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Abstract  

Background: Oncolytic viruses (OV) are encouraging new immunotherapies for cancer. OVs, 

replicate in cancer cells inducing immunogenic cell death (ICD) and activating antitumour 

immunity. To date, clinical use has focused on intratumoural delivery due to concerns over 

inadequate tumour targeting following systemic administration. We hypothesise that 

magnetising OVs and magnetic guidance strategies will improve their systemic delivery by 

protecting the viruses from inactivating immune mechanisms but at the same time promote 

anti-tumour immunity.  

Methods: To investigate this, we synthesised and characterised complexes of magnetised 

oncolytic herpes simplex virus (HSV1716) co-assembled with biocompatible magnetic 

nanoparticles (MAG) derived from magnetotactic bacteria (AMB-1) to give MAG-OV 

complexes. Characterization of the physical, chemical and oncolytic potential of MAG-OV 

was performed. The safety and efficacy of this nanomedicine in combination with magnetic 

guidance strategies was assessed in vivo.  

Results: Stable MAG-OV complexes of ~160nm diameter successfully infected human and 

murine breast cancer cells in a dose-dependent manner, and induced tumour oncolysis. 

Following MAG-OV infection a significant increase in viral replication (ICP0, gB, ICP8), ICD 

(HMGB1, CALR, ATP) and apoptotic (CASP 3, CASP8, FASL) signals were detected. 

Intravenous delivery of MAG-OV resulted in reduced tumour burden in the presence of 

magnetic guidance (MAG-OV 448.3mm³ vs. HSV1716 670.6mm³; p ≤ 0.05, n=6-9 mice/group) 

and an increase in tumour-infiltrating T-cells, NK cells and neutrophils. Furthermore, MAG-

OV were protective in the presence of neutralising Abs both in vitro and in vivo. 

Conclusion: This study indicates that MAG are more small and uniform in size and form 

complexes with OV in such a way that the virus does not change its properties. MAG-OV is 

able to enter and replicate inside breast cancer cells, at the same time inducing tumour cell 

death as good as OV alone but with the addition of protecting the virus from neutralising Ab 

and in combination with magnetic guidance reduces tumour burden and induces anti-tumour 

immunity. 
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1.1 Introduction   

Oncolytic viruses (OVs) are emerging as new cancer immunotherapies in clinical and 

preclinical studies. These OVs comprise of a set of therapeutically useful and non-pathogenic 

viruses capable of selectively infecting and destroying tumour cells without causing damage to 

healthy cells. Such can arise via direct tumour cell oncolysis or through improving tumour cell 

death in combination with other treatments for example radio- and chemotherapy (Goldufsky 

et al., 2013, Russell et al., 2012, Almstätter et al., 2015a).  In addition, OVs can be modified to 

increase tumour cell death via the induction of potent host anti-tumour immune responses 

(Achard et al., 2018). Tissue infectivity of OVs is a fundamental feature that is determined by 

tropism for a particular cell type and natural specificity for tumour cells has already been 

demonstrated by many OVs (Howells et al., 2017). Tumour cells are attractive to OVs as these 

cells avoid immune detection and destruction in addition to resisting apoptosis and translational 

suppression, all these properties are active in normal cells and work to prevent viral infection 

and spread (Russell, Peng and Bell, 2012). Numerous OVs for example, Herpes simplex virus 

(HSV), vesicular stomatitis virus (VSV) and adenovirus (Ad) are under examination as cancer 

therapies and to date the first FDA approved OV for clinical use is Amgen's T-VEC (an 

oncolytic HSV) in melanoma (Almstätter et al., 2015a). In addition, H101 adenovirus has been 

approved for head and neck cancer in China (Garber, 2006, Yuan et al., 2003)  

In spite of these hopeful developments, use of OVs in the clinic comes with many challenges, 

such as innate host antiviral immune responses (e.g. neutralising antibodies and complement), 

OV pathogenicity, together this results in poor targeting to tumour sites particularly following 

administration into circulation. Success of oncolytic virotherapy has therefore relied on direct 

injection of the OV into the tumour. This approach is useful for superficial or accessible 

tumours but systemic delivery is necessary for the therapy of metastatic disease or hard to reach 

tumours (e.g. in the brain). To overcome this several approaches have been taken to improve 

systemic OV delivery to tumours and these will be discussed later. The overall objective is to 

exceed the ‘viremic threshold’ above which the virus infects a critical number. To achieve this, 

it is necessary to develop strategies that avoid OV deactivation by serum factors (antibodies 

and complement), reduce OV imprisonment in the liver and spleen, direct the OVs to the 

tumour vascular endothelial cells and selectively enhance virus permeability.   

One such approach to achieve this is magnetic targeting of the OVs. Magnetic nanoparticles 

(MNPs) mixed with adenovirus (Ad) or vesicular stomatitis virus (VSV) has been shown to 

increase viral entry into a cell in the presence of an applied external magnetic field, a technique 
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known as magnetofection (Almstätter et al., 2015a, Tresilwised et al., 2012b). The MNPs serve 

as a metal shield to protect the OV (Sapet et al., 2012) and this has the potential to prevent the 

virus from unwanted attack in the blood stream. Moreover, an external magnetic field could be 

used to guide the therapy to the tumour improving its tumour targeting potential and at the 

same time avoiding delivery to healthy tissues and organs. This approach is the focus of this 

PhD thesis and in this chapter an introduction to immunotherapy using oncolytic viruses and 

the challenges of oncolytic virotherapy will be discussed. 

1.2 Breast Cancer 

Breast cancer is described to be the leading cause of death among women below 40 and the 

second leading killer among women aged over 40 (Silverstein et al., 2016). Although early 

stage Breast Cancer (BC) has been treated with a high success rate, the challenge is in managing 

late stage breast cancer. This suggests there are limitations of existing therapeutic options to 

control advanced breast cancer (Silverstein et al., 2016, Goldhirsch et al., 2009). It is reported 

that advanced stage BC tends to develop resistance to conventional chemotherapies, which 

only leaves patients with palliative care options (Brocato et al., 2014). Current available 

therapeutic options for breast cancer treatment can be divided into three main categories: 

cytotoxic, hormonal and immunotherapeutic options (Confortini and Krong, 2015). All of these 

therapeutic categories proved to be less efficacious in the context of controlling advanced 

breast cancer, and often yield toxic effects such as neurological and cardiac disorders which 

drastically affect the quality of life as well as development of new primary cancers (Chen et 

al., 2013, Roukos et al., 2009). Though combination therapies involving two or more categories 

of the above-described therapeutic options proved to be useful in terms of high response rate 

and survival rate, resistance to these therapies is still an issue (Davies and Hiscox, 2011). A 

new avenue for treating breast cancer, is the application of oncolytic viruses which represent 

an engineered version or are derived from naturally occurring viruses (Holl et al., 2016). 

1.3 Cancer Immunotherapy 

Cancer immunotherapy is now considered the fifth pillar of cancer therapy and is rapidly 

advancing to join the level of surgery, radiation, cytotoxic chemotherapy and targeted therapy.  

The role of the immune system in cancer was first highlighted by Virchow et al over 150 years 

ago.  Virchow found that cancers developed inflammation and this was accompanied with the 

infiltration of white blood cells. Afterward, many reports showed that tumours regressed in 

response to acute associated infections including hepatitis, tuberculosis, smallpox, influenza 
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and gonorrhoea (Balkwill and Mantovani, 2001, Nauts and McLaren, 1990). The potential 

relationship between cancer and the immune system was embraced by William Coley. Coley’s 

experiments included direct injection of Gram-positive (Streptococcus pyogenes) and Gram 

negative (Serratia marcescens) bacteria into tumours or metastatic lesions. Despite some 

negative indicators such as treatment related deaths and reporting contradiction, Coley’s toxins 

resulted in spontaneous reduction in numerous tumours including lymphoma and sarcoma 

(Nauts and McLaren, 1990) and this led to development of the Bacillus Calmette–Guérin 

(BCG) vaccine for bladder cancer (Fuge et al., 2015). 

A major challenge for immunotherapy is to make non-responder patients into responders. This 

will likely require the use of powerful combination immunotherapies that successfully control 

the cancer immunity cycle, which achieves the balance between the recognition of non-self and 

the prevention of autoimmunity (Chen and Mellman, 2013). Cancer treatments lead to tumour 

cell death as well as release of tumour antigens. Dendritic cells then present these antigens in 

the tumour-draining lymph nodes to control and stimulate tumour immunity. Tumour-specific 

T cells then infiltrate into the circulation to penetrate the tumour mass. Additional tumour 

antigens that prolong the cycle are released by T cell-mediated cancer cell lysis. Tumour 

immunity could be enhanced at each step of this cycle by numerous opportunities for 

therapeutic intervention (summarised in Table 1.1). Understanding the deficiencies of the 

tumour microenvironment in antigen processing and presentation and the type, quality, number 

and infiltration of immune cells and the pathways that control them as well as developing novel 

immunotherapeutic agents and defining synergistic drug combinations are critical for 

continuing clinical achievement. This will also provide an opportunity to treat patients who do 

not respond to immunotherapies.  
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Table 1.1: Active connections between cancer and the immune system. 

  

Abbreviations: APCs, antigen-presenting cells; GM-CSF, granulocyte-macrophage colony stimulating factor; 

TLR, toll-like receptor; STING, stimulator of interferon genes; CTLs, cytotoxic T lymphocytes; CTLA-4, 

cytotoxic T lymphocytes antigen-4; NK, natural killer; CAR, chimeric antigen receptor; TCR, T cell receptor; 

TIL, tumour-infiltrating lymphocyte; NK, natural killer; PD-1, programmed death-1; PD-L1, programmed death 

ligand-1; IDO, indoleamine dioxygenase; A2AR, adenosine A2A receptor (Emens et al., 2017). 

Cancer immunotherapies (CI) , such as preventive and therapeutic cancer vaccines (Garland et 

al., 2007, Kantoff et al., 2010), immune checkpoint inhibitors (Hodi et al., 2010, Robert et al., 

2014, Topalian et al., 2014), bi-specific T-cell engagers (Topp et al., 2011), Car T cells and 

OVs  are now accepted as cancer treatments (Andtbacka et al., 2015). These are highlighted in 

Figure 1.1. One of the most advancing fields of CI is antibodies to inhibit immune checkpoint 

molecules. To date, they have shown spectacular results but only in a subset of malignancies, 
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including melanoma (Emens et al., 2017). Recently, meta-analysis of a monoclonal antibody 

(mAb) which targets the immune checkpoint receptor cytotoxic T-lymphocyte-associated 

antigen-4 (CTLA-4), showed that 20% of metastatic melanoma patients survived 10 years later 

with no evidence of disease after receiving a single round of treatment (Schadendorf et al., 

2015). The survival rate of 10-year was below 10% before this treatment (Luke et al., 2017). 

Adding a checkpoint inhibitor as a combination therapy such as nivolumab, a monoclonal 

antibody that targets the PD-1 receptor on T-cells, demonstrates even more potential when used 

with ipilimumab. This resulted in a 50% response rate in metastatic melanoma (142 patients) 

(Postow et al., 2015).  

Combination therapy with other treatment modalities (“immuno-oncology”) has also revealed 

success in other types of malignancies and are demonstrating outstanding benefits (Langer et 

al., 2016, Patel et al., 2017). A previous study demonstrated that combination therapy using 

stereotactic ablative radiotherapy (SABR) and anti-PD1 antibody induced significant reduction 

of non-irradiated tumours in preclinical animal models of melanoma and renal cell carcinoma 

(Park et al., 2015). Recently, prostate cancer patients have been treated with anti-CTLA-4 

(Ipilimumab) resulting in an increase in the level of T-cells in tumours and increase expression 

of PD-1 and VISTA inhibitory checkpoints. Suggesting that mixtures of checkpoint inhibitors 

targeting CTLA-4, PD-1, and VISTA would appear promising (Gao et al., 2017). 

There are also several challenges with cancer immunotherapies particularly checkpoint 

inhibitors for example immune-associated toxicity, treatment resistance, and clinical advantage 

restricted to only a portion of patients. A group of toxicities identified as immune-related 

adverse events, which is a form of autoimmune-like reactions resulting from an increased 

efficiency of the immune system, are often associated with immunotherapies like immune 

checkpoint inhibitors. These toxicities can generate symptoms, such as fatigue or fever, or can 

lead to damage to specific organ that leads to rash, pneumonitis, colitis and adrenal or thyroid 

insufficiency, among many others (Naidoo et al., 2015, Michot et al., 2018, Picchi et al., 2018). 

Therefore, these adverse events need to be understood comprehensively so clinicians can avoid, 

diagnose and suitably treat each specific reaction when using immune checkpoint therapy. 

Interruption of treatment and a short course of steroids resolve most adverse events. Colitis 

refractory of steroids and serious pneumonitis may need treatment with biological agents such 

as infliximab (Champiat et al., 2016, Dine et al., 2017, Linardou and Gogas, 2016, Gupta et al., 

2015). 
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Figure 1.1: The recent advancement and growth of cancer immunotherapy acceptance. 
A timeline shows regulatory approvals in the United States from 2010.  

OVs are becoming increasingly recognised as immune stimulators via an overabundance of 

tumour antigens emitted by viral-induced destruction of cancer cells (Choi et al., 2016). 

Clinical trials of other OVs are underway for the treatment of different types of cancer, and 

some of these trials are combined with other kinds of cancer therapies. The following section 

will discuss OVs in more detail.  

1.4 Oncolytic Virotherapy 

Oncolytic virotherapy is an emerging cancer treatment modality that has attracted attention 

through the last ten years because of its achievements in clinical trials, high cancer specificity, 

tumour regression and low toxicity. OV are non-pathogenic viruses, which have the aptitude 

to selectively target and replicate inside tumorous tissues in the absence of producing any 

damage to healthy tissues (Russell and Peng, 2007). The most important feature of OV is 

cellular tropism, this decides which tissues are favourably infected, then later, what disease is 

initiated. For example, hepatitis B virus damages hepatocytes, rabies virus damages neurons, 

influenza leads to damage of airway epithelium and HIV damages T helper cells. Most 

naturally arising OVs contain a special tropism for tumour cells and these can be genetically 

engineered to increase immunity as well as express proteins, that assist in tumour cell death 
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(Russell et al., 2012). OVs can kill tumour cells using different mechanisms. Death of cells via 

apoptosis, autophagy or necrosis is not considered to be the sole mechanism for inducing 

tumour cell death following viral infection. This is because the OV is able to take control of 

the molecular cell death machinery of the infected tumour cells, enabling cells to die after 

exploiting available cellular resources for the structure and assembly of new viruses (Russell 

et al., 2012). Besides destruction of infected cells, OVs are able to kill uninfected tumour cells 

via indirect techniques for example disrupting the tumour vasculature, inducing antitumor 

immune responses or via the overexpression of transgene-encoded proteins produced from 

engineered OVs (Russell et al., 2012). 

A whole library of novel OVs have been developed for cancer therapy including parvoviruses, 

reovirus, Newcastle Disease Virus, Moloney leukaemia virus, mumps virus, these viruses 

contain a tropism for tumour cells, whilst other viruses for example Vesicular Stomatitis Virus, 

measles, adenovirus, Herpes Simplex Virus and vaccinia have been engineered or adapted to 

make them tumour-specific (Patel and Kratzke, 2013). The main advantages and disadvantages 

of the most common OVs in both preclinical and in clinical trials are described in Table 1.2. 
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Table 1.2: The advantages and disadvantages of current OVs that are being used as cancer 

treatments in clinical studies. 

 

Clinical trials combining OVs with chemotherapy or radiation have been shown to lead to high 

frequency tumour responses. For example, the combination of oncolytic reovirus alongside 

paclitaxel were demonstrated in a phase I/II clinical trial in 31 patients with advanced head and 

neck cancer (Karapanagiotou et al., 2012). The combination of reovirus plus paclitaxel was 

well tolerated where one patient had a complete response, 6 patients had partial responses, 2 

patients had major clinical responses, 9 patients had stable disease, and 8 patient’s disease 

progressed. This has now led to a randomized phase III study. H101 is a genetically modified 

type 5 adenovirus approved by Chinese regulators in 2005. This virus expresses the viral early 

gene (E1B) that encodes a protein that is 55-kDa in size (E1B-55KD), this allows E1B to 
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interact with cellular P53 resulting in cell inactivation but enabling the virus to replicate. Head 

and neck cancer patients treated with chemotherapy plus intratumoural H101 showed 

significant improvement compared to chemotherapy alone (Russell et al., 2012). JX594 (Pexa-

Vec), is also engineered to express GMCSF, this is an oncolytic vaccinia virus. In a study by 

Park and colleagues, patients with non-resectable hepatocellular carcinoma were given 

intratumoural injections of this virus in a phase I clinical trial. The virus was shown to have 

limited toxicity and in relation to the Response Evaluation Criteria in Solid Tumours 

(RECIST), 3 patients had limited response, 6 had constant disease, and 1 had developed disease 

(Park et al., 2008). This has since developed into a phase II trial where high- or low- dose JX-

594 was infused into liver tumours of 30 patients on days one, fifteen and twenty-nine of 

treatment. Injection caused demonstrable viral replication and GM-CSF expression. However, 

patient survival was remarkably dependent on dosage, with high doses of virus significantly 

prolonging patient survival compared to low doses (Heo et al., 2013a). Furthermore, in a phase 

3 clinical trial, patients squamous cell carcinoma of the head and neck (SCCHN) and squamous 

cell carcinoma of the oesophagus (SCCE), were treated using Cisplatin plus 5-fluorouracil (PF) 

or PF with adenovirus H101. An overall 39.6% response rate was observed, however when PF 

was given with adenovirus H101 a remarkably greater response of 78.8% was observed 

(Goldufsky et al., 2013).  

Many OVs are currently being used in Phase I/II clinical trials worldwide. However, for OVs 

to be more accepted as off the shelf anticancer agents, issues such as efficacy and safety should 

be open to pharmacological study in humans. Of all current OVs that are being studied, the 

first one that has become an approved and licensed as a cancer therapeutic in the Europe and 

US is the oncolytic herpes simplex viruses (HSV). The FDA approved Herpes simplex-1 virus 

(HSV- 1) or Talimogene Laherparepvec (T-VEC) in 2015. This has been modified to express 

GM-CSF an activator of immune cell proliferation and is injected directly into parts of a 

melanoma that a surgeon cannot eliminate (Hughes et al., 2014). Table 1.3 describes the 

features of HSV that have led to clinical success.  HSV1716 will be the OV used in this PhD 

project and therefore will be discussed further. 
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Table 1.3: Features of HSV that has made this virus clinically relevant.  

 

1.5 Clinical trials and development of oncolytic HSV 

The clinical activities of oncolytic HSV has significantly accelerated. For example, the 

engineered HSV (T-VEC) expressing granulocyte-macrophage colony-stimulating factor 

(GM-CSF) has been administered intratumourally to 50 patients with metastatic malignant 

melanoma (Eissa et al., 2018). This is thought to lead to direct tumour oncolysis and GM-CSF 

expression should stimulate closure of the tumour vasculature and induce anti-tumoural 

immunity as mentioned above. The study showed that the OV was tolerated well with 
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promising efficacy and improved patient survival compared to GMCSF alone. Despite these 

promising results, response rates were not evident in patients with visceral metastatic disease 

(Senzer et al., 2009). In another study, 93% of patients with SCCHN had complete remission 

when administered directly into the tumour with T-VEC strain when combined with 

radiotherapy and cisplatin (Russell et al., 2012). The main HSV currently in clinical progress 

are listed in Table 1.4.  
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Table 1.4: The oncolytic HSV’s in clinical trials. References are given where possible but in 

numerous cases there is no published data so the clinical trial identifier (from cliniicaltrials.gov) is 

given. 

 

HSV strain Genetic 

Modification 

Indication Phase Status Result References/ 

Clinicaltrial.g 

ov  

OncoVex 

GM-CSF 

(T-Vec) 

 

IMMLYGIC 

Deletion in 

both copies 

of ICP34.5 + 

 

ICP47 

Disruption 

 

US11 

expressed as 

an 

immediate 

early gene 

 

Encodes GMCSF 

Solid Tumours 

 

 

 

SCCHN 

 

 

Melanoma 

 

 

Melanoma 

I 

 

 

 

I/II 

 

 

II 

 

 

 

 

III 

Approved 

and 

licenced 

for 

the 

treatment 

of 

melanoma. 

 

Current 

trials 

ongoing in 

melanoma 

in 

combinatio

n with 

Keytruda 

Evidence of virus 

replication in 

injected and 

adjacent 

uninjected tumours 

(head and neck). 

 

Regression of 

injected and 

uninjected tumors 

in late stage 

melanoma 

NCT02658812 

 

NCT02819843 

 

(Liu et al., 

2003),  

(Hu et 

al., 2006) 

 

(Harrington et 

al., 2010) 

 

(Sheridan, 

2013, 

Andtbacka et 

al., 2015) 

R7020 

(NV1020) 

Deletion of 

1 copy of 

ICP34.5 + tk 

under ICP4 

promoter 

control + 

deletion in 

UL24, 55 

and 56. 

Colorectal 

cancer liver 

metastases 

I 

 

II 

Completed In phase II 

disease, 

stabilisation in 

40-45% cases 

(Kemeny et 

al., 2006) 

 

(Kelly et al., 

2008) 

 

(Geevarghese 

et al., 2010) 

 

(Sze et al., 

2012) 

G207 Deletion in 

both copies 

of ICP34.5 + 

disruption 

of UL39 

Recurrent 

brain cancer 

glioma, 

astrocytoma 

glioblastomas 

 

 

Recurrent 

brain 

tumours 

I/II Completed 

 

 

 

 

 

 

Ongoing 

Well tolerated. 

Evidence of viral 

replication, 

radiographic and 

neuropathological 

signs of anti 

tumour activity 

(Yazaki et al., 

1995) 

 

(Mineta et al., 

1995) 

 

(Hunter et al., 

1999) 

 

(Todo et al., 

2000), 

 

(Markert et 

al., 2000) 

 

(Markert et 

al., 2009) 

 

(Aghi and 

Chiocca, 2009) 

 

NCT02457845 
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Abbreviations: HNSCC, Head and neck squamous cell carcinoma; SCCHN, Squamous cell carcinoma 

of the head and neck; GMCSF, Granulocyte-macrophage colony-stimulating factor.  

1.6 The mechanism of action of HSV on tumour cells 

HSV-1 has been genetically engineered for virotherapy and considered the most common 

herpes virus. There are a number of HSVs currently used in the cancer setting including T-Vec, 

G207, G47Δ, HSV1716, is a selectively duplicating oncolytic HSV type I virus, it replicates in 

actively dividing cells however not in terminally differentiated cells. It has double stranded 

DNA and causes the common cold sore and genital warts. It has about 80 known genes that 

have been sequenced and encoded within their whole genome. It can be genetically engineered 

to have beneficial transgenes which can induce immune mediated killing of tumour cells (Kaur 
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et al., 2012a). In vivo and in vitro experiments have presented data where this virus replicates 

in actively dividing cells in diverse tumour cell types such as mesothelioma, melanoma, 

glioma, non-small cell lung carcinoma, medulloblastoma, and human embryonal carcinoma, 

reviewed in (Mace et al., 2008). 

Both copies of the RL1 gene that translate the neurovirulent ICP-34.5 protein have been deleted 

from HSV1716. ICP-34.5 allows the virus to kills normal cells. So, deleting such a gene ensures 

that the virus is no longer able to replicate in normal tissues (Benencia et al., 2008). 

HSV1716 is tumour specific due to the fact that tumour cells having reduced expression of 

protein kinase R (PKR) compared to healthy cells. When a healthy cell becomes infected with 

this virus, PKR dimerizes and undergoes phosphorylation leading to phosphorylation of the -

subunit of the Eukaryotic Initiation Factor 2 (transcription factor eIF2). This prevents more 

protein production from arising inside the cells, stopping the virus from replicating as shown 

in Figure 1.2. However, due to the oncogenic stimulation of the mitogen-activated protein 

kinase (MAPK) signalling pathway, PKR is down regulated in cancer tissues, enabling 

uninhibited virus replication (Kaur et al., 2012b).  

The efficiency and safety of HSV1716 has nowadays been assessed and defined in many 

progressive tumours for example squamous cell carcinoma of the skin (see Table1-4). A novel 

phase I/IIa study of HSV1716 therapy for Malignant Pleural Mesothelioma (MPM) opened in 

Sheffield in November 2012 (NCT01721018). This trial established an acceptable safety 

profile of intra-pleural HSV1716 with evidence of viral replication and anti-tumour 

immunogenicity in 12 patients  (Danson et al., 2017). This supports further studies in 

mesothelioma, possibly involving combination with immune checkpoint inhibitors.  The 

following sections will discuss the mechanisms of HSV infection, cell mediated killing 

mechanisms and the antitumour response. 

https://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase
https://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase
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Figure 1.2: HSV-1 mechanism of action in healthy cells.       

1. HSV1716 gets in the host cell and starts replication. 2. dsRNA produced by annealing of 

Complementary RNA. 3. PKR linked to dsRNA, dimerizes resulting in activation and auto 

phosphorylation. 4. elF2α phosphorylated by Phosphorylated PKR. 5. The stopping translation of host 

cell caused by Phosphorylated elF2α and thus prevents viral replication. 6. HSV presented ICP34.5 that 

creates a protein complex with PP1α. 7. elF2α dephosphorylated by ICP34.5 PP1α complex resulting 

in viral replication 8. Replication can continue unimpeded.  

Abbreviations: HSV, herpes simplex virus; PKR, protein kinase R; P, phosphorylation; PP1α, protein 

phosphatase 1 alpha; eIF2α, eukaryotic initiation factor 2; ICP, infected cell polypeptide. 

 

1.7 HSV infection and host cell defence mechanisms against infection 

1.7.1 Virion and genome of HSV-1. 

It is known that HSV1716 is a deletion mutant of HSV-1 which is a human neurotropic virus.  

The morphological structure of this HSV-1 virion, is distinguished by a core dsDNA genome 

surrounded by a central icosahedral capsid, which is further surrounded by the tegument. In 

turn, this tegument is enclosed by the envelope, which is a protein-containing lipid bilayer. The 

tegument is a substance formed of different viral proteins (Kelly et al., 2009) whereas the 

envelop mainly contains lipids obtained from the  membrane of the host cell, into which are 

inserted HSV glycoproteins. Most of viral functions such as HSV-1 entry into the cell, cell 

fusion, cell-to-cell spread and immune evasion is arranged by membrane glycoproteins 

(Carmichael et al., 2018). 

 The HSV-1 genome is 152 kb long as illustrated in Figure 1.3A. It is a linear two-fold stranded 

DNA containing two unique regions, long and short (called UL and US). Internal repeats (IRL 
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& IRS) are linked to these regions in either orientation. Further, terminal repeats (TRL and 

TRS) are located at the non-linker end of the unique regions. Within L or S regions are a large 

portion of the known genes named according to their location. The immediate – early (IE), 

early (E) genes or late (L) genes as described in Figure 1.3 are considered the main class of 

HSV-1 genes.  

 

Figure 1.3: A. Genome of wild type HSV 1. B. shows the deletion in HSV1716. Both copies of the 

RL1 gene that translate the neurovirulent ICP-34.5 protein have been deleted from HSV1716. ICP-34.5 

allows the virus to kills normal cells. Therefore, deleting such a gene ensures that the virus is no longer 

able replicate in normal tissues. 

1.7.2 HSV viral entry into host cells 

HSV1716 utilizes indistinguishable cell receptors from wild type HSV-1 to infect cells. 

Associations of a few viral glycoproteins, specifically gB, gD and the heterodimer including 

gH and gL is included with entry of HSV-1 into the host cell  (Campadelli-Fiume et al., 2007). 

Receptors on the surface of the host cell connect with these glycoproteins that are located on 

the surface of the enveloped virus.  

Interaction between viral gB and cellular heparan sulphate is considered the earliest contact 

(Shukla and Spear, 2001). Then, the cellular receptors for HSV-1 entry, which incorporate 

HSV entry mediator (HVEM), nectin-1 and 3-O-sulphated heparin sulphates, interact 

specifically with gD. The coordinated effectiveness of gB and gH/gL are required for 

membrane fusion, thus the nucleocapsid obtains access to the cell and infection begins. The 

primary access for infection of central and peripheral nerve cells is Nectin-1, while HVEM 

expression is more confined to cells of lymphoid origin (Simpson et al., 2005). HSV-1 entry 

mediators have an extensive bioavailability and a wide range of human tumour cell types are 
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permissive to HSV1716 infection (Karasneh and Shukla, 2011). Fusion of the virus envelope 

with the plasma membrane lets the virus penetrate the cell resulting in viral nucleocapsid being 

inserted into the cytoplasm of the cell. Then, the genome discharges into the nucleus by binding 

of the capsid to the nuclear pore to initiate the transcription, replication of viral DNA and 

progeny nuclear capsid assembly. 

1.7.3 HSV replication 

HSV-1 gene expression takes place through a very controlled cascade starting with the 

generation of the immediate early (IE) proteins. The α regulatory proteins, ICP 0, 4, 22, and 27 

manage the expression of all classes of viral genes. The proteins that are primarily associated 

with synthesis of viral DNA, are the β or early (E) gene products for example the viral 

thymidine kinase (TK)(Roizman, 1996).  The γ or late (L) proteins for example the VP16, gD 

and gC are considered the last batch of viral proteins produced and are the proteins mainly 

involved in virion structure and assembly (Batterson and Roizman, 1983, Fenwick and Walker, 

1978, Read et al., 1993).  

The γ or late (L) gene class is additionally divided into the γ1 and γ2 sets, where γ2 expression 

is totally reliant on viral DNA synthesis. The completed cycle of HSV-1 replication results in 

eventual damage of the cells.  

1.7.4 Activation of the MEK pathway is necessary for HSV replication  

MEK is a main controlling kinase triggered via mitogen-activated protein kinase (MAPK) 

kinases (A-RAF, B-RAF, and C-RAF) that functions to promote cell survival (Ballif and 

Blenis, 2001, von Gise et al., 2001, Xia et al., 1995). Therefore, MEK and its only identified 

substrate, MAPKs (ERK1 and ERK 2), are triggered in many tumours as a result of tyrosine 

kinase receptor activation (Hoshino et al., 1999), dysregulated growth factor secretion 

(Pouyssegur et al., 2002), activating mutations in RAS isoforms, and somatic activating 

missense mutations of B-RAF (Davies et al., 2002). Activated MEK plays a main role in 

suppression of PKR resulting in replication of ICP34.5 mutant virus and destruction of tumour 

cells (Smith et al., 2006). 

As mentioned above, cells from different tumour tissue types can be infected equally well by 

HSV1716, as confirmed via the equal expression of early viral proteins expressed following 

viral entry (Smith et al., 2006). This suggests that function of variances in overall viral protein 

synthesis, rather than differential infectivity could be one of the reasons why there is variability 

in viral production in different tumour cell types. The occurrence of mechanisms in tumour 
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cells that circumvent the PKR-mediated antiviral response could be important for replication 

of HSV1716. Many early studies have shown that the difference in capability of numerous 

human tumour cell lines to HSV1716  infection was reliant on the stimulation status of the 

endogenous MAPK kinase (MEK) which can prevent the activation of PKR, (Figure 1.4) 

(Smith et al., 2006).  

 
Figure 1.4: The shutdown of host protein synthesis in the presence of HSV1716 infection is 

blocked by MEK pathway activation in cancer cells. In ICP34.5 (-) mutants, the MEK activated 

pathway in tumour cell will block PKR activation, and in the absence of ICP34.5 protein, will result in 

translation initiation and viral replication. 

1.7.5 Proliferating cell nuclear antigen (PCNA) is important for HSV replication 

Previously, PCNA has been recognised as additional molecular mechanism that participates to 

the selectivity of HSV for tumour cells. PCNA has been used as a diagnostic and prediction 

cell-cycle marker because it plays a role in proliferation of cancer cells and cancer 

transformation (Bologna-Molina et al., 2012). PCNA levels are very high in cycling cells for 

instance active tumour cells, however levels can normally be much lower than in non-cycling 

cells. So PCNA could be used as a proliferation cell marker (Bologna-Molina et al., 2012). 

Previous studies have shown that HSV neurovirulence factor ICP34.5 forms a complex with 
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PCNA in vitro and in vivo via its 63-amino-acid carboxyl domain which is preserved in hamster 

GADD34, and mouse MyD116 (Brown et al., 1997, Harland et al., 2003). This suggest that 

both viral and cellular proteins complex in vitro and in vivo with PCNA and offers solid 

evidence for the importance and biological relevance of these interactions. Indeed, PCNA is 

required for HSV replication and recent studies have highlighted that the HSV DNA that enters 

the cellular nucleus does not have histones (these are responsible for the cellular packaging of 

DNA into structural units called nucleosomes), but once inside the nucleus histones cover the 

viral DNA. Using SiRNA knockdown of PCNA and a cytosine arabinoside chemical inhibitor, 

they demonstrated that PCNA is necessary for histone deposition and in the absence of this 

process PCNA viral replication was significantly reduced (Sanders et al., 2015). 

 One of the components of oncolytic specificity that could define its efficiency is tumour 

expression of PCNA. The in-situ PCNA profiles have been studied in histological sections of 

tumour biopsies that were gained from patients experiencing craniotomy (Detta et al., 2003). 

They found that PCNA expression was positive in 10 metastatic tumour biopsies (3 melanoma, 

4 carcinoma and 3 adenocarcinoma) via IHC and reinforced the replication of HSV1716. 

HSV1716 replicated effectively in tumour cells, where PCNA was previously involved in DNA 

replication, even in the absence of ICP34.5. In spite of this, the association between the PCNA 

levels and reactivity to HSV1716 in a large group needs to be confirmed. 

1.7.6 Cell death pathways and HSV 

1.7.6.1 Autophagy 

Autophagy acts as a primary cellular conservation mechanism that includes the lysosomal 

degradation of unnecessary or dysfunctional proteins and organelles. The process of autophagy 

provides essential cellular energy that ensures cellular survival during starvation. Autophagy 

proteins, which targets viral components for degradation of lysosomal, plays an antiviral role, 

and has a role in activating immune responses against viral infection (Alexander et al., 2007). 

ICP34.5 interferes with autophagy via binding Beclin-1 during wild-type HSV-1 infection. 

Beclin-1 acts as an important component of numerous extremely regulated complexes 

controlling the development and maturation of autophagosomes (Alexander and Leib, 2008). 

Cancer cells often exhibited disorder in autophagy resulting in increased tumorigenesis. 

HSV1716 cannot bind Beclin-1 to block autophagy because of the ICP34.5 deletion (Figure 

1.4). However, HSV-1 has US11, a late gene product of HSV-1, that is identified to obstruct 

autophagy via its interaction with PKR rather than binding to Beclin-1 itself (Lussignol et al., 
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2013).  

Indeed, two anti-autophagic proteins are encoded by HSV-1, suggesting autophagy develops a 

strong anti-viral influence. Nevertheless, HSV-1 can replicate in vitro in autophagy deficient 

cells (Murine embryonic fibroblasts (MEFs)) as good as in wild type cells (Alexander et al., 

2007). A further study demonstrated that a HSV-1 mutant that had a mutation in ICP34.5 was 

neuro-reduced in mice suggesting that the neurovirulence of wild type HSV because of the 

ICP34.5 protein binding with Beclin-1 is contributing to the inhibition of autophagy by HSV-

1 (Orvedahl et al., 2007).  

A study carried out by a Masters student (Anna Claudia Lima) at the University of Strathclyde 

in collaboration with Virttu Biologics looked at autophagy with HSV infection in a number of 

human tumour cell lines, such as Hep3B, HuH7 (liver cancer) and A2780 (ovarian cancer). The 

autophagy response to HSV infection in the in vitro human cancer cell lines studied was 

variable and independent of ICP34.5 status (this data was presented as a poster at 8th 

International Oncolytic Viruses meeting, 2014, Oxford, UK). 

1.7.6.2 Apoptosis  

Host cell apoptotic pathways are activated by HSV-1 infection as a defence mechanism to 

suppress the spread and replication of the pathogen. HSV-1 infection induces host cell 

apoptosis via the first class of viral genes (IE genes) expression (Sanfilippo and Blaho, 2006).  

Cytopathic effect (CPE) is referred to the major biochemical changes that is induced by 

productive HSV-1 replication in infected cells. Apoptosis is also activated by the virus in 

transformed or tumour cells, but not primary cells. Production of virus ICP27 during an 

apoptotic-prevention window leads to delay of the apoptotic process from damaging the virally 

infected cells, which eventually enables the beginning of productive viral replication (Aubert 

et al., 1999). Viral proteins including the immediate early proteins ICP4, ICP24 and ICP27, 

which act to control apoptosis during viral infection, have been recognised.  Loss of any of 

these proteins results in viruses that activate apoptosis (Thomson, 2001). Previous studies have 

demonstrated that deletion of either ICP4 or ICP27 resulted in reduced expression of early and 

late viral gene products. This suggest that immediate early protein ICP4 or ICP27 have 

regulatory functions (Samaniego et al., 1997).  

Apoptosis can be prevented by other early HSV gene products such as US3 (Leopardi et al., 

1997), Glycoprotein D (Zhou and Roizman, 2001),  R1 (Langelier et al., 2002) and latency 



22 
 

associated transcripts (LAT) (Nguyen and Blaho, 2009). Single loss of any of these late viral 

genes do not result in apoptosis to the same extent as the ICP4 or ICP27 deleted viruses. This 

suggest that the late viral genes have unnecessary roles or are able to inhibit apoptosis during 

HSV infection.  

Herpes Simplex Virus Dependent Apoptosis (HDAP) is a process of death used by cells that 

infected with recombinant viruses with modifications in the anti-apoptotic viral gene. HDAP 

was firstly studied with transformed cell lines in vitro, then when studies were developed to 

comprise non transformed lines essential variations were detected (Aubert and Blaho, 2001). 

Transformed, tumourigenic cells are sensitive to HDAP while primary, non-transformed cells 

are resistant to HDAP. So far,  two HDAP sensitivity regulator proteins have been identified, 

P53 and telomerase, two known key oncogenes (Nguyen et al., 2007). Therefore, HSV 

infection increases killing in cancer cells, but not normal cells via HDAP. HDAP is reliant on 

caspases. A study used specific caspases inhibitors in HEp-2 cells and found that caspase 9 

inhibitors were able to suppress HDAP, whereas inhibitors of caspase 8 did not. This suggests 

that HDAP is dependent on  the intrinsic pathway of apoptosis (Aubert et al., 2007).  

 Possibly, As HSV virus is able to induce apoptosis in cancer cells but not in normal cells, this 

difference could be exploited in tumour therapy. HSV1716, like wild type HSV-1 is able to 

keep viral proteins that prevent host cell apoptosis. HSV1716 produces progeny virions, 

preventing cell apoptosis so that viral replication occurs before the host cell is damaged. On 

the other hand, HSV1716 infection might still leading to tumour cell death, through HDAP, if 

the production of the viral proteins that prevent apoptosis was blocked. Thus, combination of 

HSV1716 with antitumour drugs that prevent viral replication could result in tumour cell death 

through HDAP.  

As HDAP occurs through the intrinsic pathway and relies on caspases, looking for increased 

levels of specific caspases could help measure this enhanced HDAP. Increased apoptosis could 

be detected by measuring the levels of caspase 3/7, and the differentiation between intrinsic 

and extrinsic pathways could be identified by measuring caspase 8 or 9. 

1.8 HSV induces immunogenic cell death  

OV infected tumour cells promote anti-tumour immunity (Bartlett et al., 2013) and this likely 

a result of immunogenic cell death (ICD). Understandably, ICD is one of the cell death types 

that involves the adaptive arm of the immune system. Further, ICD stimulates innate and 

tumour-specific immune cells and generates an anti-tumour immune response, which is able to 
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eradicate the uninfected cancer cells in primary and metastatic sites (Figure 1.5) (Bartlett et 

al., 2013).  HSV-1 RH2 have been shown to induce DAMPs from squamous cell carcinoma 

SCC cells to induce cell death. In this study they showed that high mobility group box 

1(HMGB1) and ATP were released into the extracellular space, while calreticulin (CRT) 

translocated to the cell membrane after being infected with (RH2) (Takasu et al., 2016). 

Coxsackievirus B3 virus have also been shown to induce ICD in human non-small cell lung 

cancer cells (NSCLC; A549, H1299, and H460), including cell surface CRT and release of 

ATP as well as HMGB1 (Miyamoto et al., 2012). 

                                        

 

Figure 1.5: OVs induce ICD of cancer cells that leads to antitumor immunity. After delivering the 

OV into the tumour either intra-tumourally or systemically, replicating OV in tumour and/or stromal 

cells present eat me signals, DAMPs and PAMPs, on the cell surface and then release danger signals. 

APC engulfs apoptotic bodies, and TAAs are offered together with MHC complex and co-stimulatory 

molecules. DCs are activated and matured by released DAMPs (and PAMPs) and TAAs are cross-

offered to naïve T-cells. Complete eradication of the tumour mass may be enhanced by causing 

cytotoxic immune response against the tumour, including CD4 and CD8 T cells. Antitumor immune 

responses can be helped by other immunotherapies targeting T cells, DCs and the immunosuppressive 

TME.  

The interaction between HSV1716-mediated tumour damage and immune response has been 

demonstrated in a syngeneic murine intracranial melanoma model (Miller and Fraser, 2000). 

They found HSV1716 significantly prolonged survival compared with mock-treated mice. 
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Moreover, they reported complete tumour regression in 60% of the animals treated with 

HSV1716. There was no change detected between mock and HSV1716 treated groups in the 

mean survival rates when SCID mice (no adaptive immune system) were used compared to 

immunocompetent animals. Also, no significant change was found in the mean survival rates 

of the mock vs. HSV1716 treated mice when leukocytes were depleted using 

cyclophosphamide in the syngeneic model before and during HSV1716 administration (Miller 

and Fraser, 2000). Together this suggest that adaptive immune cells are essential for promoting 

this effect of HSV1716. After viral therapy, infiltration of immune cells into the tumour was 

also studied.  The main early infiltrating cells were macrophages and CD4+ T cells, while 

polymorphonuclear leukocytes such as NK cells, CD8+ T cells, microglia cells and B cells also 

infiltrated into the tumour (Miller and Fraser, 2000). NK cells significantly infiltrated on day 

7 post therapy, with significant CD4+ T cells infiltration seen on day 12. Staining of HSV-1 

antigen was positive in the tumour mass. Treated mice showed downregulation of MHC class 

I expression 3 days post viral therapy when compared with mock-treated mice. These data are 

in agreement with prior studies that demonstrate downregulation of MHC class I expression 

with HSV-1 through ICP47 (Jugovic et al., 1998).  

Indeed, various rodent cancer cell lines are unaffected by HSV -1, because the natural hosts for 

HSV-1 are humans. Transfected mice cell lines and HSV1716 replication-competent cell lines, 

were used to produce tumours in 4 strains of knockout mice (CD4-/-, CD8-/-, NK-/-, and RAG2-

/-) as well as syngeneic C57/BL6 mice. An increase in survival was only shown in 

immunocompetent C57/BL6 mice when treated with HSV1716. This suggests that the 

prolongation in survival, which is seen after HSV1716 therapy, was a result of the cells of the 

immune system (Miller and Fraser, 2003).  

A study by Thomas et al., demonstrated that direct tumour injections of HSV1716 was able to 

inhibit primary tumours growth and improve survival in a 4T1 mouse mammary tumour model. 

This improvement in survival resulted in reduction in lung metastasis. The establishment of a 

second challenge of 4T1 tumours also decreased tumour size following HSV1716 therapy. 

Inflammatory cells, for example neutrophils, were noticed in HSV1716-treated tumours on day 

12 post injection of tumour cells. In addition, HSV1716-treated tumours showed an increase in 

CD4+ and CD8+ T cells compared to the mock-treated tumours. Growth of 4T1 tumours was 

not reduced after HSV1716 therapy in SCID mice, proposing a function for the T cell infiltrates 

(Thomas and Fraser, 2003).  
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 In addition, Benencia et al., established the vaccination effect of intra-tumoural injection of 

HSV1716 in a mouse model of ovarian cancer. They found that tumour growth was reduced 

significantly by HSV1716, as well as increased mouse survival. Further, mouse ovarian tumour 

cells displayed a significant increase in expression of gB and gD and were easily phagocytosed 

by dendritic cells (DCs) after HSV1716 infection. Heparin and anti-HSV gB and gD reduced 

the improved phagocytosis of tumour-infected cells via DCs. This proposed that collaborations 

between DCs and tumour apoptotic bodies are improved by viral infection (Benencia et al., 

2008). 

The type of cell death induced following HSV infection dictates the type of immune response 

that follows. The induction of antitumour immunity requires ICD that involves the adaptive 

arm of the immune system. We encourage systemic delivery of HSV into the tumour to induce 

ICD.  

1.9 Systemic delivery of HSV 

OV have been modified to increase potency by expressing genes that induce cytotoxicity 

(Doronin et al., 2000), increase virus replication (Le Boeuf et al., 2013), stimulate  killing of 

bystander cells (Freytag et al., 1998), and improve antitumour immunity (Melcher et al., 

2011a). However, these enhancements will not induce effective antitumour responses without 

successful delivery of virus to the tumour. Traditionally, OV is delivered directly to the tumour 

by intratumoural injection. However, some of the tumour may contain numerous small nodules 

spread out over a large area. In addition, direct injection is not always possible for tumours that 

are not accessible. Systemic delivery is needed for such inaccessible tumours. Furthermore, 

systemic delivery of some OVs can stimulate antitumour immune responses greater than direct 

intratumoural injection. For example, Bridle et al showed that a single intravenous dose of 

Vesicular stomatitis virus expressing human dopachrome tautomerase (VSV-hDCT) into mice 

bearing intracranial B16 tumours resulted in the induction of antitumour immunity (Bridle et 

al., 2010). 

Although, there are numerous advantages for efficient systemic delivery of HSV, there are 

several barriers that need to be overcome (Figure 1.6). In circulation, the virus can encounter 

numerous factors that prevent its delivery to the tumour and the host immune system is unable 

to distinguish between a therapeutic HSV and a pathogenic virus. Therefore, intravenous HSV 

can encounter circulating factors such as antibodies. These antibodies neutralise virus directly 

by specific binding, or mark them for destruction via complement and several immune cells 
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(Ferguson et al., 2012). This is particularly pertinent to viruses that the body has already 

encountered. Serum proteins as well as circulating cells in the bloodstream also neutralise HSV 

by nonspecific binding (Ferguson et al., 2012). Virus is also cleared from the bloodstream by 

organ sequestration, such as the liver, spleen and lung. As these tissues comprise macrophages 

that filtrate the blood from circulating pathogens (Fisher, 2006). Adaptive immunity produces 

an extra obstacle to intravenous delivery of HSV. As it capable of growing a significantly more 

potent and specific immune response to the virus compared with its innate counterpart. 

Definitely, many of the OVs including vaccinia virus (Heo et al., 2013b), reovirus (White et 

al., 2008), measles virus (Galanis et al., 2010) and HSV (White et al., 2012) have infected most 

of the human population resulting in developing immunologic memory to these viruses. 

Previous preclinical (Power et al., 2007, Ilett et al., 2009, Iankov et al., 2007) and clinical 

(White et al., 2008, Adair et al., 2012) studies have shown that the amount of infectious virus 

that can be delivered to the tumour is significantly reduced by neutralising antibodies. Delivery 

of OV into the tumour bed can also be affected by physical barriers for example tumour 

extracellular matrix and high interstitial fluid pressure within the tumour resulting in restricted 

extravasation of OVs into the tumour (Wojton and Kaur, 2010).  Although, there are many 

barriers to systemic delivery of OVs, previous clinical trials have suggested that OV can be 

delivered into the tumour intravenously by using high doses of virus that perhaps saturate the 

neutralising mechanisms that exist within the human body (Breitbach et al., 2011a, Adair et 

al., 2012).  In spite of this revolutionary success in the field, there is still space for progress 

particularly with respect to systemic delivery.  

 

Figure 1.6: Virus neutralisation during systemic delivery. Firstly, virus are neutralised by binding 

with circulating antibodies in the blood stream and complement proteins resulting in marking them for 

destruction by immune effector cells. Interaction of the OV with circulating blood cells could result in 

virus sequestration. Furthermore, the reticulo-endothelial system such as the liver are able to filter 

viruses from the blood. The tumour extracellular matrix and high interstitial fluid pressure are also able 

to limit the extravasation of virus into the tumour.    
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However, as mentioned earlier the most common threat to OV treatments such as HSV1716 is 

neutralising antibodies from prior encounters with such a common virus. As a result, strategies 

have been planned to beat this, such as the usage of cell-carriers. There has been considerable 

interest into the advantages of using live cells to carry OV to tumours at the same time as 

avoiding antiviral immunity recently (Power and Bell, 2008). The ability of cells to migrate 

into tissues naturally has led them to be appropriate cell delivery targets for OVs. This has been 

demonstrated for immune cells for example macrophages and dendritic cells. Jennings et al., 

demonstrated that overcoming antibody neutralisation can be achieved by inserting reovirus 

onto either immature dendritic cells (iDC) or Lymphokine-activated killer and dendritic cell 

LAKDC and reovirus-loaded LAKDC, these were ideal vectors for delivering reovirus to  

ovarian cancer in vitro and stimulated innate and adaptive immunity (Jennings et al., 2014). 

Macrophages in particular have the advantage in that they home to highly inaccessible hypoxic 

areas of tumours (Muthana et al., 2011a). Researchers in Sheffield have exploited this for the 

delivery of adenovirus protected by macrophages in preclinical mouse models of prostate 

cancer (Muthana et al., 2011a). The same group also demonstrated that viral delivery by 

macrophages significantly increased the trafficking of macrophages to prostate tumours in mice 

following chemotherapy and radiotherapy (Muthana et al., 2013). Cell delivery is an attractive 

approach but clinical studies have demonstrated natural cell trafficking has not been simple. 

Numerous cell types have been used, such as T cells (Morgan et al., 2006), macrophages 

(Griffiths et al., 2000) and stem cells (Studeny et al., 2004). Most of these types of cells have 

been located in tumours (albeit in small numbers) following administration but they were also 

found to enter other organs and tissues and this not only weakens the treatment but also 

increases the risk of toxicity in other parts of the body if they transfer therapeutic cargo such 

as viruses. 

In a recent paper by Muthana et al., tiny MNPs (Super Paramagnetic Iron Oxide:SPIO) were 

inserted into cells (monocytes/macrophages) and injected intravenously into tumour bearing 

mice and subsequently directed into the prostate tumours implanted under the flanks of mice 

using an external magnetic field. Using this approach, they showed a 3-fold increase in cell 

delivery (Muthana et al., 2008b). This approach has also been used for delivering anti-cancer 

drugs, antibodies and for inducing magnetic hyperthermia (Tran and Webster, 2010). 

Furthermore, Muthana et al., demonstrated that prostate tumour-bearing mice that received 

HSV1716-carrying macrophages (also loaded with MNPs), which were directed into primary 

and metastatic tumour sites using magnetic resonance targeting with an MRI scanner, showed 

marked reduction of the primary tumour than those that received naked HSV1716  (Muthana 
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et al., 2015b). We propose to use a similar magnetic guidance strategy for delivery and targeting 

of HSV1716 to tumours but without the need for cells. In order to do this, we must consider 

how to magnetise our OV and which magnetic nanoparticles (MNPs) are the most suitable. 

Below is a review of the types of MNPs used in biomedical research and their application. 

1.10 Magnetic nanoparticles (MNPs) 

Magnetic nanoparticles (MNPs) have been exploited in biomedical applications including 

hyperthermia, targeted drug delivery and gene delivery. The most vital properties of MNPs in 

all biomedical applications are biocompatibility, tunable nanomagnetism, low toxicity and 

exact localization at the biological target. Fe3O4 MNPs have been most commonly used in bio-

applications because of their unique features, such as strong magnetic susceptibility and 

superior biocompatibility, one of these bio-applications is gene delivery (Zhou et al., 2014). 

Moreover, It is well known that Fe3O4 MNPs have a big surface area-to-volume ratio, so this 

kind of MNP tend to conglomerate resulting in low colloidal constancy in physiological 

circumstances (Dias et al., 2011). There are some major challenges with respect to the use of 

MNPs in cancer therapy that still need to be addressed. For example, how to increase the uptake 

of Fe3O4 MNPs in tumour cells whilst decreasing accidental side effects to normal cells. 

Moreover, how to keep the MNPs from clearance by the reticuloendothelial system (RES) so 

as to increase blood circulation time and ensure they reach their target tissue still needs to be 

addressed (Sun et al., 2010a, Xie et al., 2007). 

Since the 1970s, interest in MNPs for drug delivery systems has been recognised. The use of 

magnetic fields to guide the MNP-drug conjugates to a specific site because of their 

ferromagnetism is very attractive. In the last few years, MNPs loaded with anticancer drugs 

(e.g. carboplatin, doxorubicin, paclitaxel, 5-fluorouracil, epirubicin, etc.) were guided by an 

external magnetic field to tumour sites. Chao et al. established that growing tumours could be 

shrunk significantly in mice with hepatocellular carcinomas using doxorubicin-coupled MNPs 

and external magnetic devices to achieve local enhancement (Chao et al., 2012a).  

1.10.1 Iron oxide particles 

The most widely used application of iron oxide in the clinic is as MRI contrast agents and 

because of the extensive scattering of Fe3+ in the human body and low toxicity these particles 

can be exploited for clinical use (McBain et al., 2008, Buyukhatipoglu and Clyne, 2011).    

Understanding the structure and property relationship of iron oxide MNPs have led scientists 

to harness their properties, tailoring and tuning the desired structure, shape and size of the 
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MNPs (Dadfar et al., 2019). US Food and Drug administration (FDA) have accepted iron oxide 

MNPs in biomedicine because of their numerous advantages. Certainly, an advantage of iron 

oxide MNPs is that they are simple to manufacture, non-toxic, biocompatible and can be super 

paramagnetic. g-Fe2O3 (maghemite) and Fe3O4 (magnetite) are considered the two major 

structures of iron oxide particles in medicine to date (Hervault and Thanh, 2014). 

1.10.2 Coated iron oxide MNPs 

In biomedical applications MNPs are often covered with natural polymers (proteins and 

carbohydrates), artificial organic polymers (polyethylene glycol), polyvinyl alcohol, poly-L-

lactic acid), silica and gold (Kami et al., 2011). Using these compounds can improve chemical 

and physical stability of the MNPs and their toxicity is reduced (Selvan et al., 2005, Sotiriou 

et al., 2011). TransMAGPEI iron oxide MNPs stabilised with polyethylenimine (PEI) were the 

first MNPs used for gene delivery (Mykhaylyk et al., 2012). PEI is a popular choice of coating 

as this improves cationic gene transport with high effectiveness of transfection in the lungs of 

mice (Thomas et al., 2005). However, it is highly toxic to cells. The authors found that 

modifying the PEI to remove the N-acyl groups decreased cytotoxicity and improved its 

plasmid DNA transfer effectiveness 21 times in vitro, in addition to 10,000 times in mice. They 

also showed that siRNA delivered with PEI coated MNPs missing N-acyl groups inhibited 94% 

influenza virus infection in the lungs of mice (Thomas et al., 2005). In a study by Sanchez and 

colleagues, a new nanomagnetic approach for gene delivery and cell separation. They used 

gene vectors associated with MNPs (PEI-modified silica-iron oxide) to transfect target cells 

such as hematopoietic stem cells (human and mouse) and human mesenchymal cells when 

being passaged and isolated using a magnetic field cell separation column. Superior target cell 

purity and retrieval was yielded using this method (Sanchez-Antequera et al., 2011).  

The adjustment of the MNP surface has also been demonstrated with chitosan (CS) because of 

excellent features such as low immunogenicity, amphiphilicity and biodegradability (Park et 

al., 2010, Amidi et al., 2010, Rinaudo, 2006). For instance, the core shell nanocomposites 

decorated by simple coacervation methodology with CS improves the intravenous transfer of 

the anticancer agent gemcitabine to cancer tissue in a murine tumour model (Arias et al., 2012). 

MNPs are very quickly cleared via the reticuloendothelial system (RES) once injected into 

circulation and this limits their circulation time. Coating the MNPs with polyethylene glycol 

PEG has been revealed to remarkably increase blood circulation enabling the MNPs to reach 

their target. PEGylation provides stability, biocompatibility and hydrophobicity (Liu et al., 
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2012, Shah et al., 2012). Lui et al, synthesised PEGylated MNPs and found they showed great 

impedance to phagocytosis by macrophages in vitro in addition to minimum uptake via the 

liver and spleen in mice with tumours. This improved tumour imaging by MRI and required 

only low doses of MNPs. These properties are basically a result of the considerable protecting 

effect of the PEG coating and their stability in physiological circumstances (Liu et al., 2011a). 

The most strong points of MNPs are biocompatibility, tunable nanomagnetism, low toxicity 

and exact localization at the biological target. Therefore, Many MNPs have been used in 

preclinical models of cancer using the coatings described above as well as other coatings, these 

are summarised in Table 1.5 

Table 1.5: Types of MNPs in preclinical mouse studies of cancer therapy. 

 

 MNPs 
 

Drug 
 

Tumour  Reference 
 

Iron oxide nanoparticles 
with starch coating 

Mitoxantrone Squamous cell carcinoma 
VX-2 (rabbit) 
subcutaneous (hind limb) 

(Alexiou et al., 2000) 

Iron oxide nanoparticles 
with either citrate or PEG 
coating 

Hyperthermia (alternating 
magnetic field) 

Breast cancer cell line 
MDA-MB-231 (human) 

(Alphandéry et al., 
2011) 

Iron oxide nanoparticles 
(Fe3O4) 

Hyperthermia (alternating 
magnetic field) 

Melanoma cell line B16-F10 
(mouse) subcutaneous (rear 
limb above stifle) 

Balivada et al., 2010a) 

Iron oxide 
nanoparticles 
(Fe2O3, Fe3O4) 

Hyperthermia (alternating 
magnetic field) 

Squamous cell 
carcinoma VX-2 
(rabbit) kidney 

(Bruners et al., 
2010) 

Iron oxide nanoparticles 
(Fe3O /gold) 

Doxorubicin Hepatoma cell line H22 
(mouse) subcutaneous 
(right flank) 

Chao et al., 2012) 

Iron oxide nanoparticles 
with dextran coating and 
111In-marked L6 
monoclonal antibody 

Hyperthermia (alternating 
magnetic field) 

Breast cancer cell line 
HBT3477 (human) 
subcutaneous (abdomen) 

(DeNardo et al., 2007) 

Iron oxide nanoparticles 
with dextran coating 

Hyperthermia (alternating 
magnetic field) 

Breast cancer cell line MDA-
MB-231 (human) 
subcutaneous (between the 
shoulder blades) 

(Silvio et al., 2011) 

Iron oxide nanoparticles 
with PEG coating 

Arginine-glycine-aspartic 
acid or chlorotoxin 

Glioblastoma cell line U87 
(human) subcutaneous 

(Dürr et al., 2013) 

Iron oxide nanoparticles 
(Fe 3 O 4) 

Hyperthermia (alternating 
magnetic field) 

Breast cancer cell line 
(human) subcutaneous 
(abdomen) 

(Dürr et al., 2013) 

Iron oxide nanoparticles 
with dextran coating and 
binding for tumor-
specific antigen uMUC-1 

siRNA against BIRC5 Breast cancer cell line BT-
20 (human) subcutaneous 

(Kumar et al., 2010) 

Iron oxide nanoparticles 
(Fe3O4) coated with poly 

lactic acid 

Arsenic trioxide Osteosarcoma cell line 
MG-63 (human) 
subcutaneous (flank) 

(Dürr et al., 2013) 

Iron oxide nanoparticles 
with polylysine coating 

NM23-H1 gene (an anti-
metastatic gene) 

Melanoma cell line B16F10 
(mouse) 

(Li et al., 2008) 
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Iron oxide nanoparticles 
with polyethylenimine 
coating 

Plasmid DNA comprising a 
cytokine gene 

Fibrosarcoma (Plank et al., 2011) 

Iron oxide nanoparticles 
with dextran coating 

Herpes simplex virus vector Gliosarcoma cell line 9L 
(rat) brain 

(Dürr et al., 2013) 

Iron oxide nanoparticles L6 IgG monoclonal antibody Lung carcinoma cell line 
LX-1 (human) brain 

(Remsen et al., 1996) 

Iron oxide nanoparticles 
with dextran coating 

Human adenovirus type 5 
early region 1A (E1A) 

Cervix carcinoma cell line 
HeLa (human) 
subcutaneous (lower 
limbs) 

(Shen et al., 2010) 

Iron oxide nanoparticles 
(Fe3O4) within liposomes 

Hyperthermia (alternating 
magnetic field) combined 
with dendritic cells 

Melanoma cell line B16 
(mouse) subcutaneous 
(right flank) 

(Tanaka et al., 2005) 

Mn x Zn 1 – x Fe 2 O 4 

coated with human albumin 
and folate 

Radionuclide 188Rhenium 
cisplatin (hyperthermia 
possible) 

Ovarian cancer cell line 
SKOV3 (human) 
subcutaneous (right side) 

(Dürr et al., 2013) 

Iron oxide nanoparticles 
covered with starch, 
dextran or mannan for 
uptake in tumor-
associated 
immunosuppressive  
phagocytes 

Hyperthermia (alternating 
magnetic field) 

Ovarian cancer cell line 
ID8-Defb29/Vegf-a 
(mouse) intraperitoneal 

(Toraya-Brown et al., 
2013) 

Iron oxide nanoparticles 
(Fe3O4) 

Adenoviruses Pancreatic carcinoma 
cell line 181RDB-fLuc 
(human) subcutaneous 
(right flank) 

(Tresilwised et al., 
2010c) 

Iron oxide nanoparticles Hyperthermia (alternating 
magnetic field) 

Pancreatic carcinoma cell 
line 181RDB-fLuc (human) 
subcutaneous (armpit) 

(Dürr et al., 2013)] 

Gold-coated iron 
nanoparticles (non-
oxidized) 

Non-oxidized iron 
nanoparticles 

Buccal pouch carcinoma 
HCDB1 (hamster) 

(Wu et al., 2011) 

Iron oxide nanoparticles 
(Fe3O4) with aminosilane 

coating 

Hyperthermia (alternating 
magnetic field) 

Prostate cancer (Johannsen et al., 
2007) 

Iron oxide nanoparticles 
(Fe3O4) with 

aminosilane coating 
 

Hyperthermia (alternating 
magnetic field) 

Glioblastoma (Maier-Hauff et al., 
2011) 

 

1.10.3 Challenges of MNPs 

1.10.3.1 High variation in size and physical aggregation of MNPs 

The high variation in size and physical aggregation displayed by chemically synthesised MNPs 

is a concern that has been raised by many researchers. For example, Raguraman and colleague 

reported this concern (Raguraman and Suthindhiran, 2019). They found that synthetic MNPs 

agglomerated inside the cell which subsequently damage the redox system causing mortality. 

However, Florea et al., demonstrated high cell uptake of PEI coated MNPs in Cos1 (green 

monkey fibroblasts) and airway epithelial cells (calu-3) but this correlated strongly with PEI 

toxicity (Florea et al., 2002). Similarly, Thomas and co-workers found that PEI coated MNPs 
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facilitated gene transfer into the A549 lung carcinoma cells in vitro and into the lungs of mice 

but this also was highly toxic to cells (Thomas et al., 2005). This needs to be addressed if these 

particles are to be applied clinically (Blanco-Mantecon and O’Grady, 2006).  

1.10.3.2 Toxicity of nanoparticles 

A major issue that still needs to be addressed regarding MNPs in medicine is toxicity. Toxicity 

is largely affected by MNP dose, chemical structure, size, surface chemistry, biodegradability, 

pharmacokinetics, solubility, bio-distribution,  structure and shape (Tran and Webster, 2010). 

The main tool which is used to reduce the toxicity of MNPs is modifying their surface 

properties (Park et al., 2006). Many of the current studies on MNP toxicity have been in vitro 

investigations, which whilst useful could be unreliable due to their simplicity. In vivo studies 

in preclinical animal models should be done to completely understand the MNP toxicity along 

with clinical studies in humans.  

One should also treat the in vitro data with caution as it has been described that some of the 

typical cell viability assays (such as MTT and neutral red (NR) assays) are affected by the 

MNPs leading to false results because of MNP/dye interfaces (Monteiro-Riviere et al., 2009). 

Consequently, checking the toxicity of MNPs should be done using a combination of different 

assays. 

 As mentioned above MNPs have mainly been utilized in MRI applications as contrast agents. 

The first generation of MNPs, such as Feridex are coated with dextran and are fast removed 

from the blood via RES. Feridex has been used to detect tumours (primary and metastasis) in 

normal liver tissue, and was FDA-approved in 1993 for this application via intravenous 

injection. New MNPs like those described above are being developed by researchers 

worldwide. Some of these should become approved for clinical use in the coming years. 

1.10.3.3 Controlling and guiding MNPs via an external magnetic field 

Controlling MNP drug transporters to the chosen place for treatment is considered one of the 

major challenges faced in MNP-based therapeutics. Targeting systems which use these MNPs 

depend on using an external magnet located near the target tissue (Muthana et al., 2008b, Lübbe 

et al., 1996, Lemke et al., 2004, Kettering et al., 2007). The magnetic field which is used by 

this strategy cannot penetrate a tissue depth more than 12 cm, thus the permanent magnet is not 

useful for targeting tissues deep in the body (Goodwin et al., 1999, Neuberger et al., 2005). As 

previously suggested by Shapiro, dynamically controlled magnetic fields could be utilized to 

deliver magnetic transporters to deep tissue targets (Shapiro, 2009). This could also be achieved 
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using the powerful magnets in MRI machines. A recent study from the University of Sheffield 

demonstrated that MRI could be used to magnetically guide magnetic cell therapies carrying 

the OV (HSV1716) to tumours located in the prostate and lungs of mice.  This significantly 

improved the number of cells trafficking to tumours and resulted in a reduction in primary and 

metastatic tumour burden (Muthana et al., 2015a). The magnets in use today in MRI are in the 

0.5 T to 3.0 T range, while the magnet that we used in this study is 0.7 T. In this PhD project a 

naturally occurring MNPs called magnetosomes will be used and therefore will be discussed 

in more detail below. 

1.10.4 Magnetotactic bacteria and magnetosomes 

Another type of MNPs is magnetosomes. Most of magnetotactic bacteria contain 

magnetosomes, which consist of magnetic iron particles providing species-specific features as 

shown in Figure 1.7. Magnetotactic bacteria (MTB) are a Gram-negative motile group that 

have the ability to produce magnetic nanoparticles called magnetosomes, through a controlled 

biomineralization process (Bazylinski and Frankel, 2004). Adopting iron in ionic state from 

the environment is considered one of the most unique features of the magnetotactic bacteria. 

These bacteria produce magnetosomes and potentially use it as a compass to navigate in the 

direction of the earth's magnetic field (Alphandéry, 2014). Magnetite-producing spirillum 

named Aquaspirillum (now Magnetospirillum) magnetotacticum strain MSR-1 is considered 

the first MTB cultivated in axenic culture (Blakemore, 1975).  Study in these microorganisms 

was delayed for a long time because of the obstacles in isolating and cultivating different 

species of MTB. However, over the last 30 years, different kinds of MTB were isolated in 

axenic culture because of the important developments in culture approaches for different kinds 

of MTB, mainly since 2011 (Lefevre and Bazylinski, 2013). Moreover, the number of 

publications which use MTB and magnetosomes in diverse biotechnological applications has 

also significantly increased since 2011. Today, there are around 25 MTB species in axenic 

culture (Lefevre and Bazylinski, 2013). In spite of this, there are a rare species that are 

accessible in cell line sources, containing the American Type Culture Collection (ATCC) or 

the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures 

(Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; DSMZ).  
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 Figure 1.7: Transmission electron microscopy (TEM) images. A. Magnetotactic bacteria 

(magnetospirillum magneticum AMB-1) contain magnetosomes (black dots) B. Magnetosomes isolated 

from magnetotactic bacteria at higher magnification (Al-Janabi et al, 2015 unpublished data). 

Magentosomes have a uniform morphology and are approximately 40-50nm in diameter.  

Magnetosomes isolated from magnetotactic bacteria display uniform morphology and unique 

structure with narrow-size distribution (Lins et al., 2000, Schüler and Frankel, 1999). The 

M.gryphiswaldense strain is able to create iron oxide MNPs of cubic-octahedral shape, which 

have an average size range of 35-50 nm (Zeytuni et al., 2012, Greene and Komeili, 2012). 

Magnetosomes have a membrane lipid bilayer admixed with special proteins. For example, 

free fatty acids and neutral lipids; in addition to glycolipids, sulfolipids, and phospholipids 

which include phosphatidylserine and phosphatidylethanolamino are present on the 

magnetosome membrane isolated from M. magnetotacticum MS-1 (Gorby et al., 1988). 

Magnetosomes have high surface negativity on the membrane as a result of the lipid 

composition and the occurrence of polarizable primary amino groups (Tanaka and Matsunaga, 

2000). Below is a comparison of magnetosomes to the chemically synthesised MNPs described 

in Table 1.5. 
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Table1.6: Compares magnetosomes derived from M. gryphiswaldense with chemically synthesised 

MNPs (Fischer et al., 2011, Liu et al., 2010, Sun et al., 2008a). 

 

The magnetic mineral crystals of magnetosomes exhibit unique magnetic and physical features 

that considered essential in their use in many biotechnological applications. These mineral 

crystals display a uniform crystal morphology reliant on the species of MTB, such as a small 

crystal size range, comparatively high chemical purity and limited crystallographic deficiencies 

(Bazylinski et al., 1995, Bazylinski et al., 1994). There are diverse crystals shapes of 

magnetosome among types of MTB; however, generally, one species of MTB produces crystals 

of a particular morphology (Bazylinski and Frankel, 2004, Balkwill et al., 1980). Currently, 

three shapes of magnetosome crystals were observed in MTB with only minor differences and 

include, roughly cubic (cuboctahedral) (Mann et al., 1984a, Mann et al., 1984b, Kiseleva et al., 

2015); elongated prismatic (appear rectangular in projection) (Blakemore, 1975); and bullet or 

tooth-shaped (anisotropic) (Lefevre et al., 2011, Li et al., 2015, Mann et al., 1988) (Figure 

1.8).  

                   

                Magnetosomes 

 

      Chemically synthesized MNPs 

 

Regular morphology and small size distribution 

(25–55 nm). 

 

Typically, measuring 1–100 nm in diameter often not 

uniform 

 
An inorganic component of Fe3O4 with high 

purity.  

 

An inorganic nanoparticle core. 

 

Stable single-magnetic-domain particles. 

 
Single magnetic domain particles. 

 
Biocompatible surface with negative charge and 

good dispersal because of polarized primary amino 

groups in the bilayer lipid membrane of 

magnetosome. Easy integration with varied 

bioactive molecules due to the plenty of primary 

amino groups on the magnetosomes surface. 

 

Coating of surface provides good stability under 

physiological circumstances and permits for the 

functional ligand integration.  

Large-scale production methods are needed   Comparatively easy to manufacture. 

 
High biocompatibility. Biocompatible. 
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Figure 1.8: Transmission electron microscopy (TEM) images of different crystal shapes of 

magnetite magnetosome crystals that organise into chain(s) within magnetotactic bacteria. 
Magnetite magnetosomes A. bullet-shaped purified from magnetotactic Nitrospirae, B. prismatic 

purified from magnetotactic Alphaproteobacteria, and C. cuboctahedral purified from Aquaspirillum 

magnetotacticum. Figure taken from (Vargas et al., 2018). 

Magnetite magnetosome are mineralized under strict genetic and (bio) chemical control by a 

process called biomineralisation (Gorby et al., 1988, Komeili, 2012, Amemiya et al., 2007). 

MTB uses particular genes named ‘mms’ (magnetic particle membrane specific) or ‘mam’ 

(magnetosome membrane)  genes to encode proteins that contribute to formation of 

magnetosome membrane, uptake of iron, magnetic crystal nucleation and gathering of the 

magnetosomes into chains (Murat et al., 2010, Komeili, 2012, Grunberg et al., 2004, Amemiya 

et al., 2007). However, particular steps of magnetosome biomineralization require further 

investigation and could be different reliant on the species of MTB (Komeili, 2012, Faivre and 

Godec, 2015).   

Although, magnetosomes have some features superior to those appeared in synthetic iron 

particles as described above (Xie et al., 2009). The fastidious and microaerophilic growth 

features of MTB are considered a common problem in the production of biogenic iron particles 

(Yan et al., 2012, Heyen and Schuler, 2003). As cultures of MTB results in a low yield of 

magnetite and purification techniques of magnetosomes from cultures are showed very time-

consuming compared to the production of synthetic MNPs (Xu et al., 2014). Many strategies 

for culturing of MTB in bioreactors have been suggested (Heyen and Schuler, 2003, Liu et al., 

2010, Zhang et al., 2011, Sun et al., 2008)  and commonly utilise Magnetospirillum strains 

growing in batch, fed-batch, and semi-continuous cultures (Araujo et al., 2015). For example, 

cultures of MTB under very low O2 tensions or anaerobically results in much higher of 

magnetite yields (Heyen and Schuler, 2003). Therefore, a usual effective method in large-scale 

cultivation of MTB is strict control over O2 tension during growth (Sun et al., 2008). 

Magnetosome production is also effected by other medium components, for example nitrogen, 
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carbon and iron sources and concentrations (Heyen and Schuler, 2003, Liu et al., 2010, Zhang 

et al., 2011). Recent study have shown that final biomass concentration is increases by lower 

concentrations of lactic acid in the feed of M. gryphiswaldense MSR-1, while cellular 

magnetism is increased by a high concentration. Therefore, it is important  to balance the 

production of biomass and magnetosomes in the design of these fermentation processes 

(Fernández-Castané et al., 2018). It is essential to note that, these techniques are considered 

environmentally friendly procedures with comparatively good reproducibility, low cost, and 

high yield as mentioned by Xu and colleagues (Xu et al., 2014).  

The mixture of these chemical/physical/magnetic features, alongside with the properties of 

magnetosome membrane, leads the magnetosomes to be unique and value investigation for 

their possible in biotechnology, nanotechnology and nanomedicine applications. 

1.10.4.1 Applications of MTB and Magnetosomes  

So far, whole MTB and magnetosomes have been considered in many applications, such as 

drug delivery, DNA and antigen recovery/detection, cell separation, food science, 

hyperthermia, enzyme immobilization, MRI image contrast and bioremediation (Table 

1.6&1.7). 

Table 1.7: This table shows applications of whole MTB. 

  

Sun et al., used magnetosomes from Magnetospirillum gryphiswaldense MSR-1 bacteria as 

magnetic-targeted drug carriers to establish an anti-tumour influence of doxorubicin-loaded 

magnetosomes in EMT-6 and HL60 cancer cell lines. Moreover, cardiac toxicity was 
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remarkably decreased in doxorubicin-loaded magnetosomes in a rodent tumour model of liver 

cancer compared with doxorubicin alone (Sun et al., 2007). Magnetosomes have gained 

attention as diagnostic and therapeutic agents because of their physical properties (Lee et al., 

2011, Hartung et al., 2007). Their use in magnetic hyperthermia was recently considered 

advantageous because of their specific absorption rate (SAR), this was numerous orders of 

magnitude greater than the chemically synthesised MNPs that are currently used in magnetic 

thermotherapy (Alphandéry et al., 2012, Alphandéry et al., 2011a, Lee et al., 2011, Hartung et 

al., 2007, Hergt et al., 2005). Magnetosomes can therefore tolerate high heating effects when 

exposed to alternative magnetic field (AMF). 
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Table 1.8: This table shows applications of magnetosomes. 

 

Magnetosome studies in the field of biomedical science are still in their infancy and the toxicity 

of this kind of particles has not yet been fully evaluated (Xiang et al., 2007). For example, as 
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these particles are derived from bacteria, there could be some immunogenicity associated with 

their use, however this requires further investigation. Indeed, magnetosomes that extracted 

from gram negative magnetotactic bacteria possess endotoxins at their surface, which need to 

be removed for medical applications (Le Fèvre et al., 2017). However, these particles do hold 

promise particularly given their small and uniform size as well as their biocompatibility.  

1.11 Hypothesis and Aims 

OVs are fast becoming accepted anti-cancer therapies but there is a critical need to overcome 

the challenges of systemic delivery if this is to become an accepted cancer treatment 

particularly for hard to access tumours or metastatic disease. Our overarching hypothesis is that 

magnetising OVs and magnetic guidance strategies will protect the viruses from inactivating 

immune mechanisms they encounter in circulation resulting in improved tumour targeting 

located in primary and metastatic sites in preclinical models of breast cancer. In doing so this 

will promote antitumour immunity.  

To test our hypothesis, we aimed to: 

Develop a stable nanomedicine whereby HSV1716 is co-assembled with magnetosomes 

derived from magnetotactic bacteria AMB-1. The magnetosomes will serve to protect the OV 

from deactivating immune responses and increase the targeting of the virus from circulation to 

the tumour in the presence of a magnetic field. 

To achieve this our specific objectives were to: 

1. Magnetise the OV ‘HSV1716’ with magnetosomes (MAG-OV) and characterise 

the physicochemical and biological properties of the nanomedicine. 

2. Characterise the oncolytic potential of MAG-OV.  

3. Investigate the magnetic targeting efficacy of MAG-OV in mammary tumours in 

the presence and absence of neutralising antibodies and assess the anti-tumour 

properties of our nanomedicine. 
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Chapter 2 

Materials and Methods 
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2.1 Materials 

2.1.1 List of reagents 

Reagent Company 

1% Eosin Sigma-Aldrich 

1% Penicillin and Streptomycin Lonzo BioWhittaker Ltd 

10% Foetal Bovine Serum (FBS) Lonzo BioWhittaker Ltd 

4',6-Diamidino-2-Phenylindole, Dihydrochloride 

(DAPI)  

Invitrogen 

Absolute Ethanol  Thermo Fisher Scientific 

Acetone Thermo Fisher Scientific 

Agarose Sigma-Aldrich 

Cryo-M Bed Optimal Cutting Temperature 

Compound (OCT)  

VWR International 

Dimethyl Sulfoxide (DMSO)  Sigma Aldrich 

Dispase II  Gibco 

DPX Mounting medium  Sigma Aldrich 

Dulbecco’s Modified Eagle’s Medium (DMEM) 

Ultraglutamine, 4.5g/L glucose Lonza DMEM 

medium 

Lonzo BioWhittaker Ltd 

Eosin Y  Thermo Fisher Scientific 

FcR blocking reagent, mouse  Miltenyi Biotec 

Growth Factor Reduced (GFR) Matrigel  Corning 

Haematoxylin Solution Gill No. 2  Sigma Aldrich 

Immune-mount Sigma-Aldrich 

Iscove’s Modified Dulbecco’s Medium (IMDM)  Lonza 

L-Glutamine (4mM) Lonzo BioWhittaker Ltd 
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Normal Goat Serum  Vector Laboratories 

Nuclease free water  Qiagen 

Paraformaldehyde  Sigma Aldrich 

Phosphate Buffered Saline Lonzo BioWhittaker Ltd 

PI Thermo Fisher 

PrecisionPlus qPCR mastermix with SYBR green 

and ROX  

Primer Design 

ProLong Gold Antifade mountant  Invitrogen 

Roswell Park Memorial Institute (RPMI) 

mediumRPMI medium 

Lonzo BioWhittaker Ltd 

Super PAP pen  Thermo Fisher Scientific 

TO-PRO-3 Thermo Fisher 

Trypan blue  Sigma-Aldrich 

Trypsin/EDTA Sigma Aldrich 

TWEEN 20  Thermo Fisher Scientific 

Zombie UV Fixable Viability kit  Biolegend 

 

2.1.2 List of materials 

Material Supplier 

Coverslips Scientific Laboratory Supplies 

Fisherbrand 384-well skirted PCR plate  Thermo Fisher Scientific 

Superfrost Plus Microscope Slides Thermo Fisher Scientific 

Tissue culture flasks (Nunc EasYFlask) 25cm2; 

75cm2; 125cm2 

Thermo Fisher Scientific 
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2.1.3 List of equipment and Apparatus  

Equipment and apparatus Company 

Applied Biosystems 7900 Real-time PCR machine  Applied Biosystems 

Automated Cell Counter BIO-RAD 

Bench centrifuge SANYO 

Compound light microscope Olympus 

FACSCalibur Becton Dickinson 

Incubator SANYO 

Laminar airflow hood Heraeus 

Light microscopy  Leica 

LSR II Flow cytometer  BD Bioscience 

Micropipette Eppendorf 

MS2 meters Bartington Instruments 

NanoBrook Zeta PALS Brookhaven instrument 

Nanodrop Thermo Scientific 

Nikon A1 Confocal  Nikon 

PIPETBOY INTEGRA 

Plate reader  Thermo Scientific 

Refrigerator BioCold 

Sensitive balance Sartorius 

Shaking platform  Luckham 

Sonicater  Bioruptor 

Spectrophotometer Varian Associates 

Water bath Grant 
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2.1.4 List of Primers  

All primers were either designed using NCBI primers blast or previously published. Parameters 

used when designing primers included exon-exon junction, product length and GC ratio) (Ye 

et al., 2012). Primers were validated using melt-curve analysis and a standard curve was used 

to assess the efficiency of these primers. All of the primers were purchased from Sigma and 

dissolved in nuclease free water and stored at -20oC on arrival. Of note, all primers were 

designed by a post-doctoral research fellow in the group (Dr. Emer Murphy). 

Primer Name Primer Sequence 

ATGS Forward: 5’- TCTGGATGGGATTGCAAAATG -3’  

Reverse: 5’- TTTCTTCTGCAGGATATTCCATG -3’ 

Bcl-2 Forward: 5’-GGAAGTGAACATTTCGGTGAC -3’  

Reverse: 5’-GCCTCTCCTCACGTTCCC -3’ 

CASP3 Forward: 5’- AAAGCACTGGAATGACATC-3’  

Reverse: 5’- CGCATCAATTCCACAATTTC-3’ 

CASP8 Forward: 5’- CTACAGGGTCATGCTCTATC-3’  

Reverse: 5’- ATTTGGAGATTTCCTCTTGC-3’ 

CXCL10 Forward: 5’-GAATTTCCCCAGCATCCCAAAG-3’  

Reverse: 5’-TGCCTTCTGCACTCCCTTTATC-3’ 

FasL Forward: 5’--ATCCCTCTGGAATGGGAAGA -3’  

Reverse: 5’-CCATATCTGTCCAGTAGTGC -3’ 

gB Forward: 5’-TGTGTACATGTCCCGTTTTACG -3’  

Reverse: 5’- GCGTAGAAGCCGTCAACCT -3’ 

HSP90AA1 Forward: 5’- ATATCACAGGTGAGACCAAG-3’  

Reverse: 5’- GTGACTGACACTAAAGTCTTC-3’ 

HSP90B1 Forward: 5’- TTCAAAGGAAAGTGATGACC-3’  

Reverse: 5’- GCATCATATCATGGAAGTCG-3’ 
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HSPA1A Forward: 5’- AATTTCCTGTGTTTGCAATG-3’  

Reverse: 5’- AAAATGGCCTGAGTTAAGTG-3’ 

ICP0 Forward: 5’-AAGCTTGGATCCGAGCCCCGCCC -3’  

Reverse: 5’-AAGCGGTGCATGCACGGGAAGGT -3’ 

ICP8 Forward: 5’-GACATTACGTTCACGGCCTTCGAAGCCAG -3’  

Reverse: 5’-GGCCGAGTTGGTGCTAAATACCATGGC -3’ 

IFNy Forward: 5’-TGCAGGTCATTCAGATGTAGCGGATA -3’  

Reverse: 5’-TCATGTATTGCTTTGCGTTGGACA -3’  

IL-10 Forward: 5’-GCCTAACATGCTTCGAGATC-3’  

Reverse: 5’-CTCATGGCTTTGTAGATGCC-3’ 

IL-1B Forward: 5’- GCCACCTTTTGACAGTGATGAG -3’  

Reverse: 5’-AGCTTCTCCACAGCCACAAT-3’ 

LC3B Forward: 5’- GTGGAAGATGTCCGGCTCAT -3’  

Reverse: 5’- TGGTCAGGCACCAGGAACTT -3’ 

NF-kB Forward: 5’-ACCTGAGTCTTCTGGACCGCTG-3’  

Reverse: 5’-CCAGCCTTCTCCCAAGAGTCGT-3’ 

TGf- B Forward: 5’- AGCGACTCGCCAGAGTGGTTA-3’  

Reverse: 5’- GCAGTGTGTTATCCCTGCTGTCA-3’ 

TNF Forward: 5'-CCAGGAGAAAGTCAGCCTCCT-3'  

Reverse: 5'-TCATACCAGGGCTTGAGCTCA-3' 

VEGF Forward: 5’-GAAGTTCATGGACGTCTACCAG  

Reverse: 5’-CATCTGCTATGCTGCAGGAAGCT-3’ 

House Keeping gene (GAPDH)

  

 

Forward: 5’- TGCACCACCAACTGCTTAGC -3’  

Reverse: 5’- GGCATGGACTGTGGTCATGAG -3’ 
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2.1.5 List of commercial kits  

Kit Company 

ENLITEN ATP kit Promega 

HMGB1 ELISA Kit  Shino-Test 

Precision 2X q-PCR Mastermix PrimerDesign 

Precision Nanoscript 2 RT Kit  PrimerDesign 

RNeasy Mini Kit QIAGEN 

 

2.1.6 List of solutions 

Solution Instructions 

DAPI staining solution 50µg/ml DAPI in PBST 

FACS buffer DPBS with 0.5% FBS 

PBST 250µL TWEEN 20 in 50ml DPBS 

Tumour dissociation medium IMDM with 0.2mg/ml collagenase type IV and 2mg/ml 

dispase II 

 

2.1.7 List of software 

Software Supplier 

Fiji https://imagej.net/Fiji [184] 

Flow Jo TreeStar Inc 

GraphPad Prism 7 Graph Pad Inc. 

Primer Blast National Institute of Health, USA 

 

2.1.8 Human Materials 

Human platelet-depleted waste buffy coats were supplied by the Sheffield Blood Transfusion 

Service. All patients donating blood gave informed consent to the Sheffield blood Transfusion 

Service and the University of Sheffield Ethics Committee has approved all procedures. This 

was carried out under ethics SMBRER 139. 
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 Most of the chemicals utilized in this project were obtained from Sigma and Sigma Aldrich. 

All water that was used for this project was Ultrapure MilliQ (18MΩ cm), degassed and 

sparged with N2 before use. 

2.2 Methods  

2.2.1 Preparation of Magnetosomes (MAG) 

MAG were prepared from purified magnetotactic bacteria AMB-1 using established protocols 

(Staniland et al., 2007). Preparation of MAG was carried out in assistance with Ms. Zainab 

Taher in Chemical department at Sheffield University. Details are explained in the following 

sections. 

2.2.1.1 Bacterial culture 

The strain magnetospirillum magneticum AMB-1 used in this project was kindly provided by 

the Matsunaga group, Tokyo Institute of Agriculture and Technology, in both anaerobic and 

microaerobic conditions in liquid medium (Arakaki et al., 2008). This bacteria can produce 

internal magnetite particles with a size of 50-100nm that are cuboctahedral shaped (Arakaki et 

al. 2008). AMB-1 was grown in a cabinet within microaerobic conditions consisting of 1% O2 

and 99% nitrogen at 30.1 C° in liquid culture medium (see 2.2.1.2) which is specific to AMB-

1 bacteria. 

2.2.1.2 AMB-1 culture medium 

The AMB-1 culture medium  was prepared following the methodology of DSMZ 380 institute 

(https://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-

microorganisms.html).  

 

 

 

 

 

 

 

 

https://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-microorganisms.html
https://www.dsmz.de/catalogues/catalogue-microorganisms/culture-technology/list-of-media-for-microorganisms.html
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Table 2.1 AMB-1 growth medium. 

Ultrapure MilliQ water 2000ml 

KH2PO4 1.36g 

L(+)-Tartaric acid 0.74g 

Na-acetate 0.10g 

NaNO3 0.24g 

Resazurin 1mg 

Succinic acid 0.74g 

 

All these components were added to the water in the order provided in (Table 2.1). 1M NaOH 

was used to adjust the AMB-1 culture medium to pH 6.75 and 400ml was aliquoted into 500ml-

sterilised bottles, autoclaved on a standard cycle (121 C° for 15 min at 15P) and stored in a 

Whitley VA 500 workstation cabinet (300C and 99% nitrogen). The following day, sodium 

thioglycolate was added by passing first through a cellulose nitrate membrane filter (pore size 

0.22um). Two days after this vitamins, minerals and 0.01M ferric quinate was added to the 

medium using the quantities described in Table 2.2. Ferric quinate is known to encourage 

magnetosome growth resulting in a high density of cells. The solutions in Tables 2.3-5 were 

prepared as stock solutions and were pre-sterilised with a 0.22um filter prior to adding to the 

culture medium. The nitrilotriacetic was dissolved first then, NaOH was added to adjust the pH 

to 6.5 before the remaining minerals were added. The final pH was set to 7.0. 
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Table 2.2: Welfer΄s vitamins solution. 

Ultrapure MilliQ water 1000 ml 

Biotin 2.00mg 

D-Ca-pantothenate 5.00mg 

Folic acid 2.00mg 

Lipoic acid 5.00mg 

Nicotinic acid 5.00mg 

P-Aminobenzoic acid 5.00mg 

Pyridoxine-HCl 10.00mg 

Riboflavin 5.00mg 

Thiamine-HCl 5.00mg 

Vitamin B12 0.10mg 

 

Table 2.3: Volume of vitamins and minerals and ferric-quinate that was added to 400ml medium. 

Solution 400ml of Medium 

Ferric quinate (0.01M) solution (Table 2.4 ) 0.16ml 

Na-thioglycolate 3% Wt 

Welfer΄s mineral (Table 2.5) 1ml 

Welfer΄s vitamins (Table 2.2) 4ml 

 

Table 2.4: Ferric quinate 0.01M. 

Ultrapure water 20ml 

FeCl3.6H2O 0.45g 

Quanic acid 0.19g 

 

The vitamin solution was kept in the dark. 
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Table 2.5: Welfer΄s mineral solution. 

Ultrapure Milliq water 250 ml 

CaCl2. 2H2O 0.10g 

CoSO4. 7 H2O 0.18g 

CuSO4. 5H2O 0.01g 

FeSO4. 7H2O 0.10g 

H3BO3 0.01g 

KAl(SO4)2.12H2O 0.02g 

MgSO4.7H2O 3.00g 

MnSO4.7H2O 0.50g 

Na2MoO4.2H2O 0.01g 

Na2SeO3 0.30mg 

NaCl 1.00g 

NiCl2.6H2O 0.03g 

Nitrilotriacetic acid 1.50g 

ZnSO4. 7H2O 0.18g 

2.2.1.3 AMB-1 inoculation 

Bacteria (1ml) stocks stored at -80 C° were thawed and transferred into small glass bottles of 

AMB-1 culture medium (75ml) and left for one week in a Whitley VA 500 workstation cabinet 

(30 C ͦ and 99% nitrogen) to reach maximum density. 75ml was decanted into 400ml glass 

bottles of medium and incubated for four weeks. The light scattering in UV/Visible 

spectrophotometer (Varian Associates) was used to check the density of cells in medium at 

600nm, where 1ml of cultured bacteria was compared to 1 ml of media only. Optical density 

measurements were recorded every 8 hr for 72 hr then on a weekly basis until the fourth week. 

2.2.1.4 Harvest and lysis of AMB-1 cells 

The MAG were extracted from AMB-1 bacteria bycentrifugation of culture media in 50ml 

falcon tubes at 4700 rpm for 45 min at 40C. The pellet was transferred into 1.5ml eppendorf 
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tubes andpositioned for 1 day on a strong neodymium magnetic rack (0.1-1 T) to separate them 

from the original medium. The pellet was resuspended in 1.5ml eppendorf tubes (10mM Tris-

HCl buffer (pH 7.4), and the AMB-1 cells were sonicated for 1 hour using microprobe tip 

sonication (Sonics USA) to lyse the cells. After the sonication a neodymium magnet was used 

to separate the MAG from other cellular debris. 10mM Tris-HCl buffer (pH 7.4) was used to 

wash the MAG four times followed by resuspension in DPBS (pH 7.4).   

2.2.1.5 Sterilization of MNPs 

70% ethanol was used to sterilize the MAG. 1 ml of MAG (0.2mg/ml) were mixed with 9 ml 

of 70% ethanol, vortexed for 15 s and kept at RT for 30 min. The sample was centrifuged at 

3800 rpm for 10 min and air-dried in a Laminar airflow hood. Sterilised water was used to re-

suspend the pellet (Li et al., 2013)  

2.2.1.6 Sonication of MNPs  

Sonication (Bioruptor® Sonication System, Diagenode) was used to reduce MNP aggregation. 

Before use the MNPs were resuspended in Roswell Park Memorial Institute (RPMI) culture 

medium and sonicated on the highest setting for 10 min at 4℃. 

2.2.2 Culturing of breast cancer cells 

Breast cancer cell lines (MDA-MB-231 and MCF7) were purchased from the ECACC. MDA-

MB-231 is a human caucasian breast adenocarcinoma originally derived from pleural effusion 

of a 51-year-old metastatic breast cancer patient. This is a triple negative breast cancer (TNBC) 

cell line for the oestrogen, progesterone and human epidermal growth factor HER2 receptors. 

MCF7 cells were originally derived from human Caucasian breast adenocarcinoma patient. 

These are oestrogen receptor positive. MDA-MB-231 cells were cultured in T75 flasks (Fisher 

Scientific®) and sub-cultured once 70-80% confluent in RPMI medium supplemented with 

10% Foetal Bovine Serum (FBS) and 1% L-Glutamine (200mM in 0.85% NaCL solution). 

MCF7 cells were cultured in Dulbeccos Modified Eagles Medium (DMEM) ultraglutamine 

with 10% FBS and 5% Non-essential Amino Acids (NEAA) (Lonza®). Cultured cells were 

incubated at 370C with 5% CO2 in an incubator.  

EO771 cells were obtained from Dr. Penelope Ottewell, University of Sheffield. This cell line 

is a spontaneously developing medullary breast adenocarcinoma derived from C57BL/6 mice 

(Sugiura and Stock, 1952). This is also a triple negative breast cancer (TNBC) cell line for the 

oestrogen, progesterone and human epidermal growth factor HER2 receptors, making it 



53 
 

difficult to target therapeutically (Johnstone et al., 2015). Furthermore, this tumour model 

naturally metastasises to the lungs in C57BL/6 mice (Johnstone et al., 2015). Cells were also 

cultured in Dulbecco’s Modified Eagles Medium (DMEM) ultraglutamine with 10% FBS and 

5% Non-essential Amino Acids (NEAA) (Lonza®). Cultured cells were incubated at 370C with 

5% CO2 in an incubator.  

TS-1 cells were provided by Professor Janet Joyce, Memorial Sloan Kettering Cancer Research 

Centre. These are HER-2 receptor positive and originally derived from the transgenic MMTV-

PyMT tumours that spontaneously develop in mammary tumours. Cells were also cultured in 

Dulbeccos Modified Eagles Medium (DMEM) ultraglutamine with 10% FBS and 5% Non-

essential Amino Acids (NEAA) (Lonza®). Cultured cells were incubated at 370C with 5% CO2 

in an incubator. 

2.2.3 Cell harvesting and seeding densities  

When cells were at 70-80% confluencey, 3ml trypsin/ETDA (170,000 U Trypsin/L and 200 

mg/L Versene) was used to detach all cells from the flask. Trypsin/EDTA was neutralised in 

an equal volume of culture medium and then centrifuged at 600g for 5 min (Sanyo® Harrier 

18/80). Cells were resuspended in culture medium and counted in trypan blue (Sigma-

Aldrich®) to determine cell viability using a TC20 Automated Cell Counter (Bio-Rad®). Live 

cells were trypan blue negative. Cells were prepared as followed and cultured for 24 hr at 370C;  

1. For flow cytometry cells were seeded on to 6 well plates at 300,000 cells/well in 2ml 

of medium. 

2. For Prussian blue assays cells were seeded into 24 well plates (Scientific Laboratory 

Supplies®) containing 13mm coverslips (BDH Cover glass), using a seeding density of 

50,000 cells/well in a final volume of 1ml of medium.  

3. For the MTT assays cells were plated at a seeding density of 1000 cells/well in a final 

volume of 200 μl of medium in 96 well plates. 

  2.2.4 Primary cells isolation  

Ficoll density gradient centrifugation was used to isolate the Primary cells from blood 

according to (Muthana et al., 2011a, Muthana et al., 2013). 50ml falcon tubes were used to 

dilute 15ml of blood with 30ml of PBS. 20ml of Ficoll-Paque was overlayed with 30ml of 

blood/PBS and centrifuged at 1400rpm with brake off for 40 min. 4 layers (Plasma, PBMCs, 

Ficoll and red blood cells) were isolated and the lymphocytes located in the central creamy 

layer were removed and washed twice in PBS. After the centrifugation, the cell pellet was 
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resuspended in complete IMDM medium (supplemented with 2% human AB serum and 4mM 

L-Glutamine). Haemocytometer cell counting machine (Bio-Rad) was used to count the cells. 

After re-suspending 50 million cells in 5 ml of complete IMDM in T75 flasks and incubating 

for 2 hr (37˚C at 5% CO2), monocytes were attached to the flask by plastic adherence and the 

non-adherent lymphocytes were suspended in the entire medium. 

2.2.5 Incubation of magnetic nanoparticles (MNPs) with cell lines  

MAG isolated from magnetotactic bacteria (Section 2.2.1) were used at approximately 

0.2mg/ml throughout this study.  This concentration of iron has been used successfully in 

previous studies for cellular uptake (Mannucci et al., 2014). The culture medium was removed 

from cells after 24 hr of seeding onto wells and 0.2mg/ml of MAG that re-suspend in culture 

medium was added to each well. Following this, the plates were located on a shaking platform 

(low speed) (Luckham® R100 Rotatest Shaker) in an incubator at 37°C for 1 hour. A further 

equal volume of medium was then added to each well. After this, the plates were kept in an 

incubator until needed.  

2.2.6 Flow cytometry (FACS) to assess MNP uptake and cell death in MDA-MB-231s 

Flow cytometry was used to assess MNP uptake by tumour cells and cytotoxicity following 

overnight incubation of cells with MNPs. Trypsin/EDTA was used to detach the cells (Section 

2.2.6) and the cell pellet was washed twice in 5ml PBS. The supernatant was discarded and 

500μl PBS was used to re-suspend the pellet. All samples were added into flow cytometry tubes 

(400μl). Cell death was assessed by adding 2μl Propidium Iodide (PI) (50 mg/ml) to each 

sample just before analysis on the FACS Calibur (BD Biosciences). 10,000 events per sample 

were measured (equivalent to 10,000 cells) and FlowJo® software used to analyse cell death 

by generating fluorescent dot plots based on a change in fluorescence against FL3-H and MNP 

uptake based on changes in forward scatter (FSC-H) and side scatter (SSC-H). 

2.2.7 Prussian blue staining to visualise MNP uptake  

Cells seeded onto coverslips were incubated overnight with MNPs and then washed twice with 

500μl PBS.  PBS was removed from the wells and 200μl of acetone was added followed by 

incubation at 4°C for 10 min and two further washes in 500μl PBS. 200μl of 1:1 dilution of 1M 

Hydrochloric acid (1 M HCL) and 2% Potassium Ferranocyanide was added to each well and 

incubated at 37°C for 1 hour. The cells were washed again in 500μl PBS and then 200μl of 1% 

eosin was added to each well. Coverslips were mounted onto glass slides using immune-mount. 
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Light microscopy (Leica DM1000) was used to assess MNP uptake by viewing the slides at 

40x magnification. Mitotic Images plus 2.0 Software was used to take the images.   

2.2.8 MTT assay to assess cell viability  

Seventy-two hours after incubation of cells with MNPs, 50μl of 3mg/ml MTT was added to 

each well and incubated at 37°C for 3 hr. The supernatant was removed and 200μl Dimethyl 

Sulfoxide (DMSO) was added to each well. A plate reader (Thermo Scientific® Multiskan FC) 

was used to measure absorbance at 540 nm; this detects differences in the dissolved purple 

formazan produced by viable cells. Microsoft Excel was used to analyse the results, in which 

the fold change over the control (no MNPs) was calculated. In this case 1 was set to the control 

and any results below 1 show reduced viability.  

2.2.9 HSV1716 oncolytic virus 

HSV1716 is one of a selectively replication competent mutants of the herpes simplex virus. 

The HSV1716 virus and Green fluorescent protein (GFP) expressing HSV1716 were kindly 

prepared by Virttu Biologics in 1.5ml aliquots at a concentration of 1x108 Particle Forming 

Units (PFU)/ml and 1x109 PFU/ml respectively. CMV-GFP expression cassette was inserted 

in the UL-43 gene to produce HSV1716 GFP. The virus stock was initially produced on 

23/07/99 and was titrated by plaque forming assay to reconfirm titre in December 2012 (1x10e9 

pfu/ml).   The stock of virus was stored at -80 °C. The GFP reporter virus allowed detection of 

HSV1716 infected cells by flow cytometry and immunofluorescence.  

2.2.10 Preparation of Magnetic Viral Complexes  

HSV1716 virus was mixed with MNPs derived from AMB-1 bacteria. To prepare the 

complexes, 200ul of DPBS containing 0.22mg MAG and 1 ml of PBS containing 1 x 108 pfu 

OV were suspended in a final volume of 1.2 ml (0.2mg/ml MAG and 1 x 108 pfu OV). 

Following this, complexes were incubated for 20 min at room temperature (RT) and the tubes 

were inverted intermittently. Complexes resulting from virus and magnetosomes were called 

MAG-OV. These were stored at 4˚C or used immediately. 

2.2.11 Characterisation of MAG and MAG-OV complex 

2.2.11.1 Transmission Electron Microscopy (TEM)  

TEM was used in the Department of Biomedical Sciences (FEI Tecnai Biotwin) operated at 

120kV with an Orius 1000 camera. TEM studies were carried out with the support of Chris 

Hill in the Department of Biomedical Science at Sheffield University. 
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2.2.11.1.1 TEM sample preparation 

Samples of either AMB-1 purified MAG or MAG-OV complexes were centrifuged at 4700 

rpm at 4°C for 45 min and the pellet transferred into 1ml eppendorf tubes resuspended in 

phosphate buffer. A droplet of this buffer was added onto carbon-coated copper grids for one 

minute and excess fluid was removed using tissue to leave a thin layer of sample over the TEM 

grid. Samples containing virus were also counterstained with 1% phosphotungstic stain, this is 

a common negative stain for viruses including HSV (Stannard et al., 1987).  

2.2.11.1.2 Preparation of MAG-OV infected cells for TEM 

Infected tumour cells (105) were fixed with 3% glutaraldehyde in 0.1M phosphate buffer (pH 

7.4) overnight at 4 °C and then washed in 0.1M phosphate buffer twice at 30 min intervals. The 

samples were then post-fixed in 2 % aqueous osmium tetraoxide for 2 hr at RT and washed in 

buffer as above. Sample dehydration was performed by passing the grids through a graded 

sequence of ethanol (75 – 100 %) and propylene oxide. Samples were inserted in araldite resin 

and dried at 60 °C for 48-72 hr. Slices approximately 0.5µm thick were cut and stained with 

1% toluidine blue in 1% Borax. Ultrathin slices of 70-90 nm thick were attached onto 200 mesh 

copper grids, stained with 3% uranyl acetate in 50% ethanol and then stained with lead citrate 

for 25 min before examination by TEM.   

2.2.11.2 MNP size determination by TEM 

TEM was carried out to measure the size of MNPs; this was taken arbitrarily from prepared 

samples. Sizes range between approximately 50 to 200nm depending on sample composition 

and were measured by analysing MNPs randomly at 100 and 200 nm magnification. Image J 

was used to measure the length of chosen particles manually.  

2.2.11.3 qNano 

Particle concentration and size distribution were determined by TRPS using a qNano 

instrument (Izon). Calibration was performed using CPC100B calibration particles (Izon) with 

a modal diameter of 114 nm diluted 1/2000 (v/v) in PBS, supplemented with 0.03% (v/v) 

Tween-20 (PBST). Samples were diluted 1/3 (v/v) in PBST and then filtered through either a 

0.2 or 0.45μm centrifugal unit. Sample and calibration samples were analysed with the same 

NP100 nanopore with the same settings for voltage, nanopore stretch and pressure. Settings 

were chosen that gave an optimum separation of particles from the background noise and a 

constant flow rate of particles. 
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2.2.11.4 Zeta potential analysis 

Zeta potential is a measurement of the magnitude of the electrostatic or charge attraction/ 

repulsion in the space separating particles, and is an essential parameter recognized to impact 

stability of MNPs (Nikam et al., 2014). The zeta potential was measured at RT on a NanoBrook 

Zeta PALS (Brookhaven instrument, NY, U.S.A) from a suspension of the sample in ddH2O. 

2.2.11.5 Magnetic susceptibility measurements (MSM) 

MS2 meters (Bartington Instruments, UK) were used to measure the magnetic susceptibility of 

particles using Bartsoft software. MSM is a method that enables the rapid quantification (1s) 

of iron particles in a sample. Water was used as a blank and each sample was measured 3 times 

for 1s in a volume of 400 μl. 

2.2.11.6 Inductively coupled plasma Atomic Emission Spectrometer (ICP-AES).  

Inductively coupled plasma (ICP) is an analytical method that is carried out for chemical 

analysis of elements. Stimulated ions and atoms which produce electromagnetic radiation was 

formed by this technique at specific wavelengths that are characteristic of a specific element, 

therefore the concentration of metals in a sample can be measured by the strength of this 

emission. Spectro-Ciros-Vision Inductively Coupled Plasma Atomic Emission Spectrometer 

ICP-AES was utilized to calculate the quantity of Fe as a ratio of metal ions for the MNPs used 

in this project. About 0.3 mg of MNPs was dissolved in aqua regia (King's water a mixture of 

concentrated nitric and hydrochloric acids) in a molar ratio of 1:1 of nitric acid and HCL. 1ml 

of the MNP sample was added to 1ml of aqua regia solution and diluted in 10ml with dH20. 

The samples were sonicated for 4 hr in a water bath sonicator, Fe content (mg/l) was determined 

as a measure of atomic absorption.  

2.2.12 Cell death and uptake of magnetic viral complexes  

The OVs HSV1716 or HSV1716-GFP were defrosted on ice for approximately 15 min. Cells 

seeded onto 6-Well Plates (Section 2.2.2) 24 hr earlier were washed with PBS and then cultured 

in 500 μl serum free RPMI for MDA-MB-231 cells or 500 μl serum free DMEM for MCF7 

cells. After that, OVs or MAG-OV complexes prepared as mentioned in Section 2.2.10 at MOI 

10 (1 x 108 pfu/ml) were added to the wells and incubated for 2 hr at 37oC followed by the 

addition of 2.5 ml of complete medium to each well. The cells and OVs were incubated for 

time periods of 1, 3 and 6 days.   
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After culture, cells were washed with 2 ml PBS and trypsin/EDTA was used to detach the cells 

as in Section 2.2.3 ready for flow cytometry. All samples were added into flow cytometry tubes 

(400μl). Cell death was assessed by adding 2μl of the viability dye TOPRO-3 to each sample 

prior to analysis on the FACS Calibur (BD biosciences). FlowJo® software was used to analyse 

the results and cell death was assessed by generating dot plots based on a change in 

fluorescence against FL-4-H. MNP uptake by cells was assessed based on changes in forward 

scatter (FL-1-H) and side scatter (SSC-H). In studies using the HSV1716 GFP viral infection 

of cells was assessed by GFP expression in the FL1-H channel.  

2.2.13 Tumour spheroid experiments 

Agarose, low melting point temperature was dissolved in DMEM (4.5 g/l glucose, no 

supplements) in the microwave followed by autoclaving the solution. 100μl warm agarose was 

added to each well of a 96-well plate (except the outer wells) using a multichannel pipette. 

After that, plates were all owed to cool and were inverted and stored at 4oC until required. 

Tumour cells were seeded into wells at 20 x 103 cells per well and the approximate size they 

grew to was 105 cells. 

After 5-7 days post- seeding in 96 well plates, OVs or magnetic viral complexes (MAG-OV) 

were added to the spheroids as described in Section 2.2.12.  The spheroid size was monitored 

using Light microscopy (Leica DM1000) at 10x magnification and Mitotic Images plus 2.0 

software was used to take images. Flow cytometry was used to assess cellular death after 6 

days of infection (as mentioned in Section 2.14). Of note, spheroids were digested into cell 

suspensions using trypsin/EDTA prior to flow cytometry.  

2.2.14 Measuring mRNA gene expression after OV infection 

2.2.14.1 RNA extraction 

Cells were infected with OV, MAG-OV and MAG alone alongside the control, untreated cells 

as described in Section 2.2.12 for 24h and then scraped from the surface of the plates and 

centrifuged at 1400rpm for 5 min. RNA extraction was performed using the Qiagen RNeasy 

Mini Kit (QIAGEN). Cells were resuspended in 350μL of RLT lysis buffer and were kept on 

ice at all times. 70% ethanol (350 μL) was added to the lysed cells and all 700 μL was 

transferred to pink filter tubes placed in a 2ml collection tube and centrifuged at 8000 rpm for 

15 s. RW1 buffer (700 μL) was then added and centrifuged at 8000 rpm for 15 s followed by 

500ul of RPE buffer and centrifugation at 8000 rpm for 15 s. This was followed by the addition 

of 500 μL RPE buffer and centrifuged at 8000 rpm for 2 min before 50 μL of RNA-free water 
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was added and centrifuged for a further 1 min at 8000 rpm to release the RNA. The 

concentration of mRNA was measured using the NanoDrop Spectrophotometer ND 1000. The 

concentration of the RNA was standardised by diluting the sample in RNase/DNase-free water 

and then stored at -80°C until required.  

2.2.14.2 Complementary DNA (cDNA) Synthesis  

High-Capacity cDNA Reverse Transcription Kit was used to prepare the cDNA for q-PCR. All 

RNA samples were normalized to the same concentration according to the following 

calculation 

          (RNA concentration desired / sample concentration) x desired volume of RNA 

The 2X RT Master Mix was prepared according to the manufacturer’s instructions as shown in 

Table 2.6 for each reaction. 

Table 2.6: Components of 2X RT Mastermix           

Reagent Volume (μL) 

10X RT buffer 2.0 

25X dNTP Mix (100mM) 0.8 

10X RT Random Primer 2.0 

MultiScribe Reverse Transcriptase 1.0 

Nuclease-free H2O 4.2 

10μL of 2X RT Master Mix was added to 10 μL of RNA samples. The thermal cycler machine, 

setting as described in (Table 2.7), was used to synthesize cDNA from RNA samples.  
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Table 2.7: Thermocycler parameters for generation of cDNA 

Step Time Temperature 

Step 1 10 Min 25℃ 

Step 2 120 Min 37℃ 

Step 3 5 Min 85℃ 

Step 4 Hold 4℃ 

2.2.14.3 Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) 

Real-time q-PCR was used to determine levels of mRNA expression of the genes using the 

prepared cDNA (Section 2.20.3). The 2X q-PCR Mastermix was prepared according to (Table 

2.8). 

Table 2.8: Components of 2X qPCR Mastermix.            

Reagent Volume (ul) 

SYBR green Mastermix 5 

Nuclease-free H2O 3 

Forward Primer 0.5 

Reverse Primer 0.5 

cDNA 1 

SYBR green mastermix, nuclease-free H2O, forward and reverse primers were added to each 

well of the 384 well qPCR plate at a total volume of 9μl. Following this, 1μl of cDNA was 

added to the specified wells followed by centrifugation of the qPCR plate for 2 min at 2000rpm. 

Applied Biosystems 7900 machine was used to run the qPCR plate using the following cycles 

(Table 2.9). 
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Table 2.9: q-PCR Conditions 

Total Cycles Reaction Step Cycle length Temperature 

x1 cycle Enzyme Activation 10 min 95℃ 

x50 cycles Denaturation 15 sec 95℃ 

Data Collection 1 min 60℃ 

 

The data produced was analysed using 2-ΔΔCt method of relative quantification. Melt-curve 

analysis was carried out for all primers. Good primers should have one single peak, revealing 

of one reaction product as shown in Figure 2.1. 

                                          

Figure 2.1: shows an example melt curve from a good primer pairs have a single peak. Samples 

were heated from 60°C to 95°C to create a melt-curve by using qPCR.  

 

2.2.15 Cytokine Protein Level Expression Analysis with Cytokine Bead Array (CBA) 

Cells were infected with OV, MAG-OV and MAG alone alongside the control, untreated cells 

as described in Section 2.2.12. After 24h supernatants were collected from each well. CBA 

was then performed to assess the expression levels of a series of cytokines. These human flex 

sets were obtained from BD Biosciences and included: IP-10, IL-6, IL-8, TNF, IL-10, IL-1B, 

IFN-Y and VEGF.  

Flow team performed CBA assay. Each BD™ CBA Flex Set contained two vials of Standard 

and one vial each of Capture Bead and PE Detection Reagent. The formularization of the 
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Capture Bead and PE Detection Reagent components was carried out to a 50x concentration to 

confirm product performance when multiplexed. Lyophilisation of The Standard component 

was also performed and then transferred to a 15 ml polypropylene tube for re-formation. When 

reconstituted in 4.0 ml Assay Diluent, the standard contained a protein concentration of 10,000 

pg/ml. Importantly, the lyophilized standard and other components were stored at 4°C to 

protect the capture beads and PE Detection Reagent from sustained light exposure. An Attune 

Autosampler was used to read the samples. 

2.2.16 Virus neutralization  

Neutralization experiments were performed to determine if MAG could protect OV from 

neutralizing Antibodies. Sheep anti-HSV-1 antiserum was used to neutralise the OV. This 

antibody was kindly prepared by Virttu Biologics by four consecutive monthly injections of 1 

x 10⁶ PFU HSV1716. To prepare the mixture of OV+NAb or MAG-OV+NAb, 1 x 10⁷ PFU of 

OV or MAG-OV were incubated with 100-fold dilution of antiserum for 18 h at 4°C (Conner 

et al., 2005), alongside the controls (no antibody control and no virus control). Combinations 

(OV+NAb or MAG-OV+NAb) were then transferred to the wells containing monolayers of 

MDA-MB-231 cells and incubated for 24 hr at 37° C.  Flow cytometry was performed to 

measure cell viability as mentioned in Section 2.2.12. 

2.2.17 HMGB1 ELISA 

 The supernatants of infected and uninfected control cells (MDA-MB-231 cells and MCF7) 

cells were collected and cellular debris removed by centrifugation at 6200 rpm for 5 min. 

Secreted extracellular HMGB1 in the supernatants was measured with a HMGB1 ELISA Kit 

II (Shino-Test, Kanagawa, Japan) according to the manufacturer’s protocol outlined for the 

normal sensitivity format of the assay. In brief, 10 µL of supernatant and 100 µL of sample 

diluent was added to immobilized anti-HMGB1 antibody on the well and incubated for 20-24 

hr at 37°C to allow HMGB1 to specifically bind to the antibody. Peroxidase (POD)-conjugated 

secondary antibody was then added to the sample well. Microplate spectrophotometer was used 

to read the plates at a wavelength of 450 nm. 

2.2.18 ATP assay  

 The supernatants of infected cells and uninfected control cells were first collected andells and 

debris removed by centrifugation at 6200 rpm for 5 min. ENLITEN ATP assay (Promega, 

Madison, WI, USA) was performed to measure the Secreted extracellular ATP in the 

supernatants according to the manufacturer’s protocol. In brief, 100 µL of supernatant was 
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added to the 100 µL of rL/L reagent (ATP reagent). Then, Turner Biosystems luminometer 

(TD-20/20; Promega) was used to read the plates at a wavelength of 560 nm. 

2.2.19 Immunocytochemistry 

The expression of calreticulin and appearance of HSV1716 within the cells were measured by 

immunocytochemistry. Cells (200,000/well) were seeded on small coverslips placed in 24 well 

plates and cultured overnight with complete medium as mentioned in Section 2.2.5. The 

following day, cells were infected with OV, MAG-OV and MAG alone alongside the control, 

untreated cells for 24h. The next day, cells were washed 3 times with PBST and fixed by adding 

300µl of 2% paraformaldehyde (PFA) for 15min (370C at 5% CO2). After washing, 5% Goat 

serum and 10% Murine FcR blocking solution in PBST was added for 30 min at RT to block 

the cells from non-specific binding. Primary Ab -rabbit anti human calreticulin was diluted 

1:100 (Abcam, Cambridge, UK) or sheep antiHSV1716 diluted 1:500 (Virtuu Biologics, 

Glasgow, UK) were added for 1hr at RT then washed 3 times with PBST. This was followed 

by incubation with e FITC (fluorescein isothiocyanate)-conjugated goat polyclonal antibody 

diluted 1:100 and appropriate secondary antibodies, diluted at 1:400 in PBST, for 30min at RT 

then washed 3 times with PBST. 50ng/ml DAPI solution was added for 2 min and then washed 

another three times with PBST. Finally, coverslips were removed from the wells and 1 drop of 

ProLong Gold Antifade mountant was added before attaching to glass slides. Slides were then 

kept in the dark for 1 day and imaged using the Nikon A1 confocal microscope. 

2.2.20 IN VIVO 

2.2.20.1 Murine model of breast cancer 

C57BL/6 female mice were purchased from Envigo at 6-8 weeks old and housed in the 

University of Sheffield Biological Services Unit and cared for according to the University of 

Sheffield code of ethics and Home Office regulations. All work was carried out under personal 

licence number is 1806F7C1E and Home office project licence PPL70/8670.   

Mice were allowed to acclimatise for 1 week after arrival from the supplier. Mice were injected 

into the nipple with 5x105 EO771-Luc cells using the following protocol. Inhalant isoflurane 

(IsoFlo) was used to anaesthetise mice. They were then shaved around the whole abdominal 

area to expose both nipples (inguinal group) and Hibiscrub was used to disinfect the skin.  

Following this, 5x105 EO771 cells (which were collected from flasks during their exponential 

growth phase) in 20ul PBS containing 33% matrigel/66% PBS/1% trypan blue) were injected 

into the nipple using an insulin syringe. Mice were monitored daily and weighed every three 
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days. Tumour volume was measured using callipers and also recorded every three days using 

the following equation:    

                                              Tumour volume (mm3) =  
W 2 ×  L

2
       

For the bioluminescence test, mice were injected with 100 µL of d-Luciferin subcutaneously 

for 5 Min. Then, a non-invasive in vivo imaging system (IVIS 200 System, Xenogen) was used 

to image mice under isoflurane anaesthesia delivered via a nose cone. Each group of mice 

included in this study consisted of n=8 mice/group. The number of animals were justified by a 

power calculations using the following equation: 

                                                      

Once the tumours reached ~150-200mm3 mice received the following treatments intravenously 

(i.v.). 

1. Control: Mice were injected three times i.v. (0, 5, 10 days) with 100ul PBS. 

2. MAG: Mice were injected three times i.v. (0, 5, 10 days) with 100ul MAG (10ul MAG 

+ 90ul PBS).   

3. OV: These mice were injected three times i.v. (0, 5, 10 days) with 100ul HSV1716 

(10ul OV at 106 pfu + 90ul PBS). 

4. MAG-OV without magnet: Mice were injected three times i.v. (0, 5, 10 days) with 

100ul magnetised HSV1716 (12ul MAG-OV at 106 pfu + 88ul PBS). 

5. MAG-OV+ magnet: Mice were injected three times i.v. (0, 5, 10 days) with 100ul 

magnetised HSV1716 (12ul MAG-OV at 106 pfu + 88ul PBS) in the presence of an 

external permanent magnetic array secured above the tumour (0.7 T) for 30 min. 

Once the tumours reached ~1500mm3 mice were culled by cervical dislocation, and the organs 

and tumours removed and stored in liquid nitrogen for post-mortem analysis. Of note, the 

magnet design, assembly and length of time placed above the tumour, were optimised by a 

post-doctoral research fellow in the group (Dr Priya Patel).  

2.2.20.2 HSV1716 in vivo neutralisation experiment 

Mice were injected into the nipple with 5x105 EO771 cells as mentioned in Section 2.2.20.1. 

Once the tumours reached ~150-200mm3 mice received the following intravenously. The 

following groups were included in this study with n=3 mice/group. 
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1. Control: Mice were injected three times i.v. (0, 5, 10 days) with vehicle (PBS) (in a 

volume no more than 0.2 ml). 

2. OV+ NAb (see section 2.2.19): Mice were injected three times i.v. (0, 5, 10 days) with 

100ul HSV1716 (10ul OV at 106 pfu + NAb + 90ul PBS). 

3. MAG-OV+ NAb (see section 2.2.19) + magnet: Mice were injected three times i.v. 

(0, 5, 10 days) with 100ul magnetised HSV1716 (12ul MAG-OV at 106 pfu + NAb + 

88ul PBS) in the presence of an external magnetic field for 30 min. 

Once the tumours reached ~1500mm3 mice were culled by cervical dislocation, and the organs 

and tumour were removed and stored in liquid nitrogen for post-mortem analysis. 

2.2.20.3 Tissue preparation of samples for post-mortem analysis 

Immediately following removal from the mice, tumours were divided into two parts. One of 

them was first dissected into small chunks before placing in cryobuffer (90% FCS with 10% 

DMSO) and frozen in liquid nitrogen until used for flow cytometry, RNA extraction for qPCR 

or Nanostring technology. 

The other half of the tumours were embedded in Optimal cutting temperature (OCT) and frozen 

at -80oC in preparation for cryosectioning. Frozen sections (14µM thick) were cut for 

immunofluorescence staining. 

2.2.20.4 Dissociation of EO771 cells tumours  

Ice-cold DPBS containing 2% FCS (FACS buffer) was prepared prior to thawing tumour 

chunks and washing 3 times with DPBS. Tumour chunks were then incubated with 5ml 

enzymatic dissociation solution containing 0.2 mg/ml collagenase, 2 mg/ml dispase and 

1.25ug/ml DNase I in serum-free Iscove’s Modified Dulbecco’s Medium (IMDM), for 30 min 

using a rotator in a warm room (37oC). Following this, 10% FBS was added to neutralize the 

enzymes within the medium and the dispersed specimen was passed through a 40-70µm nylon 

filter. Once filtered, the cell suspension was then centrifuged at 4500 rpm for 5 min, and the 

cell pellet was washed 3 times in 500μL DPBS for flow cytometry (see 2.2.20.5) or RNA 

extraction for qPCR or Nanostring technology (see 2.2.20.7) 

2.2.20.5 Preparation of tumour cells for flow cytometry    

Tumour chunks were dissociated as mentioned in section 2.2.20.4.  The cell pellet was re-

suspended in the correctly diluted primary antibody (Ab) and Zombie UV viability dye (1μL 

in 100μL) and incubated for 45-60 min on ice. 500μL of FACS buffer (50ml DPBS with 25µL 
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FCS) was then used to wash the samples twice to remove excess unbound antibody and the cell 

suspension was then centrifuged again in a microcentrifuge at 4500 rpm for 5 min. Finally, 

samples were re-suspended in 300ul of FACS buffer (1%FBS/PBS solution) and transferred to 

flow cytometry tubes (400μl). Flow cytometry data was analysed using the BD LSR II flow 

cytometer. Data files were further processed using FlowJo Software. Table 2.10 shows the 

antibodies used to analyse immune cell infiltration into the tumours. 

Table 2.10: Antibodies of analysing immune cells infiltration into the tumours 

Laser Filter Fluorochrome Markers Purpose 

UV 355nm 450/40 Live/Dead Blue Viability Exclude Dead cells  
 

530/30       

Violet 405nm 450/40 BV421 

  

F4/80 Macrophages cells marker  
 

530/30 BV510 CD4 T helper marker 

Blue 488nm 530/30 GFP GFP   
 

575/26 PE CD8 Cytotoxic T cells marker 
 

610/20       
 

660/20 
 

    
 

695/40 PercP-5.5 Ly-6G Neutrophils cells marker 
 

780/60 PECy7 CD11b Myeloid cells marker 

Red 633nm 660/20 APC CD3 Generic T cell marker 
 

730/45 AF 700 LY-6C Monocyte cells marker 
 

780/60        APC/Cy7 NK-1.1            NK cells 

A number of different controls were included to help determine if fluorescence was a false 

positive signal. 

1-Compensation control: 100ul PBS+ 1drop negative beads+1drop positive beads (Thermo 

Fisher Scientific / Cat no: A10344/ USA) +1ul of antibody of interest (each antibody of 

interest was in a separate tube) 

2-FMO (Fluorochrome Minus One): 100ul of the cell suspension + All Abs used in this 

experiment minus one Ab. 

3-SCC (Single Cell Control): 100ul of the cell suspension+ 1ul of only one Ab. 

4-Untsained: only cells.  

As multiple fluorophores were used in this study (Table 2.11), fluorescent minus one (FMO) 

controls were used to detect if fluorescence was emitted because of false positive signals or 

because of real antibody binding. FMO controls contain all Abs used in this experiment minus 
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one Ab to determine fluorescent spectral overlap from all the other fluorophores, before 

measuring the fluorescence of the antibody of interest. Flow cytometry users prefer to use FMO 

controls because of their hallmark to detect background between all fluorophores (Herzenberg 

et al., 2006). 

Table 2.11: Details of antibodies and controls used in flow cytometry experiments. 

Samples Compensation control FMO (Fluorochrome Minus 

One 

SCC (Single Cell Control) 

Unstained 

control 

Negative beads 
 

Cells  

GFP Negative beads + positive 

beads + anti mouse 

antibody  

Cells + all Ab – GFP Cells + GFP 

Viability Cells+ Zombie UV dye Cells + all Ab - Zombie UV 

dye  

Cells+ Zombie UV dye 

F4/80 Negative beads + positive 

beads + F4/80 Ab 

Cells + all Ab - F4/80 Ab Cells+ F4/80 Ab 

CD4 Negative beads + positive 

beads + CD4 Ab 

Cells + all Ab – CD4 Ab Cells+ CD4 Ab 

CD8 Negative beads + positive 

beads + CD8 Ab 

Cells + all Ab – CD8 Ab Cells+ CD8 Ab 

CD11B Negative beads + positive 

beads + CD11B Ab 

Cells + all Ab – CD11B Ab Cells+ CD11B Ab 

LY-6G Negative beads + positive 

beads + LY-6G Ab 

Cells + all Ab – LY-6G Ab Cells+ LY-6G Ab 

CD3 Negative beads + positive 

beads + CD3 Ab 

Cells + all Ab – CD3 Ab Cells+ CD3 Ab 

LY-6C Negative beads + positive 

beads + LY-6C Ab 

Cells + all Ab – LY-6C Ab Cells+ LY-6C Ab 

NK1.1 Negative beads + positive 

beads + NK1.1 

Cells + all Ab – NK1.1 Cells+ NK1.1 
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2.2.20.6 Immunofluorescent staining of tumours 

Tumours sections were fixed with ice cold acetone for 10 min at RT and then rehydrated with 

PBST for 1 min. A dark humidified chamber was used for all incubations to prevent fluorescent 

antibodies from reacting with light. Tissue was surrounded using a Super PAP barrier pen. 

Following this, 5% Goat serum and 10% Murine FcR blocking solution made in PBST was 

added for 30 min at RT to block the tissue from non-specific binding. Tissue was then incubated 

with primary antibodies (Table 2.12), for 1hr at RT and then washed 3 times with PBST. 

Appropriate secondary antibodies (diluted 1:400 in PBST) were then added for 30 min at RT 

and the tissue was washed 3 times with PBST.  Tissue was stained with 50ng/ml DAPI solution 

for 2 min and then washed another three times with PBST. Finally, before adding coverslips, 

tissue was mounted with 1 drop of ProLong Gold Antifade mountant.  Slides were then kept in 

the dark for 1 day and analysed using a Nikon A1 confocal microscope. The 40x objective lens 

was used for imaging and a selection of at least 5 fields of view (FOV) were captured per 

tumour. Fiji (Fiji Is Just ImageJ), accessed via http://fiji.sc/Downloads, as previously published 

(J. Schindelin et al. 2012) was used to analyse the images.  
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Table 2.12: Antibodies used in immunofluorescent staining experiment. 

Primary 

Ab 

Cat no Supplier Conjugat

e 

Dilutio

n 

Secondar

y 

Dilutio

n 

Lase

r 

Magnificatio

n 

Calreticuli

n  

505207 Biolegend Unconj 1 in 100 Anti-rab 

AF647 

1 in 400 647 20x/40x 

CD3 20-0031-

U100 

BD 

Pharminge

n 

APC 1 in 200 NA NA 647 40x 

CD31 102515 Biolegend AF647 1 in 100 NA NA 647 40x 

CD4 100425 Biolegend AF488  1 in 50 NA NA 488 40x 

CD4 100425 Biolegend  PE 1 in 100 NA NA 555 40x 

CD8 100707 Biolegend PE 1 in 100 NA NA 555 40x 

F4/80 MCA497A48

8 

AbD 

Serotec 

AF488 1 in 25 NA NA 488 40x 

GFP ab290 Abcam Unconj 1 in 

1000 

Ant-Sheep 

AF488 

1 in 400 488 20x/40x 

IFNy 505809 Biolegend APC 1 in 100 NA NA 647 40x 

NK-1.1 108723 Biolegend APC/CY7 1 in 100 NA NA 647 40x 

PD1 135215 Biolegend PE/CY7 1 in 100 NA NA 647 40x 

2.2.20.7 Haematoxylin and Eosin staining  

Tumours sections were fixed in acetone (methanol 50:50 mix (kept in freezer) or methanol 

only) for 10-20 min. Sections were then washed 2 times in PBS andplaced in Gill’s 

Haematoxylin solution for 1 min and washed in tap water for 5 min until the water ran clear. 

Slides were placed in 70% ethanol for 3 min then 90% ethanol for a further 2 min. Following 

this sections were placed in eosin (2g eosin dissolved in 400ml 95% ethanol) for 1 min before 

rinsing slides in 100% ethanol for 5 min. Slides were then mounted using DPX mounting 

medium.  Aperio ScanScope CS with a 40x objective lens was used to scan the slides.    

2.2.20.8 NanoString gene expression analyses.  

Gene expression profile in EO771 cells tumour samples were carried out at the John van Geest 

Cancer Research Centre in College of Science and Technology at Nottingham Trent University 

as part of a collaborative study and analysed using murine pan-cancer immune profiling panel, 
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which consist of 750 immune related genes, 20 housekeeping genes. All the RNA samples 

were quality controlled using Nanodrop 8000 and 150ng of total RNA from each samples were 

used for setting up nanostring probe hybridisation overnight (20hrs) at 65˚C (each reaction 

mixture contains 5ul of RNA solution (150ng), 8ul of reporter probe and 2ul of capture probe). 

After overnight hybridization, excess probes were removed using nCounter Prep Station and 

magnetic beads and hybridised mRNA/probe were immobilised on a streptavidin-coated 

cartridge. The processed cartridge subsequently scanned using an nCounter digital analyser 

platform for generation of the raw data with a high-resolution scan (555 fov). Raw data were 

processed with nSolver Analysis Software (V.4.0), imaging quality control (QC), mRNA 

positive control QC and normalisation QC checked and all the samples were with the quality 

parameters of nanoString gene expression assays. Differential expression, pathway scoring and 

cell type scoring was performed using nSolver advance analysis module V. 2.0.115. 

Normalization of the data was performed using geNorm algorithm for the selection of best 

housekeeping genes. Genes which showed ≥ 2, fold change in their expression with a BY 

(benjamini yekutieli) P value ≤ 0.05 were considered significantly different between the 

groups. 

2.2.21 Statistical analysis 

All statistical analysis was performed using GraphPad Prism (GraphPad Inc,San Diego,CA, 

USA). Data are expressed as mean and SEM. Statistics were analysed utilizing the suitable 

statistical test and post‐test as described in the figure legends. Statistically, a p value of p<0.05 

was deemed significant.  
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Characterisation of MAG-OV 
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3.1 Introduction 

Cancer nanotechnology is a relatively new branch of medicine that is currently going through 

intense phases of development for cancer imaging, molecular and cellular diagnosis and for 

targeted therapies (Gharpure et al., 2015). The potential of MNPs for application in drug 

delivery and for the diagnosis of tumours is established (Kim et al., 1999, Kataoka et al., 2000). 

The development of multifunctional MNPs for the delivery of both drugs and MRI contrast 

agents for malignancies is now possible for tumour theranostics (Torchilin, 2006, Kim et al., 

2008, Peer et al., 2007). In addition, MNPs offer many opportunities, that allow for the 

combination of magnetic resonance imaging (MRI) as contrast agents and active delivery of 

chemotherapeutics in one nanocarrier system, representing a novel strategy in nanomedicine 

(Nasongkla et al., 2006).  MNPs are therefore attractive for the navigation of drugs into tissues 

from circulation in response to application of a magnetic field. The magnetic targeting of drugs 

results in an increased concentration of the drug within the tissue/organ of interest and 

consequently reduces the side effects such as toxicities as a result of systemic drug delivery. 

Superparamagnetic iron oxide (SPIO) have magnetic properties which can be used for MRI as 

a contrast agent and for the detection and characterization of tumours within the body. The 

magnetic properties of SPIOs has also been used to magnetically guide drugs to a specific 

tissue. This has led to the development of MNPs that can be used not only as MRI contrast 

agent but their ability to respond to magnetic field enables magnetic hyperthermia and magnetic  

drug targeting to diseased tissue (Senyei et al., 1978, Neuberger et al., 2005). Previous studies 

have shown that conjugation of MNPs with anticancer agents e.g. doxorubicin (DOX) and 

methotrexate (MTX) resulted in an increase in the accumulation of the drug in HeLa cells  and  

B-cells by applying an external magnetic force (Samra et al., 2013). They also found that 

Sixteen to 22% more killing effect was observed on HeLa cells than in B cells. Clinical studies 

using chemotherapeutics coated with MNPs have also been performed in cancer patients. The 

first clinical trial in humans using MNPs linked to doxorubicin were reported in 14 patients 

with advanced solid liver cancer. The authors found that the MNPs accumulated in the targeted 

tissue and were safe and not toxic (Lubbe et al., 1996). This type of magnetic targeting could 

therefore provide an opportunity to use less of a potentially toxic drug but still obtain higher 

drug concentration at the tissue of interest. 

MAG are becoming increasingly recognized as important tools in cancer treatment. These 

particles have the potential to 1) target therapy to the tumour site due to the magnetic core 2) 

improve binding to the target by displaying receptors or recognition molecules 3) kill tumours 
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if they carry a therapeutic payload.  Moreover, the MAG can be imaged using conventional 

MRI enabling the therapy to be tracked in real-time.  A study by Mahmoudi and colleagues 

showed that MAG derived from magnetotactic bacteria Magnetospirillum magneticum strain 

AMB-1 could be used to label and image pluripotent stem cell (iPSC)-derived 

cardiomyocytes (iCMs) for the regeneration of the injured myocardium in mice. The MAG-

labelled iCMs were injected into the infarcted area of the murine heart and imaged by MRI. 

They showed that MAG were robust biological contrast agents to track iCMs in mice. More 

importantly, they were cleared within one week of injection whereas SPIONs remain over 2 

weeks (Mahmoudi et al., 2016). MAG, may therefore be an excellent alternative. MNPs also 

provide the opportunity to track therapeutics with imaging modalities, which is not possible 

with current cancer treatments. Furthermore, biocompatibility, chemical stability and magnetic 

properties are considered very important for diagnostic application (Almstätter et al., 2015). It 

is, therefore, important to further understand the physicochemical characterisation of these 

particles. 

MAG have also been used to deliver anticancer medicines doxorubicin (DOX) in H22 cell-

bearing mice (Sun et al., 2011). They found that the tumour suppression rates following 

administration of DOX-loaded Bacterial MAG (DBMs), DOX, and Bacterial magnetosomes 

(BMs) were 86.8%, 78.6%, and 4.3%, respectively. DBMs, DOX, and BMs revealed mortality 

rates of 20%, 80%, and 0%, respectively. Pathological examination of hearts displayed that 

DBMs revealed a much lower cardiac toxicity compared with DOX.  

Oncolytic virotherapy is an emerging treatment modality that uses replication-competent 

viruses to destroy cancers whilst leaving healthy cells unharmed. Success of using these viruses 

has relied on direct intratumoural injection, however to target tumours deep in the body or 

metastasis it is necessary to deliver virus in circulation. So far, systemic delivery of OVs has 

been hampered by low intra-tumoural titres due to strong anti-viral host immune responses and 

sequestration by the liver and spleen resulting in poor tumour targeting (Ferguson et al., 2012). 

We propose to use magnet targeting like that described above for improving the targeting of 

OV to tumours after systemic delivery. A recent study showed that MNPs (PEI-Mag2 or SO-

Mag6-11.5) could be used to form stable complexes with OV by self-assembly (Almstätter et 

al., 2015b). This relies on electrostatic interaction of negatively charged viral particles and 

positively charged MNPs.  They found that the virus dose required for 50 % cell growth 

inhibition/oncolysis (IC50) values of the MNP-VP complexes in 7.5 % FCS under magnetic 

field-guided infection were 1.6- and 2.5-fold lower for VSV, and 11.8- and 27.4-fold lower for 
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Ad, respectively, than those of the virus alone in McA and RDB cells, confirming the higher 

oncolytic activity of the MNP-VP complexes. Understanding the oncolytic potential and the 

cell death mechanisms of OV is a rapidly evolving field. For the purposes of this work, we 

performed experiments to investigate the effects of MAG-OV in breast cancer 2D and 3D 

tumours spheroids and compared this to OV. Oncolytic HSV1716 has previously been shown 

to reduce viability of tumour spheroids (SF188, KNS42, DIPG) 72 and 96 hr post-infection 

(Cockle et al., 2017). 

The aim of this chapter was to magnetise the OV ‘HSV1716’ using MAG derived from 

magnetotactic bacteria and characterise the physicochemical and biological properties of the 

final complex (MAG-OV). The specific aims are to: 

1. Determine the physicochemical properties and toxicity of the bacterial derived 

magnetosomes (MAG) in breast cancer cell lines. 

2. Prepare the MAG-OV and measure the physicochemical properties. 

3. Measuring the Oncolytic potential of magnetic viral complexes on breast cancer cells. 

3.2 Results 

3.2.1 Characterization of bacterial derived MNPs  

The properties and physicochemical characteristics of these particles was assessed. We used 

AMB-1 derived MAG purified using established protocols (Staniland et al., 2007). In brief, 

AMB-1 was grown in a cabinet within microaerobic conditions consisting of 1% O2 and 99% 

nitrogen at 30.1 C° in liquid culture medium (see Section 2.2.1.2) which is specific to AMB-1 

bacteria. The lysed AMB-1 cells were sonicated for 1 hour using microprobe tip sonication 

(Sonics USA). After the sonication a neodymium magnet was used to separate the MAG from 

other cellular debris. 10mM Tris-HCl buffer (pH 7.4) was used to wash the MAG four times 

followed by resuspension in DPBS (pH 7.4). The properties of the purified MAG are shown in 

Table 3.1. The MAG were typically small in diameter (46 ± 5nm) as assessed by TEM. The 

electrokinetic potential (ζ) was also assessed to determine the charge of the particles. MAG 

displayed  a negative electrokinetic potential (ζ) (-9 ± 2.3 mV) on the membrane most likely a 

result of the lipid composition and the occurrence of polarizable primary amino groups (Tanaka 

and Matsunaga, 2000) this was measured using NanoBrook Zeta PALS (Table 3.1). This 

means that MAG tend to coagulate or flocculate, possibly leading to poor physical stability. 

Magnetic susceptibility is a measure of the magnetic properties of the particles which will be 

important when considering their targeting potential in response to a magnetic field. This is 
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measured in System International (SI) units as a function of iron mass (mgFe). MAG displayed 

high magnetic susceptibility (8.164e-5 SI) and the iron content of the MAG was (0.17mg/l).   

Table 3.1: The physicochemical properties of MAG purified from magnetospirillum magneticum 

AMB-1. Data are derived from N=3 independent experiments.                 

  
 

The morphological characteristics and size distribution of the MNPs was determined using 

high-resolution transmission electron microscopy (HRTEM). The diameter of MAG was 

typically (46± 5nm). qNano does not measure below 50 nm and so results data is based on 

TEM images. Interestingly, MAG have a much more uniform diameter compared to synthetic 

MNPs (Almstätter et al., 2015a) where there is a significant variation in the diameter between 

individual particles in the same sample. TEM images of magnetotactic bacteria and purified 

MAG are shown in Figure 3.1. Next, we assessed the uptake of the MAG by tumour cells.   

 

Figure 3.1: High-resolution Transmission electron microscopy of magnetotactic bacteria and 

purified MAG. A. TEM images of AMB-1 magnetotactic bacteria, grown in micro-anaerobic 

conditions in 1% O2 gas and 99% nitrogen at 30.1 C° in liquid culture medium which is specific to 

AMB-1 bacteria (scale bar-0.2um). B. MAG purified from AMB-1 were sonicated prior to TEM and 

mounted onto carbon-coated copper grids. The MAG displayed a typical cuboidal crystal shape with 

uniform size of ~46nm diameter (scale bar-100nm). Images were taken on a TEM operated at 120kV 

with an Orius 1000 camera. 

3.2.2 Breast cancer cell internalisation of MNPs  

MDA-MB-231 is a triple negative breast cancer (TBNC) cell line; patients with TNBC are 

resistant to chemotherapy and most hormonal therapies so have limited treatment options (Lee 

et al., 2011). This cell line has been used in our studies with an aim to develop new treatments 
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for this patient group. In the first instance, MDA-MB-231 cells were incubated with MAG at 

a concentration of 0.2 mg/ml for 24h. This concentration was selected based on previous 

studies carried out by Mannucci and coworkers,   they showed that HT-29 cells were able to 

effectively internalise MAG at concentration 0.2 mg/ml for 24h among the different 

concentrations tested (ranging from 0.2 to 1 mg/ml)  using Prussian Blue staining (Mannucci 

et al., 2014).  The degree of MAG uptake into cells was assessed by flow cytometry where a 

change in granularity of the cells because of taking up the MAG was detected based on changes 

in the side scatter. This was also confirmed by immunostaining the iron particles within the 

cell using the gold standard stain for iron ‘Prussian blue’ (Muthana et al., 2008a).  

As shown in Figure 3.2A, MDA-MB-231 cells were able to effectively internalise MAG 

~43%±4 (P ≤ 0.01) compared to the control untreated cells (0 %). To confirm intracellular 

MAG uptake, MDA-MB-231 cells were grown on coverslips and incubated with MAG (0.2 

mg/ml) for 24 hr. After this, cells were fixed in 200μl of acetone  at 4°C for 10 min and stained 

with Prussian blue to detect iron and counterstained with eosin to define the cytoplasm (Brace 

et al., 2009, Arcangeli et al., 1980). Coverslips were mounted onto microscope slides and light 

microscopy was used to take images. As shown in Figure 3.2B MAG were internalised by the 

MDA-MB-231 cell line and multiple particles were present within the cytoplasm of cells. It 

was difficult to quantify the number particles/cell, as the signal from the Prussian blue stain 

was very strong. Convinced that MAG entered the cells, next we investigated cell viability after 

uptake. 
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Figure 3.2: MAGs were internalised by MDA-MB-231 cells. MDA-MB-231 cells were incubated 

with 0.2mg/ml coated with purified MAG for 24 hr A. Flow cytometrical analysis of cells revealed 

uptake of MAG resulted in an increase in cell size and granularity compared to the control (untreated 

cells), this suggests uptake of the MAGs. Data are the mean ± SEM of n=3 independent experiments. 

B. Representative Prussian blue images of MDA-MB-231 cells incubated with MAG. Dark blue 

staining is the presence of the Prussian blue; Pink is the eosin. This was taken at x 40 Magnification 

using light microscopy (Leica DM1000). Of note, data are the Mean ± SEM (n=3) and statistical 

analysis was assessed using the T test. **p<0.01. 

3.2.3 Breast cancer cell viability following incubation with MAG 

MDA-MB-231 cells were incubated with MAG at a concentration of 0.2 mg/ml for 24h. The 

extent of cell death induced after MAG uptake was measured using the DNA binding dye 

propidium iodide (PI). This  stains dead/dying cells by flow cytometry (Brace, 2009). Cells 

were collected and washed in PBS and propidium iodide (PI) was added to all samples (50 

mg/ml) immediately before flow cytometrical analysis using the FL3-H laser (wavelength 

617nm). MDA-MB-231 cells undergo no significant change in cell death compared to control 

cells following incubation with MAG (Figure 3.2A).  
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 MTT test was also used to estimate the viability of cells in longer-term cultures of the MNPs. 

This colorimetric test estimates the decrease of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT) via mitochondrial succinate dehydrogenase. While a 

decrease of MTT can only happen in metabolically active cells, the level of activity is a 

measurement of cell viability. MDA-MB-231 cells were incubated with MAG at a 

concentration of 0.23 mg/ml for 72 hr. After that, MTT reagent was added to each well 

followed by incubation for a further 3 hr. Cell death/viability was measured 

spectrophotometrically at 570nm. As shown in Figure 3.2B, and in concurrence with the flow 

cytometry data, there was no significant effect on cell viability for MAG compared to the 

control. 

Together these data suggest that the MDA-MB-231s efficiently take up bacterially-derived 

MAG without any significant toxicity to the cells.  

 

Figure 3.3: MDA-MB-231 remain viable after incubation with MAG. MDA-MB-231 cells were 

incubated with purified MAG for 24 hr. Cells were collected and flow cytometry as used to evaluate 

cell death by the addition of PI immediately prior to analysis. A. Cell death (PI+ cells) in the presence 

of MAG was not significant when compared to the control. B. MTT assay also revealed no significant 

change in cell viability in the presence of MAG. Of note, data are the Mean ± SEM (n=3) and statistical 

analysis was assessed using the T test.  

3.2.4 Characterization of MAG-OV  

Here we set out to prepare and characterise MAG-OV complexes. 200ul of DPBS containing 

0.22mg MAG and 1 mL of PBS containing 1 x 108 pfu OV were suspended in a final volume 
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of 1.2 ml (0.2mg/ml MAG and 1 x 108 pfu OV). Following this, complexes were incubated for 

20 min at RT. This is shown as a schematic in Figure 3.5.  

                           

Figure 3.4: Diagram of the self-assembly of MAG and OV. To prepare the complexes, 200ul of 

DPBS containing 0.22mg MAG and 1 ml of PBS containing 1 x 108 pfu OV were suspended in a final 

volume of 1.2 ml (0.2mg/ml MAG and 1 x 108 pfu OV). Following this, complexes were incubated for 

20 min at RT.  These were stored at 4°C or used immediately. 

We first measured the charge of the magnetic viral complexes using NanoBrook Zeta PALS. 

Co-assembly of MAG with OV (MAG-OV) resulted in a net negative charge (MAG-OV ζ = -

11 ± 5 mV). Of note, a net negative charge was detected with free OV (ζ= -13 ± 2.1 mV). The 

magnetic susceptibility of the MAG-OV complexes were slightly lower compared to respective 

unbound MAG (MAG-OV=5.438e-5 SI) as shown in Table 3.2. As expected, MAG-OV was 

larger compared to the OV and free MAG (MAG-OV Diameter = 160 ± 20nm) see Table 3.2 

and Figure 3.5.  

Table 3.2: The physicochemical properties of the OV and MAG-OV. N=3 
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Figure 3.5: The size distribution of the OV and MAG-OV. The size distribution of OV and MAG-

OV were determined by Tunable Resistive Pulse Sensing (TRPS) using a qNano instrument (Izon). 

Graphs show representative diameter data of A. OV B. MAG-OV. This is experiment was performed 

N=1 in triplicate. 

 

Typically, TEM images revealed that multiple MAG surrounded a single virus and this tended 

to form clusters of the complex (Figure 3.6). We were unable to detect any uncoated virus in 

the samples. The same MAG-OV complex was imaged by TEM after 72h storage at 40C to 

determine if the complexes were stable. This data showed that the complexes were still intact 

(Figure 3.6).  

 
 

Figure 3.6: TEM images showing stability of MAG-OV over time. Samples containing virus were 

counterstained with 1% phosphotungstic stain, this is a common negative stain for viruses including 

HSV. Images were taken on a TEM operated at 120kV with an Orius 1000 camera. A. Representative 

image of MAG-OV after 1h of incubation and B. After 72h, to show the stability of complexes. The 

scale bars are 200 nm.  
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3.2.5 Transmission electron microscopy of MAG-OV cell internalisation. 

TEM was also performed to investigate the intracellular localization of MAG-OV. Infected 

tumour cells (105) were prepared as described in (section 2.2.14.1.2). Figure 3.7 shows images 

of MAG-OV internalisation in MDA-MB-231 cells. MAG-OV were observed to cluster in the 

cytoplasm or in the vesicles of the cell (e.g. Endosomes). Interestingly, free OV were seen 

throughout the cytoplasm and MAG were located within the endosomes. This suggests that 

once inside the cell the OV is able to free itself from the MAG.  Therefore, in the next section 

we investigated the oncolytic potential of MAG-OV. 

                                    

Figure 3.7: TEM images of MAG-OV inside MDA-MB-231 cells. Representative image of MAG-

OV in the cytoplasm or in the endosomes of MDA-MB-231 cells. Arrows show MAG within the 

cytoplasmic vesicles. Free OV can be seen throughout the cytoplasm. Images were taken on a TEM 

operated at 120kV with an Orius 1000 camera. The scale bars are 0.5 um.  

3.2.6 MAG-OV induce MDA-MB-231 cell oncolysis  

MDA-MB-231 cells were seeded into 6-well plates (3 x 105 cells/well) and after 24 hr, cells 

were infected with either the OV on its own or MAG-OV at MOI 10 (selected based on 

previous studies in our lab), MAG and non-infected cells were used as controls. For these 

studies we used the reporter virus HSV1716-GFP so that the GFP could be used to confirm 

virua infection.  After 1, 3 and 6 days of culture with the viruses, plates were harvested and 

flow cytometry was used to analyze the cells. The level of viral infection was measured as the 

percentage of GFP (+)/Topro-3(-) cells. In these studies, TOPRO3 was used as a viability dye 

where dead/dying cells take up the dye but live cells exclude it. As shown in Figure 3.8, MAG-

OV was able to infect the tumour cells as efficiently as the naked OV with no differences 

between these groups after 24h of culture. GFP expression was markedly reduced by day 6 of 

culture in all the treatments groups compared to the control and MAG groups (Figure 3.8). 
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This decrease in GFP expression was most likely because of cell death and indeed statistically 

significant cell death was observed with both MAG-OV and OV, compared to the control group 

at day 3 and 6 (Figure 3.9). As expected, cell death increased over time with maximum death 

measured at day 6 of culture. As shown in Figure 3.9, MAG-OV was not significant at 1, 3 

and 6 days of culture compared to virus alone. 

                                                                                                 

Figure 3.8: MAG-OV induce MDA-MB-231 cell oncolysis. Representative fluorescent dot plots of 

GFP expression following 24h incubation of MBA-MB-231 cells with OV, MAG-OV (at MOI 10), 

MAG and untreated control cells. Cells were harvested and immediately before analysis on a flow 

cytometer (machine type LSRII) 2ul of TOPRO-3 was added to each sample. GFP expression was 

measured in FL-1 (488nm). GFP infection was also assessed on day 3 and 6 post-infection. Of note, all 

dead cells were gated out of the GFP analysis. Data are the mean ± SEM of n=3 independent 

experiments and statistical analysis was assessed using the two-way Anova test with multiple 

comparisons. **p<0.01.  
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Figure 3.9:  MAG-OV induce MDA-MB-231 cell oncolysis. Representative dot plots of cell death 

following 24h incubation of MBA-MB-231 cells with OV, MAG-OV (at MOI 10), MAG and untreated 

control cells. Cells were harvested and immediately before analysis on a flow cytometer (LSRII) 2ul of 

TOPRO-3 was added to each sample. TOPRO-3 was measured in the FL-4 (640nm). Cell death was 

also assessed on day 3 and 6 post-infection. Of note, data are the mean ± SEM of n=3 independent 

experiments and statistical analysis was assessed using the two-way Anova test with multiple 

comparisons.   

3.2.7 MAG-OV induce MCF7 cell oncolysis  

Here the oncolytic ability of OV and MAG-OV on another breast carcinoma cell line, MCF7 

(originally derived from human Caucasian breast adenocarcinoma patient), was assessed. 3 x 

105 cells were seeded into 6-well plates and infected with OV and MAG-OV at MOI 10, MAG 

and non-infected cells were used as controls. Cells were incubated for different periods (1 day, 

3 days and 6 days) and analysed by flow cytometry. Cell death was measured as Topro-3(+) 

cells; virus uptake in living cells was measured as GFP (+)/Topro-3 (-) cells. After infection 

(1, 3 and 6 days). There was no significant difference between the OV and MAG-OV infection 

(Figure 3.10). On the other hand, statistically significant levels of cell death were observed 

with MAG-OV and OV compared to controls (Figure 3.11). Moreover, MAG-OV cell death 

levels were similar to virus naked cell death at all-time points (1, 3 and 6 days).  
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Figure 3.10: MAG-OV induce MCF7 cell oncolysis. Representative fluorescent dot plots of GFP 

expression following 24h incubation of MCF7 cells with OV, MAG-OV (at MOI 10), MAG and 

untreated control cells. Cells were harvested and immediately before analysis on a flow cytometer (LSR, 

II) 2ul of TOPRO-3 was added to each sample. GFP expression was measured in FL-1 (488nm). GFP 

infection was also assessed on day 3 and 6 post-infection. Of note, all dead cells were gated out of the 

GFP analysis. Data are the mean ± SEM of n=3 independent experiments and statistical analysis was 

assessed using the two-way Anova test with multiple comparisons. 
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Figure 3.11: MAG-OV induce MCF7 cell oncolysis. Representative dot plots of cell death following 

24h incubation of MCF7cells with OV, MAG-OV (at MOI 10), MAG and untreated control cells. Cells 

were harvested and immediately before analysis on a flow cytometer, 2ul of TOPRO-3 was added to 

each sample. TOPRO-3 was measured in the FL-4 (640nm). Cell death was also assessed on day 3 and 

6 post-infection. Of note, Data are the mean ± SEM of n=3 autonomous trials and statistical analysis 

was assessed using the two-way Anova test with multiple comparisons.   

 

3.2.8 MAG-OV induced tumour spheroid cell death 

2D cell cultures contrasts significantly with 3D cultures in nutrient access, cell-cell interaction 

and cellular mechanics (Edmondson et al., 2014). Spheroids were prepared as described in 

Section 2.2.16. The use of 3D spheroids has the benefit of having established oxygen-

exhausted central zones surrounded by a well-oxygenated region, mimicking small micro-

metastasis (Muthana et al., 2011a). One of the most hallmark uses of 3D cell cultures is the 

ability to replicate some of the same behaviour of in vivo conditions. Therefore, we performed 

experiments to investigate the effects of MAG-OV in breast cancer 3D tumours spheroids. 

Tumour spheroids were prepared with the human cancer cell lines MDA-MB-231 and MCF7 

cells (2 x 104 cells seeded onto 2% agarose-coated 96-well plates). Five days later (day 5), 

spheroids were infected with OV and MAG-OV at MOI 10 and incubated for a further 6 days; 
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non-infected spheroids were used as controls. In these studies, light microscopy images were 

taken after 6 days of infection, to image changes in the shape of spheroids. We observed that 

MAG-OV elicited as much damage to the MDA-MB-231s (Figure 3.12A) and MCF7 

spheroids cells as the OV group (Figure 3.13A). Spheroids were harvested and washed after 3 

days of infection and cell viability of enzymatically-dispersed spheroids was analysed by flow 

cytometry. As expected the OV and MAG-OV groups showed significant cell death compared 

to the control spheroids in both MDA-MB-231 and MCF7s (Figure 3.12B & Figure 3.13B). 

                     

Figure 3.12: MAG-OV infects and kills MDA-MB-231 spheroids. Tumour cells were seeded into 

wells of a 96 well plate, that contained agarose dissolved in DMEM, at 20 x 10³ cells per well and the 

approximate size they grow to was 105 cells. After 5-7 days of seeding OV or magnetic viral complexes 

(MAG-OV) were added to the spheroids as described in section 2.2.15. A. shows MAG-OV and OV 

increased the necrotic core of MDA-MB-231 spheroids. Images were taken by light microscopy 6 days’ 

post infection. This was taken at 10x Magnification. B. Infection with OV and MAG-OV induced 

tumour spheroid cell death. Representative fluorescent dot plots of dispersed MDA-MB-231 Spheroids.  

TOPRO3+ cells were measured by flow cytometry 3 days’ post-infection. The percentage of cell death 

is shown (TOPRO-3+). While no significant changes in viability were detected between OV and MAG-

OV, both virus groups induced significant cell death compared to the control untreated spheroids. Data 

are the mean ± SEM of n=3 independent experiments and statistical analysis was assessed using the 

one-way Anova test with multiple comparisons. *p<0.05.  
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Figure 3.13: MAG-OV infects and kills MCF7 spheroids. Tumour cells were seeded into wells, that 

contain agarose dissolved in DMEM, at 20 x 10³ cells per well and the approximate size they grow to 

was 105cells. After 5-7 days of seeding the cells in 96 wells plate, OVs or magnetic viral complexes 

(MAG-OV) were added to the spheroids as described in section 2.2.15. A. MAG-OV and OV increase 

the necrotic core of MCF7 spheroids. Images were taken by light microscopy 6 days’ post infection. 

This was taken at 10x Magnification. B. Infection with OV and MAG-OV induces tumour spheroid cell 

death. Representative fluorescent dot plots of 3D MCF7 Spheroids.  TOPRO3+ cells were measured by 

flow cytometry 3 days’ post-infection. The percentage of cell death (TOPRO-3+). While no important 

changes in viability were detected between OV and MAG-OV, both virus groups induced significant 

cell death compared to the control untreated cells. Data are the mean ± SEM of n=3 independent 

experiments and statistical analysis was assessed using the one-way Anova test with multiple 

comparisons. **p<0.01 ***p<0.001.  

3.3 Discussion 

3.3.1 Characterisation of MAG  

The physio-chemical characteristics of MAG was investigated. MAG have an advantage in that 

the particles have a small size distribution and their size can be better managed during 

production, resulting in more uniform particles with average size of 46 ± 5 (Byrne et al., 2011). 

This offers an advantage over chemically synthesised particles that are often irregular and not 

uniform in size. Recently, studies have also confirmed that MAG purified from 

Magnetospirillum gryphiswaldense MSR-1 displayed uniform arrangement of particles 

whereas MNPs were clustered (Raguraman and Suthindhiran, 2019). They also found that the 

MAG have higher crystallinity than synthetic MNPs and this is related to the biomineralization 
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property of MTB in producing MAG. The high variation in size and physical aggregation 

displayed by chemically synthesised MNPs is a concern that has been raised by many 

researchers. For example, Raguraman and colleague reported this concern (Raguraman and 

Suthindhiran, 2019). They found that synthetic MNPs agglomerated inside the cell which 

subsequently damage the redox system causing mortality. However, Florea et al., demonstrated 

high cell uptake of PEI coated MNPs in Cos1 (green monkey fibroblasts) and airway epithelial 

cells (calu-3) but this correlated strongly with PEI toxicity (Florea et al., 2002). Similarly, 

Thomas and co-workers found that PEI coated MNPs facilitated gene transfer into the A549 

lung carcinoma cells in vitro and into the lungs of mice but this also was highly toxic to cells 

(Thomas et al., 2005). This needs to be addressed if these particles are to be applied clinically 

(Blanco-Mantecon and O’Grady, 2006). It is clear that MNP needs to be sufficiently small (10–

50 nm) for biomedical applications (Issa et al., 2013). This will have numerous benefits as 

outlined below: 

1. Small MNPs will be more stable and aggregate less if their magnetic interaction is 

decreased.   

2. Small MNPs can stay in the circulation after injection and pass through the capillary 

systems of organs and tissues avoiding vessel embolism. 

3. Small MNPs have a high saturation magnetisation that leads to control the movement 

of the particles in the blood by moderate external magnetic field. 

4. Being very small, the particles can avoid precipitation due to gravitation forces. 

5. Small MNPs will have small dipolar interactions, because the dipole-dipole interactions 

rely on the radius of the particle. This will minimize particle aggregation.  

    

This study shows that MAG display higher magnetic susceptibility (8.164e-5 SI), suggesting 

MAG are more likely to be attracted to a magnetic field. This is important, as the goal of this 

study is to apply a magnetic guidance strategy to target our complexes to tumours. 

Interestingly, the electrokinetic potential of the MAG was negative (-9 ± 2.3 mV) (Table 3.1). 

Studies have also shown that the zeta potential of MAG in the colloidal state was stable and 

negatively charged (−17.4 mV), showing they were well dispersed (Raguraman and 

Suthindhiran, 2019). This negative charge is because of the presence of lipid membrane around 

MAG (Sun et al., 2011). 
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3.3.2 MAG internalisation and viability by breast cancer cells 

In the first instance bacterially derived MAG to be internalized by breast cancer cells was 

investigated. MAG was taken up successfully and this was confirmed using two approaches. 

Flow cytometry was used to assess changes in cell size and granularity after uptake and 

Prussian blue staining to visualize the occurrence of iron within the cells. MAG uptake by cells 

was not detected efficiently by flow cytometry (Figure 3.1). This may be due to the MAG size 

(MAG ~46 nm) thus after uptake of smaller MAG perhaps flow cytometry could not detect the 

changes in cell granularity. However, from the Prussian blue images it was clear that MAG 

were abundant in the cells (Figure 3.1). MAG were not toxic to breast cancer cells (Figure 

3.2).  Other studies have also confirmed that MAG are not toxic to tumour cells. For example, 

using the MTT assay MAG uptake had no toxicity effects on HT-29 (human colon 

adenocarcinoma grade II cell line) cells compared to untreated cells (Mannucci et al., 2014). 

In agreement with our study, Alphandery and colleagues demonstrated MAG (1 mg/ml) uptake 

by MDA-MB-231 cells resulted in improved cell viability compared to chemically synthesised 

super paramagnetic iron oxide particles (SPIOs) coated with PEG or citrate ions (Alphandéry 

et al., 2011). The latter were more toxic to cells (20%) after 72 h. Moreover, the antitumour 

activity of the MAG after hyperthermia treatment was also demonstrated to be superior to 

SPIOs in a breast tumour xenograft following exposure to an alternative magnetic field 

(Alphandéry et al., 2011). This suggests that MAG are more responsive to a magnetic field. 

Raguraman and colleague also shown that MAG are not toxic and do not cause any potential 

risk to the environment compared to chemically synthesised MNPs in different models such as 

human red blood cells, macrophage cell lines (RAW 264.7), onion root tips (Allium cepa), 

Artemia salina (A. salina) and zebrafish embryo (Danio rerio). For example, MAG showed 

13.4% cytotoxicity at 250 μg/ml whereas the cytotoxicity induced by  chemically synthesised 

MNPs was 36.01%  for the same concentration in a macrophage (RAW 264.7) cell line 

(Raguraman and Suthindhiran, 2019). 

It would have been useful to quantify MAG uptake by MDA-MB-231 by fluorescence uptake 

using flow cytometry rather than relying on a change in cell size. This could be achieved by 

fluorescently labelling the MAG (e.g. fluorescent dyes or infrared probes). A previous report  

demonstrated that MAG can labelled with rhodamine B in order to be fluorescent with 

absorption and emission peaks (Alphandéry et al., 2017). They have added the rhodamine B in 

the growth medium of magnetotactic bacteria in addition to the iron source whilst the 

magnetotactic bacteria are growing. We are currently attempting to do this in the laboratory so 
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we can visualise uptake by tumour cells in vitro and in vivo but have found the rhodamine label 

is not expressed.  We are currently experimenting with different fluorescent labels such as 

lipophilic membrane stains (DiL and DiD). This is considered a more accurate method for 

determining MAG uptake but caution must be taken as this can change the size of the particles 

(Kircher et al., 2003, Medarova et al., 2007).  

From the Prussian blue staining and the TEM images it was evident that MAG tended to 

aggregate (Figure 3.1&3.2B). To overcome this the MAG were sonicated to reduce the 

aggregation. This is a common method that is used in the preparation of MNPs (Kouassi et al., 

2005). In this study, the MAG were sonicated for 10 min, whereas in other studies, sonication 

had been used for up to 3 hr to reduce aggregation (Hao et al., 2012). Further optimization of 

the sonication protocol is necessary and this is currently under investigation in our laboratory. 

Other steps taken to improve MAG uptake into cells included placing the cells and MAG on 

an orbital shaker during the incubation step. This was carried out by a Masters student in the 

laboratory that was under my supervision. Here we found that most MAG were internalised 

within 1 hour of incubation with the cells, we also established that no further uptake was 

evident after 24 hr. The data for this experiment was not included as the experiment was only 

performed with N=1 and therefore requires further investigation. However, incubating the 

particles for 1 hour and removing the shaker could improve the speed and efficiency of future 

experiments. This is in contrast to previous studies where shaking and longer time points were 

necessary for effective MNP internalisation (Haritha et al., 2015). 

3.3.3 Characterisation of magnetic viral complexes 

MAG possess lipids on their surface that render the particles negatively charged (Sun et al, 

2008).  Since the MAG display a negative electrokinetic potential we did not expect the self-

assembly with the OV. However, this was not the case as MAG and OV formed complexes 

(MAG-OV) and this was evident by TEM (Figure 3.6). Creating the magnetic viral complexes 

using synthetic MNPs relies on the positive electrokinetic potential of the MNP so that complex 

formation depends on electrostatic interactions with negatively charged viral particles 

(OV)(Almstätter et al., 2015a). Almstatter et al., showed that core-shell type iron oxide MNPs 

gathered with vesicular stomatitis virus (VSV) or adenovirus (Almstätter et al., 2015). Their 

complexes were between 500-900 nm in diameter and by TEM it was evident that MNP-OV 

complexes formed but the MNPs were not very defined and formed aggregates, whereby the 

MNPs appeared to be on top of each other making the TEM images unclear. This probably 

results from magnetic di-pole-dipole interactions between the MNPs. We used a similar 
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approach in this study, however MAG-OV were smaller in size and exhibited a lot less 

aggregation than the MNP-OV showed in the Almstatter study (Almstätter et al., 2015a). 

MAG-OV have a negative electrokinetic potential and retained their magnetic susceptibility 

(Table 3.2). This complex formation is most likely a result of MAG possessing polarizable 

primary amino groups, enabling self-assembly based on the homo-bifunctional cross linking 

agents for example aliphatic binary aldehyde, diisothiocyanates, diisocyanates, 

di(succinimido) aliphatic esters, and their derivatives (Sun et al., 2011). However, 

hydrophobicity may also cause them to stay together as both of them contain hydrophobic 

proteins on their membrane. 

3.3.4 Oncolytic potential of magnetic viral complexes on breast cancer cells 

Uptake of the MAG-OV complexes was determined using flow cytometry and TEM. These 

complexes were efficient in infecting MDA-MB-231 and MCF7 cells after 24 h of culture 

displaying very similar viral GFP expression as in the OV only group (Figure 3.8, Figure 

3.10).  

The localisation of the MAG-OV complexes after cell uptake was confirmed by TEM. 

Typically, the MAG-OV complexes were captured in endosomes (Figure 3.7), whilst any 

unconjugated or free MAG were grouped in the cytoplasm and only very few were detected in 

the endosomes (Figure 3.7). Infection by HSV is usually via receptors on the cell surface so 

that admission of virus can be permitted; this process requires the complex interaction of a 

number of viral and cellular membrane components (Spear and Longnecker, 2003, Spear, 

2004). There are 5 glycoproteins of viral membrane, gD, gB and the heterodimer including gH 

and gL (gH/gL) that are necessary for HSV-1 access into cells (Conner et al., 2008) and gC 

that is important for binding (Spear, 2004). HSV utilise numerous receptors for access into 

cells such as members of the tumour necrosis factor (TNF) receptor family; nectin-1 and nectin-

2, Herpesvirus entry mediator (HVEM), heparan sulphate (HS) chains on cell surface 

proteoglycans as well as two members of the immunoglobulin superfamily linked to the 

poliovirus receptor (Figure 3.14). It is becoming increasingly clear that herpes viruses can 

enter cells by exploiting the endocytic pathways, although the mechanisms remain poorly 

defined (Clement et al., 2006). Whilst it is not known which receptors HSV1716 utilises to 

enter MDA-MB-231 cells, from the TEM images we guess that the MNP-OV/MAG-OV 

complex uptake was not receptor mediated, and most probably via endocytosis.  
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Figure 3.14: Viral and cellular membrane components that contribute to HSV1716 entry. There 

are 5 glycoproteins of viral membrane (gB, gC, gD, gH and gL) that are necessary for HSV-1 access 

into cells. Virus can start binding to the cell surface through gB or gC to heparan sulphate (HS) chains 

that are located on cell surface proteoglycans. This triggers fusion of the viral envelope with a cell 

membrane by binding gD to one of its cell surface receptors that includes members of the tumour 

necrosis factor (TNF) receptor family; nectin-1 and nectin-2, Herpesvirus entry mediator (HVEM), 

heparan sulphate chains on cell surface proteoglycans as well as two members of the immunoglobulin 

superfamily linked to the poliovirus receptor in addition to the action of the of gB and gH-gL 

heterodimers. 

After confirming that the MAG-OV complexes were able to infect breast cancer cells we then 

investigated their ability to induce oncolysis. Complexes induced time-dependent cell death in 

line with the OV therapy on its own (Figure 3.9, Figure 3.11). No significant change in cell 

toxicity was detected between the MAG-OV and free OV.  

Next, we tested the oncolytic potential of MAG-OV in 3D spheroid cultures. This provides an 

opportunity to investigate the influence of MAG-OV in a more sophisticated model that is 

physiologically relevant than 2D culture (Edmondson et al., 2014). One of the hallmark uses 

of 3D cell cultures is the ability to replicate some of the same behaviour of in vivo conditions, 

albeit not completely and they are still a very simplistic model. To investigate the effects of 

MAG-OV in breast cancer 3D tumours spheroids, we performed some preliminary experiments 

where the virus was allowed to infiltrate into multicellular 3D spheroids. The main objective 

was to determine if the coated virus in MAG-OV influenced 1) delivery of the virus 2) viral 

induced cell death. A previous study showed that initial damage of a glioblastoma biopsy 

spheroid in vitro by oncolytic HSV-1-based vector (G207) was characterized by a ruffling of 

the spheroid surface (Huszthy et al., 2008). Microscopy was used to observe changes in 

spheroid shape on day 6 of infection. In these studies, MAG-OV or OV was added to MDA-
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MB-231 and MCF7 spheroids. We observed ruffled edges and a flattened morphology, 

indicating damage and cell death of the three-dimensional spheroid structure on day 6 of 

infection with both OV and MAG-OV treatment compared to untreated spheroids and MAG 

only. Interestingly, MAG-OV damaged the spheroid of MDA-MB-231s and MCF7 cells as 

efficiently as OV (Figure 3.12A, Figure 3.13A). Reassuringly, flow cytometry of 

enzymatically dispersed spheroids showed considerable cell death post infection with both OV 

and MAG-OV (Figure 3.12B & 3.13B) compared to control and MAG only group (p ≤ 0.01 

and p ≤ 0.01, respectively). Together this suggests that MAG-OV is as efficient as OV on its 

own with respect to infectivity and cell death in both monolayer and 3D cultures. Huszthy et 

al have also shown that G207 could damage spheroids obtained from glioblastoma multiforme 

GBM1 (95% of the spheroids lysed after 10 days of infection) (Huszthy et al., 2009). Therefore, 

this kind of cell cultures could help reduce animal numbers in the long run. As an alternative, 

it would be interesting to take fluorescent images to show GFP in the hypoxic necrotic areas in 

future and include other cell types for example fibroblast, endothelial cells and see how MAG-

OV changes other cell types in the TME. 

In summary, this chapter shows that MAG-OV can be assembled without having any impact 

on the oncolytic potential of the virus. MAG are more small and uniform in size and form 

complexes with OV in such a way that the virus does not change its properties. The complexes 

are still nm in size and can infect and kill tumour cells. The following chapter will focus on the 

oncolytic potential of MAG-OV and the cell death mechanisms.  
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Chapter 4 

Oncolytic potential of MAG-OV 
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4.1 Introduction 

Results from the previous chapter show that OV can form a complex with MAG derived from 

magnetotactic bacteria. The physicochemical characteristics of MAG-OV and the ability to 

infect and kill human breast carcinoma cell in 2D and 3D culture was also demonstrated. In 

this chapter, the replication potential and cell death mechanisms of the virus will be assessed. 

4.1.1 HSV1716 entry into tumour cells    

In tumour cells, entry of HSV1716 to the cell by fusion of the virus envelope with the plasma 

membrane, leads to release of the viral nucleocapsid into the cytoplasm of the cell. After the 

capsid binds to the nuclear pore the genome is then released into the nucleus where all the steps 

of transcription, replication of viral DNA and assembly of progeny nuclear capsid take place 

(Figure 4.1). HSV viral replication genes are ICP0 – immediate early (Smith et al., 2011), 

ICP8 – early (Gao and Knipe, 1989) and gB – late (Singh et al., 2012) and these can be used to 

detect viral replication. After entry into the host, ICP0 is immediately expressed. ICP0 is able 

to avoid the hosts initial immune response when degradation of various immune activating 

proteins takes place, including ND10 associated proteins, because it has ubiquitin ligase 

activity (Lanfranca et al., 2014). Initiating HSV mRNA synthesis and marking the very 

beginning of virus replication is then controlled by ICP0.  Before virus replication,  the main 

function of ICP8, which is a single-stranded DNA binding protein, is to mediate the synthesis 

of viral DNA upon co-localisation with other proteins, including UL30, UL42 and UL9 

(Uprichard and Knipe, 2003). gB is then able to control virus replication and cell entry upon 

successful viral DNA synthesis. HSV viral capsids can enter the nuclear membrane in the 

presence of gB. Previous studies demonstrated that using a gB knockout HSV mutant resulted 

in unsuccessful virus entry into the nucleus of keratinocytes (HaCaT), the virus mainly 

localised on the cell surface and cytoplasm, as a result glycoproteins gB and gH are necessary 

for the fusion between the virion envelope and the outer nuclear membrane  (Farnsworth et al., 

2007).  In this chapter the replication of OV will be assessed to ensure that the MAG do not 

interfere with this process. 
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Figure 4.1: A simplified illustration of HSV1716 replication.  HSV1716 enters tumour cells by 

fusion of the virus envelope with the plasma membrane, leads to release of the viral nucleocapsid into 

the cytoplasm of the cell. After the capsid bind to the nuclear pore the genome is then released into the 

nucleus where all the steps of transcription, replication of viral DNA and assembly of progeny nuclear 

capsid take place. 

4.1.2 HSV1716 mechanisms of cell death and influence on the TME    

The direct oncolysis of cancer cells by OV involves a mixture of apoptosis, necrosis, and 

autophagic cell death, often with one mechanism being predominant for a particular OV (see 

chapter one for details). For example, vaccinia virus has been shown to induce different cell 

death mechanisms including apoptosis, necrosis and autophagy in different human ovarian 

carcinoma cell lines including A2780, A2780CP, SKOV3ip1, IGROV1, TOV21G, and 

OVCAR-4 (Whilding et al., 2013). On the other hand, adenovirus has been shown to induce  

classical apoptosis in  human cell lines such as A549 and A2182 lung cancers (Hall et al., 1998). 

There is some evidence in the literature that HSV-1716 induces necrosis or p53-independent 

apoptosis in human ovarian cancer cells (Coukos et al., 2000). Nevertheless, there remains 

inadequate information on these mechanisms of cell death in malignant tumour cells following 

infection with OV. 

Immunogenic cell death (ICD) is a type of cell death that involves the adaptive arm of the 

immune system. ICD can activate anti-tumour immunity (Melcher et al., 2011b, Prestwich et 

al., 2008). This process leads to the production of key signals that alert APCs like dendritic 

cells (DCs). These include danger signals as well as tumour-associated antigens (TAAs), both 

required for DCs to trigger adaptive immune responses against cancer (Tang et al., 2012). The 

danger signals include damage-associated molecular pattern (DAMP) and pathogen-associated 

molecular pattern (PAMP) molecules derived from the OVs. Ground-breaking research by 
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Lindenmann and Klein almost half a century ago was the first to demonstrate increased 

immunogenicity of tumour cell antigens following influenza virus infection. In this study A2G 

mice were shown to be immunized against the Ehrlich ascites tumour following intraperitoneal 

injections of homogenized and lyophilized tumour cells which had been infected with oncolytic 

strains of influenza virus (Lindenmann and Klein, 1967). However, the mechanisms 

responsible for this immunogenicity were not understood.  

Studies have shown that some viruses produce ICD associated with the release of DAMPs. For 

example, a recent study demonstrated that DAMPS are produced by squamous cell carcinoma 

(SCC) cells after infection with HSV-1 RH2. In this study HSV-1 RH2 also resulted in 

extracellular release of high mobility group protein B1 (HMGB1) and adenosine triphosphate 

(ATP), and translocation  of calreticulin (CRT) to the cell membrane (Takasu et al., 2016). 

These are all indicators of ICD. In addition, Coxsackievirus B3 virus infection induced ICD in 

human non-small cell lung cancer cells (NSCLC; A549, H1299, and H460), including cell 

surface CRT and release of ATP as well as HMGB1 (Miyamoto et al., 2012). However, there 

are no published studies investigating cell death mechanisms and ICD by HSV1716 in breast 

cancer cells specifically and so this chapter aims to explore these mechanisms as part of its 

therapeutic efficacy. 

The benefit of the natural inflammatory response to virus infection and immune responses to 

OV are considered the main steps of viral immunotherapy (Vacchelli et al., 2013). A previous 

study demonstrated that HSV1716 induces an inflammatory response in a murine syngeneic 

model of ovarian carcinoma. This study showed that intratumoral injection of HSV1716 

resulted in upregulation of IFN-γ and CXCL10 (Benencia et al., 2005). CXCL10 is one of the 

proinflammatory chemokines that plays a role in activate T lymphocytes (Th1), NK cells, 

inflammatory dendritic cells, most macrophages and B cells (Liu et al., 2011b). Intratumoral 

injection of the third generation oHSV, G47∆-mIL12, significantly changed the 

microenvironment of glioblastoma stem cell (GSC)-derived intracerebral tumours. In this study, 

they  showed G47∆-mIL12 downregulated VEGF expression and upregulated IP-10 (CXCL10) 

(Cheema et al., 2013). 

4.1.3 Pre-existing immunity to HSV1716         

The major with problem systemic delivery of OV is pre-existing immunity, because of the 

nature of many of the OV used in medicine, many of us have already been exposed during 

childhood and development (Ferguson et al., 2012). As claimed by a new report from the World 
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Health Organization, Herpes simplex virus type 1 (HSV-1) has infected approximately 67% of 

the global population (more than 3.7 billion people under the age of 50). Therefore, many 

strategies have been developed to help overcome this and provide protection to the virus when 

in circulation. Trojan Horse delivery is one of the strategies used to protect OV from 

neutralising antibodies. An example, of this approach is using cells which are derived from the 

model organism, then infected with the OV ex vivo and then injected systemically (Ferguson 

et al., 2012). At the University of Sheffield, macrophages (infected with either adenovirus or 

HSV1716) were shown to protect the virus from neutralising antibodies when administered 

systemically (Muthana et al., 2015b, Muthana et al., 2011b). Nanomedicine approaches have 

also been developed for protecting OVs in circulation. For example, a previous study 

demonstrated that oncolytic adenovirus Ad520 could be protected against the inhibitory effects 

of serum or a neutralizing antibody in vitro when it was protected by PEI-Mag2 (fluorinated 

surfactant ZONYL FSA (lithium 3-[2-(perfluoroalkyl)ethylthio]propionate) combined with 

25-kDa branched polyethylenimine (PEI-25Br)) or PB-Mag1 (the fluorinated surfactant 

ZONYL FSE (ammonium bis[2-(perfluoroalkyl)ethyl]phosphate) combined with the cationic 

polymer polybrene (PB)) nanoparticles (Tresilwised et al., 2012b). Furthermore, aptamers 

(oligonucleotide or peptide molecules that bind to a specific target molecule) have been shown 

to protect vesicular stomatitis virus (VSV) from neutralising antibodies by blocking the Fab 

fragments of antibodies or binding to the virus. In this study, they showed that viral infectivity 

increased significantly (by more than 70%) in the presence of neutralizing antibodies in Vero 

cells (Muharemagic et al., 2014).  

The hypothesis tested in this chapter is that MAG will protect OV in our MAG-OV complex 

providing a protective shield from neutralising antibodies they may encounter in circulation.  

To test this first, we wanted to ensure that the OV in the MAG-OV complex could infect, 

replicate and kill breast cancer cells as effectively as OV alone. Secondly, the ability of the 

MAG to shield the virus from neutralising antibodies to HSV was assessed in vitro.  The 

specifics aim of the work described in this chapter was, therefore, to characterise the oncolytic 

potential of MAG-OV - with particular reference to:  

1. Oncolytic potential of MAG-OV (including apoptosis, necrosis, autophagy and ICD). 

2. Changes in the tumour microenvironment following MAG-OV: Pro-Inflammatory vs. 

Anti- Inflammatory Cytokines. 

3. Viral neutralisation of MAG-OV. 
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4.2 Results  

4.2.1 MAG-OV induces tumour cell oncolysis  

To confirm OV uptake, MDA-MB-231 cells were grown on coverslips and incubated with 

either HSV1716-GFP (OV) on its own or MAG-OV at MOI 10 and MAG alone along with 

non-infected cells as controls for 24 hr. After this, cells were fixed and stained with sheep 

antibody to detect HSV1716 (Conner et al., 2005). Moreover, 50ng/ml DAPI solution was 

added for 2 min to define the nucleus. Coverslips were mounted onto the microscope slides 

and a Nikon A1 confocal microscope was used to take images. As shown in Figure 4.2 OV 

and MAG-OV were able to infect MDA-MB-231 cells, where HSV1716 was detected within 

the cytoplasm of most cells.  

 

Figure 4.2: MAG-OV infected MDA-MB-231 cells. MDA-MB-231 cells were incubated with OV 

(MOI 10), MAG-OV (MOI 10) or MAG (0.2 mg/mL) for 24 h. Cells were fixed and stained with sheep 

antibody to detect HSV1716 and (4',6-diamidino-2-phenylindole) (DAPI) and then analysed under a 

confocal laser-scanning microscope. Scale bar = 40µm. Data are representative images from a single 

experiment. However, the experiment was repeated n=3 and showed the same result.  

  

In the last chapter MAG-OV were shown to infect and kill human breast carcinoma cell lines. 

Above we have confirmed uptake of MAG-OV was as effective as OV alone. Next, we assessed 

if MAG-OV was as effective in a panel of human and murine breast cancer cell lines. To 

analyse the oncolytic potential human MCF7 & MDA-MB-231 and murine EO771 and TS1 

cells were seeded into 6-well plates (3 x 105 cells/well) and after 24 hr, cells were infected with 

either the OV on its own or as MAG-OV at MOI 10 and MAG alone (0.2 mg/ml) with non-

infected cells used as controls. HSV1716-GFP was used as a reporter virus to visualise virus 

infectivity. After 6 days of culture, plates were harvested and flow cytometry was used to 

analyse the cells. In these studies, TOPRO3 was used as a viability dye where dead/dying cells 

take up the dye but live cells exclude it. As shown in Figure 4.3, MAG-OV were able to destroy 

the tumour cells as efficiently as the naked OV with no differences between these groups after 

6 days of culture. 



100 
 

                                                                                        

Figure 4.3: OV and MAG-OV induce oncolysis in a panel of human and murine breast cancer 

cell lines. Cells were infected with OV, MAG-OV (at MOI 10) or MAG with non-infected cells used 

as controls. After 6 days of infection, cells were harvested and immediately before analysis on a flow 

cytometer 2ul of TOPRO-3 was added to each sample. TOPRO-3 was measured in the FL-4 (640nm). 

Of note, Data are the mean ± SEM of n=3 independent experiments and statistical analysis was assessed 

using the two-way Anova test with multiple comparisons.           

4.2.2 Viral replication genes 

Given that MAG-OV induced tumour cell death, next we wanted to determine if the virus was 

able to replicate post-infection. MDA-MB-231 and MCF7 cells were seeded into 6 well plates 

at 3×106 cells per well. Cells were then infected with OV, MAG-OV at MOI 10 and MAG (0.2 

mg/ml) alone with untreated cells as controls and cultured for 24h. Expression of viral 

replication genes was determined by qPCR. RNA was extracted after 24h of infection and used 

to synthesise cDNA. Viral replication genes included; ICP0 – immediate early, ICP8 – early 

and gB – late genes (Singh et al., 2012). Virus successfully replicated within the cells, as shown 

by the significant increase in viral mRNA expression of both OV (P ≤ 0.0001) and MAG-OV 

(P ≤ 0.0001) when compared to the control in MDA-MB-231 cell lines (Figure 4.4A). In the 

MCF7 cells, viral mRNA expression was also significant with OV (ICP0: p ≤ 0.01, ICP8: p ≤ 

0.001, gB: p ≤ 0.001) and MAG-OV (ICP0: p ≤ 0.01, ICP8: p ≤ 0.05, gB: p ≤ 0.001) compared 

to the control (Figure 4.4B).           
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Figure 4.4: MAG-OV undergoes viral replication in breast cancer cells.  Breast cancer cells were 

infected with OV, MAG-OV at MOI 10 and MAG alone with untreated cells as controls. Viral 

replication genes were assessed by qPCR after 24h of infection. A. Significant increase in mRNA 

expression of ICP0, ICP8 and gB of both OV (P ≤ 0.0001) and MAG-OV (P ≤ 0.0001) in MDA-

MB-231 cells compared to the control. B. Viral mRNA expression is also significant with OV 

(ICPO: P ≤ 0.01, ICP8: P ≤ 0.001, gB: P ≤ 0.001) and MAG-OV (ICPO: P ≤ 0.01, ICP8: P ≤ 

0.05, gB: P ≤ 0.001) in MCF7 cells compared to the control.  The expression levels were calculated 

relative to the untreated cells (control) using the 2-ΔΔCT method after the data was normalised to the 

housekeeping gene, GAPDH. The data is presented as Mean ± SEM for n=3, independent experiments 

and statistical analysis was assessed using the one-way Anova test with multiple comparisons. **p<0.01; 

***p<0.001; ****p<0.0001. 

4.2.3 Cell Death Mechanisms  

Next, we wanted to assess the potential mechanisms of HSV1716 mediated cell death. Cell 

death genes were selected that marked the critical death pathways and were found to be 

upregulated following HSV1716 infection by a post-doctoral researcher in the laboratory (Dr 

Emer Atkinson, unpublished observations). These included; Caspase 3, Caspase 8– Apoptosis 

genes, ATG5, LC3B – Pro-autophagy genes, Bcl-2- anti-apoptotic gene, FasL- pro-apoptotic 

gene and HSP90AA1, HSP90B1, HSPA1A – Heat shock Proteins genes. Breast cancer cells 

MDA-MB-231 (Figure 4.5A) and MCF7 (Figure 4.5B) cells were infected with OV, MAG-

OV at MOI 10 and MAG alone with untreated cells as controls and cultured for 24h. Viral 

infection appeared to induce a significant increase in Caspase 3, Caspase 8, LC3B, FASL and 
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HSPA1A, mRNA expression (Figure 4.5) when compared to the control with both OV and 

MAG-OV treatment in both cell lines. ATGS was unaffected but HSP90AA1, HSP90B1 and 

Bcl-2 displayed a significant decrease in expression with both OV and MAG-OV infection. 

These genes are necessary for cancer cell survival and proliferation (Haase and Fitze, 2016). 

 

Figure 4.5: Increased expression of cell death markers following MAG-OV infection. Cell death 

mechanisms were investigated after 24h of infection of breast cancer cells MDA-MB-231 and MCF7 

with OV, MAG-OV at MOI 10 and MAG alone with untreated cells as controls. A. A significant 

increase in mRNA expression of HSPA1A, Caspase 3, Caspase 8, LC3B and FASL in both OV and 

MAG-OV treated MDA-MB-231 cells compared to the control. B. mRNA expression of HSPA1A, 

Caspase3, Caspase8, LC3B and FASL is also significant with both OV and MAG-OV in MCF7 cells.  

The expression levels were calculated relative to the untreated cells using the 2-ΔΔCT method after the 

data was normalised to the housekeeping gene, GAPDH. The data is presented as Mean ± SEM for n=3, 

independent experiments and statistical analysis was assessed using the one-way Anova test with 

multiple comparisons. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 

4.2.4 Immunogenic cell death 

As mentioned earlier, many studies have shown that some viruses induce ICD associated with 

the release of DAMPs such as ATP and HMGB1 and/or those translocated to the cell surface 

such as calreticulin (CRT) (Takasu et al., 2016). Therefore, the release of ATP and HMGB1 

following MAG-OV infection was measured in breast cancer cells. MDA-MB-231 and MCF7 

cells were seeded into 6 well plates then infected with OV, MAG-OV at MOI 10 and MAG 
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alone with untreated cells as controls and cultured for 24h. ENLITEN ATP assay (Promega, 

Madison, WI, USA) was used to measure the secreted extracellular ATP in the cell culture 

supernatants according to the manufacturer’s protocol, using a Turner Biosystems luminometer 

(TD-20/20; Promega). Extracellular ATP levels were significantly increased in both OV and 

MAG-OV when compared with control and MAG alone (Figure 4.6). This suggests that 

HSV1716-infected breast cancer cells lead to cell membrane damage and release of ATP. 

Secreted extracellular HMGB1 in the supernatants was measured with a HMGB1 ELISA Kit 

II (Shino-Test, Kanagawa, Japan) according to the manufacturer’s protocol outlined for the 

normal sensitivity format of the assay.  Extracellular HMGB1 levels also significantly 

increased after a 24h incubation in both OV and MAG-OV treated groups when compared with 

control and MAG alone (Figure 4.6). 

 

                       

Figure 4.6: Extracellular levels of immunogenic cell death markers ATP and HMGB1 in human 

breast cancer cells. MDA-MB-231 and MCF7 cells were infected with OV, MAG-OV at MOI 10 and 

MAG alone with untreated cells as controls for 24 h, A. Shows Significant increase in Extracellular 

levels of HMGB1 and ATP of both OV and MAG-OV in MDA-MB-231 cells compared to the control 

while B. in supernatants of MCF7 cells. Data are the mean ± SEM of n=3 independent experiments and 

statistical analysis was assessed using the one-way Anova test with multiple comparisons. **p<0.01; 

***p<0.001; ****p<0.0001. 
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Calreticulin (CRT) is a DAMP that is normally located in the lumen of the endoplasmic 

reticulum. Immunogenic apoptosis leads to translocation of CRT to the surface of dying cells 

as an eat-me indicator for professional phagocytes (Obeid et al., 2006, Gold et al., 2010, Voll 

et al., 1997). The expression of CRT following HSV1716 infection was measured by 

immunocytochemistry. Cells were seeded on a small coverslip and infected with OV, MAG-

OV at MOI 10 and MAG alone alongside the control (untreated cells) for 24h and were stained 

with rabbit anti human CRT diluted 1:100 (Abcam, Cambridge, UK). Cells were then stained 

with DAPI. CRT was distributed sparsely in the cytoplasm before infection (Green colour). 

Nevertheless, its expression increased and distribution changed to accumulate at the plasma 

membrane 24 h after infection in response to both OV and MAG-OV in MDA-MB-231(Figure 

4.7A) and MCF7 (Figure 4.7B) cells.   

 

Figure 4.7: Increased expression of calreticulin (CRT) on the cell surface of human breast cancer 

cells following MAG-OV infection. MDA-MB-231 and MCF7 cells were infected by MAG, OV or 

MAG-OV at a MOI 10 for 24 h. A. Expression of CRT on the cell surface of MDA-MB-231 cells 

increased with OV and MAG-OV infection (Green colour). B. Expression of CRT on the cell surface 

of MCF7 cells increased with OV and MAG-OV infection.  Cells were fixed and stained with an anti-

CRT antibody (Green colour), F-actin staining with Phalloidin (red colour) and (4',6-diamidino-2-

phenylindole) (DAPI:Blue)) and analysed under a confocal laser-scanning microscope. All data are 

representative of a single experiments that repeated N=3. Scale bar= 40µm.   
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4.2.5 MAG-OV induces changes in Pro-Inflammatory cytokines and Anti- 

Inflammatory cytokines 

As mentioned above, both OV and MAG-OV successfully entered and replicated inside breast 

cancer cells, at the same time inducing ICD. Next, we assessed whether tumour cell death in 

response to OV infection influenced the tumour microenvironment using a panel of pro-

inflammatory and anti-inflammatory markers. This included pro-inflammatory cytokines (IL-

1B, TNF, CXCL10 and INF) and anti- Inflammatory cytokines (IL-10, TGF-B, NF-KB and 

VEGF). A previous study demonstrated that HSV1716 induces an inflammatory response in a 

murine syngeneic model of ovarian carcinoma. This study showed that intratumoral injection 

of HSV-1716 resulted in upregulation of IFN-γ and CXCL10 in the tumour (Benencia et al., 

2005). Furthermore, Vesicular stomatitis virus (VSV) have been shown to up-regulate pro-

inflammatory genes in CT-26 tumours 24 hr after infection. In this study, VSV upregulated 

most pro-inflammatory genes including TNF, CXCL10 and IL-6 in vivo (Breitbach et al., 

2007a). 

Therefore, we assessed the effects of MAG-OV on the production of both pro- and anti-

inflammatory genes in human breast cancer cells. The level of mRNA expression of these genes 

was measured in MDA-MB-231 and MCF7 cells infected with the OV, MAG-OV and MAG 

alone by qPCR. All samples were normalized to the untreated control cells. (Figure 4.8) shows 

fold change expression of mRNA levels. The expression of TNF were upregulated in both 

MDA-MB-231 (Figure 4.8A) and MCF7 (Figure 4.8B) cells treated with OV or MAG-OV 

compared to the untreated cells. Moreover, the expression of CXCL10 was upregulated in 

MCF7 cells (Figure 4.8B) while unchanged in MDA-MB-231 (Figure 4.8A) cells treated with 

OV or MAG-OV compared to the untreated cells. Furthermore, the expression IL-1B, NF-KB 

and VEGF were significantly downregulated in both MDA-MB-231 and MCF7 cells treated 

with OV or MAG-OV compared to the untreated cells.  
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Figure 4.8: MAG-OV induces pro-Inflammatory cytokine mRNA expression in human breast 

cancer cells. mRNA expression of pro-Inflammatory and anti- inflammatory cytokines was measured 

in MDA-MB-231 and MCF7 cells infected with the OV, MAG-OV and MAG alone for 24h by qPCR. 

A. Shows significant downregulation in mRNA expression of IL-1B, NF-KB and VEGF and 

upregulation in TNF and INF in both OV and MAG-OV in MDA-MB-231 cells compared to the 

control. B. Shows significant downregulation in mRNA expression of IL-1B, NF-KB and VEGF and 

upregulation in TNF only of both OV and MAG-OV in MCF7 cells.  The expression levels were 

calculated relative to the untreated cells using the 2-ΔΔCT method after the data was normalised to the 

housekeeping gene, GAPDH. The data is presented as Mean ± SEM for n=3 independent experiments 
and statistical analysis was assessed using the one-way Anova test with multiple comparisons. *p<0.05; 

**p<0.01; ***p<0.001; ****p<0.0001. 

Cytokines expression was also assessed at the protein level using a cytokine bead array (CBA). 

MDA-MB-231 and MCF7 cells were treated with OV & MAG-OV at MOI 10 and Mag alone 

with untreated cells as controls. Supernatants were collected 24h after culture and clarified by 

filtration. An Attune Autosampler was used to read the samples (Figure 4.9), this displays 

cytokine levels analysed including CXCL10, IL-1B, IL-6, IL-8, IL-10, INF, TNF and VEGF. 

The expression of CXCL10, IL-6, IL-8, IL10 and VEGF were significantly downregulated in 

both MDA-MB-231 (Figure 4.9A) and MCF7 (Figure 4.9B) cells treated with OV or MAG-

OV compared to the untreated cells. Like with the mRNA expression IL-10 in MCF7 cells was 

not affected in all the treatment groups. Unlike the mRNA expression IL-1B, INF and TNF 
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were not affected at the secreted protein level in both MDA-MB-231 and MCF7 cells treated 

with OV or MAG-OV compared to the untreated cells.  

 

Figure 4.9: MAG-OV induces pro-Inflammatory cytokines protein expression in human breast 

cancer cells. The protein levels of pro-inflammatory and anti-inflammatory cytokines were analysed 

after 24h of cells infection with the OV, MAG-OV and MAG alone using a cytokine bead array (CBA). 

A. Significant downregulation in protein levels of CXCL10, IL-6, IL-8, IL-10 and VEGF in both OV 

and MAG-OV in MDA-MB-231 cells compared to the control. B. Significant downregulation in protein 

levels of CXCL10, IL-8 and VEGF in both OV and MAG-OV in MCF7 cells. Data are the mean ± SEM 

of n=3 independent experiments and statistical analysis was assessed using the one-way Anova test with 

multiple comparisons. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 
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4.2.6 Primary cells infection  

The ability of cells to migrate into tissues naturally has led them to be appropriate cell delivery 

targets for OVs. This has been demonstrated for immune cells for example macrophages 

(Muthana et al., 2015b). Therefore, we tried to measure the uptake of MAG-OV with primary 

cells found in circulation. Ficoll density gradient centrifugation was used to isolate the Primary 

cells from blood according to (Muthana et al., 2011a, Muthana et al., 2013). Mononuclear cells 

were infected with either the OV on its own or MAG-OV, at MOI 1, MAG (0.2mg/ml) and 

non-infected cells were used as controls. For these studies, we used the reporter virus 

HSV1716-GFP so that the GFP could be used to confirm virus infection. As shown in Figure 

4.10, MAG-OV was able to marginally infect the primary cells as efficiently as the naked OV 

with no differences between these groups after 6 hr of culture. However, we found that MAG-

OV and OV alone tended more to infect monocytes than other mononuclear cells (Figure 

4.10B). Suggesting that monocytes could be used to improve delivery of our complex in vivo.  

 

Figure 4.10: MAG-OV infected primary cells. Primary cells were incubated with OV (MOI 1), MAG-

OV (MOI 1) or MAG (0.2 mg/ml) for 6 h. MAG-OV was able to infect the primary cells as efficiently 

as the naked OV with no differences between these groups after 6 hr of culture. MAG-OV and OV 

alone tended more to infect monocytes than other mononuclear cells. Data are the mean ± SEM of n=3 

independent experiments and statistical analysis was assessed using the one-way Anova test with 

multiple comparisons. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 
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4.2.7 Viral neutralisation  

Systemic delivery of OV results in low intra-tumoural titres due to pre-existing immunity that 

has established because of exposure to the virus, previous immunization, or prior oncolytic 

viral therapy (Ferguson et al., 2012). Neutralisation experiments were performed to determine 

if MAG could protect OV from neutralizing Ab in the MAG-OV complex. Sheep anti-HSV-1 

antiserum was used to neutralise the OV. This neutralising antibody (NAb) was kindly prepared 

by Virttu Biologics by four consecutive monthly injections of 1 x 10⁶ PFU HSV1716 (Conner 

et al., 2005). 100-fold dilution of sheep Ab obtained after the fourth injection and 1 x 10⁷ PFU 

of OV or MAG-OV were incubated in culture medium for 18 hr at 4°C, alongside the controls, 

no antibody control and no virus control. As shown in Figure 4.11A, cells incubated with 

OV+Nab expressed significantly less GFP after 24h of culture compared to MAG-OV+ NAb. 

This decrease in GFP expression is most likely because of OV neutralisation and indeed 

statistically significant less cell death was observed with OV+NAb compared to the MAG-

OV+ NAb after 24h of culture (Figure 4.11B).  
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Figure 4.11: MAG-OV is protected from anti-HSV neutralising antibodies and induces MDA-

MB-231 oncolysis. A. GFP expression following 24h incubation of MBA-MB-231 cells with OV, 

MAG-OV or MAG (at MOI 10) in the presence or absence of neutralising antibody.. B. The oncolytic 

potential of MAG-OV in the presence of NAb in MDA-MB-231 cells. Data are the mean ± SEM of n=3 

independent experiments and statistical analysis was assessed using the one-way Anova test with 

multiple comparisons. **p<0.01; ****p<0.0001. 

4.3 Discussion  

In this chapter, infection of the MAG-OV complex was determined by immunostaining. These 

complexes were equally efficient in infecting MDA-MB-231 cells after 24 h of culture 

displaying very similar viral GFP expression as the OV alone (Figure 4.2). Already, previous 

studies showed that the FDA approved HSV1 virus T-Vec induced 13.6 and 64.4% cell death 
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after 24 and 48 h post infection respectively at MOI 1 in a human breast adenocarcinoma cell 

line (MDA-MB-231)(Tan et al., 2015). Here we have extended the panel of established cell 

lines to include human and murine cells (MCF7, MDA-MB-231, EO771 and TS1 cells) and 

compared the oncolytic potential of HSV1716 alone (OV) or in the MAG-OV complex. MAG-

OV induced cell death in line with the OV therapy on its own (Figure 4.3) in both species. No 

significant change in cell toxicity was detected between the MAG-OV and free OV in all breast 

cancer cells. This data is reassuring and suggest that coating the OV with MAG does not affect 

the oncolytic potential of HSV1716. It also suggests that murine cells can be used for our future 

in vivo studies. This is advantageous and will allow immune parameters to be assessed 

following administration of our MAG-OV to tumour-bearing immunocompetent mice. There 

has been some speculation in the literature regarding HSV1716 in the 4T1 mouse model. Toda 

and co-workers demonstrated a small decrease in primary tumour size in the 4T1 mouse 

mammary carcinoma model.  They suggested this absence of efficacy was due to poor 

replication of HSV1716 within the 4T1 tumours as measured by the plaque assay (Toda et al., 

1999, Toda et al., 1998). It is not clear why this occurs, yet the block is not at the point of viral 

entry, like in B16 melanoma cells (Miller et al., 2001), as HSV-1 is able to infect 4T1 cells. 

More studies would be required to exactly understand why HSV-1 has a reduced capability to 

replicate in murine tumour cells and this should be investigated in the future.   

After we showed that MAG-OV was able to infect breast cancer. We therefore tested viral 

replication genes; ICP0 – immediate early (Smith et al., 2011), ICP8 – early (Gao and Knipe, 

1989) and gB – late (Singh et al., 2012) after 24h of cell infection.  As shown in Figure 4.4, 

all genes were upregulated following infection with OV and MAG-OV with the ICP8-early-

stage and gB-late-stage displaying the greatest fold change increase at the mRNA level.  This 

suggests that MAG surrounding the OV do not affect viral replication and the OV was able to 

complete its life cycle following cell infection. Indeed, from the TEM images in Figure3.7 

once the MAG-OV was inside the cell the MAG were shed and free OV was visible, this most 

likely enables the OV to replicate. This is in keeping with previous studies which showed 

shielding the oncolytic adenovirus Ad520 with silica-modified particles decorated with 25-kDa 

branched polyethylenimine(SO-Mag2) nanoparticles resulted in a significant increase in the 

replication of adenoviral DNA in tumour xenografts from 181RDB-fLuc human pancreatic 

carcinoma cells stably expressing firefly luciferase (Tresilwised et al., 2012). They showed that 

the magnetofection group displayed a significant increase (p < 0.05) in the expression of 

adenoviral DNA (hexon gene) compared with the group that received virus alone by using 
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regular PCR analysis. This is also in agreement with previous studies where Ad520-PEI-Mag2 

complexes resulted in an increase in vitro of adenoviral DNA replication exposed by Southern 

blot analysis, and an enhancement in infectious progeny virus particles compared with the 

naked virus (Tresilwised et al., 2010b). 

Next, an appreciation of the potential mechanisms of how MAG-OV induces cell death was 

investigated. Caspases are linked to apoptosis and viruses are known typically to activate 

apoptosis via caspase 8 and caspase 3 (Felt et al., 2015).  Nguyen and Blaho have shown that 

HSV infection triggers apoptosis during the early stages of viral infection leading to immediate 

early viral gene expression. They found caspase 3 contributed to apoptosis induction. However, 

anti-apoptotic genes such as Bcl-2 and NF-ĸB, which inhibit apoptosis, are produced during 

the later time-points post infection, leading to early and late viral gene expression. 

Consequently, this provide a balance between the pro- and anti-apoptotic factors during HSV 

infection (Nguyen and Blaho, 2009).  Here we found that viral infection (OV and MAG-OV) 

appeared to induce a significant increase in Caspase 3, Caspase 8, FASL and HSPA1A gene 

expression when compared to the control in both MDA-MB-231 and MCF7 cells (Figure 4.5). 

While Bcl-2 and NF-ĸB were significantly decreased following both OV and MAG-OV 

infection (Figure 4.5, Figure 4.8). Our data was taken at one-time point (24h) and therefore 

we cannot predict if changes in cell death markers occur over time. We assume that HSV1716 

was able to induce apoptosis by downregulating anti-apoptotic factors and the data of high 

expression of heat shock protein ‘HSPA1A’ gene suggest immunogenic apoptotic cell death. 

HSV-2 infection was previously shown to cause apoptosis with the activation of Caspase 7 and 

Caspase 3 in mammary gland tumour cells (Ag et al., 2010). Another study reported that HSP70 

and cleaved caspase 3 increased when HSV-1 ICP 0 mutant and wild-type HSV-1 were injected 

into mouse TUBO tumours (Workenhe et al., 2014). Together this suggests that both HSV-1 

and HSV-2 treated tumours were able to induce apoptosis and induction of heat shock protein 

e.g. high expression of HSP-70 suggest immunogenic apoptotic cell death. 

OV are also known to induce autophagy. For example, Santana et al.,  showed that HSV-1 is 

able to induce autophagy by increasing the GFP-LC3 and endogenous LC3 lipidation, and 

initiates autophagosomes in human neuroblastoma cells (Santana et al., 2012). Another study 

reported that LC3B lipidation increased when HSV-1 and a wild-type strain of HSV-2 infected 

SIRC (Statens Seruminstitut Rabbit Cornea) corneal cell line, suggesting both HSV types affect 

autophagy (Petrovski et al., 2014). Here we found that viral infection appeared to induce a 

significant increase in LC3B gene expression when compared to the control at both OV and 
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MAG-OV in both MDA-MB-231 and MCF7 cells (Figure 4.5). Suggesting that HSV1716 can 

induce apoptosis and autophagy in a coordinated fashion. In contrast, a previous study reported 

that HSV-1 ICP0 null oncolytic virus KM100 alone at MOI 10 was unable to increase the 

protein level of caspase 3 and LC3B in TUBO cells after different point time, while both 

mitoxantrone (MTX) and KM100 + MTX showed significant increase in levels of caspase 3 

and LC3B (Workenhe et al., 2013). However, the level of caspase 3 and LC3B in this study 

were measured using Western blotting (protein level), whilst in our study this was measured 

using qPCR (gene level). Furthermore, ATG5 was unaffected in our study but the cancer cell 

survival and proliferation genes HSP90AA1, HSP90B1 and Bcl-2 displayed a significant 

decrease in both the OV and MAG-OV groups. Overall, our study suggests that there are 

multiple cell death mechanisms activated following infection with either OV or MAG-OV. It 

would be interesting to measure the protein level of these markers with our MAG-OV in future 

and experiment with different time points.  

Immunogenic cell death (ICD) is one of the cell death types that includes the adaptive arm of 

the immune system (Melcher et al., 2011, Prestwich et al., 2008). The goal of ICD for dying 

tumour cells to induce the paracrine activation of dendritic cells and consequential priming of 

cytotoxic effectors, is the release of the extracellular ATP and HMGB1 along with the 

accumulation of CRT (Angelova et al., 2014, Kepp et al., 2011). Therefore, the release of ATP 

and HMGB1 following MAG-OV infection was measured in infected breast cancer cells. We 

found that extracellular ATP levels and HMGB1 levels were significantly increased at both 

OV and MAG-OV when compared with control and MAG alone (Figure 4.6). We also noticed 

the expression of CRT around the plasma membrane significantly increased with both OV and 

MAGOV, whereas untreated cells presented the diffuse distribution of CRT (Figure 4.7). 

MAG-OV infection was able to produce DAMPs from breast cancer cells as effectively as OV 

alone.  Similarly, Coxsackievirus B3 virus infection induced the in vitro ICD of human non-

small cell lung cancer cells, including cell surface CRT expression and release of ATP as well 

as HMGB1 (Miyamoto et al., 2012). Another report revealed that LG 261 glioma cells treated 

with Newcastle disease virus induced ICD, and expressed CRT and secreted HMGB1, but not 

ATP, and moreover improved the antigenicity of the cells resulted in  an increase in  infiltration 

of IFN-γ(+) T cells  (Koks et al., 2015). Furthermore, an in vitro study showed that HSV-1 ICP 

0 mutant (the entire ICP0 coding region has been removed) and wild-type HSV-1 did not 

increase the level of HMGB1 in culture, however serum HMGB1 levels, HSP70 and cleaved 
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caspase 3 were increased when these viruses were injected into mouse tumours (Workenhe et 

al., 2014).  

Next, we attempted to understand the impact of HSV1716 on the surrounding environment. 

Increasing the expression of cytokines generated upon OV infection, can result in activating 

the immune system towards the tumour cells that were infected with virus (Breitbach et al., 

2016, Singh et al., 2012). In order to assess whether OV or MAG-OV influenced the tumour 

microenvironment, a panel of pro-inflammatory and anti-inflammatory cytokines were 

measured using qPCR and cytokine bead array (CBA). As we expected, there was not a big 

deference between OV and MAG-OV in both MDA-MB-231 and MCF7 cells. In our findings 

related to the gene expression data, the expression of TNF were upregulated in both MDA-

MB-231 (Figure 4.8A) and MCF7 (Figure 4.8B) cells treated with OV or MAG-OV compared 

to the untreated cells. Moreover, the expression of CXCL10 was upregulated in MCF7 cells 

(Figure 4.8B) while unchanged in MDA-MB-231 (Figure 4.8A) cells treated with OV or 

MAG-OV compared to the untreated cells. At the protein level, CXCL10 and TNF was not in 

agreement with gene data. As the protein level of CXCL10 was significantly downregulated 

and the protein level of TNF were not affected in both cell lines treated with OV or MAG-OV 

(Figure 4.9). The protein level of INF showed a trend towards being upregulated in both 

MDA-MB-231 and MCF7 cells treated with MAG-OV compared to the untreated cells (Figure 

4.9). However, this change was not significant. A previous study showed that HSV1716 

resulted in the upregulation of IFN-γ  and CXCL10 in ovarian cancer (Benencia et al., 2005). 

Another study found increasing the expression of the TNF in the tumour and surrounding tissue 

from a HSV vector backbone resulted in an increase in the ability of tumour cell killing in the 

presence of ganciclovir (GCV) (Moriuchi et al., 1998). Suggesting that OV or MAG-OV 

influenced the tumour microenvironment by increasing the level of pro-inflammatory 

cytokines. On the other hand, the gene level of anti-inflammatory cytokines IL-1B, NF-KB and 

VEGF were decreased in both MDA-MB-231 and MCF7 cells treated with OV or MAG-OV 

compared to the untreated cells. In general, the literature does support a decrease in VEGF 

levels (Breitbach et al., 2007b, Breitbach et al., 2011b). Previous study revealed that 

intratumoral injection of the third generation oHSV, G47∆-mIL12, significantly altered the 

tumour microenvironment of GSC-derived intracerebral tumours. In this study, they have 

shown G47∆-mIL12 downregulated VEGF expression and upregulated CXCL10 (Cheema et 

al., 2013). VEGF is a pro-angiogenic marker and is important to carcinogenesis.  In many solid 

tumors, high expression of VEGF have been associated with poor clinical consequence (Dent, 



115 
 

2009). The reduction of VEGF with HSV1716 therefore has the potential to inhibit 

angiogenesis.  

At the protein level, the expression of IL-6, IL-8, IL10 and VEGF were also significantly 

downregulated in both MDA-MB-231 and MCF7 cells treated with OV or MAG-OV compared 

to the untreated cells except the expression of IL-10 in MCF7 cells was not changed (Figure 

4.9). The cytokine bead array (CBA) was used to measure the extracellular level of these 

proteins therefore we assume that the intracellular proteins level have been changed. It would 

have useful to also assess intracellular protein expression with western blots. Also assessing 

protein expression over more than a single timepoint would have been useful in case protein 

secretion was missed.   

OV neutralisation following systemic delivery is a major hindrance to success of this therapy 

for tumours that are inaccessible (Figure 1.7).  In vivo studies have already shown OVs are 

cleared after a few days following infection of mice bearing gliomas (Andreansky et al., 1997, 

Mineta et al., 1994). In addition, Extracellular Enveloped Virus (EEV) (one of the 

morphologically distinct infectious forms of virions that produced by the prototype of the 

poxvirus family) can avoid both complement and neutralising antibodies by protecting itself in 

an envelope derived from host cells (Ichihashi, 1996, Law et al., 2002, Smith et al., 1997, 

Vanderplasschen et al., 1998). This envelope is formed when the outer intracellular enveloped 

virus (IEV) membrane fuses with the plasma membrane. In this thesis, we hypothesised that 

MAG would protect the virus from neutralisation. As shown in Figure 4.10, MAG-OV+ NAb 

were able to infect the tumour cells as efficiently as the MAG-OV after 24h of culture. Cells 

incubated with OV+Nab expressed significantly less GFP after 24h of culture compared to 

MAG-OV+ NAb. This decrease in GFP expression is most likely because of OV neutralisation 

and indeed statistically significant reduced cell death was observed with OV+Nab compared 

to the MAG-OV+ NAb after 24h of culture (Figure 4.10). Suggesting that MAG-OV could 

minimise the interaction of HSV1716 with neutralising Ab because of MAG protecting the 

virus. Studies available in the literature examining the neutralisation of HSV1716 are limited. 

However, there are many attempts to overcome the problem of virus neutralisation. For 

example, Muthana et al., have tried to protect the virus from neutralisation using cell carriers, 

in this study magnetic resonance targeting using MRI was used to steer magnetically labelled 

macrophages carrying Ad-CMV-GFP into primary and metastatic tumour sites (lungs) in mice 

(Muthana et al., 2015b). A previous study attempted to overcome the problem of virus 

neutralization by using Nanomedicine approaches. They found that oncolytic adenovirus 
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Ad520 can be protected  against the inhibitory effects of serum or a neutralising antibody in 

vitro when it was protected with PEI-Mag2 or PB-Mag1 nanoparticles (Tresilwised et al., 

2012a) 

In this study we used sheep serum but it would be interesting to use other inhibitory effects to 

neutralize the HSV1716, such as using human serum derived from donors who have high, 

medium or little/no HSV antibodies to asses MAG-OV neutralisation.   

Taken together these data suggest that MAG-OV is able to enter and replicate inside breast 

cancer cells, at the same time inducing tumour cell death as good as OV alone but with the 

addition of protecting the virus from neutralising Ab. Nevertheless, this inference is based on 

in vitro data. Therefore, the next chapter will study whether MAG will improve targeting of 

OV in the presence of external magnetic field gradients and examine whether our complex can 

stimulate immune effector cells in an in vivo model. 
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Chapter 5 

Targeting delivery and immunotherapy of MAG-OV 

in tumour-bearing mice using an external magnetic 

field 
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5.1 Introduction 

There are numerous studies documenting the targeted delivery of MNPs in tumour-bearing 

mice using an external magnetic field to guide the particles to the tumour (Kyrtatos et al., 2009, 

Arbab et al., 2004, Riegler et al., 2010, Landázuri et al., 2013, Riegler et al., 2013). A previous 

study showed that HAI-178-FMNPs, an anti-α-subunit of ATP synthase antibody, (HAI-178) 

monoclonal antibody-conjugated fluorescent MNPs, could be injected intravenously into 

gastric cancer-bearing nude mice under the application of an external alternating magnetic field 

with 63 kHz and 7 kA/m for 4 min (Wang et al., 2014a). This resulted in reducing tumour 

growth compared to the control group (treated with saline), suggesting that HAI-178-FMNPs 

has a therapeutic function for gastric cancer in vivo. Moreover, the copolymer of reducible 

polyamidoamine (rPAA) self-assembled with superparamagnetic iron oxide nanoparticles 

(SPIONs) was used to deliver doxorubicin (DOX) in mice in a xenograft of the MDA-MB-231 

tumour cells through i.v. injection and inhibited tumour growth efficiently. Here they used a 

magnet that was left on the tumour for 1.5 h following injection (Chen et al., 2014).    

Furthermore, a recent study showed that using MNPs with an OV offered high cellular uptake 

within a minute and was considered a key advantage for the non-invasive targeting of OVs in 

vivo. In this study, Almstätter et al. used a selected core-shell type iron oxide MNPs in 

combination with either adenovirus (Ad) or vesicular stomatitis virus (VSV) intratumourally 

in orthotopic hepatocellular carcinoma (HCC) bearing rats in the presence of a magnet placed 

on the surface of the tumour nodule opposite to the injection site (Almstätter et al., 2015).  They 

found that MNP-VP complex accumulated in the tumour at the side of where the magnet was 

placed. In addition, VSV titre and non-heme iron content of SO-Mag-VSV complex-injected 

tumours increased compared to naked VSV-injected tumours (30 min post infection).  

Whilst direct intratumoural administration is possible for accessible tumours and has the 

potential to attain high concentrations of MNPs without the complications of systemic toxicity, 

this can also lead to undertreated regions in the tumour, thus allowing untreated tumour areas 

to progress (Hilger et al., 2005, van Landeghem et al., 2009). Importantly, intratumoural 

administration will not be useful for targeting small metastatic tumour growths or inaccessible 

tumours. Intravenous injection would be a better alternative as this would generally reach 

tumours adequately, even small tumours (Hainfeld et al., 2011, Hainfeld et al., 2013) and is 

less invasive than direct tumour injection. Furthermore, the distribution of intravenous 

injection is more comprehensive than the punctate distribution from direct intratumoural 

injections (Hilger et al., 2002, Huang and Hainfeld, 2013). Previous work has shown that 
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polyethyleneimine-modified iron oxide nanoparticles could be injected intravenously into mice 

with brain tumours under the application of an external magnetic field (50 mT) (Chertok et al., 

2010). This resulted in selective accumulation and retention in GBM (brain) tumours in 

comparison to control animals, which did not undergo magnetic targeting. Further, studies at 

the University of Sheffield have shown that macrophages loaded with MNPs could be injected 

systemically into mice with prostate tumours and attracted from the circulation to the implanted 

tumour (on the flank) in mice using a 0.5T external magnetic placed directly above the tumour 

(Muthana et al., 2008a).  

A recent study by Khierkah and co-workers showed that magnetic targeting of drugs could 

be used to treat intramedullary spinal cord tumours of the central nervous system. They used 

biocompatible iron oxide magnetite (Fe3O4) conjugated to doxorubicin. The iron particles 

were coated with gold and electrostatic interactions were used to attach the chemotherapy to 

the MNPs (DOX-MNP). They used a rat model whereby human glioblastoma multiforme 

tumour cells were implanted into the thoracic spine parenchyma. At the same time, they also 

implanted a 1 cm, 0.01 Tesla neodymium magnet sub-dermally overlying the tumour cell 

injection site to create a magnetic field at the tumour site. MNP-DOX nanoparticles were 

then introduced into the lumbar intrathecal space once the tumour was established and 

guided by the implanted magnet to the tumour site (Kheirkhah et al., 2018). Whilst exciting, 

surgically implanting the magnet could have serious adverse effects and result in 

complications from the surgery. In addition, this magnet was in place throughout the whole 

time of the experiment and it is unclear if this may have affected the animals.  

Wang and co-workers showed that magnetic targeting of MAG + near infrared (NIR) could 

be used to treat hepatoma 22 (H22) cells injected subcutaneously into the right flank region 

of mice. They used MAG extracted from Magnetospirillum magneticum strain AMB-1 with 

NIR light stimulated photothermal therapy (PTT) with nanomaterials. The rectangular-pyr-

amidfrustum pole of the C-shaped magnet were placed on the tumour for 4 hr following 

injection of the purified MAG (4.0 mg/ml) intravenously. They found that all the tumours of 

mice in MAG + MF + NIR group completely disappeared. Suggesting that magnetic targeting 

could be used to increase the therapeutic efficiency of PPT with MAG after intravenous 

injection (Wang et al., 2018a). 

OVs are extremely immunogenic and stimulate both innate and/or adaptive immune responses, 

in addition to the hallmark of the direct oncolytic effect (Takasu et al., 2016). As a result, OV’s 
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are considered to be a cancer immunotherapy. Stimulating the immune system using HSV1716 

to destruct the tumour has been studied in a syngeneic murine intracranial melanoma model 

(Miller and Fraser, 2000). In addition to reducing tumour growth infiltration of CD4+ T cells 

and macrophages, as well as CD8+ T cells, B cells, NK cells and microglia cells into the 

tumour, were examined after viral infection. Specifically, CD4+ T cells and macrophages were 

increased after viral administration (Miller and Fraser, 2000). Furthermore, HSV (G207) 

therapy of mouse CT26 colon adenocarcinoma tumours inhibited the growth of contralateral 

tumours as well as a second challenge of tumour cells in immune-competent mice (Toda et al., 

1999). This study suggested that HSV increased mouse survival as a result of infiltrating 

cytotoxic T-cells.  

Therefore, we will study both the magnetic targeting potential of our MAG-OV complex as 

well as the virus's ability to induce anti-tumour effects in mammary tumours. A detailed 

investigation of the immune activity of our MAG-OV is essential due to the combination of 

using an OV and bacterial-derived MAG. As mentioned earlier, MAG have the potential to 

activate the immune system particularly if the bacterial derived proteins are not stripped from 

the MAG, so it is important to determine if this activates the immune system and if this could 

result in adverse effects. 

In addition to investigating the anti-tumour efficiency of MAG-OV, we will also determine 

whether MAG can protect OV from neutralizing Ab in an in vivo immunocompetent mouse 

model. We have used an immunocompetent mouse model whereby C57/BL6 mice were 

injected into the nipple with the luciferase labelled breast cancer cell line EO771-Luc. This cell 

line is a spontaneously developing medullary breast adenocarcinoma derived from C57BL/6 

mice (Sugiura and Stock, 1952). This is also a triple negative breast cancer (TNBC) cell line 

for the oestrogen, progesterone and human epidermal growth factor HER2 receptors, making 

it difficult to target therapeutically (Johnstone et al., 2015). Furthermore, this tumour model 

naturally metastasises to the lungs in C57BL/6 mice (Johnstone et al., 2015). As the cell line is 

luciferase labelled, bioluminescence imaging using the IVIS was used to monitor tumour 

growth and metastasis.  

The specific objectives of the study were to characterise the targeting of MAG-OV in vivo 

using external field gradients - with particular reference to: 
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1. Tumour targeting and therapeutic efficacy of MAG-OV in the E0771 mammary 

carcinoma model. 

2. Stimulation of immune effector cells by MAG-OV. 

3. MAG-OV protection from neutralising antibodies. 

 

5.2 The antitumour efficacy of MAG-OV in the E0771 mammary carcinoma model 

5.2.1 In vivo study Design 

C57BL/6 female mice were purchased from Envigo at 6-8 weeks old and housed in the 

University of Sheffield Biological Services Unit and cared for according to the University of 

Sheffield code of ethics and Home Office regulations. All work was carried out under personal 

licence number is 1806F7C1E and Home office project licence PPL70/8670.  

Mice were injected into the nipple with 5x105 EO771-Luc cells, and monitored daily, and 

weighed every three days. Tumour volume was measured using callipers and also recorded 

every three days. Each group of mice included in this study consisted of n=6-9 mice/group 

because some of mice have not developed tumours. Once the tumours reached ~150-200mm3 

mice received the following treatments intravenously (i.v.), see (Figure 5.1) for a schematic of 

the study. 

1. Control: Mice were injected three times i.v. (0, 5, 10 days) with 100ul PBS. 

2. MAG: Mice were injected three times i.v. (0, 5, 10 days) with 100ul MAG (10ul MAG 

+ 90ul PBS).   

3. OV: These mice were injected three times i.v. (0, 5, 10 days) with 100ul HSV1716 

(10ul OV at 107 pfu + 90ul PBS). 

4. MAG-OV without magnet: Mice were injected three times i.v. (0, 5, 10 days) with 

100ul magnetised HSV1716 (12ul MAG-OV at 10⁷ pfu + 88ul PBS). 

5. MAG-OV+ magnet: Mice were injected three times i.v. (0, 5, 10 days) with 100ul 

magnetised HSV1716 (12ul MAG-OV at 10⁷ pfu + 88ul PBS) in the presence of an 

external permanent magnetic array secured above the tumour (0.7 T) for 30 min. 

Once the tumours reached ~1500mm3 mice were culled by cervical dislocation, and the organs 

and tumour were removed and stored in liquid nitrogen for post-mortem analysis. Of note, the 

magnet design, assembly and length of time placed above the tumour, were optimised by a 

post-doctoral research fellow in the group (Dr Priya Patel). 
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Figure 5.1: Treatment scheme in C57BL/6 female mice with a mammary carcinoma. Mice were 

injected into the nipple with 5x105 EO771-Luc cells. Each group of mice included in this study consisted 

of n=6-9 mice/group. Once the tumours reached ~150-200mm3 mice were injected three times i.v. (0, 

5, 10 days) with 100ul of PBS, MAG, OV and with and without MAG-OV. Once the tumours reached 

~1500mm3 mice were culled by cervical dislocation, and the organs and tumour were removed and 

stored in liquid nitrogen for post-mortem analysis. 

5.2.2 Magnetic guidance of MAG-OV shrinks primary mammary tumours and 

promotes survival 

In this in vivo experiment, we used an external magnet to guide MAG-OV from circulation into 

primary mammary tumours. Mice were intravenously treated with three doses of MAG, OV, 

MAG-OV without magnet (MAG-OV WM), MAG-OV with magnet (MAG-OV+M) or PBS 

as a control and monitored over time. There was no change in body weight in all treatment 

groups compared to the PBS treated mice in the 2 weeks post therapy (Figure 5.2A). However, 

a significant change in average tumour volume was observed in mice receiving MAG-OV with 

magnet compared to the mice receiving PBS on day 12 after treatment (p = 0.0002). In addition, 

a significant change in average tumour volume was observed in mice receiving OV compared 

to the mice receiving PBS on day 12 after treatment (p = 0.0036). While no significant change 

was observed in mice receiving MAG or MAG-OV without magnet compared to the mice 

receiving PBS. In theory, the MAG-OV without magnet should be the same as OV- not seeing 

any effect suggests that either the MAG are not letting the virus have its effect or without the 

magnetic guidance perhaps the two are separating and not enough is getting to the tumour. This 

requires further investigation. In addition, the average tumour volume was significantly smaller 

in the MAG-OV+M -treated group than in the OV group at day 15 after treatment (p = 0.0062), 

(Figure 5.2B). This indicates that magnetic targeting is improving the efficacy of this 

treatment. Furthermore, Figure 5.2C shows most of the mice in MAG-OV+M group resulted 

in a significant increase in survival compared to the others groups. For the bioluminescence 
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imaging (BLI), mice were injected with 100 µL of d-Luciferin subcutaneously for 10 Min. 

Then, a non-invasive in vivo imaging system (IVIS 200 System, Xenogen) was used to image 

mice. Based on the detection and quantitation of the photons produced by the oxidation of 

luciferin by luciferase enzymes. Bioluminescence imaging of mice receiving MAG-OV+M on 

day 12 of treatment showed this marked reduction in the size of the primary tumour, (Figure 

5.2D). For all the following experiments and the rest of this chapter MAG-OV+M (in the 

presence of the magnetic field) will be referred to as MAG-OV. 

                                                                                                                           

Figure 5.2: Magnetic targeting of MAG-OV shrinks primary mammary tumours. EO771 tumour-

bearing mice were monitored daily for tumour growth with calipers and weighed every three days. A. 

No change in body weight was recorded for treated animals compared to untreated mice for up to 2 

weeks post-therapy. B. A significant change in average tumour volume was observed in mice receiving 

MAG-OV in the presence of a magnet (red line: MAG-OV+M) compared to the mice receiving PBS 

on day 12 after treatment. C. Moreover, MAG-OV+M treated mice demonstrated a significant increase 

in survival compared to the others groups. D. For the BLI, mice were injected with 100 µL of d-

Luciferin subcutaneously for 10 Min. Then, a non-invasive in vivo imaging system (IVIS 200 System, 

Xenogen) was used to image mice. Based on the detection and quantitation of the photons produced by 

the oxidation of luciferin by luciferase enzymes. BLI of mice receiving OV therapy or MAG-OV+M 

on day 12 of treatment showed this marked reduction of the primary tumour. Of note, data are the Mean 

± SEM (n=6-9) and statistical analysis was assessed using one-way Anova test with multiple 

comparisons for tumour volume and survival curve for mice survival. **p<0.01; ***p<0.001; 

****p<0.0001.  
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5.2.3 Increased MAG-OV in primary breast tumours following magnetic guidance 

As shown above, MAG-OV+M was the most effective therapy for reducing tumour volume. 

Next, we wanted to confirm the presence of the HSV1716 within the tumours. This was 

performed using two approaches flow cytometry and immunofluorescence and at two 

timepoints (3 days and at end of the experiment). For the former, cells were analysed on a flow 

cytometer to detect the HSV1716-GFP. Tumour chunks were dissociated as described in 

Section 2.2.23.4. Samples were re-suspended in 300ul of FACS buffer (1%FBS/PBS solution) 

and transferred to flow cytometry tubes. A cell viability dye was added to all the samples to 

gate out debris and dead cells. Flow cytometry data was analysed using the BD LSR II flow 

cytometer and GFP expression was measured in FL-1 (488nm). A significant increase in the 

percentage of HSV1716-GFP was observed in MAG-OV compared to the PBS group after 3 

days of infection (MAG-OV 6% vs PBS 0%) (Figure 5.3A). Moreover, a significant increase 

in the percentage of HSV1716-GFP was observed in MAG-OV compared to all other groups 

at the end of the experiment (MAG-OV 13% vs. PBS 0 %) as shown in Figure 5.3B. One of 

the difficulties with the flow cytometry experiment is that the samples contained so much 

debris and dead cells that the data may not be truly representative. It is not clear whether this 

was due to how the samples were processed or because of the necrotic nature of the mammary 

tumours. Therefore, to further confirm the presence of HSV1716-GFP, immunofluorescent 

staining of tumours was performed in sections that were frozen immediately following 

removal. Tumours were first embedded in OCT before freezing and sectioned using a cryostat 

(14μm thick sections). After this, cells were fixed and stained with a sheep antibody to detect 

HSV1716 (Conner et al., 2005). Moreover, 50ng/ml DAPI solution was added for 2 min to 

define the nucleus. Coverslips were mounted onto the microscope slides and a Nikon A1 

confocal microscope was used to take images. HSV1716 positive cells were counted by using 

Fiji (Fiji Is Just ImageJ), as previously published (Schindelin et al., 2012). The number of 

nuclei per FOV needed to be assessed, so cell counts could be normalised to the total number 

of cells in the FOV. As shown in Figure 5.3C, MAG-OV resulted in the greatest expression of 

HSV1716 compared to OV alone (MAG-OV 70.2% vs. OV 14.8% P= 0.0027). No virus was 

detected in the control or MAG treated mice.  

 



125 
 

 

Figure 5.3: Increased systemic targeting of MAG-OV to mammary tumours in the presence of an 

external magnetic field. Dissociated tumour chunks were analysed on a flow cytometer to detect 

HSV1716-GFP. GFP expression was measured in FL-1 (488nm) on a LSRII flow cytometer. A. A 

significant increase in percentage of HSV1716-GFP was observed in MAG-OV compared to the all 

other groups after 3 days of infection. B. The presence of the HSV1716 was also measurable at the end 

of the experiment (day 23). C. Immunofluorescence staining of tumours was also used to detect the 

HSV1716-GFP. MAG-OV was able to infect EO771 cells significantly more compared to the OV alone 

and the other groups. A Nikon A1 confocal microscope was used to take images. The density of 

HSV1716 was calculated by dividing the total number of HSV1716 positive cells by the number of 

DAPI+ events in each specified region and multiplying by 100. Of note, data are the Mean ± SEM (n=5) 

and statistical analysis was assessed using the one-way Anova test with multiple comparisons. *p<0.05; 

**p<0.01; ***p<0.001; ****p<0.0001. 

5.2.4 Increased MAG-OV viral replication following magnetic guidance 

Expression of viral replication genes was determined by qPCR in mammary tumour removed 

from mice post-treatment. RNA was extracted after tumour digestion and used to synthesise 

cDNA. Viral replication genes ICP0 – immediate early, ICP8 – early and gB – late genes (Singh 

et al., 2012), were evaluated. Virus successfully replicated within the tumour 

microenvironment, as shown by the significant increase in all the viral mRNA genes (ICP0, 
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ICP8 and gB) in the MAG-OV treated mice compared to the OV and control groups (Figure 

5.4). This suggests that magnetic guidance enabled virus to replicate more efficiently than the 

other treatment groups. mRNA expression of ICP8 was also significant with OV groups 

compared to the control (Figure 5.4).  Suggesting that OV was able to complete their life cycle 

within EO771 tumour cells.         

                       

Figure 5.4: Increased viral replication of MAG-OV in mammary tumours in the presence of an 

external magnetic field. RNA was isolated from mammary tumours post-treatment and analysed using 

qPCR. Virus successfully replicated within the cells, as shown by the significant increase in viral mRNA 

expression of ICP0, ICP8 and gB in the MAG-OV treated mice when compared to the OV and control 

groups. The expression levels were calculated relative to the untreated cells using the 2-ΔΔCT method 

after the data was normalised to the housekeeping gene, GAPDH. Of note, data are the Mean ± SEM 

(n=3) and statistical analysis was assessed using the one-way Anova test with multiple comparisons. 

*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. 

5.2.5 MAG-OV induces anti-tumour properties following magnetic guidance  

The anti-tumour effect of MAG-OV was detected by measuring a number of changes within 

tumour microenvironment including tumour vascularity, necrosis, the expression of 

calreticulin (CRT) and pulmonary metastasis. Targeting the tumour vasculature using OVs is 

an attractive strategy in cancer therapy. OV including vaccinia and vesicular stomatitis virus 

can intrinsically target tumour vasculature leading to vessel disruption (Toro Bejarano and 

Merchan, 2015). Tumour vascularity post-treatment was assessed by calculating the number 

of CD31+ve cells per field of view (FOV) using immunofluorescent staining. CD31 is a 

standard marker of blood vessels and used to assess vascularity in tumours (Muthana et al., 

2015b). MAG-OV treated tumours showed a trend of being less vascularised than the other 

treatments groups (Figure 5.5A). However, this change was not significant.   
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Necrosis is a type of cell death caused by external factors such as viruses (Yu et al., 2015). 

Necrosis was assessed by calculating the percentage of necrotic areas in the whole tumour 

section by Haematoxylin and Eosin staining. As shown in Figure 5.5B, tumours treated with 

MAG-OV in the presence of a magnet were significantly more necrotic than those treated with 

PBS (MAG-OV 61.3% vs PBS 21%). While tumours treated with naked OV or MAG showed 

no significant change compared to those treated with PBS (OV 43.2% and MAG 18.3% vs. 

PBS 21%). This was also confirmed by flow cytometric analysis of the percentage of live cells, 

where tumours treated with MAG-OV were significantly less than those treated with PBS, 

(Figure 5.5C). 

Furthermore, CRT is a DAMP that is normally located in the lumen of the endoplasmic 

reticulum. Immunogenic apoptosis leads to translocation of CRT to the surface of dying cells 

as an eat-me indicator for professional phagocytes (Obeid et al., 2006, Gold et al., 2010, Voll 

et al., 1997). The expression of calreticulin was measured by using immunofluorescence 

staining. Figure 5.5D shows that the number of calreticulin positive cells (and Dapi+ve) 

increased significantly in tumours treated with MAG-OV than those treated with PBS or OV. 

In C57BL/6 mice, EO771 cells implanted into the mammary fat pads metastasise to the lungs 

(Johnstone et al., 2015). Therefore, pulmonary metastasis was measured using Haematoxylin 

and Eosin staining. Lungs were prepared as described in Section 2.2.23.6. Pulmonary 

metastases were identified by microscopy and could be seen as tumour nodules greater than 

10 mm in diameter (Kaseda et al., 2016). Many metastases were detected in the lungs of mice 

injected with PBS or MAG alone at day 12 of treatment because of the large size of their 

primary tumours. However, the number of pulmonary metastasis was significantly reduced in 

mice that received MAG-OV compared to those treated with PBS (Figure 5.5E). 
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Figure 5.5: MAG-OV increases tumour necrosis and immunogenic cell death. A. 

Immunofluorescence staining of CD31+ve cells per Field of view (FOV) showed MAG-OV treated 

tumours were less vascularised than the PBS-treated tumours (scale bar = 40 µm). However, this change 

was not significant. B. Haematoxylin and eosin staining (scale bar = 200 µm) indicated that tumours 

treated with MAG-OV were significantly more necrotic than those treated with PBS. C. This was also 

confirmed by flow cytometry analysis of live cells using the Zombie UV viability dye, where tumours 

treated with MAG-OV were significantly less viable than those treated with PBS. D. 

Immunofluorescence staining analysis of CRT showed that the number of CRT+ve cells (& Dapi+ve) 

increased significantly in tumours treated with MAG-OV than those treated with PBS or OV lone (scale 

bar = 40 µm), the density of CRT+ve cells was calculated by dividing the total number of CRT+ve cells 

by the number of DAPI+ events in each specified region and multiplying by 100. E. The number of 

pulmonary metastasis was significantly reduced in mice that received MAG-OV compared to those 

treated with PBS (scale bar = 200 µm). Of note, data are the mean ± SEM (n=3-5) and statistical analysis 

was assessed using the one-way Anova test with multiple comparisons. *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001.  
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5.2.6 MAG-OV treated tumours induce anti-tumour immunity: NanoString analysis   

Prior studies have revealed that, during oncolytic virotherapy, cellular immune mechanisms 

act jointly with virally mediated tumour damage (Thomas and Fraser, 2003, Miller and Fraser, 

2003, Miller and Fraser, 2000). Therefore, to define the effect of MAG-OV targeting in the 

presence of a magnetic field on the immune pathways, RNA was isolated from tumours of 

treated mice (Section 2.2.17.1). This was analysed using the NanoString murine pan-cancer 

immune profiling panel, which consist of 750 immune related genes and 20 housekeeping 

genes. This work was carried out at the John van Geest Cancer Research Centre in College of 

Science and Technology at Nottingham Trent University in collaboration with Professor 

Graham Pockley and Jayakumar Vadakekolathu. All the RNA samples were quality controlled 

using Nanodrop 8000 and 150ng of total RNA from each sample was used for setting up the 

NanoString analysis. All the data processing was carried out by Mr Jayakumar Vadakekolathu 

in Nottingham. Figure 5.6 shows volcano plots of gene expression in MAG, OV or MAG-OV 

treated tumours compared to the PBS treated group. Interestingly, in the MAG only treated 

group (MAG) >27 genes were up-regulated (e.g. Ctsw, Cmah, C1s1) and 10 genes 

downregulated (e.g. Trp53, Cxcl12). Whilst, the MAG only group did not induce any 

therapeutic changes, this change in gene expression highlights that some consideration should 

be given when using MAG and this will be discussed later.  As expected, the OV treated group 

resulted in up regulation of >35 genes compared to the PBS treated group. In the MAG-OV 

treated tumours, genes related to innate and adaptive immune responses (e.g. Cxcl2, Thbs1, 

Ifitm1, Cxcr2, Ccl3, Cd14, Ccr1, Icos and Clu), T-cell function (CTL-A4, Ccl3, Xcl1, Icos), 

NK Cell Functions (Ccl3), Macrophage Functions (Thbs1), Dendritic Cell Functions (Ccr1), 

Interferon (Runx3) as well as apoptosis (Gzmb, Osm, Gzma, Clu and Runx3) were 

differentially upregulated. These genes are outlined in Table 5.1. For simplicity the table only 

focuses on the MAG-OV vs. PBS treatment groups.  
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Figure 5.6: Volcano plots show MAG-OV increases expression of genes related to an immune 

response.  To define the effect of MAG-OV on genes related to immunity, RNA was isolated from 

tumours and analysed using the NanoString murine pan-cancer immune profiling panel.  Volcano plots 

show genes that were up regulated (+) or downregulated (-). The volcano plots show gene expression 

in MAG, OV or MAG-OV treated tumours compared to PBS treated tumours (n=3).  
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Table 5.1: Top 20 genes differentially regulated in MAG-OV treated tumours. Genes related to 

innate and adaptive immune responses (Cxcl2, Thbs1, Ifitm1, Cxcr2, Ccl3, Cd14, Ccr1, Icos and Clu), 

T-cell function (Ctla4, Ccl3, Xcl1, Icos), NK Cell Functions (Ccl3), Macrophage Functions (Thbs1) as 

well as apoptosis (Gzmb, Osm, Gzma, Clu and Runx3) are indicated (n=3) with fold change in 

expression over the control (PBS) and the pathways or gene sets. Data was processed and analysed 

using nSolver Analysis Software, using the Advanced Analysis module. 

Gene Log2 fold 
change 

Gene. Sets 

Cxcl2-
mRNA 

3.26 Adaptive, Chemokines & Receptors, Cytokines & Receptors, Inflammation, Innate, Leukocyte 
Functions 

Thbs1
-
mRNA 

1.85 Adaptive, Cell Cycle, Inflammation, Macrophage Functions 

Ifitm1-
mRNA 

2.27 CD molecules, Innate, Interferon 

Ccl22-
mRNA 

2.24 Chemokines & Receptors, Cytokines & Receptors, Humoral, Inflammation 

Cxcr2-
mRNA 

2.04 Adaptive, CD molecules, Chemokines & Receptors, Cytokines & Receptors, Inflammation, 
Innate, Interleukins 

Ctsw-
mRNA 

1.95 CD molecules 

Fcgr3-
mRNA 

1.55 Antigen Processing, CD molecules, MHC, Transporter Functions 

Gzmb-
mRNA 

2.02 Apoptosis, T-Cell Functions 

Ctla4-
mRNA 

2.51 B-Cell Functions, CD molecules, T-Cell Functions 

Osm-
mRNA 

3.54 Apoptosis, Cytokines & Receptors 

Ccl3-
mRNA 

2.44 Adaptive, Chemokines & Receptors, Cytokines & Receptors, Humoral, Inflammation, NK Cell 
Functions, T-Cell Functions, Transporter Functions 

Cd14-
mRNA 

1.4 CD molecules, Cytokines & Receptors, Inflammation, Innate, Pathogen Response, Transporter 
Functions 

Itgb4-
mRNA 

-0.997 Adhesion, CD molecules 

Ppbp-
mRNA 

3.31 Chemokines & Receptors 

Gzma-
mRNA 

2.19 Apoptosis 

Ccr1-
mRNA 

1.87 Adaptive, CD molecules, Chemokines & Receptors, Cytokines & Receptors, Dendritic Cell 
Functions, Inflammation, Innate, Leukocyte Functions, Transporter Functions 

Xcl1-
mRNA 

3.86 Chemokines & Receptors, Cytokines & Receptors, Inflammation, Innate, T-Cell Functions 

Icos-
mRNA 

1.45 CD molecules, T-Cell Functions 

Clu-
mRNA 

-0.745 Apoptosis, Cancer Progression, Innate 

Runx3
-
mRNA 

2.32 Apoptosis, Cell Cycle, Interferon 

 

Next, we carried out analysis of the different tumour infiltrating immune cells. A heat map 

shows infiltrating immune cells in PBS, MAG, OV or MAG-OV treated tumours. In the heat 

maps orange indicates high cell expression and blue indicates low cell expression (Figure 5.7). 

Cell type scoring and pathway scoring was performed using nSolver advance analysis module 
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V. 2.0.115. This software compares all the different immune cell types and creates scores 

relative to each other. The majority of the immune related cell types in the panel were 

upregulated in MAG-OV treated tumours. Figure 5.7 shows that the T cells (cytotoxic CD8), 

NK cells, neutrophils and macrophages increased significantly in tumours treated with MAG-

OV than those treated with PBS. T cells, CD8 T cells and Treg cells were also increased in 

tumours treated with MAG-OV than those treated with PBS.  However, this change was not 

significant. On the other hand, CD4 vs. T cells were downregulated in tumours treated with 

MAG-OV than those treated with PBS. 

                                                                   

Figure 5.7: MAG-OV upregulates tumour infiltrating immune cells. nSolver 4.0 Analysis Software 

was used to prepare the heat map to show tumour infiltrating immune cells in PBS, MAG, OV or MAG-

OV treated tumours. Orange indicates high cell expression and blue indicates low cell expression. The 

majority of the immune related genes in the panel were upregulated in MAG-OV treated tumours. Of 

note, data are the Mean ± SEM (n=3) and statistical analysis was assessed using the one-way Anova 

test with multiple comparisons.  *p<0.05; **p<0.01; ***p<0.001. 
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Furthermore, we carried out an immune pathway analysis of the genes in the PBS, MAG, OV 

or MAG-OV treated tumours. Notably, we detected a significant increase in expression of a 

range of immune-pathway genes in MAG-OV treated tumours than those treated with PBS 

(Figure 5.8).  These pathways include innate and adaptive immunity, T-cell function, NK cell 

function, chemokines and receptors, cytokines and receptors, inflammation, TLR, leukocyte 

function, macrophage function pathway, transporter function, senescence y, dendritic cell 

function, basic cell function, cell cycle, apoptosis and pathogen response, many of which have 

previously been linked to immune activation by OVs (Miller and Fraser, 2003, Thomas and 

Fraser, 2003, Miller and Fraser, 2000). 

 

Figure 5.8: Magnetic targeting of MAG-OV upregulated the expression of a range of immune-

pathway genes. A significant increase in expression of a range of immune-pathway related genes in 

MAG-OV treated tumours than those treated with PBS including adaptive innate pathway, T-cell 

function pathway, NK cell function pathway, chemokine and receptor pathway, cytokine and receptor 

pathway, inflammation pathway, TLR pathway, leukocyte function pathway, macrophage function 

pathway, transporter function pathway, senescence pathway, dendritic cell function pathway, basic cell 

function pathway, cell cycle pathway, apoptosis pathway and pathogen response pathway. Of note, data 

are the Mean ± SEM (n=3) and statistical analysis was assessed using the one-way Anova test with 

multiple comparisons. *p<0.05; **p<0.01; ***p<0.001. 
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5.2.7 Magnetic targeting of MAG-OV increased immune cell infiltrates – Flow cytometry 

To confirm the data of the NanoString technology, flow cytometry was used to measure the   

recruitment of immune cells into tumours. Tumour chunks were dissociated as described in 

Section 2.2.23.4. Cells were collected and flow cytometry was used to evaluate the percentage 

of CD3, CD4, CD8, NK1.1, LY6G and CD11B immune cell markers. The percentage of T 

cells (CD3+), cytotoxic T cells (CD3+/CD8+), Neutrophils (CD11B+/LY6G+) and NK cells 

(NK1.1) were significantly increased in tumours treated with MAG-OV compared to those 

treated with PBS (Figure 5.9). In contrast, the percentage of T helper cells (CD3+/CD4+) 

decreased in these treated tumours. However, this change was not significant (Figure 5.9). The 

receptor expression of immune cell surface markers, as measured by FACS, mirrors the gene 

expression data measured by NanoString.  

         

Figure 5.9: Magnetic targeting of MAG-OV upregulated infiltration of immune cells into 

tumours. Dissociated tumour chunks were collected and flow cytometry was used to evaluate the 

percentage of CD3, CD4, CD8, NK1.1, LY6G and CD11B. The percentage of CD3+, CD3+/CD8+, 

CD11B+/LY6G+ and NK1.1 significantly increased in tumours treated with MAG-OV compared to 

those treated with PBS. In contrast, the percentage of CD3+/CD4+ decreased in these treated tumours. 

A cell viability dye (Zombie UV dye) was included to gate out any cellular debris. Data was run on the 

LSRII and analysed using FlowJo. Data are the Mean ± SEM (n=5 mice per group) and statistical 

analysis was assessed using the one-way Anova test with multiple comparisons. *p<0.05. 
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5.2.8 Magnetic targeting of MAG-OV increased immune cell infiltrates: Immuno-

fluorescence 

Immunofluorescent staining was also used to evaluate the number of CD3, CD8, CD4, F4/80 

and NK1.1 expression within the tumours. Tumours were first embedded in optimal cutting 

temperature (OCT) before freezing, sectioned using the cryostat (14μm thick sections), fixed 

with ice cold acetone for 10 min at RT and then rehydrated with PBST for 1 min. Sections were 

then stained with anti-CD3, CD4, CD8, F4/80, NK1.1 and (4',6-diamidino-2-phenylindole) 

(DAPI) and analysed using a confocal laser-scanning microscope. The number of CD3+ 

(%Dapi+), CD3+/CD8+ (%Dapi+) and CD3+/CD4+ (%Dapi+) were significantly increased in 

tumours treated with MAG-OV compared to those treated with PBS or OV only, (Figure 

5.10A). Moreover, F4/80+ (%Dapi+) and NK1.1 (%Dapi+) were also significantly increased 

in tumours treated with MAG-OV compared to those treated with PBS or naked OV (Figure 

5.10B&C). Of note, in Figure 5.10B, F4/80 was co-labelled with the endothelial cell marker 

‘CD31’. This showed that macrophages within the TME were located throughout the tumour 

with some around the vascular areas in mice treated with virus, whereas in the control mice, 

most macrophages were in the perivascular areas. This is an interesting topic that warrants 

further investigation, particularly given that perivascular macrophages are thought to have a 

pro-tumour phenotype in breast cancer (Hughes et al., 2015). 
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Figure 5.10: Magnetic targeting of MAG-OV increases antitumour immunity. Tumour sections 

were stained with anti-CD3, anti-CD4, anti-CD8, anti-F4/80, anti-NK1.1 and DAPI (4',6-diamidino-2-

phenylindole) and then analysed under a confocal laser-scanning microscope. Three images from two 

slides (6 total) from each mouse. The density of positive cells was calculated by dividing the total 

number of postitive cells by the number of DAPI+ events in each specified region and multiplying by 

100. A. CD3+ (%Dapi+), CD3+/CD8+ (%Dapi+), CD3+/CD4+ (%Dapi+), B. F4/80+ (%Dapi+) and 

CD31+ C. NK1.1 (%Dapi+) were significantly increased in tumours treated with MAG-OV compared 

to those treated with PBS or naked OV. Of note, data are the Mean ± SEM (n=5) and statistical analysis 

was assessed using the one-way Anova test with multiple comparisons. Scale bar= 40µm. *p<0.05; 

***p<0.001; ****p<0.0001. 
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5.2.9 Magnetic targeting of MAG-OV increases T cell activation  

Given that CD8+ T cells were recruited into tumours following MAG-OV treatment next the 

activation status of these T cells was determined. IFN-γ production by immune cells is 

considered the hallmark of an active immune response and IFN-γ is released by activated CD8+ 

T cells (Showalter et al., 2017). This is also linked to Programmed Death 1 (PD1) expression 

by activated T cells (Westin et al., 2014). Therefore, T cell activation was assessed by 

measuring the number of CD8+/IFN-γ+ (%Dapi+) and CD8+/PD1+ (%Dapi+) expressing cells 

by immunofluorescence staining. Sections were co-stained with antibodies to anti-CD8, IFN-

γ, PD1 and DAPI and then analysed under a confocal laser-scanning microscope.  As shown in 

Figure 5.11A-C the number of CD8+/IFN-γ+ (%Dapi+) and CD8+/PD1+ (%Dapi+) were 

significantly increased in tumours treated with MAG-OV compared to those treated with PBS 

or naked OV (CD8+/IFN-γ+ (%Dapi+) P= 0.0008, CD8+/PD1+ (%Dapi+) P= 0.0002). Whilst 

the T cells were recruited and activated, the increased expression of PD1 suggests that the cells 

may encounter checkpoint suppression, as we know these tumours express PD-L1 (Crosby et 

al., 2018). This could be why we see tumour re-growth after the 3rd treatment and our therapy 

would benefit from combination with checkpoint inhibitors. This will be discussed later.  
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Figure 5.11: MAG-OV activated T cells to express interferon and PD1. Sections were stained with 

antibodies to anti-CD8, IFN-γ, PD1, and (4', 6-diamidino-2-phenylindole) (DAPI) and then analysed 

under a confocal laser-scanning microscope. The number of A. CD8+ /IFN-γ+ (%Dapi+) and B. 

CD8+/PD1+ (%Dapi+) were significantly increased in tumours treated with MAG-OV compared to 

those treated with PBS or naked OV. The density of positive cells was calculated by dividing the total 

number of positive cells by the number of DAPI+ events in each specified region and multiplying by 

100. Of note, Data are the Mean ± SEM (n=5) and statistical analysis was assessed using the one-way 

Anova test with multiple comparisons. Scale bar= 40µm and a magnet was used with MAG-OV. 

*p<0.05; **p<0.01; ***p<0.001. 

 

5.3 Magnetising HSV1716 protect the virus from neutralisation 

5.3.1 In vivo study design 

Next, we wanted to determine if MAG served to protect the OV from neutralising antibodies 

as was revealed for the in vitro neutralisation experiments in Section 4.2.6. Systemic delivery 

of OV results in low intra-tumoural titres due to pre-existing immunity that has been 

established because of prior exposure to the virus, previous immunisation, or prior oncolytic 

viral therapy (Ferguson et al., 2012). Therefore, in vivo neutralisation experiments were 

performed to determine if MAG could protect OV from neutralising Ab (NAb) in vivo. Sheep 

anti-HSV-1 antiserum was used to neutralise the OV. This antibody was kindly prepared by 

Virttu Biologics as described in section 2.2.19. Mice were injected into the nipple with 5x105 

EO771 cells as described in section 2.2.23.1. Once the tumours reached ~150-200mm3 mice 

received the following intravenously: 
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1. Control: Mice were injected three times i.v. (0, 5, 10 days) with vehicle (PBS) (in a 

volume no more than 0.2 ml). 

2. OV+ NAb (see section 2.2.19): Mice were injected three times i.v. (0, 5, 10 days) with 

100ul HSV1716 (10ul OV at 106 pfu + NAb + 90ul PBS). 

3. MAG-OV+ NAb (see section 2.2.19) + magnet: Mice were injected three times i.v. 

(0, 5, 10 days) with 100ul magnetised HSV1716 (12ul MAG-OV at 106 pfu + NAb + 

88ul PBS) in the presence of an external magnetic field for 30 min. 

The group included in this study consisted of n=3 mice/group. Once the tumours reached 

~1500mm3 mice were culled by cervical dislocation, and the organs and tumour were removed 

and stored in liquid nitrogen for post-mortem analysis. 

5.3.2 MAG-OV protects HSV1716 from neutralising antibodies 

To see if the virus reached the tumour and infected cells within the tumour, GFP expression in 

dissociated tumours was assessed by flow cytometry. As shown in Figure 5.12A, tumours 

treated with MAG-OV+NAb expressed more GFP after three days of infection compared to 

tumours treated with OV+NAb (MAG-OV+NAb 5% and OV+NAb 2%). This decrease in GFP 

expression in tumours treated with OV+NAb is most likely because of OV neutralisation. 

Moreover, the average tumour volume was significantly smaller in the MAG-OV+NAb with 

magnet -treated group than in the OV+NAb or PBS (P= 0.0191) group at day 12 after treatment 

(Figure 5.12B). Furthermore, Figure 5.12C shows all mice in MAG-OV+NAb treated group 

resulted in an increase in survival compared to the OV+NAb or PBS group. From Figure 5.12, 

it is clear that the OV is not able to have any therapeutic effect in the presence of the NAb. 

Together this data suggests that MAG have the potential to protect HSV1716 from neutralising 

antibodies in circulation.   
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Figure 5.12: MAG-OV is protected from neutralising antibodies. In vivo neutralisation experiments 

were performed to determine if MAG could protect OV from NAb. Sheep anti-HSV-1 antiserum was 

used to neutralise the OV. 1 x 107 PFU of OV or MAG-OV were incubated with 100-fold dilution of 

antiserum for 18 h at 4°C prior to the experiment. Mice implanted with EO771 cells were monitored 

daily and weighed every three days after treatment. Tumour volume was measured using calipers and 

also recorded every three days. A. Tumours treated with MAG-OV+NAb expressed significantly more 

GFP after three days of infection compared to tumours treated with OV+NAb (p=0.0260) as assessed 

by flow cytometry on an LSRII. B. The average tumour volume was significantly smaller in the MAG-

OV+NAb treated group than in the OV+NAb or PBS group at day 12 after treatment. C. Mice in the 

MAG-OV+NAb treated group responded to the treatment and resulted in an increase in survival 

compared to the OV+NAb or PBS group. Of note, data are the Mean ± SEM (n=3 mice/group) and 

statistical analysis was assessed using one-way Anova test with multiple comparisons for tumour 

volume and survival curve for mice survival. *p<0.05; **p<0.01.  

5.4 Discussion  

The main goal of OV treatment would be to selectively target and infect tumour cells whilst 

sparing healthy tissues and organs. Therefore, guiding and confining the OV into the tumours 

in circulation is important. A previous study showed that oncolytic adenovirus Ad520 co-

incubated with MNPs (Ad -SO-Mag2) was able to inhibit human pancreatic tumour (181RDB-

fLuc) growth in mice more than naked Ad in both short (3 days) and long-term (25 days) 

treatments in the presence of NeoDelta magnets (NE155, IBS Magnet, Berlin, Germany) for 

30 min immediately after intratumoural injection (Tresilwised et al., 2012a).  The same group 



141 
 

also reported that intratumoural injection of Ad in combination with the Core/shell type iron 

oxide MNPs (PEIMag2) displayed a stronger oncolytic effect than naked adenovirus in a 

murine xenograft model of daunorubicin-resistant human pancreatic carcinoma cells 

(Tresilwised et al., 2010a). Together these studies support our study and suggest that OV can 

be magnetised (all studies including ours relied on electrostatic interactions) and can be guided 

to a tumour using a magnetic field.  Of note, all the above studies relied on direct injection of 

the magnetised viruses into the tumour and the presence of an external magnet really only 

served for retention of the therapy within the tumour rather than its delivery. Whereas in this 

study, MAG associated with HSV1716 has been used to target MAG-OV from circulation to 

mammary tumours in mice. MAG-OV was injected intravenously in the presence of an external 

permanent magnetic secured above the tumour (0.7 T) for 30 min. The magnet design, 

assembly and length of time placed above the tumour, were optimised by a post-doctoral 

research fellow in the group (Dr Priya Patel). Tumour targeting and therapeutic efficacy of 

MAG-OV as well as stimulation of immune effector cells by this complex and MAG-OV 

protection from neutralising antibodies have been studied. To our knowledge, this is the first 

study to report delivery of magnetised OV from circulation into tumours using bacterially-

derived MAG. 

5.4.1 Magnetic guidance of MAG-OV shrinks primary mammary tumours and promotes 

survival 

The efficiency of magnetically guiding MAG-OV into mammary tumours in mice was 

demonstrated in the above results (Figure 5.2) where a significant change in average tumour 

volume, increased mouse survival and a reduction in pulmonary metastasis was observed 

compared to the others treatment groups. This therapy was more effective than when the OV 

was administered intravenously. However, whilst the tumour growth was retarded once the 

administration of HSV1716 ceased, the tumours started to regrow. Muthana et al., 

demonstrated that prostate tumour-bearing mice received HSV1716-shielded by macrophages 

(monocyte-derived macrophage (MDM) + OV) resulted in marked reduction of the primary 

tumour than those that received naked OV in the presence of a magnetic field, (Muthana et al., 

2015b). In this study, they did not see the same level of tumour regrowth, however they used 

an immunocompromised mouse model where the adaptive immune system was not present and 

therefore may not have contributed to clearance of the virus.  

We have shown that MAG-OV magnetic guidance into tumours is effective but does not 

completely eradicate tumour growth once the therapy has ceased. This means that the therapy 
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is not so effective alone and should be combined with other cancer treatments or that the virus 

would need to be given continuously. Others have also reported that intatumoural injection of 

recombinant non-pathogenic poliovirus (PVSRIPO) into B6-ovalbumin (OVA) melanoma 

model wasn’t able to completely eradicate tumour growth once the therapy ceased (Brown et 

al., 2017). It would be interesting to try prolonged use of our complex, as there are studies, 

which says that actually the presence of NAb is not a problem.  For example, Melcher have 

shown that piggybacking of the dsRNA, non-genetically modified OV reovirus on the 

monocytes could overcome neutralisation and provide access tumours in patients in the brain 

or liver following systemic injection (Melcher, 2019).  Perhaps we could target monocytes by 

coating our MNPs with a ligand that binds to monocytes in circulation. Already in our 

laboratory this is being attempted with agents like CCL2. CCL2 bind to the CCR2 receptor on 

monocytes and the CCL2/CCR2 combination is important for monocyte recruitment into 

tumours (Lim et al., 2016). In addition, it would be interesting to combine our complex with 

another cancer treatment. As prior studies have shown that combining the oncolytic 

Rhabdovirus Maraba-MG1 with Paclitaxel, one of the most common chemotherapeutics used 

to treat patients with breast cancer, could  improve efficacy in all of the breast cancer models 

they tested, including EMT6, 4T1 and E0771 (Bourgeois-Daigneault et al., 2016). 

We already know HSV1716 increases the mean survival time of mice and reduces the burden 

of 4T1 tumour metastasis in the lungs (Thomas and Fraser, 2003). However, this is the first 

time we have seen efficacy of HSV1716 in the EO771 model of cancer. From our observation, 

the virus on its own is not particularly effective compared to the untreated group. However, by 

using an external magnetic field this improves the anti-tumour efficacy of the virus most likely 

because the virus is reaching the tumour in greater numbers. In the 4T1 study, 5.4 × 10⁵ pfu of 

HSV1716 was injected intratumourly in two or three places with a total volume of 20 μl, while 

in our study 100ul of HSV1716 at 107 pfu was injected into circulation. It is true we have given 

a much higher dose in our study but as a result we have avoided direct tumour injection, which 

comes with significant risk and is not always possible in the metastatic setting. Furthermore, 

studies from our lab have shown that different strains of mice respond differently to HSV1716. 

This research was carried out by a postdoctoral researcher in the group who noticed that Balb/C 

mice (used for the 4T1 model) were unable to tolerate the same dose of HSV1716 (1x107 pfu/ml) 

as the C57BL/6 mice used in this study. Moreover, the FVB strain whilst more tolerant than 

Balb/C mice still required a lower dose than the C57BL/6 strain (Table 5.2). This difference 

in maximum tolerated dose could be attributed to the strains host immune system as C57BL/6 
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mice display a classically Th2 type immune response, whereas Balb/c and FVB mice naturally 

display Th1 type immunity. Th1 immunity is important for the removal of intracellular 

pathogens, whereas Th2 immunity plays a role in the clearance of infectious parasites. Such 

characteristics may explain the differences in dose tolerability in response to HSV1716. 

Hiroyuki and colleagues showed the effects of different immune responses in C57BL/6 and 

Balb/c mice, in response to sepsis. The results indicated that due to the naturally impaired 

macrophage activity in Balb/c mice, tolerability to viral infection was lower than C57BL/6 

mice, this led to the activation of systemic inflammation to viral antigens and the mice 

experienced multiple organ failure and shock, which could explain data the generated in Table 

5.2 (Hiroyuki et al., 2004). It is interesting that different mouse models respond differently to 

HSV1716 and perhaps patients will also respond differently and this should definitely be 

considered in future clinical application of oncolytic virtotherapy. As we did not see any 

difference with MAG-OV without magnet and OV alone and chose to assess MAG-OV with 

magnet in the rest of chapter as mentioned above (in section 5.2.2).    
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Table 5.2: Different mouse stains respond differently to HSV1716. Dr Faith Howard carried out 

this research.   

 

5.4.2 Increased MAG-OV targeting in primary breast tumours following magnetic 

guidance          

We found a significant increase in the percentage of HSV1716-GFP in the MAG-OV with 

magnet treatment group compared to the all other groups after day 3 of treatment and also at 

the end of the experiment (day 23) using flow cytometry and immunofluorescence staining 

(Figure 5.3A&B). Suggesting that MAG under the guidance of the external magnet could 

deliver the virus to the tumour. In our study, we used a magnet (0.7 T) to target the mammary 

tumour and whilst this is a relatively weak magnetic field, the magnetic was placed directly 

above the tumour due to its superficial location. A stronger magnet may have improved the 

targeting. However, these are often heavier compared to the size of the mouse and most studies 

reported in mice use weaker magnets. For example, Chao et al. established that growing  

tumours could be shrunk significantly in mice with hepatocellular carcinomas using 

doxorubicin-coupled MNPs and an external magnetic devices of 0.5 T  applied on the tumour 
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(for 2 hrs) to achieve local enhancement (Chao et al., 2012b). Another study showed that an 

Ad vector tagged with MNPs (Ad-mag) using a biotinylated adenovirus vector with a 

streptavidin-conjugated MNP localised to the head of a mouse embryo following injection into 

the ventricle of the embryo in the presence of a weak neodymium–iron–boron magnet (260 

mT) placed closed to the head (Hashimoto and Hisano, 2011).  

In our study only the primary tumours were targeted with MAG-OV, however metastasis is the 

major cause of breast cancer mortality (Scully et al., 2012). Therefore, it would be more 

appropriate to target breast tumours in common metastatic sites (e.g. brain, lungs, bone). 

However, as these are tumours located deep in the body a weak external magnetic field would 

not successfully target the therapy. As an alternative, it would be interesting to use the powerful 

magnetic gradients of MRI scanners to guiding our MAG-OV in vivo. Our laboratory has 

already demonstrated that the powerful magnets present in MRI machines could guide 

magnetised macrophages loaded with HSV1716 and iron oxide MNPs to tumours in the 

prostate and lungs of mice. The number of macrophages gathering within tumours was 

amplified using this strategy, resulting in tumour shrinkage (Muthana et al., 2015b). Cell 

therapy is complicated and very personalised thus by eliminating the cells and magnetising the 

virus directly makes this approach more amenable and suited to all patients. The data from this 

PhD have been used to successfully secure funding from CRUK to develop magnetised 

HSV1716 for targeting metastatic breast cancer using MRI.  

5.4.3 Increased MAG-OV viral replication following magnetic guidance         

To confirm that the reduction in tumour size in the MAG-OV treatment group (Figure 5.2B), 

was in response to HSV1716 the mRNA expression of viral replication genes within EO771 

tumour cells was measured using qPCR.  Interestingly, we found mRNA expression of these 

genes in the tumour tissue was significantly higher in the MAG-OV group than in the OV only 

and control groups (Figure 5.4). Suggesting that the MAG did not prevent viral replication and 

the OV was able to complete its life cycle within EO771 tumour cells. This result was in 

agreement with previous study that found a significant increase (p < 0.05) in the expression of 

adenoviral DNA (hexon gene) in the tumour tissue in the magnetofection group compared with 

the group that received virus alone using regular PCR analysis (Tresilwised et al., 2012a). Also, 

another study showed that infectious progeny virus particles of Ad520-PEIMag2 complex was 

increased compared with the virus alone (Tresilwised et al., 2010a). In contrast, a previous 

study showed that HSV1716 was only temporarily able to reduce the progress of primary 

tumours in 4T1 mouse mammary carcinoma model; mainly this absence of efficacy was 
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because of poor replication of HSV1716 in 4T1 tumours as measured by the plaque assay (Toda 

et al., 1998, Toda et al., 1999). Further studies would be needed to accurately understand why 

HSV-1 has a reduced capability to replicate in this tumour cell line, while it can successfully 

replicate in EO771 tumour cells.  

There is always concern that manipulation of OV may influence viral properties such as  host 

cell recognition, virus growth and oncolytic activity mainly by reducing replication rates 

(Campbell and Gromeier, 2005). However, Tresilwised et al., have shown that shielding the 

oncolytic adenovirus Ad520 with SO-Mag2 nanoparticles resulted in a significant increase the 

replication of adenoviral DNA in the tumour xenografts, mainly in the short-term treatments 

(Tresilwised et al., 2012a). We also found that by magnetising HSV1716 we see improved viral 

replication (Figure 5.4).  

 5.4.4 MAG-OV induces anti-tumour immunity following magnetic guidance         

Previous studies showed that HSV could directly infect tumour endothelium in vivo and 

significantly decrease the mean vessel density in preclinical tumour models of ovarian, glioma, 

and rhabdomyosarcoma (Benencia et al., 2005, Huszthy et al., 2009). We used 

immunofluorescence staining to assess tumour vascularity and measured the No. of CD31+ 

cells per FOV. As expected magnetic guidance of MAG-OV treated tumour cells were less 

vascularised than the PBS-treated tumours (Figure 5.5A). This result agreed with our in vitro 

study where we found expression of VEGF was significantly downregulated in both MDA-

MB-231 and MCF7 cells treated with OV and MAG-OV compared to the untreated cells 

(section 4.8). VEGF is one of the most potent vascular permeability factors and is important in 

tumour angiogenesis (Adams et al., 2000), reducing VEGF and vessel numbers is one of the 

mechanisms by which OV target tumours.  Prior studies revealed that intratumoral injection of 

the third generation oHSV, G47∆-mIL12, significantly changed the tumour microenvironment 

of GSC-derived intracerebral tumours (Cheema et al., 2013). They revealed that G47∆-mIL12 

downregulated VEGF expression and upregulated CXCL10. 

Necrosis is a type of cell death caused by external factors such as infection and toxins. OVs 

induce cell death by many mechanisms including necrosis (Wang et al., 2014b). Muthana et al, 

demonstrated that tumours from prostate tumour-bearing mice that received HSV1716-

carrying macrophages (monocyte-derived macrophage (MDM) + OV) were significantly more 

necrotic than those that received naked OV (Muthana et al., 2015b). Therefore, tumour necrosis 

was measured after MAG-OV magnetic targeting and was found to be significantly more 
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necrotic than those treated with PBS (Figure 5.5B). This was also confirmed by flow 

cytometric analysis, where tumours treated with MAG-OV were significantly less viable than 

those treated with PBS (Figure 5.5C). This result was also in agreement with our in vitro 

studies in the earlier chapters where cell death was observed and this was accompanied with 

the expression of TNF in both MDA-MB-231 and MCF7 cells treated with OV or MAG-OV 

compared to the untreated cells. Proinflammatory cytokines including TNF-α is released in 

response to cell necrosis (Fadok et al., 2001). Suggesting that MAG-OV therapy could 

successfully promote tissue necrosis and cell death.   

The expression of calreticulin was also measured using immunofluorescence staining. We 

found that the number of calreticulin+ cells increased significantly in tumours treated with 

MAG-OV than those treated with PBS or OV alone (Figure 5.5D). This data agreed with our 

in vitro study that found CRT accumulated at the plasma membrane 24 h after infection with 

OV or MAG-OV compared to the untreated cells (Section 4.6). Infection of human non-small 

cell lung cancer cells with the Coxsackievirus B3 OV resulted in inducing ICD and led to the 

expression of abundant cell surface CRT (Miyamoto et al., 2012). Also, another study showed 

that oncolytic HSV-1 RH2 induced the translocation of CRT to the cell membrane of the mouse 

squamous cell carcinoma  cell line SCCVII (Takasu et al., 2016).  They suggested that HSV 

induce ICD in this cell line. 

One limitation of the data presented in this chapter is that the in vivo studies only focused on 

CRT expression. HMGB1 and ATP levels were not measured in the in vivo studies, as in the 

in vitro studies described in Chapter 4. In our in vitro studies, we assayed secreted HMGB1 

and ATP in the cell culture supernatants according to the manufacturer’s protocol; however, 

we cannot do this in the tumour. It would be interesting to measure the level of HMGB1 and 

ATP in the serum sample from each mouse. Recently, serum HMGB1 levels in mice treated 

with lipopolysaccharides (LPS) and/or ATP or LPS and high‐fat diet to induce NLRP3 

inflammasome activation have been measured using the HMGB1 ELISA kit (Wang et al., 

2018b).  

5.4.5 MAG-OV treated tumours induce expression of immune-related genes     

Nanostring analysis revealed that magnetically guided MAG-OV induced a number of 

immune-related pathways. Genes related to innate and adaptive immune responses (Cxcl2, 

Thbs1, Ifitm1, Cxcr2, Ccl3, Cd14, Ccr1, Icos and Clu), T-cell function (CTLA4, Ccl3, Xcl1, 

Icos), NK cell Functions (Ccl3), macrophage functions (Thbs1), dendritic cell functions (Ccr1), 
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Interferon (Runx3) as well as apoptosis (Gzmb, Osm, Gzma, Clu and Runx3) were elevated 

after treatment with magnetically targeted MAG-OV. This suggests that MAG-OV treatment 

could elevate the majority of the immune-related genes in the NanoString immune profiling 

panel. OVs are known to activate the immune system. A study by Zamarin et al., showed that 

injection of Newcastle disease virus (NDV) into the bilateral flanks of B16-F10 melanoma-

bearing mice upregulated the majority of the immune-related genes we describe including those 

related to T-cell function, DC function and type I IFN (Zamarin et al., 2017). Some researchers 

have engineered OV so that they can be more immunogenic via the expression of genes that 

recruit or activate immune cells. For example, the recruitment of antigen-presenting cells 

(APCs) by production of granulocyte macrophage colony-stimulating factor (GM-CSF) 

expressing HSV and vaccinia virus has been demonstrated (Breitbach et al., 2011b, Andtbacka 

et al., 2015). Indeed the FDA approved T-VEC (genetically modified HSV1 designed to 

produce GM-CSF) demonstrated antitumour immunity, where tumour gene expression data 

from the Phase 1b clinical trial resulted in elevated CD8a and IFN- mRNA in advanced 

melanoma patients (Ribas et al., 2018). Our data confirmed that MAG-OV not only induces 

tumour necrosis, ICD but also activated antitumour immunity.   

Interestingly in the MAG only treated group (MAG) >27 genes were up-regulated (e.g. Ctsw, 

Cmah, C1s1) and 10 genes dow-nregulated (e.g. Trp53, Cxcl12). Whilst, the MAG only group 

did not induce any therapeutic changes some of these genes such as Xcl1, Ido1, IL21r and Ctsw 

hve been linked to Chemokines & Receptors, Cytokines & Receptors, Inflammation, Innate 

and T-Cell Function pathways suggesting that the MAG may have immunogenic properties. 

We used stringent wash steps to purify our MAG (>10 washes) but perhaps this is not adequate. 

A previous study suggested that intravenous injection of 40mg/kg of bacterial MAG into rats 

revealed absence of immunotoxicity (Sun et al., 2010b). They found that no difference in the 

number of white blood cells and lymphocytes to those in untreated rats.  However, they 

mentioned that ‘it is not yet clear whether purified MAG contain antigens or pyrogens. 

Therefore, some consideration should be given when using MAG. Because, the MAG are 

derived from bacteria and contain biological impurities, such as bacterial proteins, nucleic acids 

and polysaccharides this could lead to immunotoxicity. This will need to be considered in great 

detail before using MAG in the clinical setting.  As previously suggested the MAG membrane 

could be stripped to remove bacterial endotoxins by detergent treatment (Xie et al., 2009). We 

have also not measured the endotoxin levels in our preparations and this is something we plan 

to do in the future (Wong et al., 2016). 
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5.4.6 MAG-OV recruits immune cells into the tumour microenvironment       

HSV therapy of CT-26 tumours inhibited the growth of contralateral tumours or of a second 

challenge of tumour cells in immune-competent mice (Toda et al., 1999, Toda et al., 1998, 

Toda et al., 2002). This suggests that anti-tumour immune responses have developed after the 

virotherapy.  HSV1716 therapy of primary 4T1 mammary tumours with lacking RAG2, CD4, 

CD8, and NK cells is ineffective in immune-competent mice, suggesting a role for the T cell 

infiltrate in attacking the tumour (Thomas and Fraser, 2003). Another report by Miller and 

Fraser confirmed the importance of T cells following OV therapy. They showed that 

cyclophosphamide administration (before and during HSV1716 administration) in SCID mice 

with brain tumours in an experimental model of metastatic melanoma was also ineffective 

(Miller and Fraser, 2000).  

We used, flow cytometry to measure the percentage of immune cell infiltration after MAG-OV 

infection. Consistent with our tumour gene expression data, flow cytometry data showed that 

the percentage of CD3, CD3+ CD8+, CD11B+ LY6G+ and NK1.1 significantly increased in 

tumours treated with MAG-OV compared to those treated with PBS (Figure 5.9), with 

reduction in the percentage of CD3+ CD4+ cells, albeit the latter was not significant. This was 

also confirmed by immunofluorescence staining. The data suggest that MAG-OV increased the 

infiltration of immune cells and is in agreement with Thomas and Fraser, who demonstrated 

that HSV1716 therapy of 4T1 tumours increased the percentage of CD4+ and CD8+ T cells in 

immune competent mice (Thomas and Fraser, 2003).   

Given that MAG-OV increased the percentage of CD3+ CD8+ cells, it was important to 

measure their activation status within the tumours. As IFN-γ can be released by activated CD8+ 

T cells in a typical response (Showalter et al., 2017) and PD1 is expressed by activated T cells 

(Westin et al., 2014) we therefore measured the expression of both IFN-γ and PD1 to evaluate 

T cell activation after MAG-OV therapy.  Our data suggested that following MAG-OV 

targeting into tumours, cytotoxic T cells (CD8+) had elevated IFN-γ and PD1 expression 

compared to mice treated with PBS or naked OV (Figure 5.11). This data implies that MAG-

OV induces T cell activation. This increase in the number of T cells expressing PD-1 after 

MAG-OV infection offered a possible explanation as to why our complex did not show 

complete tumour remissions. Perhaps the increase in PD-1 resulted in checkpoint inhibtion of 

the activated T cells via checkpoint inhibition (Pfannenstiel et al., 2019). Likewise, it has been 

suggested that T cells expressing PD-1 in the presence of tumuors positive for PD-L1 may 

negatively influence the antitumour activity of single-agent T-VEC (Ribas et al., 2018). It 
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would be intersting to combine MAG-OV therapy with anti-programmed death protein 1 (PD-

1) or anti-PD-L1 antibody therapy to overcome some of these limitations. As long-lasting 

antitumour responses in patients with a variety of cancers with PD-1 or anti- PD-L1 antibodies 

therapy has been demonstrated (Sharma and Allison, 2015). Recently, it was suggested that  

HSV-1 and PD-1 blockade combination therapy could be a successful treatment strategy for 

childhood soft tissue sarcoma. They found a significant increase in the number of  CD4+ and 

CD8+ T cells but not with the CD4+CD25+Foxp3+ regulatory T cell populations in M3-9-M 

(MHC I high) tumour models that received combination therapy (intratumoral HSV1716 

injection followed by intraperitoneal injection of anti-PD-1) (Chen et al., 2017). 

5.4.7 MAG-OV protection from neutralising antibodies   

Many strategies have been used before to protect viruses from inactivating immune 

mechanisms they encounter in circulation resulting in improved tumour targeting following 

systemic delivery. Our in vitro experiments have shown that adding neutralising Ab to the 

naked HSV1716 resulted in significant inhibition of oncolytic activity. While the oncolytic 

potential of MAG-OV was not changed when adding the neutralising Ab because of the MAG 

shielding of the virus. Neutralisation experiments were performed to determine if MAG could 

protect OV from neutralizing Ab in vivo following injection into the circulation. Interestingly, 

we found that the average tumour volume was significantly smaller in the MAG-OV+NAb 

treated group than in the OV+NAb or PBS group at day 12 after treatment (Figure 5.12A). 

Further, most of the mice in MAG-OV+NAb treated group responded to the treatment survived 

for longer compared to the others groups (Figure 5.12B). This also correlated with an increase 

in GFP expressing virus in the MAG-OV treated group.  This suggests that MAG-OV could 

minimize the interaction of HSV1716 with neutralising Ab because of magnetosome shielding. 

The use of magnetised HSV provides an opportunity to not only guide the virus to the tumour 

in the presence of a magnetic field but to also protect from immune attack whilst in the 

bloodstream. The limitation of this experiment is that only n=3 mice were used in each 

treatment group. Moreover, it would be interesting to use other inhibitory mechanisms to 

neutralise HSV1716, such as using human serum containing neutralising antibodies to HSV 

instead of the sheep antibody.   

In summary, we have shown that MAG-OV can be guided to mouse mammary tumours using 

an external magnetic field and this reduces tumour growth, tumour blood vessels and increases 

tumour cell death whist activating anti-tumour immunity.  
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Summary of main outcomes and general conclusion 
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6.1 Summary of main outcomes and general conclusion 

So far, systemic delivery of OVs has been obstructed by low intra-tumoural titres due to strong 

anti-viral host immune responses and sequestration by the liver and spleen resulting in poor 

tumour targeting (Ferguson et al., 2012). Several studies have proposed to use different ways 

for improving the targeting of OV to tumours. This is the first study using bacterial derived 

MAG to target viruses to tumours after systemic delivery and evaluate the anti-tumour immune 

response. In chapter 3, We showed that MAG are small and uniform in size compared to 

synthetic MNPs used by other researchers (Almstätter et al., 2015a). This is agreement with a 

recent study that also confirmed that MAG purified from Magnetospirillum gryphiswaldense 

MSR-1 displayed uniform arrangement of particles whereas MNPs were clustered (Raguraman 

and Suthindhiran, 2019).  

Interestingly, the electrokinetic potential of the MAG was negative (-9 ± 2.3 mV) (Table 3.1). 

Since the MAG display a negative electrokinetic potential we did not expect the self-assembly 

with the OV.  As Almstatter et al., showed that creating the magnetic viral complexes using 

synthetic MNPs relies on the positive electrokinetic potential of the MNP so that complex 

formation depends on electrostatic interactions with negatively charged viral particles (OV) 

(Almstätter et al., 2015a). However, our complex formation is most likely a result of MAG 

possessing polarisable primary amino groups, enabling self-assembly based on the 

homobifunctional cross linking agents for example aliphatic binary aldehyde, 

diisothiocyanates, diisocyanates, di(succinimido) aliphatic esters, and their derivatives (Sun et 

al., 2008). Using TEM and flow cytometry, we found that they form complexes with OV 

without having any impact on the oncolytic potential of the virus. The complexes were also 

still ‘nm’ in size and could infect and kill tumour cells. Afterward, we examined the oncolytic 

potential of MAG-OV in 3D spheroid cultures. We showed that MAG-OV can damage the 

spheroid of MDA-MB-231s and MCF7 cells as good as OV alone (Figure 3.12A, Figure 

3.13A). We observed ruffled edges and a flattened morphology, indicating damaging and cell 

death of the three-dimensional spheroid structure on day 6 of infection with both OV and 

MAG-OV treatment compared to untreated spheroids and MAG only. This suggests that MAG-

OV is as efficient as OV on its own with respect to infectivity and cell death in both monolayer 

and 3D cultures. 

In chapter 4, the replication potential and cell death mechanisms of the virus were assessed. 

MAG-OV was able to enter and replicate inside breast cancer cells, at the same time inducing 

tumour cell death as good as OV alone. We also showed that OV and MAG-OV in both MDA-
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MB-231 and MCF7 cells appeared to induce a significant increase in Caspase 3, Caspase 8, 

FASL and HSPA1A gene expression when compared to the control (Figure 4.5). While Bcl-2 

and NF-ĸB were significantly decreased (Figure 4.5, Figure 4.8). We assume that HSV1716 

was able to induce apoptosis by downregulating anti-apoptotic factors and the data of high 

expression of heat shock protein ‘HSPA1A’ gene suggest immunogenic apoptotic cell death. 

Viral infection appeared also to induce a significant increase in LC3B gene expression when 

compared to the control at both OV and MAG-OV in both MDA-MB-231 and MCF7 cells 

(Figure 4.5). This suggests that HSV1716 can induce apoptosis, necrosis and autophagy in a 

coordinated fashion. Immunogenic cell death (ICD) following MAG-OV infection was also 

measured in infected breast cancer cells. We showed that extracellular ATP levels and HMGB1 

levels were significantly increased at both OV and MAG-OV when compared with control and 

MAG alone (Figure 4.6). We also noticed the expression of CRT around the plasma membrane 

significantly increased with both OV and MAGOV, whereas untreated cells presented the 

diffuse distribution of CRT (Figure 4.7). This suggests that MAG-OV infection was able to 

produce DAMPs from breast cancer cells as effectively as OV alone. 

Next, we attempted to understand the impact of HSV1716 on the surrounding environment. 

qPCR and cytokine bead array (CBA) were used to measure a panel of pro-inflammatory and 

anti-inflammatory cytokines. The expression of CXCL10, IFNg and TNF were upregulated in 

both MDA-MB-231 and MCF7 cells treated with OV or MAG-OV compared to the untreated 

cells (Figure 4.8). On the other hand, the level of anti-inflammatory cytokines IL-1B, NF-KB 

and VEGF were decreased. Suggesting that OV or MAG-OV influenced the tumour 

microenvironment by increasing the level of pro-inflammatory cytokines. 

We also hypothesised that MAG would protect the virus from neutralisation. So next we tried 

to test the efficacy of our complex in the presence of neutralizing Ab in vitro. We showed that 

cells incubated with OV+Nab expressed significantly less GFP after 24h of culture compared 

to MAG-OV+ NAb. This decrease in GFP expression is most likely because of OV 

neutralisation and indeed statistically significant reduced cell death was observed with 

OV+Nab compared to the MAG-OV+ NAb after 24h of culture (Figure 4.10). Suggesting that 

MAG-OV could minimize the interaction of HSV1716 with neutralising Ab because of MAG 

protecting the virus. 
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In chapter 5, we attempted to understand whether MAG will improve targeting of OV in the 

presence of external magnetic field gradients and examine whether our complex could 

stimulate immune effector cells in an in vivo model. All the previous studies relied on direct 

injection of the magnetised viruses into the tumour and the presence of an external magnet 

really only served for retention of the therapy within the tumour rather than its delivery. 

Whereas in this study, MAG associated with HSV1716 was used to target MAG-OV from 

circulation to mammary tumours in mice. We showed that MAG-OV resulted in a significant 

change in average tumour volume, increased mouse survival and a reduction in pulmonary 

metastasis compared to the others treatment groups. We have shown that MAG-OV guidance 

into tumours is effective but does not completely eradicate tumour growth once the therapy has 

ceased. This means that the therapy is not so effective alone and should be combined with other 

cancer treatments or that the virus would need to be given continuously. This is the first time 

we have seen efficacy of HSV1716 in the EO771 model of cancer. From our observation, the 

virus on its own is not particularly effective compared to the untreated group. However, by 

using an external magnetic field this improves the anti-tumour efficacy of the virus most likely 

because the virus is reaching the tumour in greater numbers. 

Interestingly, we found a significant increase in the percentage of HSV1716-GFP in the MAG-

OV with magnet treatment group compared to the all other groups after day 3 of treatment and 

also at the end of the experiment (day 23) using flow cytometry and immunofluorescence 

staining (Figure 5.3A&B). Suggesting that MAG under the guidance of the external magnet 

could deliver the virus to the tumour. To confirm that the reduction in tumour size of MAG-

OV treatment group observed in Figure 5.2B, was in response to HSV1716 replication the 

mRNA expression of viral replication genes within EO771 tumour cells were measured using 

qPCR.  Moreover, we found mRNA expression of these genes in the tumour tissue was 

significantly higher in the MAG-OV group than in the OV only and control groups (Figure 

5.4). Suggesting that the MAG did not prevent viral replication and the OV was able to 

complete its life cycle within EO771 tumour cells. In doing this, MAG-OV also increased 

tumour necrosis and immunogenic cell death. Interestingly, the number of pulmonary 

metastasis was significantly reduced in mice that received MAG-OV compared to those treated 

with PBS (Figure 5.5E). The number of pulmonary metastasis was also reduced in mice that 

received MAG-OV compared to those treated with OV alone, but this change was not 

significant.  Suggesting that MAG-OV therapy of the primary tumour could reduce the number 

of metastases in the lungs. 
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The study then addressed whether MAG-OV could induce anti-tumour immunity. Nanostring, 

flow cytometry and immunofluorescence staining analysis revealed that magentically guided 

MAG-OV signefecantly incresed the  number of T cells and myeloid cells. The data suggest 

that MAG-OV increased the infiltration of immune cells. Then, it was important to measure 

the activaton status of CD3+ CD8+ cells. Therefore, we tried to measure the expression of both 

IFN-γ and PD1 to assess T cell activation after MAG-OV therapy.  Our data suggested that  

Cytotxic T cells (CD8+) had elevated IFN-γ and PD1 expression following MAG-OV targeting 

into tumours compared to mice treated with PBS or naked OV (Figure 5.11). This data suggests 

that MAG-OV induces T cell activation and this is important for induing anti-tumour 

immunity.  

Finally, we aimed to determine whether MAG was able to protect OV against neutralising Ab 

in vivo following injection into the circulation. Interestingly, we showed that a significant 

change in average tumour volume was observed in mice receiving MAG-OV+NAb with 

magnet compared to the mice receiving OV+NAb or PBS on day 12 after treatment (Figure 

5.12A). Figure 5.12B showed most of the mice in the MAG-OV+NAb group resulted in a 

significant increase in survival compared to the others groups. This was also associated with 

an increase in GFP expressing virus in the MAG-OV treated group. This data suggests that 

MAG-OV could reduce the interaction of OV with neutralising Ab because of the shielding 

provided by the MAG. 

This study represents a novel therapeutic approach for delivering OV to tumours in circulation 

whilst protecting the virus from unwanted immune attack. Not only does this overcome the 

challenge of systemic delivery of OVs it also provides an opportunity for many cancer types to 

be treated particularly those cancers that are not responsive to conventional therapies or the 

new exciting immunotherapies (e.g. checkpoint inhibitors) due to the low abundance of 

immune cells within the tumour. This particularly applies to breast cancers which are thought 

to be immunologically ‘cold’.  MAG-OV provides the opportunity to re-programme the tumour 

microenvironment to be immunologically ‘hot’ (have more activated T cells) and therefore 

responsive to immunotherapies. The combination of MAG-OV with such immunotherapies is 

exciting and will no doubt be explored in the future. 

6.2 Limitations of studies  

One of the limitations of this study is that cultures of MTB often took weeks to grow and 

resulted in a low yield of magnetite that limited the number of experiments that could be 
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performed. Therefore, it would be important to use different strategies for cultivation of MTB 

in the future. The use of bioreactors is an attractive alternative and could produce much higher 

magnetite yields. A previous study showed that magnetosome production of the marine 

magnetotactic vibrio Magnetovibrio blakemorei strain MV-1 could improve using statistics-

based experimental factorial design (Silva et al., 2013). They obtained maximum magnetite 

yields of 64.3 mg/liter in batch cultures and 26 mg/liter in a bioreactor. Recent study also 

showed that  the growth and magnetosome production of the of Magnetospirillum 

gryphiswaldense MSR-1 could optimize using simple pH-stat fed-batch fermentation strategy 

(Fernández-Castané et al., 2018). The highest biomass concentration, which was an optical 

density at 565 nm of 15.5 (equivalent to 4.2 g DCW·L−1), and the highest cellular iron content, 

which was 33.1 mg iron·g−1 DCW, were obtained.  

Another limitation to this study is that we relied on a change in cell size to confirm uptake of 

the MAG by the cells. The uptake and accumulation of MAG within mammalian cells has not 

been well studied. Cypriano et al., recently showed that following magnetosome uptake by 

HeLa cells the magentosomes were either inside or outside the cell’s endosomes (suggesting 

different routes of internalisation) and that they persisted in culture for 120 h without any 

structural or chemical change. Furthermore, no toxicity to the Hela cells was observed. This 

was carried out using transmission electron microscopy and high spatial resolution nano-

analysis techniques (Cypriano et al., 2019). We did use TEM and detected MAG both in the 

cytoplasm and in the vesicles of the cell (e.g. endosomes). However, it would have been 

interesting to both quantify and visualise MAG uptake by MDA-MB-231 by fluorescence 

uptake using flow cytometry and immunofluorescence microscopy and to track this over time. 

This could be achieved by fluorescently labelling the MAG (e.g. fluorescent dyes or infrared 

probes) and carrying out time-lapse microscopy. It would also have been interesting to 

determine what the fate of the MAG and virus was after cell uptake. By labelling the MAG we 

could have performed co-localisation studies using antibodies to cytoplasmic components such 

as the endosomes and lysosomes and high-resolution confocal microscopy. A post-doctoral 

researcher (Dr Faith Howard) in our group has recently demonstrated that the MAG can be 

labelled with DiD (lipophilic carbocyanine DiD) and detected by both flow cytometry and 

immune fluorescence.  

Another important consideration for biomedical application is the level of endotoxins on MAG. 

Since these are extracted from gram negative magnetotactic bacteria they are likely to possess 
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endotoxins at their surface. To reduce endotoxins the MAG were washed extensively however, 

it would be useful to quantify remaining endotoxins using the Limulus amebocyte lysate (LAL) 

assay but due to the time limitation, it was not possible to achieve during this study but is 

currently being investigated by other group members. 

Another limitation of this study is that the interactions between the OV and MAG were not 

quantified in this study. For example, the concentration of bound virus. Quantification of bound 

virus and unbound virus could be estimated via titration of the supernatant containing free virus 

using a plaque assay. This can then be compared to the MAG-OV after magnetic selection.   

In the neutralisation studies we used sheep serum to inhibit the oncolytic activity of HSV1716. 

Other approaches could be used such as using human serum derived from blood of patients or 

health volunteers. A comparison of serum with high, medium or little/no HSV antibodies could 

be compared to assess MAG-OV neutralisation.  Using breast cancer patient derived serum 

could provide valuable information on the clinical applicability of this approach.  

6.3 Future work 

In future, it would be useful to create a stable MAG-OV complex using new conjugation 

techniques, such as antibodies or chemical linkers. Already in our group research using 

Genipin, a chemical compound found in gardenia fruit extract. This is an excellent natural 

cross-linker for proteins, collagen, gelatin and chitosan. Others are looking into antibodies on 

the surface of the OV (e.g. HSV-1 gB Antibodies) and creating virus-antibody-magnetosome 

linkers. Here it is important to select an antibody that does not interfere with viral infection or 

replication.  This would help in the development of a stable complex that has the potential for 

long-term storage and would be attractive to the pharmaceutical industry. It would also be 

interesting to experiment with magnetosomes from different strain of MTB, particularly those 

with different shapes. It could be that MAG of different shapes lead to better binding with the 

virus. 

In addition, this study only used the Eo771 model of mammary carcinoma. It would be useful 

to administer our magnetic viral complexes in other breast cancer models (e.g. TS-1 derived 

from polyoma middle T antigen (PyMT) mice) (Tan, 2014) or a humanised model of breast 

cancer (Arendt, 2016).  Using breast cancer models that reflect the different subtypes of breast 

cancer could provide information on response to this therapy.  As metastasis is the major cause 

of breast cancer mortality (Scully et al., 2012). Targeting breast tumours in common metastatic 
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sites (e.g. brain, lungs, and bone) should be considered in the future. For example, intracardiac 

injection of (E0771/Pa) results in bone metastases in C57BL/6 mice within 2 weeks (Hiraga 

and Ninomiya, 2018). Whilst this route of administration enable colonisation studies at specific 

sites without complications of primary tumour growth, it is an artificial route of administration 

that requires the implantation of large tumour cell numbers. 

Finally, combining MAG-OV therapy with anti-programmed death protein 1 (PD-1) or anti-

PD-L1) antibody therapy would be also interesting. Particularly, given that we showed a 

significant increase in the number of T cells expressing PD-1 after MAG-OV infection. The 

presence of checkpoint inhibitors within the tumour will lead to inactivation of the T cells and 

this offers a possible explanation as to why our complex did not show complete tumour 

inhibition. Using MAG-OV to recruit T cells and turn a tumour from ‘cold’ to ‘hot’, followed 

by checkpoint inhibitors could ultimately lead to a new clinical approach for treating breast 

cancer.  
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Appendix 

Table 1: The physicochemical properties of the MNPs  

Samples Diameter (nm) Electrokinetic 

potential (mv) 
Magnetic 

susceptibility (SI) 
Iron content 

(mg/l)  

MAG 46 ± 5 - 9 ± 2.3 8.164e-5 0.17 ± 0.5 

10%PEI90%SF 

MNPs  

70 ± 10 28 ± 8.3 4.635e-5 1.13 

50%PEI50%SF 

MNPs 

180  ± 16 47± 10.4 5.7166e-5 0.67 

100%PEI MNPs 101  ± 13 68± 2  8.3362e-5 3.1 

100%SF MNPs 77 ± 35 -23 ± 1.5  6.5280e-5 1.1 
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Figure 1: High-resolution Transmission electron microscopy. A TEM images of AMB-1 

magnetotactic bacteria, grown in cabinet within micro-anaerobic conditions in 1% O2 gas and 99% 

nitrogen at 30.1 C° in liquid culture medium which is specific to AMB-1 bacteria (Left image: scale 

bar-0.2um). Magnetosomes were purified from AMB-1 and displayed typical cuboidal crystal shapes 

(Right image: scale bar-100nm). B The SF100%, SF10% PEI 90%, SF50%PEI 50% and PEI 100% 

coated MNPs were much more dense and appeared on top of each other (scale bar-50nm).  
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Figure 2: MNPs are internalised by MDA-MB-231 cells. MDA-MB-231 cells were incubated with 

0.3mg/ml coated MNPs and purified magnetosomes for 24 hours A Flow cytometrical analysis of cells 

revealed uptake of coated MNPs (SF100%, SF 50%PEI 50%, SF 10% PEI 90%, PEI 100%) and 

magnetosomes resulted in an important increase in cell size and granularity compared to the control 

(untreated cells). Data are the mean ± SEM of n=3. B Representative Prussian blue images of MDA-

MB-231 cells incubated with coated MNPs and magnetosomes. Dark blue staining is the presence of 

the Prussian blue; pink is the eosin. This was taken at 40 x Magnification using light microscopy. 
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Figure 3: MDA-MB-231 viability following incubation with MNPs. MDA-MB-231 cells were 

incubated with coated MNPs and purified magnetosomes for 24 hours. Cells were collected and flow 

cytometry as used to evaluate cell death by the addition of PI immediately prior to analysis. A Cell 

death (PI+ cells) in the presence of MNPs coated with 50% and 100% PEI was significant when 

compared to the control B MTT assay also revealed a significant difference between the control and 

MNPs coated with 50%PEI/50%SF (P ≤ 0.05and 100% PEI (P ≤ 0.01). No significant change in cell 

viability was noticed in the presence of 10%PEI90%SF MNPs or magnetosomes. Data are the mean ± 

SEM of n=4  
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