
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A.2 The case k = 2: excited state of two identical particles

For k = 2 we have the formulae:

E |Ψ2(r1,r0,r−1)〉
n = log

 2∑
p=−2

[
n(2−p)

2
]∑

σ=max(0,−np)

Ap,σr
np+σ
1 r

n(2−p)−2σ
0 rσ−1

 , (69)

where the sums have now been restricted only to non-vanishing contributions, and

Ap,σ =
∑

{k1,...,kn}∈Pn(σ)

n∏
j=1

2

(p+ kj)!(2− p− kj+1 − kj)!kj+1!
, (70)

therefore there are five possible values of p to consider.

1. If p = 2 the only partition of σ that gives a non-vanishing coefficient is the partition where
kj = 0 for all j. That is σ = 0 and A2,0 = 1 which gives the term r2n

1 .

2. If p = 1 then the only partitions of σ that give non-vanishing coefficients are those whose
parts are either 0 or 1 and where there are no consecutive 1s. The latter condition means
that 0 ≤ σ ≤ n

2 and

A1,σ = 2n−σ × (number of such partitions) = 2n−σQσ , (71)

where Qσ was defined in (65). This gives the terms

[n
2

]∑
σ=0

2n−σQσr
n+σ
1 rn−2σ

0 rσ−1 . (72)

3. If p = 0 the only partitions that give non-vanishing contributions are those that have parts
which are either 0, 1 or 2 and which have no consecutive 2s and no consecutive 1s and
2s. There are many such partitions and challenge is to count them all and work out their
contributions according to (70).

The two simplest cases are the partition where all terms are 0s and the partition where
all terms are 1s. In the first case σ = 0 and A0,0 = 1. This gives the contribution r2n

0 . In
the second case we have that σ = n and A0,n = 2n and this gives the term 2n(r1r−1)n. An
additional partition corresponding to σ = n is obtained when n is even and every other
term is either a 0 or a 2. There are two partitions of this type and when present they will
give and additional contribution so that A0,n = 2n + 2, in agreement with the results we
already knew from [32].

More generally we can now consider all partitions including at least one 0 and 1s and 2s
according to the constraints above. These correspond to 1 ≤ σ ≤ n− 1.

For σ = 1 we have a single 1 and there are n such partitions. The coefficient A0,1 = 2n

2n−2×n
and this gives the contribution 4nr2n−2

0 r1r−1.

23



For σ = 2 we will now have partitions that contain either two 1s or a single 2 (with
everything else being 0). There are n partitions that contain a single 2 and they give
a contribution to the coefficient A0,2 which is given by 2n

2×2n−1 × n. The partitions that
contain two 1s can be divided into those where the 1s are consecutive and those where they
are not. There are n partitions that contain two consecutive 1s and their contribution to
A0,2 is 2n

2n−3 × n. Finally the number of partitions that contain two non-consecutive ones
is given by the coefficient Q2 defined earlier and these give a contribution to A0,2 which is
given by 2n

2n−4 ×Q2. So, overall

A0,2 =
2n

2n−4
×Q2 +

2n

2n−3
× n+

2n

2× 2n−1
× n = 8n(n− 3) + 8n+ n = n(8n− 15) , (73)

which gives the contribution n(8n− 15)r2n−4
0 (r1r−1)2.

For σ = 3 we can have partitions that contain either three 1s or a 1 and a 2 that are not
consecutive. The partitions that contain a 1 and a 2 that are not consecutive contribute

2n

2× 2n−4 × 2
× (number of such partitions) = 4× (2Q2) = 4n(n− 3). (74)

The partitions consisting of three 1s need to be divided into those where there are no
consecutive 1s, those where two 1s are consecutive and those where the three 1s are con-
secutive. The partitions that have no consecutive 1s give a contribution

2n

2n−6
× (number of such partitions) = 64Q3 =

32n(n− 4)(n− 5)

3
. (75)

There are n partitions where all three 1s are consecutive and they give a contribution

2n

2n−4
× n = 16n. (76)

Finally, the number of partitions where two 1s are consecutive and one is not is given
by the product of n ways of placing two consecutive 1s times n − 4 ways of placing the
remaining 1. This gives a contribution

2n

2n−5
× n(n− 4) = 32n(n− 4). (77)

So, the overall coefficient is

A0,3 = 4n(n− 3) +
32n(n− 4)(n− 5)

3
+ 16n+ 32n(n− 4) =

4n

3
(8n2 − 45n+ 67). (78)

This gives the contribution 4n
3 (8n2 − 45n+ 67)r2n−6

0 (r1r−1)3.

One can proceed similarly to higher values of σ and obtain increasingly complicated for-
mulae for the coefficients as reported in Appendix B of [32]. However, there is no obvious
pattern in n emerging. Interestingly all coefficients A0,σ return integer values, even though
this is also not obvious from the formulae.
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4. If p = −1 we need partitions where all parts are at least 1, so the smallest allowed value of
σ is σ = n corresponding to the partition into 1s. This gives A−1,n = 2n and corresponds
to the term 2n(r−1r0)n. This is the “minimal” partition but there will be others. In fact,
it is easy to argue that additional contributions will give rise to a very similar sum as (72)
with the roles of r1 and r−1 exchanged:

[n
2

]∑
σ=0

2n−σQσr
n+σ
−1 rn−2σ

0 rσ1 , (79)

5. If p = −2 we then need all parts of any contributing partition to be 2 or larger, for the first
factorial in the denominator of (70) to be finite. All parts must be less or equal 2 for the
second factorial to remain positive. This means only the partition consisting entirely of
2s will contribute. This corresponds to σ = 2n and A−2,2n = 1 and gives the contribution
r2n
−1.

Figure 3: All contributing graphs for k = 1, n = 3. In this case the simple addition of individual
contributions reproduces the exponential of the function (81).

The contributions discussed above can also be represented graphically. The basic building
blocks are the same as for the k = 1 case, however for k = 2 every graph may be seen as a
“superposition” of two k = 1 graphs, and the counting of all possible (non-equivalent) such
superpositions that are allowed under the rules set out in Fig. 1 quickly becomes involved. Let
us consider, for simplicity, the case n = 3. The expression for the replica logarithmic negativity
is:

E |Ψ2(r1,r0,r−1)〉
3 = (80)

log(r6
0 + 12r1r−1r0(r3

1 + r3
−1 + r3

0) + 8(r3
1r

3
0 + r3

−1r
3
0 + r3

1r
3
−1) + 27r2

1r
2
−1r

2 + r6
1 + r6

−1) .
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It is instructive to also report the case k = 1, n = 3:

E |Ψ1(r1,r0,r−1)〉
3 = log(r3

0 + 3r1r−1r0 + r3
1 + r3

−1) . (81)

Although the expression for k = 1 is much simpler than for k = 2, we observe that all contribu-
tions to the k = 2 case can be expressed (apart from the numerical coefficient) as products of
two contributions to the k = 1 case. Thus, whereas for k = 1 we have a sum of 4 monomials,
for k = 2 we have a sum of 16 monomials. From the point of view of graphs, the case k = 1,
n = 3 is extremely simple and is represented in Fig. 3. For k = 2 we need to normalize each
contribution by 1

kn = 1
8 (representing the fact that each node can now be one of two excitations).

For instance, the contribution r6
0 in (80) can be seen as the result of adding all graphs in Fig. 4

and then dividing the result by 8. More interesting contributions correspond to terms such as

Figure 4: The contribution r6
0 to the negativity for k = 2, n = 3. The differently coloured dots

represent the two excitations. The numbers on the right hand side label the copies.

r2
1r

2
−1r

2 which is generated as (r1r−1r0)2, that is as a “superposition” of any pair of graphs in
the second row of Fig. 3. As in Fig. 4 we may have combinations of each of the three graphs
with itself, producing 23 possible graphs in each case. However, when combining two distinct
graphs with each other, there are in fact 43 possible combinations for each pairing. Since there
are three possible pairings of two distinct graphs and three possible pairings of two identical
graphs, this gives 3(23 + 43) = 216 graphs and dividing again by 8 this gives the coefficient 27
in (80).
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B Recursion for replica negativity from graph partition func-
tion, k = 1 case

In the case of a single particle excitation (k = 1), it is possible to write a recursion formula for
the graph partition function (2), and by solving it, express the replica logarithmic negativity
as the analytic function derived by different means in [32]. Let us consider a restricted graph
partition function

p̃1,n(r1, r0, r−1) =
∑
g∈G̃1,n

∏
`∈{1,0,−1}

r
N`(g)
` , (82)

summing only for graphs G̃1,n, where the vertices V l,r
1,n+1 6= V l,r

1,1 and V l,r
1,0 6= V l,r

1,n are not identified.

This restricts the possible edges of E1 and E−1. There is no edge in E1 attached to V l
1,n and

no edge in E−1 attached to V r
1,1. Moreover for every edge (V l

1,j , V
r

1,j+1) ∈ E1 there is an edge

(V l
1,j+1, V

r
1,j) ∈ E−1, hence N1(g) = N−1(g). This restriction give rise to the recursion relation

p̃1,n(r1, r0, r−1) = r0p̃1,n−1(r1, r0, r−1) + r1r−1p̃1,n−2(r1, r0, r−1) . (83)

With the initial conditions p̃1,0(r1, r0, r−1) = 1 and p̃1,1(r1, r0, r−1) = r0 the solution of the
recursion is

p̃1,n(r1, r0, r−1) =

(
r0 +

√
r2

0 + 4r1r−1

)n+1
−
(
r0 −

√
r2

0 + 4r1r−1

)n+1

2n+1
√
r2

0 + 4r1r−1

. (84)

The original graph partition function can be expressed with the help of the restricted graph
partition function and two additional graphs where all the edges are either in E1 or E−1

p1,n(r1, r0, r−1) = rn1 + rn−1 + p̃1,n(r1, r0, r−1) + r1r−1p̃1,n−2(r1, r0, r−1) . (85)

Substituting (83) we arrive to the result

p1,n(r1, r0, r−1) = rn1 + rn−1 +

(
r0 +

√
r2

0 + 4r1r−1

2

)n
+

(
r0 −

√
r2

0 + 4r1r−1

2

)n
, (86)

that is the expression for exp
[
E1
n

]
derived in [32] where each term in the expression above is

identified with a non-vanishing eigenvalue of the partially transposed reduced density matrix
of the corresponding qubit state. From this formula, the analytic continuation m → 1/2 for
n = 2m also follows naturally.

References

[1] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial
entanglement by local operations, Phys. Rev. A53, 2046–2052 (1996).

[2] K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner, Entanglement properties of the
harmonic chain, Phys. Rev. A66, 042327 (2002).

27
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