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Abstract 31 

Previous research suggests the existence of an expert anticipatory advantage, whereby skilled 32 

sportspeople are able to predict an upcoming action by utilising cues contained in their opponent’s 33 

body kinematics. This ability is often inferred from “occlusion” experiments: Information is 34 

systematically removed from first-person videos of an opponent, for example by stopping a tennis 35 

video at the point of racket-ball contact, yet performance, such as discrimination of shot direction, 36 

remains above chance. In this study, we assessed the expert anticipatory advantage for tennis 37 

ground strokes via a modified approach, known as “bubbles”, in which information is randomly 38 

removed from videos at in each trial. The bubbles profile is then weighted by trial outcome (i.e. a 39 

correct vs. incorrect discrimination) and combined across trials into a classification array, revealing 40 

the potential cues informing the decision. In two experiments (both with N = 34 skilled tennis 41 

players) we utilised either temporal or spatial bubbles, applying them to videos running from 0.8 s to 42 

0 s before the point of racket-ball contact (cf. Jalali et al., 2018). Results from the spatial experiment 43 

were somewhat suggestive of accrual from the torso region of the body, but were not compelling. 44 

Results from the temporal experiment, on the other hand, were clear: information was accrued 45 

mainly during the period immediately prior to racket-ball contact. This result is broadly consistent 46 

with prior work using non-stochastic approaches to video manipulation, and cannot be an artifact of 47 

temporal smear from information accrued after racket-ball contact, because no such information 48 

was present. 49 

  50 
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Elite athletes demonstrate extraordinary ability in their sport of choice. While their sporting acumen 51 

may seem like a fundamentally physical attribute, it is in fact scaffolded by a range of cognitive skills 52 

that span the sensorimotor pipeline, from perception to action execution (Yarrow, Brown, & 53 

Krakauer, 2009). One such skill that has received considerable attention from experimental 54 

psychologists is the expert anticipatory advantage. 55 

 56 

The expert anticipatory advantage in sports describes a domain-specific benefit that sportspeople 57 

exhibit when predicting what is about to happen based on their opponent’s current bodily 58 

kinematics (as opposed to their opponent’s previous action history, which provides a separate cue 59 

for predicting current behaviour; Mann, Schaefers, & Cañal-Bruland, 2014). This advantage has been 60 

demonstrated in experiments simulating a variety of sports, most commonly via temporal and 61 

spatial occlusion methodologies (e.g. Abernethy, 1988; Jones & Miles, 1978). Hence the advantage is 62 

widely exhibited, although the extent to which it benefits actual competitive performance remains 63 

uncertain (van Maarseveen, Mariëtte, Oudejans, Mann, & Savelsbergh, 2018). 64 

 65 

A typical occlusion experiment runs as follows. A sporting scenario is selected, for example a football 66 

(soccer) goalkeeper attempting to save penalties (e.g. Dicks, Button, & Davids, 2010; Smeeton & 67 

Williams, 2012). Videos are shot from the sportsperson’s (here the goalkeeper’s) perspective, 68 

capturing various instances of two or more categories of outcome (for example penalties struck to 69 

the left or right of the goalkeeper). In the actual experiment, participants, often varying in sports 70 

expertise (e.g. novice vs. expert goalkeepers) view these videos, attempting to discriminate which 71 

outcome will occur on each trial. Critically, the videos are manipulated to exclude some of their 72 

visual information. In temporal occlusion, the video is usually terminated early (for example at or 73 

before ball contact) so that only particular sequences of body kinematics are available to guide the 74 

response. In spatial occlusion, particular features at constrained spatial locations (for example the 75 

striker’s hips) are also removed from the video. 76 
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 77 

The logic of these experiments is that participants will only be able to perform at above-chance 78 

levels if there is information in the video to guide their decision, with performance declining towards 79 

chance as this information is systematically removed. Certain sports, such as cricket, have been long-80 

running favourites in the occlusion literature (e.g. Abernethy,  & Russell, 1984; Müller & Abernethy, 81 

2006; Müller, Abernethy, & Farrow, 2006),  but occlusion approaches have been applied to sports as 82 

diverse as volleyball (e.g. Loffing, Hagemann, Schorer, & Baker, 2015) and karate (Mori, Ohtani, & 83 

Imanaka, 2002). 84 

 85 

Racket sports (e.g. badminton and squash; Abernethy, 1990; Abernethy, Bruce & Russell, 1987) have 86 

been particularly well studied via occlusion techniques. The focus of the current study is the sport of 87 

tennis. This sport was amongst the first to provide evidence of an expert anticipatory advantage, 88 

with Jones and Miles (1978) showing that experts were above chance (and better than intermediate 89 

or novice players) at guessing the landing position of a serve when the video was stopped 0.042 s 90 

before ball contact. Subsequent work has found, for example, that experts extract information from 91 

the time when the ball’s toss is at its apex onwards when predicting spin (Goulet, Bard, & Fleury, 92 

1989). The temporal occlusion method has also been adjusted slightly to present one of several 93 

possible windows of visibility (0.3 seconds in duration) during service, with above-chance 94 

performance for experts when viewing the video for only the 0.3 s immediately before ball contact 95 

(Farrow, Abernethy, & Jackson, 2005). These temporal occlusion results are supplemented by spatial 96 

occlusion studies, showing for example that experts can still discriminate the direction of tennis 97 

serves at above-chance levels following removal of body regions such as the entire lower body, but 98 

not when the ball’s toss was occluded (Jackson & Mogan, 2007). Experts were also impaired (but to a 99 

lesser extent) by removal of the arm and racket. 100 

 101 
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While the tennis serve is the most straightforward scenario to investigate, ground strokes have also 102 

been probed via occlusion methods. With temporal occlusion at ball contact, experts were above 103 

chance to discriminate between left/right lobs and passing shots when shutter goggles were used to 104 

block vision in situ on a tennis court (Shim, Carlton, Chow, & Chae, 2005). More traditional video-105 

based studies have shown that unlike novices, experts could already predict shot direction above 106 

chance at -0.12 s relative to ball contact, with further improvements for occlusion occurring at -0.08 107 

and -0.04 s (Rowe, Horswill, Kronvall-Parkinson, Poulter, & McKenna, 2009). Spatial occlusion work 108 

suggests that the arm/racket regions are critical when predicting ground-shot direction (Shim, 109 

Carlton, & Kwon, 2006). 110 

 111 

Video-based occlusion methods are not perfect, and our knowledge about the expert anticipatory 112 

advantage has been supplemented by a variety of techniques. Such techniques include eye tracking 113 

to provide information about where sportspeople attend, and animating/manipulating the opponent 114 

(e.g. Cañal-Bruland, van Ginneken, van der Meer, Bart, & Williams, 2011; Ida, Fukuhara, Ishii, & 115 

Inoue, 2013) including via virtual reality (Vignais, Kulpa, Brault, Presse, & Bideau, 2015). For example, 116 

Ida et al. (2013) manipulated the arm/racket angles of computer-generated opponents to 117 

successfully influence experts’ analogue estimates of the direction, speed, and spin of a tennis serve. 118 

In another study, swapping the arm/racket of stick-man representations of an opponent to that of a 119 

different shot confused experts trying to predict the direction of ground strokes (Cañal-Bruland et 120 

al., 2011). However, here we stay closer to the traditional occlusion approach, but attempt to 121 

remedy a possible weakness of the method: Its dependency on experimenter decisions regarding 122 

exactly what to occlude. 123 

 124 

To this end, we utilise a stochastic method of video occlusion borrowed from the psychophysical 125 

literature (Ahumada Jr & Lovell, 1971), specifically a form of classification-image analysis (sometimes 126 

called reverse correlation) known as bubbles (Gosselin & Schyns, 2001). Bubbles are Gaussian-127 
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profiled windows of visibility that reveal the information from an otherwise masked (e.g. uniform 128 

grey) display. In the temporal domain, they are rather like the occlusion approach of Farrow et al. 129 

(2005) who displayed only a 0.3 second window of information from a video at a time. However, 130 

unlike in that study, which utilised a discrete set of non-overlapping windows as separate conditions, 131 

in a bubbles experiment several bubbles typically appear on each trial and the midpoint of each 132 

bubble is chosen at random. Furthermore, their Gaussian profiles remove transients and give the 133 

impression of the underlying display being smoothly revealed and subsequently re-masked (see 134 

Figure 1 for illustration). At the analysis stage, the random bubbles profiles from the different trials 135 

are binned by correctness of response and combined to produce a classification sequence. This 136 

classification can then be used to highlight the regions from which information must have been 137 

utilised to generate correct discriminations. 138 

 139 

 140 

 141 

Figure 1. Example stimuli, shown as snapshots from video every 100 ms. A. Video occluded at point of 142 

racket-ball contact but with no bubbles manipulation (equivalent to pre-test trials here). B. Temporal 143 

bubbles permit viewing of entire image, but only at certain times. C. Spatial bubbles permit viewing 144 

of only certain regions of the image, but across all (pre-contact) frames. 145 
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Although bubbles are typically applied to sparse, tightly controlled psychophysical stimuli, their 146 

applicability to a complex real-word scenario like tennis anticipation has been demonstrated 147 

recently (Jalali, Martin, Murphy, Solomon, & Yarrow, 2018). In that study, we had both novice and 148 

competent tennis players view opponents in both service and forehand-groundstroke scenarios. We 149 

did not stop the video at racket-ball contact, but the structure of the experiment encouraged 150 

participants to respond as fast as possible while maintaining an acceptable level of accuracy. The 151 

bubbles technique proved effective in both the temporal and spatial domains but it suggested that 152 

our participants were primarily utilising information from the beginning of the ball’s trajectory off 153 

the racket face rather than their opponent’s pre-contact kinematics. However, the temporal 154 

classification sequence did imply possible information accrual just prior to racket-ball contact as 155 

well, but this interpretation remained speculative. The reason is that the bubbles technique yields a 156 

classification sequence in which very discrete information sources can become smeared (i.e. 157 

exaggerated in extent), such that an information source at or just after racket-ball contact might 158 

spread back to appear significant in the immediately preceding frames. 159 

 160 

Here, we again use bubbles to attempt to find evidence of an expert anticipatory advantage in 161 

tennis. Our aim is to quantify the extent of the temporal and spatial regions, prior to ball contact, 162 

from which skilled tennis players are able to extract useful information about shot direction, but 163 

using a stochastic masking technique (i.e. bubbles). The implementation of the bubbles method does 164 

not require any intuitions about information sources which need to be designed as separate 165 

conditions, but rather allows any region of information to emerge in a bottom-up manner. As such, 166 

we believe it provides a useful form of methodological triangulation relative to traditional occlusion 167 

approaches. However, we made an important change relative to our previous study: We stopped the 168 

video at racket-ball contact, with bubbles appearing at random up to that point but no information 169 

ever provided afterwards. This change guarantees that any information sources we identify, even if 170 

near the point of racket-ball contact, are not the result of the aforementioned temporal smear 171 
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arising at the analytic stage. We also focus on ground strokes only, without considering services. To 172 

presage our results, we find unequivocal evidence for the utilisation of kinematic information by 173 

competent tennis players, but only for the period immediately prior to ball contact. 174 

 175 

Methods 176 

 177 

Participants 178 

We utilised a smorgasbord1 sampling method, attempting to recruit participants with experience 179 

playing competitive tennis by various means. Where possible, we recorded their years of experience, 180 

current competitive tennis matches per year, and International Tennis Number (ITN), which is an index 181 

of their standard of play and ranges from ITN 1 (a player with extensive professional tournament 182 

experience and who currently holds or is capable of holding an ATP/WTA ranking) to ITN 10 (a player 183 

that is just starting to play competitively). Eleven participants (8 male, 3 female, mean age 30, mean 184 

years of tennis experience 13, mean matches per year 48, mean ITN 2.8) were recruited via adverts at 185 

London tennis clubs and by word of mouth, and travelled to City, University of London to participate. 186 

All completed both temporal and spatial bubbles sessions (see design, below).2 We also took the 187 

opportunistic step of developing a portable setup and taking it to the National UK University 188 

championships, where we recruited participants in their down time between matches (or after they 189 

had been eliminated). We tested 22 such participants in total, with 13 completing a spatial bubbles 190 

session (8 male, 5 female, mean age 22, mean years’ experience 11, mean matches per year 37, mean 191 

ITN 2.1) and 13 completing a temporal bubbles session (8 male, 5 female, mean age 22, mean years’ 192 

                                                            
1 This is our own dubious terminology. We originally intended to recruit several separate samples and address 
additional questions, but recruitment proved more challenging than expected, leading us to form a composite 
sample. 
2 Most of these participants also completed sessions in which they attempted to guess the direction of serves, 
but our service stimuli proved extremely difficult to discriminate, thus yielding no conclusive results, and are 
omitted from our report for concision. 



9 
 

experience 10, mean matches per year 44, mean ITN 2.1).3 We subsequently took our portable setup 193 

to a second lab (at Technische Universität Kaiserslautern) in order to exploit its proximity to an elite 194 

school for sport (Heinrich Heine Gymnasium) attended by promising young tennis players and their 195 

coaches. We tested 10 such participants (8 male, 2 female, median age 16) who completed both 196 

spatial and temporal bubbles sessions.4 For the German participants we recorded their 197 

“Leistungsklassen” or performance class abbreviated as LK. According to the German Tennis 198 

Federation (DTB) the lowest class is LK23 and the highest LK1 consisting of top ranked players in 199 

Germany. The German pool had three LK1 players, one LK23 and average of LK 10 (std 8.5). They 200 

averaged 7.7 years of experience and 26 competitive matches per year. Finally, from the resulting 201 

complete samples of 34 (temporal bubbles) / 34 (spatial bubbles) participants, we rejected 202 

participants who were unable to perform the task significantly above chance during bubbles blocks 203 

(<55%, yielding binomial p > 0.05 that they were simply guessing), but only for our mean classification-204 

array analysis (one of several analyses we ran; see below). We did this because an inability to perform 205 

the task makes it impossible for the bubbles technique to retrieve meaningful sources of information. 206 

This left final samples of 24 (spatial) and 27 (temporal) participants for mean classification-array 207 

analysis. Informed consent was obtained from all participants, who were paid £10 per hour (London) 208 

and €10 per hour (Germany) for their time. Ethical approval was granted by the relevant local Ethics 209 

Committees at City, University of London, and Technische Universität Kaiserslautern. 210 

 211 

Apparatus & Stimuli 212 

 We used the ground-stroke subset of video stimuli from those previously described by Jalali 213 

et al. (2018). They were recorded at a tennis club using a tripod-mounted camera (frame rate 120 Hz, 214 

                                                            
3 Nine from each group completed just a single block, and four competed both. Some participants failed to 
report some measures of experience, particularly ITN, so the means are based only on those who responded. 
Three participants from this group also completed a block using service stimuli, not reported here (see 
footnote 2). 
4 These participants completed two further blocks with a modified presentation sequence (a fixed rather than 
random ordering of opponents, to see if experiencing the same opponent repeatedly made them easier to 
predict) but this change did not generate any clear trend, and these blocks are not analysed here. 
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frame size 1280x720 pixels). Four club coaches/hitters of a good but not elite standard acted as models 215 

and were instructed to “hit winners” without attempting explicit deception. They were situated near 216 

the baseline and recorded against a largely uniform blue backdrop. They were recorded playing 217 

forehand ground strokes (running rightwards from a central position to return near the singles side 218 

line), directing their shots towards an imaginary receiver’s forehand or backhand. To increase image 219 

resolution, the camera was positioned at the net, on a line projecting from the filmed player to the 220 

imaginary receiver at the opposite baseline (height = 1.6 m, left of centre line by 1.25 m).  221 

 Videos were first transformed to eight-bit greyscale. Two authors picked a subset of videos 222 

that were unambiguous (regarding the direction of the shot – line/cross), relatively homogeneous in 223 

terms of the position of the players at the time of ball contact, and lacking in artefactual cues that 224 

might allow the videos to be easily remembered for future classification (e.g. an unusual delivery 225 

trajectory). In each video, the frame corresponding to ball contact and the position at which the ball 226 

struck the racket head on this frame were manually identified for use in the subsequent presentation 227 

and analysis (see below).  228 

 The experiment was controlled by computers running scripts written in Matlab® (The 229 

Mathworks, Natick, U.S.A.) using the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; 230 

Pelli, 1997). Video stimuli were presented via either a CRT monitor (for sessions at City, University of 231 

London), a short-throw gaming projector (Optoma® GT760; for sessions at Kaiserslautern and 232 

temporal sessions at UK university championships), or a MacBook® Pro (spatial sessions at UK 233 

university championships). The former two displays had a vertical refresh rate of 120 Hz, while the 234 

latter refreshed at 60 Hz, playing a down-sampled video. Only a central 600 x 400 pixel region of 235 

each video that excluded irrelevant peripheral information was presented. Displays were presented 236 

at around eye level and viewed at an appropriate distance in order to present the opposing tennis 237 

player with a height subtending ~4° visual angle (approximating their size as seen from the baseline 238 

during actual play). Participants responded by either stepping rightward or leftward, thus lifting the 239 

corresponding foot from one of two digital pedals, monitored at 100,000 Hz via a 16 bit A/D card 240 
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(National Instruments X-series PCIe-6323; for sessions at City) or by pressing an appropriate arrow 241 

key on a computer keyboard (all other sessions). 242 

 243 

Design & Procedure 244 

 There were two types of session incorporating either temporal or spatial bubbles blocks with 245 

participants completing one or both of these sessions, and in some cases up to two additional sessions 246 

not reported here (see footnotes 2-4). Each session took around an hour, and consisted of three 247 

blocks: One practice, one pre-test, and one bubbles block (in that order). During practice, participants 248 

viewed a small number of videos (between 10 and 24 depending on the experimental location; 50% 249 

to forehand, 50% to backhand) containing any of four players (8 possible videos per player) but with 250 

a preponderance of videos (70%) from one player and fewer videos (10% each) from the remaining 251 

three players, who were saved mainly for the experimental trials (see below). Videos were randomised 252 

with replacement. 253 

Videos presentations began at −0.8 s relative to racket-ball contact. The practice block 254 

constituted a warm-up in which trials terminated at +0.2 s relative to racket-ball contact to provide 255 

clear information about the trajectory of the ball off the racket head. By contrast, in pre-test and 256 

bubbles blocks, videos terminated at racket-ball contact (replaced with a uniform grey screen) or at 257 

the time of response if earlier than this.  258 

 For these pre-test and bubbles blocks, 24 new videos (8 per player, 50% to forehand and 50% 259 

to backhand) were selected from the three players seen less often during practice. For the pre-test, 260 

the videos were presented between one and four times each in a random order, yielding a block of 261 

either 24 trials (City and Kaiserslautern) or 96 trials (UK university championships). These differences 262 

reflected the fact that City and Kaiserslautern participants typically performed multiple sessions, so 263 

could have their pre-test data combined across them. For the critical bubbles block, these videos were 264 

presented a further 16 times each in a random order, yielding a block of 384 trials. Participants 265 

responded without any deadline. Trials with presentation glitches, i.e. where one or more frames were 266 
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dropped after the −0.2 s time point, were re-randomised and repeated at the end of the block. 267 

Feedback about correctness was provided after every trial. 268 

Importantly, during bubbles trials only, the videos were subjected to random masking via 269 

the application of bubbles (see Figure 1; for videos showing examples of temporal and spatial 270 

bubbles, see videos 1 and 2 respectively from Jalali et al. (2018), available at 271 

https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02229/full#supplementary-material). 272 

Individual bubbles were combined to generate bubbles profiles in one (temporal) or two (spatial) 273 

dimensions. The number of bubbles presented began at 8 or 20 for temporal and spatial sessions 274 

respectively. In principle, this (maximum) number could then be adjusted downwards via a QUEST 275 

staircase (Watson & Pelli, 1983) varying the number of bubbles in order to try and maintain 276 

participants’ performance at around 75% correct (i.e. lowering the number of bubbles if the task was 277 

too easy). However, as discussed further below, this was never required as the task was very hard 278 

even in the absence of any masking. The profile of each individual bubble was that of a 1, or 2-279 

dimensional Gaussian density function, scaled to have unit height. In the temporal sessions its width 280 

(σ) was 3 frames; in the spatial sessions its width was 12 pixels (vertically and horizontally).5  281 

  282 

 Bubble mean positions were selected at random within a domain extending throughout the 283 

relevant space of the video. Bubbles profiles were determined by combining the individual bubbles 284 

together. This was achieved by first reflecting bubble magnitudes around 0.5, then multiplying them 285 

together, and finally re-reflecting: 286 

 287 

(1) Bubbles = 1 −  ∏ (1 − bubble𝑏
𝐵
𝑏=1 ) 288 

 289 

Pixel intensities were then calculated for display as the mean pixel intensity plus the difference 290 

between original and mean intensities multiplied by the Bubbles profile at each point. Expressed in 291 

                                                            
5 To speed calculations, each bubble was rounded to zero beyond 4 (temporal) or 3 (spatial) σ from its centre. 

https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02229/full#supplementary-material
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terms of Weber contrasts, pixels were displayed at their original Weber contrasts multiplied by the 292 

Bubbles profile. 293 

 294 

Data Analysis 295 

 The saved Bubbles profiles from each trial formed the starting point in generating 296 

classification sequences (temporal conditions) or images (spatial conditions), which reveal the regions 297 

from which information supporting a correct response has been extracted. We calculated these 298 

classification arrays as per our previous report (Jalali et al., 2018). First, for the spatial condition only, 299 

Bubbles were re-centred so that the profile (saved in video coordinates) was translated to a new 300 

coordinate frame, centred on the ball at the time of racket-ball contact. Next, for each participant, a 301 

weighted sum of (re-centred) Bubbles profiles yielded the raw classification array. The sum weights 302 

profiles from correct trials positively and profiles from incorrect trials negatively: 303 

 304 

(2)   RCA =  ∑ Bubbles𝑐  − ∑ Bubbles𝑖
𝐼
𝑖=1

𝐶
𝑐=1  305 

 306 

However, in order to provide more intuitive values for visualising and combining data across 307 

participants, raw classification arrays were normalised to a z-like format. This was achieved via a 308 

permutation approach. For each of 2000 iterations, correct/incorrect labels were randomly re-309 

assigned (without replacement) to individual trials. The means and standard deviations at each point 310 

(i.e. each frame and/or pixel) calculated over these 2000 permutations were used to z-score the 311 

classification array. This yielded an array varying around zero with positive values indicating regions 312 

of possible information accrual. 313 

In order to draw statistical inferences across large arrays while controlling familywise type 1 error 314 

appropriately, data from all participants who were able to perform the task at significantly above-315 

chance levels during bubbles blocks were combined and assessed via both cluster and tmax (also known 316 

as pixel or single-threshold) corrected permutation tests. These methods, derived from the 317 
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neuroimaging literature (Blair & Karniski, 1993; Nichols & Holmes, 2002) are standard approaches for 318 

solving the multiple comparison problem with large sets of potentially correlated and non-normal 319 

data. Our particular implementation is more fully described in Jalali et al. (2018).  320 

We also addressed a prediction particular to the data collected in these experiments, which, unlike 321 

typical bubbles experiments, were derived from participants who rarely achieved 75% correct in a 322 

two-choice discrimination. We reasoned that the variability in performance across participants might 323 

be utilised in statistical inference. Bubbles are most efficient with 75% correct performance (Gosselin 324 

& Schyns, 2001) and would be expected to become less efficient, and thus produce classification arrays 325 

more dominated by random noise, with lower levels of discrimination performance. We would 326 

therefore expect that for an information-carrying region, there should be a positive correlation across 327 

participants between the magnitude of the classification array at that point and discrimination 328 

performance. We tested this prediction in a manner exactly analogous to the cluster / tmax approach, 329 

but using Pearson’s r-statistic in place of Student’s t-statistic in order to formulate cluster and rmax 330 

corrected permutation correlations. Where t-based tests reveal significant regions of information, r-331 

based tests reveal regions more successfully exploited by better participants. All reported p values are 332 

two-tailed, unless otherwise noted. 333 

 334 

 335 

Results 336 

  337 

Pre-tests 338 

 339 

In pre-test trials, participants saw the videos without degradation, but terminating at the point of 340 

racket-ball contact. Pre-tests were identical in spatial and temporal sessions, and our samples were 341 

not fully overlapping between these experiments, so data were collated across all 43 unique 342 

participants. Participants showed some ability to discriminate the direction of tennis ground strokes 343 
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in the absence of information about the ball’s trajectory off the racket head (mean proportion 344 

correct = 0.632, SD = 0.093) and they did so on average at a level significantly above chance: 345 

Modelling these binomial data in the most appropriate way (i.e. with a general linear mixed model 346 

(GLMM) with logistic link function, incorporating a random term for the intercept) revealed a fixed 347 

intercept term of 0.55, which differed significantly from zero, i.e. the null hypothesis of scoring 50% 348 

correct (t[42] = 9.25, p < 10-10). For the subsets of U.K. participants reporting ITNs (N = 18), years of 349 

playing experience (N = 31), or matches per year (N = 27), these variables were each entered as lone 350 

predictors in separate GLMMs but failed to significantly correlate with discrimination performance 351 

(all p > 0.29). However, matches per year did become a significant positive predictor of performance 352 

(odds ratio = 1.011, 95% CI 1.004-1.18, t[24] = 3.28, p = 0.003) when an outlying participant (claiming 353 

150 competitive matches per year) was excluded. 354 

 355 

Temporal Bubbles 356 

 357 

In temporal bubbles trials, videos ran to the point of racket-ball contact, but only those periods 358 

revealed by randomly placed temporal bubbles were visible (Figure 1b). The Bubbles profiles from 359 

each trial were combined with accuracy data to create classification sequences for each participant. 360 

The mean z-scored classification sequence across participants is shown in Figure 2a, with positive 361 

values denoting regions from which information may have been extracted. No frames were 362 

significant after tmax correction, but a subset of frames (from 86 onwards, i.e. from around 0.083s 363 

before racket-ball contact) contribute to a significant cluster (p = 0.013). Cluster-based testing 364 

corrects for familywise error on the overall inference that the classification image differs reliably 365 

from zero, but does not imply that every point within the cluster is significant (Groppe, Urbach, & 366 

Kutas, 2011), particularly in combination with the smoothing effects of bubbles (see Jalali et al., 367 

2018, for further discussion). However, it is clear that some information was successfully extracted 368 

from the moment just before racket-ball contact. 369 



16 
 

 370 

 371 

 372 

Figure 2. Results from temporal bubbles experiment. Error bars denote 95% confidence intervals. 373 

Shaded regions denote significant clusters. A. Mean z-scored classification sequence. B. Correlations 374 

between classification sequences and classification performance across participants. 375 

 376 

Figure 2b shows additional results from a second statistical analysis. Here, instead of assessing the 377 

mean classification sequence for just those participants who were still able to perform above chance 378 

even during bubbles blocks, we assessed the correlation (for the entire sample of participants) 379 

between individual classification sequences and discrimination success. The raw r values have been 380 

transformed to permit the creation of a constant confidence interval which clarifies where possible 381 

clusters emerge. This happens wherever the confidence interval does not include zero, i.e. for r 382 
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values that are significant without any familywise correction. However, these transformed r values 383 

retain their basic meaning, in the sense that positive values represent frames where more successful 384 

participants (in terms of their ability to do the task) showed more positive classification sequence 385 

magnitudes. Our participants varied considerably in their ability to perform the task (between 50 386 

and 75% correct). Because bubbles should be most effective (revealing pronounced peaks at points 387 

where useful information is extracted) for participants who approach 75% performance, and much 388 

less effective (reflecting mainly noise) for participants who are just guessing, these correlations are 389 

informative. Interestingly, the correlation analysis reveals a cluster with the exact same temporal 390 

extent as that found in the mean classification image (p = 0.029). Of course, these two analyses 391 

cannot be considered as independent tests. However, we believe they can sometimes be 392 

complementary to one another, as will become clearer in our spatial results. 393 

 394 

Spatial Bubbles 395 

 396 

In the spatial bubbles task, only particular areas of the video image were visible at random on each 397 

trial (Figure 1b). Data from our spatial bubbles experiment are shown in Figures 3 and 4. Figure 3 398 

shows the mean classification image, along with associated statistical inferences, for participants 399 

able to perform the bubbles task above chance. The top part of the figure shows the classification 400 

image itself, while in the bottom part of the figure statistical thresholding has been applied to reveal 401 

a single large significant cluster (p = 0.0005). This cluster also incorporates two smaller regions that 402 

additionally survive tmax correction. This contrast should illustrate spatial areas from which visual 403 

information was accrued. However, the result is unconvincing. Although the cluster does include a 404 

region over the position of the opposing player’s body at the time of ball contact, this region only 405 

appears within the cluster by virtue of a slim connection to a larger and more pronounced region. 406 

The larger region might, at best, be considered to have overlaid parts of the opponent’s body at the 407 

beginning of the video, when they started their run to intercept the ball. However, this larger region 408 
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would be inconsistent with the results of the temporal experiment, which suggested that useful 409 

information guiding the decision was not extracted until near the time of racket-ball contact. 410 

 411 

 412 

 413 

Figure 3. Classification image results from the spatial bubbles experiment. Results are overlaid on an 414 

image of the mean of all presented videos for the frames capturing racket-ball contact, centred on 415 

the point of racket-ball contact (hence constituent images do not perfectly align). However, the 416 

results of the spatial analysis are not specific to any one time point. A. Transparent red peaks denote 417 

mean classification-image intensity normalized to the cluster threshold value used in permutation 418 
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testing (i.e., values more extreme than ±1 formed potential clusters). B. Solid coloured regions were 419 

significant in cluster/tmax permutation testing, suggesting information might have been extracted 420 

from this part of the video. Transparent red regions denote non-significant clusters. 421 

 422 

Our complementary correlation-based analysis is shown in Figure 4, which in this case appears 423 

somewhat instructive. The format is the same as for the mean classification image shown in Figure 3 424 

with the raw correlations shown at the top, and statistical thresholding applied at the bottom. 425 

However, in this case it is normalised correlation (r) values that are being illustrated and assessed for 426 

cluster or rmax based significance. No significant clusters were observed, but there is one non-427 

significant cluster worthy of mention (one-tailed p = 0.096; all other clusters one-tailed p > 0.36) 428 

which sits over the position of the opponent’s body at the time of ball contact. This suggests a trend 429 

for those participants better able to discriminate shot duration during spatial bubbles sessions to 430 

have classification images that show stronger peaks in this region. In combination with the data from 431 

our analysis of the mean classification image (Figure 3), this result suggests that much (or all) of the 432 

cluster revealed there may represent a false positive, as it was no more likely to emerge in 433 

participants for whom bubbles had a good chance of actually working than it was for participants for 434 

whom bubbles could reveal only noise. 435 

 436 
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 437 

 438 

Figure 4. Correlation results from the spatial bubbles experiment. Results are overlaid on an image of 439 

the mean of all presented videos for the frames capturing racket-ball contact, centred on the point of 440 

racket-ball contact (hence constituent images do not perfectly align). However, the results of the 441 

spatial analysis are not specific to any one time point. A. Transparent red peaks denote correlations 442 

between classification-image intensities and discrimination performance, normalized to the cluster 443 

threshold value used in permutation testing (i.e., values more extreme than ±1 formed potential 444 

clusters). B. Transparent red regions denote points where the cluster threshold (representing a 445 
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significant correlation in the absence of familywise correction) was exceeded, but resulted in only 446 

non-significant clusters. 447 

 448 

 449 

Discussion 450 

 451 

In our experiments, competent but non-elite tennis players first attempted to discriminate the 452 

direction of upcoming forehand ground strokes from videos of a tennis opponent, based only on 453 

information available prior to the point of racket-ball contact. On average, they were able to do so, 454 

in line with previous reports (Rowe et al., 2009; Shim et al., 2006). Unlike previous reports, we went 455 

on to remove additional information using a stochastic approach to video manipulation, by 456 

introducing bubbles rather than by applying systematic masking or image manipulation in a 457 

particular set of planned conditions. Our main finding was that participants used information from 458 

the period immediately before racket-ball contact, specifically within a window reaching back 459 

approximately 0.083s, to perform the direction-discrimination task. Because this information source 460 

precedes racket-ball contact, it cannot include the trajectory of the ball off the racket head. 461 

 462 

Our temporal results seem fairly consistent with previous reports. For example, Rowe et al. (2009) 463 

had tennis experts (broadly comparable to ours in competence, with ITNs of 2-4) judge forehand and 464 

backhand ground strokes (going to either the right or left) from videos which could be occluded at 465 

between -0.12 and +0.04s relative to racket-ball contact. They found that experts could predict 466 

undisguised shot direction at approaching 75% correct when the video stopped at racket-ball 467 

contact, falling to around 60% when models were attempting disguise (c.f. 63% mean performance 468 

during pre-test here; note that our models were instructed only to “hit winners”, but were 469 

presented to participants with smaller spatial extents than those of Rowe et al., to be more 470 

consistent with typical match viewing). Rowe et al. (2009) also found that experts could still 471 
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discriminate the direction of ground strokes significantly above chance when the video stopped at 472 

either 0.12 or 0.08s before racket-ball contact, but performed better with occlusion at 0 s. These 473 

results imply some accrual from roughly the temporal window we obtained here (in order to show 474 

improvement) but also some additional accrual from earlier frames (in order to still be performing 475 

above chance). Indeed, a similar study utilising stick-man graphics in place of videos even found 476 

above-chance performance with occlusion at -0.24s, although performance actually then trended 477 

worse with occlusion at -0.16, -0.08 or 0 ms (Cañal-Bruland et al., 2011). 478 

 479 

Our method was in principal well-suited to find the locus of any such early periods of information 480 

accrual, because bubbles could appear at any point back to 0.8s before ball contact. Several 481 

possibilities should be considered regarding why we failed to find any such loci, reflecting the 482 

various limitations of our approach. The first relates to statistical power. Bubbles is a trial-hungry 483 

technique, with typical psychophysical applications using fairly simple stimuli and also very large 484 

numbers of trials (Gosselin & Schyns, 2001). This limitation is exacerbated when performance is only 485 

a little above chance even in the absence of any bubbles, as was the case here. Indeed, pre-test 486 

performance suggests that our stimuli were very challenging to discriminate for most participants, so 487 

perhaps our stimuli simply didn’t contain usable information as early as the videos used in other 488 

studies, or perhaps it was sufficiently subtle that bubbles could not reveal it. 489 

 490 

A second possibility is that information must be integrated over a protracted period, or combined 491 

from both of two temporally distinct epochs, during early shot preparation, in order to be usable. 492 

Such temporally complex cues would still be present in standard temporal occlusion approaches 493 

where videos run continuously until a single occlusion point. However, while classification arrays can 494 

in principle reveal these kinds of features with enough trials, the bubbles approach is most efficient 495 

when the temporal extent of a cue is approximately matched to the temporal extent of an individual 496 

bubble (see for example the simulations presented by Jalali et al., 2018). Note that various 497 
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suggestions have been made within the bubbles literature to address this issue (Blais, Roy, Fiset, 498 

Arguin, & Gosselin, 2012; Chauvin, Worsley, Schyns, Arguin, & Gosselin, 2005) and might be 499 

considered in future research on sports. 500 

 501 

Regardless of whether there were any earlier information sources that went undetected in our 502 

experiment, we can at least assert with confidence that useful information was extracted from our 503 

videos immediately prior to racket-ball contact (although, as noted in the methods, we cannot assert 504 

that every individual frame highlighted by our cluster test was important). This ability may be learnt 505 

through regular match play, generalizing immediately to the particular opponents encountered here. 506 

It is also possible that the ability to anticipate was actually learnt entirely during the experiment, 507 

given that each stimulus was encountered multiple times. The correlation between pre-test 508 

performance and matches per year suggests that more regular players are at least quicker to learn 509 

their new opponent’s kinematic “gives” (or perhaps they are quicker to learn other spurious cues in 510 

our videos, although we took steps to minimise these). However, this result must be considered 511 

tentative, as it was both exploratory, and relied on the exclusion of an outlying participant. 512 

 513 

Our results from spatial bubbles sessions were not compelling and can at best be considered 514 

suggestive that our participants may have extracted some information from the torso region of their 515 

opponents. This would presumably be during the temporal window revealed by the temporal 516 

bubbles sessions, but the experiments are independent so this need not necessarily be the case. The 517 

need to apply statistical control across a much larger 2D space, relative to our temporal 518 

experiments, may have left our spatial experiment underpowered. We have previously shown that 519 

spatial bubbles can be effective with a setup and sample size similar to this one (Jalali et al., 2018), 520 

but in that case performance was nearer to 75% correct for all participants. Previous spatial 521 

occlusion work with video stimuli has been more conclusive. Shim et al. (2006) used a four-choice 522 

task (ground strokes or lobs to forehand or backhand), and found that removing the racket/arm 523 
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impaired discrimination of videos when viewing was stopped at racket-ball contact. This suggests 524 

that these distal regions, which did not emerge in our analysis despite the fact that we centred our 525 

co-ordinate frame (and thus maximised power) at the racket head, are in fact important. However, 526 

they also observed performance which was still well above chance after these regions had been 527 

occluded. Therefore, participants must also have extracted information from other parts of the 528 

video, presumably proximal body segments, although the pattern of data was inconclusive in this 529 

regard. Indeed, some results from more recent studies using computer graphics in place of real 530 

videos suggest primacy for the proximal body: Fukuhara, Ida, Ogata, Ishii, and Higuchi (2017) found 531 

that an opponent rendered with a realistic body (but only point-light information for their arm and 532 

racket) was better predicted than one with a realistic arm and racket but only a point-light body. 533 

 534 

In conclusion, we have replicated classic research showing that skilled tennis players can anticipate 535 

upcoming shots based on their opponent’s body kinematics. We also used a novel stochastic 536 

masking approach in order to highlight the role of the period immediately preceding racket-ball 537 

contact in supporting this ability. Although our bubbles approach could in principal have revealed a 538 

wider range of information sources relative to traditional occlusion studies (where a limited set of 539 

masking conditions must be selected in advance) in practice we have revealed, if anything, fewer 540 

such loci. The approach may still have merit, but primarily as a means of methodological 541 

triangulation, making an inference based on multiple complementary approaches, such as the 542 

temporal result observed here, more secure.  543 

 544 
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