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Generative Models from the perspective of Continual Learning

Timothée Lesort∗,1,2, Hugo Caselles-Dupré∗,1,3, Michael Garcia-Ortiz3, Andrei Stoian2, David Filliat1

Abstract— Which generative model is the most suitable
for Continual Learning? This paper aims at evaluating and
comparing generative models on disjoint sequential image
generation tasks. We investigate how several models learn and
forget, considering various strategies: rehearsal, regularization,
generative replay and fine-tuning. We used two quantitative
metrics to estimate the generation quality and memory ability.
We experiment with sequential tasks on three commonly used
benchmarks for Continual Learning (MNIST, Fashion MNIST
and CIFAR10). We found that among all models, the original
GAN performs best and among Continual Learning strategies,
generative replay outperforms all other methods. Even if
we found satisfactory combinations on MNIST and Fashion
MNIST, training generative models sequentially on CIFAR10
is particularly instable, and remains a challenge. Our code is
available online 1.

I. INTRODUCTION

Learning in a continual fashion is a key aspect for cogni-
tive development among biological species [1]. In Machine
Learning, such learning scenario has been formalized as a
Continual Learning (CL) setting [2, 3, 4, 5, 6]. The goal of
CL is to learn from a data distribution that changes over time
without forgetting crucial information. Unfortunately, neural
networks trained with back-propagation are unable to retain
previously learned information when the data distribution
changes, an infamous problem called "catastrophic forget-
ting" [7]. Successful attempts at CL with neural networks
have to overcome the inexorable forgetting happening when
tasks change.

In this paper, we focus on generative models in Continual
Learning scenarios. Previous work on CL has mainly focused
on classification tasks [8, 9, 5, 6]. Traditional approaches are
regularization, rehearsal and architectural strategies, as de-
scribed in Section II. However, discriminative and generative
models strongly differ in their architecture and learning ob-
jective. Several methods developed for discriminative models
are thus not directly extendable to the generative setting.
Generative models can be used as memory of the past for
learning continually in particular in reinforcement learning
and classification. For example, successful CL strategies with
generative models have been used, via sample generation as
detailed in the next section, to continually train discrimina-
tive models. Hence, studying the viability and success/failure
modes of CL strategies for generative models is an important
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Fig. 1: The disjoint setting considered. At task i the training
set includes images belonging to category i, and the task
is to generate samples from all previously seen categories.
Here MNIST is used as a visual example,but we experiment
in the same way Fashion MNIST and CIFAR10.

step towards a better understanding of generative models and
Continual Learning in general.

We conduct a comparative study of generative models with
different CL strategies. In our experiments, we sequentially
learn generation tasks. We perform ten disjoint tasks, using
commonly used benchmarks for CL: MNIST [10], Fashion
MNIST [11] and CIFAR10 [12]. In each task, the model
gets a training set from one new class, and should learn
to generate data from this class without forgetting what it
learned in previous tasks, see Fig. 1 for an example with
tasks on MNIST.

We evaluate several generative models: Variational Auto-
Encoders (VAEs), Generative Adversarial Networks (GANs),
their conditional variant (CVAE ans CGAN), Wasserstein
GANs (WGANs) and Wasserstein GANs Gradient Penalty
(WGAN-GP). We compare results on approaches taken from
CL in a classification setting: finetuning, rehearsal, regu-
larization and generative replay. Generative replay consists
in using generated samples to maintain knowledge from
previous tasks. All CL approaches are applicable to both
variational and adversarial frameworks. We evaluate with
two quantitative metrics, Fréchet Inception Distance [13]
and Fitting Capacity [14], as well as visualization. Also, we
discuss the data availability and scalability of CL strategies.

Our contributions are:
• Evaluating a wide range of generative models in a

Continual Learning setting.
• Highlight success/failure modes of combinations of

generative models and CL approaches.
• Comparing, in a CL setting, two evaluation metrics of

generative models.
We describe related work in Section II, and our approach

in Section III. We explain the experimental setup that imple-
ments our approach in Section IV. Finally, we present our
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results and discussion in Section V and VI, before concluding
in Section VII.

II. RELATED WORK

A. Continual Learning for discriminative models

Continual Learning has mainly been applied to discrimi-
native tasks. On this scenario, classification tasks are learned
sequentially. At the end of the sequence the discriminative
model should be able to solve all tasks. The naive method of
fine-tuning from one task to the next one leads to catastrophic
forgetting [7], i.e. the inability to keep initial performance
on previous tasks. Previously proposed approaches can be
classified into four main methods.

The first method, referred to as rehearsal, is to keep
samples from previous tasks. The samples may then be
used in different ways to overcome forgetting. The method
can not be used in a scenario where data from previous
tasks is not available, but it remains a competitive baseline
[9, 3]. Furthermore, the scalability of this method can also
be questioned because the memory needed to store samples
grows linearly with the number of tasks.

The second method employs regularization. Regulariza-
tion constrains weight updates in order to maintain knowl-
edge from previous tasks and thus avoid forgetting. Elastic
Weight Consolidation (EWC) [8] has become the standard
method for this type of regularization. It estimates the
weights’ importance and adapt the regularization accord-
ingly. Extensions of EWC have been proposed, such as
online EWC [6]. Another well known regularization method
is distillation, which transfers previously learned knowledge
to a new model. Initially proposed by [15], it has gained
popularity in CL [16, 9, 17, 5] as it enables the model to
learn about previous tasks and the current task at the same
time.

The third method is the use of a dynamic architecture
to maintain past knowledge and learn new information.
Remarkable approaches that implement this method are Pro-
gressive Networks [18], Learning Without Forgetting (LWF)
[19] and PathNet [20].

The fourth and more recent method is generative replay
[5, 21], where a generative model is used to produce samples
from previous tasks. This approach has also been referred to
as pseudo-rehearsal.

B. Continual learning for generative models

Discriminative and generative models do not share the
same learning objective and architecture. For this reason, CL
strategies for discriminative models are usually not directly
applicable to generative models. Continual Learning in the
context of generative models remains largely unexplored
compared to CL for discriminative models.

Among notable previous work, [4] successfully apply
EWC on the generator of Conditional-GANs (CGANS), after
observing that applying the same regularization scheme to
a classic GAN leads to catastrophic forgetting. However,
their work is based on a scenario where two classes are
presented first, and then unique classes come sequentially,

e.g the first task is composed of 0 and 1 digits of MNIST
dataset, and then is presented with only one digit at a
time on the following tasks. This is likely due to the
failure of CGANs on single digits, which we observe in
our experiments. Moreover, the method is shown to work
on CGANs only. Another method for generative Continual
Learning is Variational Continual Learning (VCL) [3], which
adapts variational inference to a continual setting. They
exploit the online update from one task to another inspired
from Bayes’ rule. They successfully experiment on a single-
task scenario. However, they experiment only on VAEs. Plus,
since they use a multi-head architecture, they use specific
weights for each task, which need task index for inference.
A second method experimented on VAEs is to use a student-
teacher method where the student learns the current task
while the teacher retains knowledge [22]. Finally, VASE [23]
is a third method, also experimented only on VAEs, which
allocates spare representational capacity to new knowledge,
while protecting previously learned representations from
catastrophic forgetting by using snapshots (i.e. weights) of
previous model.

A different approach, introduced by [5] is an adaptation of
the generative replay method mentioned in Section II-A. It
is applicable to both adversarial and variational frameworks.
It uses two generative models: one which acts as a memory,
capable of generating all past tasks, and one that learns to
generate data from all past tasks and the current task. It
has mainly been used as a method for Continual Learning
of discriminative models [5, 21, 24]. Recently, [25] have
developed a similar approach called Memory Replay GANs,
where they use Generative Replay combined to replay align-
ment, a distillation scheme that transfers previous knowledge
from a conditional generator to the current one. However they
note that this method leads to mode collapse because it could
favor learning to generate few class instances rather than a
wider range of class instances.

III. APPROACH

Typical previous work on Continual Learning for gen-
erative models focus on presenting a novel CL technique
and comparing it to previous approaches, on one type of
generative model (e.g. GAN or VAE). On the contrary, we
focus on searching for the best generative model and CL
strategy association. For now, empirical evaluation remain
the only way to find the best performing combinations.
Hence, we compare several existing CL strategies on a wide
variety of generative models with the objective of finding the
most suited generative model for Continual Learning.

In this process, evaluation metrics are crucial. CL ap-
proaches are usually evaluated by computing a metric at the
end of each task. Whichever method that is able to main-
tain the highest performance is best. In the discriminative
setting, classification accuracy is the most commonly used
metric. Here, as we focus on generative models, there is no
consensus on which metric should be used. Thus, we use
and compare two quantitative metrics.



The Fréchet Inception Distance (FID) [13] is a commonly
used metric for evaluating generative models. It is designed
to improve on the Inception Score (IS) [26] which has many
intrinsic shortcomings, as well as additional problems when
used on a dataset different than ImageNet [27]. FID circum-
vent these issues by comparing the statistics of generated
samples to real samples, instead of evaluating generated
samples directly. [13] propose using the Fréchet distance
between two multivariate Gaussians:

FID = ‖µr − µg‖2 + Tr(Σr + Σg − 2(ΣrΣg)1/2), (1)

where the statistics (µr,Σr) and (µg,Σg) are the activations
of a specific layer of a discriminative neural network trained
on ImageNet, for real and generated samples respectively.
A lower FID correspond to more similar real and generated
samples as measured by the distance between their activation
distributions. Originally the activation should be taken from
a given layer of a given Inception-v3 instance, however this
setting can be adapted with another classifier in order to
compare a set of models with each other [28, 14].

A different approach is to use labeled generated samples
from a generator G (GAN or VAE) to train a classifier
and evaluate it afterwards on real data [14]. This evalu-
ation, called Fitting Capacity of G, is the test accuracy
of a classifier trained with G’s samples. It measures the
generator’s ability to train a classifier that generalize well on
a testing set, i.e the generator’s ability to fit the distribution
of the testing set. This method aims at evaluating generative
models on complex characteristics of data and not only on
their features distribution. In the original paper, the authors
annotated samples by generating them conditionally, either
with a conditional model or by using one unconditional
model for each class. In this paper, we also use an adaptation
of the Fitting Capacity where data from unconditional models
are labelled by an expert network trained on the dataset.

We believe that using these two metrics is complementary.
FID is a commonly used metric based solely on the distri-
bution of images features. In order to have a complementary
evaluation, we use the Fitting Capacity, which evaluate
samples on a classification criterion rather than features
distribution.

For all the progress made in quantitative metrics for evalu-
ating generative models [29], qualitative evaluation remains
a widely used and informative method. While visualizing
samples provides a instantaneous detection of failure, it does
not provide a way to compare two well-performing models.
It is not a rigorous evaluation and it may be misleading when
evaluating sample variability.

IV. EXPERIMENTAL SETUP

We now describe our experimental setup: data, tasks, and
evaluated approaches.

A. Datasets, tasks, metrics and models

Our main experiments use 10 sequential tasks created
using the MNIST, Fashion MNIST and CIFAR10 dataset.

For each dataset, we define 10 sequential tasks, one task
corresponds to learning to generate a new class and all the
previous ones (See Fig. 1 for an example on MNIST). Both
evaluations, FID and Fitting Capacity of generative models,
are computed at the end of each task.

We use 6 different generative models. We experiment
with the original and conditional version of GANs [30] and
VAEs [31]. We also added WGAN [32] and a variant of it
WGAN-GP [33], as they are commonly used baselines that
supposedly improve upon the original GAN.

B. Strategies for continual learning

We focus on strategies that are usable in both the varia-
tional and adversarial frameworks. We use 3 different strate-
gies for Continual Learning of generative models, that we
compare to 3 baselines. Our experiments are done on 8 seeds
with 50 epochs per tasks for MNIST and Fashion MNIST
using Adam [34] for optimization (for hyper-parameter set-
tings, see Appendix ). For CIFAR10, we experimented with
the best performing CL strategy.

The first baseline is Fine-tuning, which consists in ignor-
ing catastrophic forgetting and is essentially a lower bound of
the performance. Our other baselines are two upper bounds:
Upperbound Data, for which one generative model is trained
on joint data from all past tasks, and Upperbound Model, for
which one separate generator is trained for each task.

For Continual Learning strategies, we first use a vanilla
Rehearsal method, where we keep a fixed number of samples
of each observed task, and add those samples to the training
set of the current generative model. We balance the resulting
dataset by copying the saved samples so that each class
has the same number of samples. The number of samples
selected, here 10, is motivated by the results in Fig. 7a and
7b, where we show that 10 samples per class is enough
to get a satisfactory but not maximal validation accuracy
for a classification task on MNIST and Fashion MNIST.
As the Fitting Capacity share the same test set, we can
compare the original accuracy with 10 samples per task to
the final fitting capacity. A higher Fitting capacity show that
the memory prevents catastrophic forgetting. Equal Fitting
Capacity means overfitting of the saved samples and lower
Fitting Capacity means that the generator failed to even
memorize these samples.

We also experiment with EWC. We followed the method
described by [4] for GANs, i.e. the penalty is applied only on
the generator’s weights , and for VAEs we apply the penalty
on both the encoder and decoder. As tasks are sequentially
presented, we choose to update the diagonal of the Fisher
information matrix by cumulatively adding the new one to
the previous one. The last method is Generative Replay,
described in Section II-B. Generative replay is a dual-model
approach where a “frozen” generative model Gt−1 is used to
sample from previously learned distributions and a “current”
generative model Gt is used to learn the current distribution
and Gt−1 distribution. When a task is over, the Gt−1 is
replaced by a copy of Gt , and learning can continue.



V. RESULTS

Fig. 2: Comparison, averaged over 8 seeds, between FID
results(left, lower is better) and Fitting Capacity results
(right, higher is better) with GAN trained on MNIST.

The figures we report show the evolution of the metrics
through tasks. Both FID and Fitting Capacity are computed
on the test set. A well performing model should increase
its Fitting Capacity and decrease its FID. We observe a
strong correlation between the Fitting Capacity and FID (see
Fig. 2 for an example on GAN for MNIST and Appendix
for full results). Nevertheless, Fitting Capacity results are
more stable: over the 8 random seeds we used, the standard
deviations are less important than in the FID results. For that
reason, we focus our interpretation on the Fitting Capacity
results.

A. MNIST and Fashion MNIST results

1) Main results: Our main results with Fitting Capacity
are displayed in Fig. 3 and Table I. The best combination was
Generative Replay + GAN with a mean Fitting Capacity of
95.81% on MNIST and 81.52% on Fashion MNIST. The
relative performance of each CL method on GAN can be
analyzed class by class in Fig. 4. We observe that, for
the adversarial framework, Generative Replay outperforms
other approaches by a significant margin. However, for the
variational framework, the Rehearsal approach was the best
performing. The Rehearsal approach worked quite well but is
unsatisfactory for CGAN and WGAN-GP. Indeed, the Fitting
Capacity is lower than the accuracy of a classifier trained on
10 samples per classes (see Fig. 7a and 7b in Appendix).
In our setting, EWC is not able to overcome catastrophic
forgetting and performs as well as the naive Fine-tuning
baseline which is contradictory with the results of [4] who
found EWC successful in a slightly different setting. We
replicated their result in a setting where there are two classes
by tasks (see Appendix for details), showing the strong effect
of task definition.

In [4] authors already found that EWC did not work with
non-conditional models but showed successful results with
conditional models (i.e. CGANs). The difference come from
the experimental setting. In [4], the training sequence start
by a task with two classes. Hence, when CGAN is trained it
is possible for the Fisher Matrix to understand the influence
of the class-index input vector c. In our setting, since there
is only one class at the first task, the Fisher matrix can not
get the importance of the class-index input vector c. Hence,
as for non conditional models, the Fisher Matrix is not able

Fig. 3: Means and standard deviations over 8 seeds of Fitting
Capacity metric evaluation of VAE, CVAE, GAN, CGAN
and WGAN. The four considered CL strategies are: Fine
Tuning, Generative Replay, Rehearsal and EWC. The setting
is 10 disjoint tasks on MNIST and Fashion MNIST.

to protect weights appropriately and at the end of the second
task the model has forgot the first task. Moreover, since the
generator forgot what it learned at the first task, it is only
capable of generating samples of only one class. Then, the
Fisher Matrix will still not get the influence of c until the
end of the sequence. Moreover, we show that even by starting
with 2 classes, when there is only one class for the second
task, the Fisher matrix is not able to protect the class from
the second task in the third task. (see Figure 12).

Our results do not give a clear distinction between condi-
tional and unconditional models. However, adversarial meth-
ods perform significantly better than variational methods.
GANs variants are able to produce better, sharper quality
and variety of samples, as observed in Fig. 14 and 15 in
Appendix . Hence, adversarial methods seem more viable for
CL. We can link the accuracy from 7a and 7b to the Fitting
Capacity results. As an example, we can estimate that GAN
with Generative Replay is equivalent for both datasets to a
memory of approximately 100 samples per class.

2) Corollary results: Catastrophic forgetting can be visu-
alized in Fig.4. Each square’s column represent the task index



TABLE I: Mean and standard deviations for Fitting Capacity (in %) metric evaluation on last task of 10 disjoint task setting,
on MNIST and Fashion MNIST, over 8 seeds.

Strategy Dataset GAN CGAN WGAN WGAN-GP VAE CVAE
Fine-tuning MNIST 18.43±4.85 11.93±2.97 23.17±5.66 22.79±5.75 38.98±5.57 11.96±2.56

EWC - 20.34±2.39 11.53±1.42 29.57±5.59 22.00±3.39 34.93±7.06 13.37±3.28

Rehearsal - 82.69±18.21 66.14±19.2 92.05±0.64 74.79±25.25 92.99±0.64 86.47±1.69

Generative Replay - 95.81±0.31 93.89±0.35 95.41±2.41 91.12±5.09 79.38±4.40 84.95±1.24

Upperbound Model - 94.50±9.51 96.84±3.22 95.72±6.93 79.41±27.85 97.82±0.17 97.89±0.12

Upperbound Data - 97.10±0.13 96.65±0.21 96.76±0.29 84.79±27.76 96.88±0.27 96.17±0.19

Fine-tuning Fashion MNIST 20.82±4.69 12.30±3.33 19.68±3.92 18.75±2.58 18.60±4.24 12.82±3.55

EWC - 22.22±2.03 12.58±3.48 19.81±4.18 22.63±6.91 17.70±1.83 11.00±1.16

Rehearsal - 65.34±21.3 57.12±14.4 76.32±0.33 63.28±7.9 76.03±1.77 71.73±1.29

Generative Replay - 81.52±0.87 72.98±1.22 81.50±1.26 75.37±5.49 54.49±3.24 68.70±1.71

Upperbound Model - 77.93±15.07 80.96±0.69 73.20±5.63 65.5±2.69 78.64±1.36 79.15±0.96

Upperbound Data - 83.27±0.41 80.09±0.94 83.29±0.52 81.5±0.50 80.21±0.79 79.51±0.55

and each row the class, the color indicate the Fitting Capacity
(FC). Yellow squares show a high FC, blue one show a low
FC. We can visualize both the performance of VAE and
GAN but also the performance evolution for each class. For
Generative Replay, at the end of the task sequence, VAE
decreases its performance in several classes when GAN does
not. For Rehearsal it is the opposite. Concerning the high
performance of original GAN and WGAN with Generative
Replay, they benefit from their samples quality and their
stability. In comparison, samples from CGAN and WGAN-
GP are more noisy and samples from VAE and CVAE
more blurry (see in appendix 14). However in the Rehearsal
approach GANs based models seems much less stable (See
Table I and Figure 3). In this setting the discriminative task
is almost trivial for the discriminator which make training
harder for the generator. In opposition, VAE based models
are particularly effective and stable in the Rehearsal setting
(See Fig. 4b). Indeed, their learning objective (pixel-wise
error) is not disturbed by a low samples variability and
their probabilistic hidden variables make them less prone to
overfit.

However the Fitting Capacity of Fine-tuning and EWC in
Table I is higher than expected for unconditional models. As
the generator is only able to produce samples from the last
task, the Fitting capacity should be near 10%. This is a down-
side of using an expert for annotation before computing the
Fitting Capacity. Fuzzy samples can be wrongly annotated,
which can artificially increase the labels variability and thus
the Fitting Capacity of low performing models, e.g., VAE
with Fine-tuning. However, this results stay lower than the
Fitting Capacity of well performing models.

Incidentally, an important side result is that the Fitting
capacity of conditional generative models is comparable
to results of Continual Learning classification. Our best
performance in this setting is with CGAN: 94.7% on MNIST
and 75.44% on Fashion MNIST . In a similar setting with
2 sequential tasks, which is arguably easier than our setting
(one with digits from 0,1,2,3,4 and another with 5,6,7,8,9),
[35] achieve a performance of 94.91%. This shows that using
generative models for CL could be a competitive tool in a
classification scenario. It is worth noting that we did not
compare our results of unconditional models Fitting Capacity

with classification state of the art. Indeed, in this case, the
Fitting capacity is based on an annotation from an expert not
trained in a continual setting. The comparison would then not
be fair.

(a) Fine-tuning (b) G. Replay (c) EWC (d) Rehearsal

Fig. 4: Fitting Capacity results for GAN (top) and VAE
(bottom) on MNIST. Each square is the accuracy on one class
for one task. Abscissa is the task index (left: 0 , right: 9) and
orderly is the class index (top: 0, down: 9). The accuracy is
proportional to the color (dark blue : 0%, yellow 100%)

B. CIFAR10 results

In this experiment, we selected the best performing CL
methods on MNIST and Fashion MNIST, Generative Re-
play and Rehearsal, and tested it on the more challenging
CIFAR10 dataset. We compared the two method to naive
Fine-tuning, and to Upperbound Model (one generator for
each class). The setting remains the same, one task for
each category, for which the aim is to avoid forgetting of
previously seen categories. We selected WGAN-GP because
it produced the most satisfying samples on CIFAR10 (see
Fig. 16 in Appendix ).

Results are provided in Fig. 5, where we display images
sampled after the 10 sequential tasks, and FID + Fitting
Capacity curves throughout training. The Fitting Capacity
results show that all four methods fail to generate images that
allow to learn a classifier that performs well on real CIFAR10
test data. As stated for MNIST and Fashion MNIST, with
non-conditional models, when the Fitting Capacity is low,
it can been artificially increased by automatic annotation
which make the difference between curves not significant in



Fig. 5: Fitting capacity and FID score of Continual Learning methods applied to WGAN_GP, on CIFAR10. For each method,
images sampled after the 10 sequential tasks are displayed.

this case. Naive Fine-tuning catastrophically forgets previous
tasks, as expected. Rehearsal does not yield satisfactory
results. While the FID score shows improvement at each new
task, visualization clearly shows that the generator copies
samples in memory, and suffers from mode collapse. This
confirms our intuition that Rehearsal overfits to the few
samples kept in memory. Generative Replay fails; since
the dataset is composed of real-life images, the generation
task is much harder to complete. We illustrate its failure
mode in Figure 17 in Appendix . As seen in Task 0, the
generator is able to produce images that roughly resemble
samples of the category, here planes. As tasks are presented,
minor generation errors accumulated and snowballed into
the result in task 9: samples are blurry and categories are
indistinguishable. As a consequence, the FID improves at
the beginning of the training sequence, and then deteriorates
at each new task. We also trained the same model separately
on each task, and while the result is visually satisfactory,
the quantitative metrics show that generation quality is not
excellent.

These negative results shows that training a generative
model on a sequential task scenario does not reduce to
successfully training a generative model on all data or each
category, and that state-of-the-art generative models struggle
on real-life image datasets like CIFAR10. Designing a CL
strategy for these type of datasets remains a challenge.

VI. DISCUSSION

Besides the quantitative results and visual evaluation of the
generated samples, the evaluated strategies have, by design,
specific characteristics relevant to CL that we discuss here.

Rehearsal violates the data availability assumption, often
required in CL scenarios, by recording part of the samples.
Furthermore the risk of overfitting is high when only few
samples represent a task, as shown in the CIFAR10 results.
EWC and Generative Replay respect this assumption. EWC
has the advantage of not requiring any computational over-
load during training, but this comes at the cost of computing
the Fisher information matrix, and storing its values as well
as a copy of previous parameters. The memory needed for
EWC to save information from the past is twice the size
of the model which may be expensive in comparison to
rehearsal methods. Nevertheless, with Rehearsal and Gener-
ative Replay, the model has more and more samples to learn
from at each new task, which makes training more costly.

Another point we discuss is about a recently proposed
metric [25] to evaluate CL for generative models. Their
evaluation is defined for conditional generative models. For
a given label l, they sample images from the generator
conditioned on l and feed it to a pre-trained classifier. If
the predicted label of the classifier matches l, then it is
considered correct. In our experiment we find that it gives a
clear advantage to rehearsal methods. As the generator may
overfit the few samples kept in memory, it can maximizes



the evaluation proposed by [17], while not producing diverse
samples. We present this phenomenon with our experiments
in appendix . Nevertheless, even if their metric is unable to
detect mode collapse or overfitting, it can efficiently expose
catastrophic forgetting in conditional models.

VII. CONCLUSION AND FUTURE WORK

In this paper, we experimented with the viability and
effectiveness of generative models on Continual Learning
(CL) settings. We evaluated the considered approaches on
commonly used datasets for CL, with two quantitative met-
rics. Our experiments indicate that on MNIST and Fashion
MNIST, the original GAN combined to the Generative
Replay method is particularly effective. This method avoids
catastrophic forgetting by using the generator as a memory
to sample from the previous tasks and hence maintain past
knowledge. Furthermore, we shed light on how generative
models can learn continually with various methods and
present successful combinations. We also reveal that gen-
erative models do not perform well enough on CIFAR10
to learn continually. Since generation errors accumulate,
they are not usable in a continual setting. The considered
approaches have limitations: we rely on a setting where task
boundaries are discrete and given by the user. In future
work, we plan to investigate automatic detection of tasks
boundaries. Another improvement would be to experiment
with smoother transitions between tasks, rather than the
disjoint tasks setting.
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Fig. 6: Samples of a well performing solution : GAN + Generative Replay for each step in a sequence of 10 tasks with
MNIST and Fashion MNIST.



(a) MNIST Classifier accuracy (b) fashion-MNIST Classifier accuracy

Fig. 7: Test set classification accuracy as a function of number of training samples, on MNIST. Those figures make possible
to estimate the minimal number of samples needed to achieve a high test accuracy. Furthermore by comparing against the
fitting capacity we can estimate how many different images of the dataset a generator can produce.



(a) Fitting Capacity GAN (b) FID GAN

(c) Fitting Capacity CGAN (d) FID CGAN

(e) Fitting Capacity WGAN (f) FID WGAN

(g) Fitting Capacity CVAE (h) FID CVAE

(i) Fitting Capacity VAE (j) FID VAE

(k) F. Capacity WGAN-GP (l) FID WGAN-GP

Fig. 8: Comparison of the Fitting Capacity and FID results on MNIST.



(a) Fitting Capacity GAN (b) FID GAN

(c) Fitting Capacity CGAN (d) FID CGAN

(e) Fitting Capacity WGAN (f) FID WGAN

(g) Fitting Capacity CVAE (h) FID CVAE

(i) Fitting Capacity VAE (j) FID VAE

(k) Fitting Capacity WGAN-GP (l) FID WGAN-GP

Fig. 9: Comparison of the Fitting Capacity and FID results on Fashion MNIST.



TABLE II: Our results using the metric proposed by [25]. Re-
hearsal, even thought suffers from mode collapse, performs
as good as Generative Replay, which visually produce better
samples.

Strategy Dataset CVAE CGAN
Rehearsal Mnist 99.86% 95.72%

Generative Replay - 99.70% 99.26%
Ewc - 10.78% 10.54%

Baseline - 10.70% 10.52%
Rehearsal Fashion 94.42% 92.36%

Generative Replay - 88.64% 89.98%
Ewc - 10.62% 10.50%

Baseline - 10.68% 10.60%

Fig. 10: CGAN augmented with EWC. MNIST samples after
5 sequential tasks of 2 digits each. Catastrophic forgetting in
avoided.

Fig. 11: CGAN results with EWC, Rehearsal and Generative
Replay, on 5 sequential tasks of 2 digits each. EWC performs
well, compared to the results obtained on a 10 sequential task
setting.



(a) Task 2 (b) Task 3 (c) Task 4

Fig. 12: Reproduction of EWC experiment [4] with four tasks. First task with 0 and 1 digits, then digits of 2 for task 2,
digits of 3 for task 3 etc. When task contains only one class, the Fisher information matrix cannot capture the importance
of the class-index input vector because it is always fixed to one class. This problem makes the learning setting similar to a
non-conditional models one which is known to not work [4]. As a consequence 0 and 1 are well protected when following
classes are not.

TABLE III: Hyperparameters for MNIST and Fashion MNIST all models ( all CL strategies have the same training hyper
parameters)

Model Datasets Epochs Lr n_critic beta1 beta2 Batch lambda clipping value
GAN 50 2e-4 1 5e-1 0.999 64 - -

CGAN 50 2e-4 1 5e-1 0.999 64 - -
VAE 50 2e-4 1 5e-1 0.999 64 - -

CVAE 50 2e-4 1 5e-1 0.999 64 - -
WGAN 50 2e-4 2 5e-1 0.999 64 - 0.01

WGAN_GP 50 2e-4 2 5e-1 0.999 64 0.25 -
Classifier 50 0.5 - 5e-1 0.999 64 - -

Fig. 13: Samples from GAN and Conditional-GAN for each Continual Learning strategy. Upperbound refers to Upperbound
Model.



Fig. 14: MNIST samples for each generative model and each Continual Learning strategy, at the end of training on 10
sequential tasks. The goal is to produce samples from all categories.



Fig. 15: Fashion MNIST samples for each generative model and each Continual Learning strategy, at the end of training on
10 sequential tasks. The goal is to produce samples from all categories.



Fig. 16: WGAN-GP samples on CIFAR10, with on training for each separate category. The implementation we used is
available here: https://github.com/caogang/wgan-gp. Classes, from 0 to 9, are planes, cars, birds, cats, deers,
dogs, frogs, horses, ships and trucks.

https://github.com/caogang/wgan-gp


Fig. 17: WGAN-GP samples on 10 sequential tasks on CIFAR10, with Generative Replay. Classes, from 0 to 9, are planes,
cars, birds, cats, deers, dogs, frogs, horses, ships and trucks. We observe that generation errors snowballs as tasks are
encountered, so that the images sampled after the last task are completely blurry.
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