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Abstract 
Pre-operative planning in total knee and hip arthroplasty is important for 

surgical outcome and patient satisfaction. Current clinical gold standards for pre-

operative planning include imaging methods which are invasive to the patient and 

limited to one position of analysis. Lower limb and pelvic alignment are assessed in 

planning for total knee and hip arthroplasty respectively and have shown to vary in 

their measurements between standing and supine. B-mode ultrasound has shown to be 

a promising method for gaining superficial structures like muscles and bones. B-mode 

ultrasound can be performed rapidly and is relatively cheap and measurements can be 

conducted with the patient in various positions. The aim of this thesis is to establish 

non-invasive protocols for pre-operative planning in knee and hip surgeries.  

Several approaches were developed to non-invasively measure lower limb and 

pelvic alignment. These consisted of using integrated motion capture and ultrasound 

system (OrthoPilot, Aesculap). A smart system (Aesculap) which consisted of a smart 

phone, smart tablet and ultrasound device was used to measure pelvic tilt from the 

anterior pelvic plane. A motion capture system on its own was used to measure the 

pelvic tilt in alternative manners. And finally, a synchronised ultrasound and motion 

capture setup was used for three-dimensional reconstructions of bone geometries. 

Supine and standing measurements were conducted which showed the flexibility of 

the measurements unlike common alternatives (X-Ray, MRI, CT). 

Several operators performed precise measurements of key lower limb 

parameters. For example, varus-valgus was shown to be measured within 1 degree 

across operators. Femur and tibia segment lengths were also consistent (<5mm 

maximum variation between operators). Femur and tibia torsion measurements were 

less reliable (up to 10-15 degrees of variation between operators). Pelvic tilt 

measurements were also found to be unreliable regardless of the measurement 

technique. Initial promise and feasibility of three-dimensional reconstructions of all 

lower limb joint axis for implementation into musculoskeletal models was also shown. 

Joint contact forces differences between the implementation of MRI and ultrasound 

parameters into the models were less than 1 body weight. 
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Overall, ultrasound has shown to be useful in the assessment of lower limb 

parameters and bone geometries. This work has built upon previous findings to 

continue its development in the field of pre-operative planning and musculoskeletal 

modelling. Further work will include a large validation of subject-specific 

musculoskeletal modelling from ultrasound reconstructions. Improvements to the 

lower limb assessment with OrthoPilot will also be investigated. 
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Nomenclature 

LLA - Lower limb alignment 

PT - Pelvic tilt 

MRI - Magnetic resonance imaging 

CT - Computed tomography 

US - Ultrasound 

GRF - Ground reaction forces 

TKA - Total knee arthroplasty 

THA - Total hip arthroplasty 

AJC - Ankle joint centre 

KJC - Knee joint centre 

HJC - Hip joint centre 

APP - Anterior pelvic plane 

SD - Standard deviation 

ICC - Intra-class correlation coefficient 

MSK - Musculoskeletal  

OA - Osteoarthritis  
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 Chapter I 

Introduction  

1.1 Background 

Pre-operative planning for total knee and hip arthroplasty has always been an 

essential part of the surgical period. The analysis performed has considerable impact 

on the decision-making during surgery and therefore the post-operative outcome and 

most importantly, satisfaction of the patient. The demand for both procedures in the 

USA and UK has been predicted to rise exponentially in the next few decades (Kurtz, 

2007; Culliford et al., 2015). Without substantial surgical and prosthesis 

improvements, these authors also suggest that revision rates will remain stable, 

meaning potentially larger burdens on healthcare systems. Kurtz et al. (2005) showed 

in the USA, from 1990-2002, significant increases in total hip arthroplasty (THA) and 

total knee arthroplasty (TKA) surgeries and subsequently, revision procedures. The 

percentage of THA and TKA cases which required revision surgery were 16.3% and 

7.8% respectively in 2005 (Kurtz, 2005). THA will require more attention with respect 

to decreasing the amount of revision and current causes of extra surgery which have 

resulted in this high figure. These percentages are not predicted to decrease 

significantly (14.5% and 7.2% for THA and TKA revisions) up to 2030 (Kurtz, 2007). 

Therefore, as primary surgeries increase, large increases in revision procedures will 

also occur. In terms of the economic impact this translates to, a theoretical reduction 

of 1% in THA and TKA revision surgeries in 2002 would save between $96 million 

and $211.0 million for the USA health services. 

 In the UK, estimates based on exponential extrapolation of the past hip and 

knee arthroplasty data forecast large increases in surgery by 2035. Estimates range 

from approximately 98,000 to 1,100,000 estimated surgeries for THA in 2035 and 

110,000 to 1,200,000 for TKA surgeries (Culliford et al., 2015). It is likely the 

conservative estimation will highly underestimate the amount of procedures in 2035, 

therefore putting the real figure perhaps closer to the larger estimate. These figures for 
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the UK will put a high burden on the healthcare and pre-operative planning will be a 

crucial service.  

The impact pre-operative analysis has on patient outcome is slightly harder to 

break down. Identifying the reasons for failure is often not reported (Kurtz, 2005). A 

report on the Swedish population however, describes the main contributions for 

revision (Robertsson et al., 2001). The most common cause for revision in Sweden 

was implant loosening, which accounted for 44% of all cases (1411/3918). 

Interpreting this information, however, has its challenges as specific pre and post-

operative information, such as knee alignment was not described.  

For total knee arthroplasty, the Swedish Knee Arthroplasty Register showed 

that osteoarthritis accounted for 85% of all TKA surgeries between 1988 and 1997, 

meaning it’s by far the leading cause for undertaking the procedure (Robertsson et al., 

2001). The issue of knee mal-alignment, commonly described by the hip-knee-ankle 

angle, or lower limb alignment, is of continuous interest and its importance is debated. 

For example, there are many studies which show mal-alignment as a factor that 

accelerates the rate of osteoarthritis progression, whether the patient has a varus or 

valgus knee (Sharma et al., 2010). However, it is suggested that those who do not have 

osteoarthritis and have valgus aligned knees, are less likely to progress to osteoarthritic 

knees compared to those who have varus aligned knees (Sharma et al., 2010). This is 

therefore an important step to consider, and how much this natural alignment 

developed by the individual effects the post-operative walking habits. Normally, the 

patient will be realigned to 0°±3°, distributing the tibiofemoral loading evenly over 

the implant. This is currently the gold standard method, described as mechanical 

alignment restoration. However, its effectiveness has been questioned due to unnatural 

post-operative function (Bellemans et al., 2012). Other surgical methods, such as 

kinematic alignment have recently been proposed as a more robust re-alignment of the 

knee, which considers the pre-arthritic alignment of tibiofemoral parameters. 

Importantly, kinematic alignment is a dynamic and 3D alignment and can only be 

partially represented by a plain X-ray (Schiraldi et al., 2016).  

For total hip arthroplasty, the Swedish Total Hip Arthroplasty Register showed 

that osteoarthritis accounted for 75% of all THA surgeries between 1992 and 2000 

(Malchau et al., 2002). Like the knee, this restricts movement and causes continuous 
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discomfort for the individual. To optimise the implant orientation, and similarly to 

TKA, standing radiographs are the clinical gold standard for analysing the anatomy of 

the patient. A key issue is the amount of functional change in the acetabulum position, 

in the sagittal plane, between several key positions such as sitting, standing and supine 

(Pierrepont et al., 2017; Uemura et al., 2017; Philippot et al., 2009;). Optimum cup 

anteversion and inclination are sort after to avoid implant impingement or dislocation. 

By considering several positions, the surgeon can optimise the cup orientation during 

the surgery and not solely rely on a single position obtained from a standing 

radiograph. In many cases, the amount of acetabular cup orientation change between 

sitting and the surgical position (supine) is often a significant amount.  

Pre-operative planning for both surgeries have been based on radiographs since 

their inception. The importance of the information obtained from radiographs was 

recognised and was the primary source of pre-operative planning through the majority 

of the 20th century (Wiles, 1958; Shiers, 1960). Joint surgeries of the lower limb 

present a continuous challenge to the global community. Non-invasive pre-operative 

planning is still a novel concept, as the diagnostic capabilities of X-rays which 

commonly lead to a positive outcome, greatly outweigh the potential harm they cause. 

However, the potential for non-invasive alternatives which can accurately measure 

lower limb and pelvic parameters could remove the need for invasive imaging 

techniques.  

1.2 Aims and Objectives 

The aim of this thesis is to establish non-invasive protocols for pre-operative 

planning in knee and hip surgeries with the use of ultrasound and motion capture 

technologies. Measurements included detecting several lower limb internal and 

palpable external anatomical landmarks to quantify knee varus-valgus and pelvic tilt 

for knee and hip surgeries respectively.   

To this purpose, the following objectives were defined: 

• Testing the capability of a prototype system based on motion capture and 

ultrasound to provide accurate and reliable data for pre-operative planning in 

knee replacement. 
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• Testing the capability of a prototype system based on motion capture and 

ultrasound to provide accurate and reliable data for pre-operative planning in 

hip replacement. 

• Use the knowledge gained by the previous two investigations to develop a new 

combined protocol for the estimate of both knee and hip pre-operative 

planning, which could also be used in the framework of patient-specific 

musculo-skeletal modelling. 

According to this context, the thesis is structured as follows:  

Chapter II: First, this chapter presents a brief overview of the common 

measurements used for joint alignment quantification throughout the thesis. Secondly, 

an explanation of the equipment and techniques for the measurements. Thirdly, a 

literature review summarising the gold standards of joint alignment measurements of 

the knee and pelvis and the current alternatives.  And fourthly, further literature on the 

quantification between different subject measurement positions; supine and standing 

for example.  

Chapter III: This chapter investigates the use of an integrated motion capture 

and ultrasound device to measure several lower limb parameters which are essential 

in pre-operative planning for total knee arthroplasty surgeries. This includes the 

measurement of lower limb alignment, femur and tibia torsion, and femur and tibia 

lengths. The experiments include an intra- and inter-operative reliability assessment 

on a phantom and small subject cohort to quantify operator dependency of the 

measurement process.  

 Chapter IV: This chapter proposes three approaches to quantify pelvic 

tilt, which is essential in pre-operative planning for total hip arthroplasty surgeries, 

using external, palpable landmarks on the pelvis. A combination of ultrasound and 

motion capture systems were used for the experiments. The first approach involved 

the use of an integrated ultrasound and motion capture setup for the measurement of 

pelvic tilt from the anterior pelvic plane (APP). The second approach performed the 

same measurement of the APP with the use of motion capture only. And the third 

approach quantified pelvic tilt from alternative palpable landmarks on the pelvis with 

motion capture only.  
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 Chapter V: This chapter examines the use of ultrasound and motion 

capture as a tool for image based musculoskeletal modelling, potentially replacing 

current techniques based on MR-imaging. Through 2D freehand ultrasound 

measurements of the hip and knee joints, tracked with a motion capture system, 3D 

reconstructions of the femur head, posterior femur condyles and talar dome were 

conducted on one subject to determine the joint rotation axis of the hip and knee. A 

sensitivity analysis on a subject specific musculoskeletal model was performed to 

assess the difference in output of gait simulations for the same subject in comparison 

to MR-imaging inputs.  

 Chapter VI: The final chapter summarises each chapter, suggests how 

has influenced the individual fields of research and the limitations of the findings. 

Improvements to the current protocols and plans for future work are suggested. 
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 Chapter II 

Definitions and literature 

summary  

This chapter introduces the basic concepts of the thesis and discusses the 

relevant literature in the areas of pre-operative planning for total knee and hip 

replacements.  

2.1 Definitions  

Each chapter will focus on different anatomical measurements of the lower 

limb and consist of several approaches for their measurements. Table 2.1 shows a 

summary of each study and what approaches are taken. Following this are the basic 

definitions of the key parameters measured within each chapter.  

Lower limb alignment (LLA) is one of the most common parameters assessed 

in pre-operative planning for knee surgeries (Sharma et al., 2003). It is commonly 

defined as the angle formed between the mechanical axis of the femur and mechanical 

axis of the tibia in the frontal plane. The mechanical axis of the femur is measured as 

a line connecting the hip joint centre (HJC) and knee joint centre (KJC). The 

mechanical axis of the tibia is measured as the line connecting the KJC and ankle joint 

centre (AJC). Typically, the HJC is annotated as the centre of a circle fitted on the X-

ray to the femur head, the KJC as the trochlea notch of the femur and the AJC as the 

mid-point of the talus. This is how the joint centres are defined for the LLA in this 

thesis, though it varies slightly within the literature. This is visualised in Figure 2.1. 

The LLA angle is shown pre- and post-operatively for a high tibial osteotomy surgery.  
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Table 2.1. Summary of the three main studies  

Chapter Hypothesis Instruments Protocol 
Subjects/ 

Operators 
Parameters 

III Reliable 

measurements 

of lower limb 

parameters with 

ultrasound in 

supine and 

standing 

positions  

• OrthoPilot 

(Aesculap) 

consisting of an 
ultrasound and two-

camera infrared 

system 

• Phantom 

(Aesculap); a 
precision machined, 

two segment plastic 

device of non-

realistic human 

lower limb 

geometries (all 
dimensions known) 

 

• Nine ultrasound 

images of the 

lower limb were 
gained to measure 

6 lower limb 

parameters 

• This was 

performed on the 
phantom first and 

then on a small 

healthy subject 

cohort 

• Phantom 

measurements: 

4 operators 

• Subject 

measurements: 
3 operators, 3 

subjects  

• Subject 

measurements: 

1 operator, 9 
subjects  

 

• Varus-valgus, 

flexion-extension, 

femur and tibia 
torsion and 

segment lengths  

IV Reliable 

measurements 

of pelvic tilt 

(PT) through 

several different 

approaches 

• Portable smart 

system (Aesculap; 

iPhone, surface 

tablet, ultrasound 
device) 

• Motion capture 

system (10 camera 

Vicon) 

• Palpating wand for 

anatomical 

landmark detection 

• Measurements of 

PT with respect to 

the anterior pelvic 

plane (APP) with 
the smart system  

• Measurements of 

PT with motion 

capture of the 

same parameter as 
the smart system 

(APP) and 

quantification of 

PT in separate 

approaches from 

the measurement 
of other palpable 

pelvic landmarks 

• Phantom 

measurements: 

1 operator  

• Subject 

measurements: 

Up to 4 
subjects, 1 

operator  

• PT measurements 

with respect to 

the anterior pelvic 

plane 

• PT measurements 

with respect to 
the iliac crest 

height difference 

V Measurements 

of joint axis 

from ultrasound 

measurements 

can potentially 

replace 

measurements 

currently 

performed from 

MRI 

• Synchronised 

motion capture (10-

camera Vicon) and 
ultrasound system 

• A femur phantom 

(plastic) of realistic 
geometries but void 

of mimicking soft 

tissue  

• Freehand sweeps 

of the ultrasound 

probe were 
performed on a 

phantom and on 

one healthy 
subject 

• Phantom 

measurements: 

1 operator 

• Subject 

measurements: 

1 operator, 1 
subject  

• Hip, knee and 

ankle joint axis 

 

Femur torsion and tibia torsion are defined in the transverse plane and are 

commonly assessed in hip and knee surgeries, and typically measured by MRI scans 

(Kulig et al., 2010). Femur torsion is defined from the difference between a vector 

formed by the femur neck axis and posterior condylar axis in the transverse plane. 

Tibia torsion is defined as the difference between a vector formed by the tibia plateau 

and the anterior distal tibial in the transverse plane. Both these parameters are show in 

Figure 2.2.  

Naturally, from the measurements of LLA, femur and tibia lengths are defined 

as the distances from the HJC to the KJC and KJC to AJC respectively.  
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Figure 2.1. Lower limb alignment difference between pre-operative (left) and post-operative (right) high tibial 

osteotomy surgery (Durandet et al., 2013). A large proportion of the tibiofemoral load is on the medial section of 

the knee joint, this is known as a varus knee. A more equal load distribution is shown on the right post-operatively.  

 

Figure 2.2. Femur (sections 7 and 9) and tibia (sections 10 and 11) torsion shown with respective transverse views 

of the axis needed to calculate the parameters (Michaud, 2011).  

α 
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Measurement of pelvic tilt (PT) is a key process in the pre and intra-operative 

parts of total hip arthroplasty (Lewinnek et al., 1978; Gajdosik et al., 1985; Anda et 

al., 1990). This parameter (Figure 2.3), amongst others such as the sacral slope (SS) 

and pelvic incidence (PI), is used to estimate the angle of the acetabular cup during 

THA. The three parameters are related in the following way:  

 𝑃𝐼 =  𝑆𝑆 + 𝑃𝑇 (2.1) 

The gold standard measurement is performed on radiographs and is defined as 

the angle between a tangent drawn from the centre of the femoral head to the S1 mid-

point, and the coronal plane. This is shown in Figure 2.3.  

 

Figure 2.3. Schematics of three sagittal pelvic parameters which help surgical decision making. The sacral slope 

(SS) is defined as the angle between the sacral endplate, S1 tangent, and the transverse plane. Pelvic tilt (PT) is 

defined as the angle between a tangent drawn from the centre of the femoral head to the S1 mid-point, and the 

coronal plane. Pelvic incidence (PI) is the sum of the previous two angles but is defined anatomically by the angle 

formed by a line perpendicular to the sacral endplate tangent and a line from the centre of the femoral head to the 

sacral endplate midpoint. Figure adapted from (Oh, Chung and Lee, 2009). 

Measurement techniques which cannot obtain internal landmarks such as the 

S1 mid-point, rely on different PT definitions. Three other definitions will be defined 

here. Firstly, PT can be defined with respect to three palpable points on the pelvis 

which form the anterior pelvic plane (APP). The three points are the left and right 

anterior superior iliac spines (LASIS, RASIS) and the pubic symphysis (PS). The PT 

is then defined as the angle between the APP and the coronal plane. This is shown in 

Figure 2.4.  

S1 Tangent 
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Figure 2.4. Pelvis schematic showing the three key landmarks which define the Lewinnek plane (shaded in green) 

or also known as the anterior pelvic plane (APP). These are the left and right anterior superior iliac spines (LASIS 

and RASIS) and the pubic symphysis (PS). In this schematic, the pelvis coincides with the coronal plane, i.e. 

showing no pelvic tilt either anteriorly or posteriorly. The posterior iliac spines (PSIS) are also shown in this 

diagram as they can also be used to estimate the tilt of the pelvis. 

Secondly, PT can be defined from the pelvic plane, formed from the LASIS, 

RASIS, and the left and right posterior iliac spines (LPSIS, RPSIS). PT is then defined 

in the sagittal plane as the angle between the plane formed from the four pelvic 

landmarks and the transverse plane. This is shown in Figure 2.5.  

 

 

PSIS 

PS 

RASIS 

LASIS 

Lewinnek plane (APP) 
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Figure 2.5. Transverse plane and pelvic plane (formed by the right and left anterior and posterior iliac spines). The 

angle between the two planes in the sagittal plane is the pelvic tilt. The angle between the two planes in the frontal 

plane is the pelvic obliquity.  

Thirdly, measurements are performed with respect to iliac crest height 

difference, the calculations were performed in a similar fashion to Gajdosik et al. 

(1985) and visually shown in Figure 2.6. In brief, it follows a trigonometric calculation 

as:  

 𝑠𝑖𝑛𝜃 =  
𝑠𝑖𝑑𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 (2.2) 

where 𝑠𝑖𝑑𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 is the height difference between the PSIS and the floor 

and the ASIS and the floor, and the ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 was the distance between the PSIS 

and ASIS (Gajdosik et al., 1985). The left and right anterior and posterior iliac spines 

are investigated individually as shown in Figure 2.6.  

Transverse 

plane 

Pelvic plane 
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Figure 2.6. Sagittal plane view of the pelvis. The difference in the height of most posterior point (PSIS) and most 

anterior point (ASIS) of the pelvis is shown. Theta represents the PT measured from this method and in this 

example, the pelvis is anteriorly tilted.  

  

PSIS 

ASIS 

θ 

∆ in crest height  
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2.2 Measurement Techniques 

2.2.1 Ultrasound imaging 

A recurring theme throughout this thesis is the use of B-mode ultrasound for 

anatomical measurements. B-mode ultrasound is ideal for medical imaging as 

superficial anatomical features such as muscles, tendons and bones can be measured 

with relative ease. Each chapter uses the same ultrasound technology. A key limitation 

is that ultrasound is dependent on the expertise of the operator. Another limitation is 

that deep structures are difficult to image. However, its portability, non-invasiveness 

and relative cost to other imaging methods are highly advantageous. A single 

ultrasound image of the femur head is shown in Figure 2.7.  

 

 

Figure 2.7. Ultrasound image of the femur head with the probe positioned transversely.  

2.2.2 Motion capture 

Equally common throughout the thesis is the use of motion capture 

technologies. This is broken down into three separate technologies, with three 

different systems (or a combination of the three) used in Chapters 3, 4 and 5 

respectively. Each system identifies retro-reflective markers to track the positions of 

the ultrasound probe and subject to gain their positions in three-dimensional space. In 

Chapter 3, a two-camera, Polaris (NDI Polaris Spectra optical tracking system) camera 

Depth (into body) 

Image width  
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system is used with sub-mm accuracy and is pre-dominantly used in intra-operative 

navigation surgeries. Its main advantage is its accuracy and relative portability which 

can be used in surgical theatres. Its main disadvantage is its field of view which is 

limited to 2-3 metres. In Chapter 4, two motion capture systems were used. Firstly, a 

smart system, which consisted of an iPhone for the detection of the reflective markers. 

A key limitation is that it only has one camera for the detection of markers in 3D. This 

relies on a robust calibration procedure which is partly investigated in this thesis. Its 

portability and cost, however, is a key advantage. And secondly, a comprehensive, 10 

camera Vicon motion capture system. In Chapter 5, the same Vicon motion capture 

system was utilised for the measurements. The main disadvantage of this system is its 

cost. However, it is the gold standard in motion capture technologies. 

2.2.3 Musculoskeletal models  

A subject-specific musculoskeletal model was built in Chapter 5 using 

OpenSim for the simulation of gait to calculate internal joint contact forces (JCF) of 

the hip, knee and ankle (Delp et al., 2007).  

2.3 Literature Review  

2.3.1 Measurement alternatives for lower limb alignment  

The drive for pursuing other planning methods is high, and alternative, non-

invasive methods are emerging more prominently in a clinical setting. Several other 

techniques exist which have also been used for pre-operative analysis. Imaging 

methods such as CT-scans and MR-imaging have been thoroughly validated against 

radiographs which are still considered the clinical gold standard for lower limb 

alignment measurements (Liodakis et al., 2011; Winter et al., 2014). MR-imaging is 

a relatively common procedure, which is performed in clinical settings, however a 

main disadvantage is the expense per scan. CT-scans subject the patient to radiation, 

meaning it is not ideal for pre-operative evaluation and repeat measurements.  

Easily obtaining information between weight bearing and non-weight bearing 

positions currently relies on multiple imaging techniques and have not been 

extensively researched (Brouwer et al., 2003; Specogna et al., 2006; Sabharwal et al., 

2007). The lack of flexibility in the measurement of subjects potentially inhibits a full 
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understanding of LLA in terms of everyday functionality. However, EOS, a relatively 

new X-ray imaging device which has a significantly lower radiation dosage compared 

to standard radiographs, can analyse subjects in various positions. This is a significant 

advantage, but does not operate in the supine position (Lazennec et al., 2011; Escott 

et al., 2013). The device uses the invention of Professor Georges Charpak who 

developed a gaseous particle detector with a multi wire proportional chamber which 

limits the dosage of X-rays subjects are exposed too. The technology provides both 

anteroposterior and lateral, full body scans which can then be reconstructed into 3D 

with their SterEOS software. However, the reconstruction is not automatic and 

requires training Its current availability for clinical measurements however, is limited 

due to its market access (Meijer et al., 2016).  

Three dimensional motion capture has become an increasingly popular choice 

for LLA during motion and has been integrated with experiments when gait analysis 

is performed pre- and post-operatively for patients (Hunt et al., 2008; Mündermann et 

al., 2008; Vanwanseele et al., 2009; Duffell et al., 2014). By measuring the varus-

valgus over a gait cycle, a dynamic interpretation can be made and potentially give the 

surgeon a greater understanding of dynamic changes in LLA. However, methods 

quantifying parameters such as LLA from skin marker measurements have been 

questioned over their accuracy. Soft tissue artefact presents a consistent challenge in 

motion capture research within biomechanics, and certain compensation techniques 

have been investigated (Rouhandeh et al., 2014). Certain landmarks, such as the HJC, 

rely on accurate measurements of external landmarks, or functional calibration 

techniques. The propagation error for quantifying lower limb parameters is extreme if 

the measurements are not performed correctly (Stagni et al., 2000; Chiari et al., 2005; 

Fiorentino et al., 2016). Therefore, limitations currently exist in the interpretation of 

measurements performed from skin marker measurements. Removing the error 

produced from soft tissue artefact with ultrasound is a relatively novel approach and 

has been investigated by several researchers (Rouhandeh et al., 2014; Jia et al., 2016; 

Niu et al., 2018). Whilst these areas are progressing the use of ultrasound in dynamic 

tasks, the use of ultrasound for static lower limb alignment measurements has only 

recently progressed (Greatrex et al., 2017; Kochman et al., 2017). 

Hinman et al. (2006) presented five clinical measures of the LLA to find a 

valid method of the measurement compared to radiographs. Calliper, plumb-line, 
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inclinometer, goniometer and Magee’s method were all performed with the subjects 

standing and compared against standing radiographs (Hinman et al., 2006). These 

methods provided cheap and easy to use methods for LLA assessment compared to 

lower limb and knee radiographs. Forty patients with OA were assessed and out of the 

5 clinical measures used, the inclinometer demonstrated the strongest correlation with 

the mechanical axis measured from the radiographs (r = 0.8, p < 0.001). This method 

involved measuring the orientation of the tibia with respect to the vertical, however, it 

does not consider the orientation of the femur. The results of the inclinometer and 

standing radiographs were 176°±3° and 174.2°±4.9° respectively (varus as < 180°). 

Their sample size and consequent population average for the LLA compares well with 

another study who performed a large prospective study on 236 patients and measured 

a mean LLA alignment of 5.4°±3.5° (varus as positive) (Cahue, et al., 2003). This also 

compares to a study who investigated self-reported knee confidence and its association 

with varus-valgus, amongst other knee OA indicators, and found a mean LLA 

alignment of 176.8°±3.5° (varus as < 180°) in 100 patients measured on standing 

radiographs (Skou et al., 2014). 

Inclinometers and goniometers have also been used in other studies of LLA 

(Vanwanseele et al., 2009; Deep et al., 2016). One study performed a simple clinical 

measurement which involved measuring the LLA with a goniometer (Deep et al., 

2016). This was compared with two reference measurements; standing radiographs 

and an intra-operative navigation system. The differences between the clinical 

measurement and the two reference measurements were 0.8° (range: -12° to 12°) and 

0.3° (range: -10.5° to 9°), where positive indicates an over estimation with respect to 

the reference. However, the authors maintain that the clinical method is an estimate of 

the true deformity with a very wide error margin (Deep et al., 2016). Another study  

measured the mechanical axis during gait analysis and compared their results to 

standing radiographs, and inclinometer measurements (Vanwanseele et al., 2009). The 

mean mechanical axis measurements for the three techniques respectively were 

4.6°±6.5°, 0.7°±7.2° and 0.06°±3.6°. Similarly, however, only 11 patients were 

enrolled in this study, meaning comparing results with other studies may be limited. 

Previous studies have successfully measured leg length discrepancy and femur 

torsion values with ultrasound in the past (Terjesen et al., 1991; Hudson et al., 2006; 

Kulig et al., 2010b). Studies which integrate motion capture have investigated lower 
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extremity parameters such as hip joint centre calculations and torsion measurements, 

but not extensive analysis of lower limb alignments (Hicks & Richards, 2005; 

Upadhyaya et al., 2015; Passmore et al., 2016). Despite being very encouraging for 

further exploitation of the techniques, none of these studies provided a thorough 

analysis of all the variables that might be needed for fully determining lower limb 

alignments for pre-operative planning. 

2.3.2 Sensitivity of lower limb alignment to subject positioning  

During pre-operative analysis to obtain the LLA and other parameters, it is 

debated whether this should be conducted in supine, as the subject will be during 

surgery or as is most common, in standing. The literature on the amount of change 

between different positions is extensive. Typically, research has focussed on supine 

and standing positions, but gait analysis has also been conducted to quantify dynamic 

changes. A summary of the findings in this section is shown in Table 2.1.   
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Table 2.2. Literature findings for measurements of lower limb alignment and differences between various postures. 

Group Author Methods 
Subjects/ 

Operators 
Results Conclusions 

Large 

differences 

between 

positions of 

analysis 

Brouwer, 2003 Radiographs in 

supine and 

standing 

20 patients, 2 

assessors 

• 2° more varus deviation in the 

standing than in the supine  

• Intraobserver and 

interobserver variability were 
low, ICC = 0.98; 95% CI = 

0.94–0.99 and ICC = 0.97; 

95% CI = 0.94–0.99, 
respectively. 

• A WLR in supine is 

recommended for patients with 
abnormal laxity of the lateral 

collateral ligament  

• Supine radiographs are 

recommended 

Sabharwal, 

2008 

Intra-operative 

fluoroscopy, 

standing 

radiographs 

80 patients (102 

limbs). 46 pre, 

34 post. 1 

assessor 

• Mean difference of 13.4 mm 

for the mechanical axis 

deviation between standing 

radiograph and the 

fluoroscopic images 

• Surgeons can be confident of the 

estimation of the lower limb 

alignment with use of this method 

Mündermann, 

2008 

Motion capture, 

standing 

radiographs 

62 patients, 1 

assessor 

• Motion capture: 3.8± 4.7°; 

radiograph: 2.6±4.4° 

• For 90% of the knees, results 

for the same knee were within 

5.3° 

• Quantifying mechanical axis 

alignment using motion capture 

correlates well with the gold 
standard 

Vanwanseele, 

2009 

3D gait, 

inclinometer, 

standing 

radiographs 

11 patients (20 

limbs), 1 

assessor 

• Mean mechanical axis 

radiographs: 0.7° ± 7.2° 

• Mean HKA angle with the 

static 3D analysis technique 

was 4.6° ± 6.5° 

• The inclinometer and static trials 

are reproducible methods to 

estimate the mechanical alignment 
of the knee 

Duffell, 2014 3D motion 

capture, MRI, CT 

15 patients (CT 

+ MOCAP) + 9 

healthy patients 

(MRI + 

MOCAP) 

• 2–4° increase in knee 

adduction angle during gait 

when compared to static 
conditions  

• Static imaging alone appears 

insufficient to document the 

degree of functional knee 
adduction 

Winter, 2014 MRI & Standing 

radiographs 

45 patients, 3 

assessors 

• Lower limb alignment was 

identical in 10/45  

• Under- estimated in 31/45  

• Over-estimated in 4/45 (9%)  

• Supine MRI underestimates the 

degree of deformity at the knee 

join 

Deep, 2015  Non-invasive 

navigation 

measurements 

(OrthoPilot) 

132 healthy 

subjects (264 

knees), 1 

assessor 

• 2.2° ± 3.6° more varus in the 

standing position compared 
with supine 

• Implications for the assessment of 

alignment in TKA  

• Non-weight-bearing conditions 

may not represent weight-bearing 
scenarios 

Small 

differences 

between 

positions of 

analysis 

Hunt, 2008 3D motion 

capture, standing 

radiographs 

80 patients, 1 

assessor 

• Radiograph-based LLA: 

-4.8°±5.8°. Gait analysis 

based: -4.8°±6.0° 

• Variance (29%) in proposed 

measure of dynamic lower limb 

alignment  

Kornaropoulos, 

2010 

CT, functional 

assessment, 

regression method 

13 patients (15 

limbs), 1 

assessor 

• CT and Functional-mFTA 

predicted the mFTA angle to 
within 1°  

• The difference between the 

CT and Regression-mFTA 
was significant 

• The results suggest that the novel 

techniques are relevant for both 
clinical and scientific use 

Differences 

not 

quantified 

Hinman, 2006 Calliper, plumb-

line, inclinometer, 

goniometer, 

Magee’s method, 

radiographs  

40 patients, 1 

assessor 

• Inclinometer method 

demonstrated the strongest 
correlation with the 

mechanical axis 

• Inclinometer and calliper methods 

(varus only) methods shown to be 
valid alternatives to radiographs 

Boonen, 2016 Standing 

radiographs, CT 

Scan 

24 patients, 6 

assessors 

(radiographs), 1 

CT assessor 

• Means of 1.3°±1.5° and 

1.8°±2.1° between the 

deviations of the femoral and 

tibia components of the 
prosthesis 

• LLR are an adequate tool for 

analysing alignment of TKA 

components  

Deep, 2016 Clinical 

measurement, 

standing 

radiographs, intra-

operative 

navigation  

54 patients, 2 

assessors 

(radiographs) 

• Mean difference of the 

clinical measurement and 

radiographs was 0.8° (-12° to 

12°) 

• Mean difference of the 

clinical measurements and 

navigation was 0.3° (-10.5° to 
9°). 

• Potential that weight bearing 

measurements impacts alignment 

• Clinical measurement is a rough 

estimate of the true amount of 

deformity  
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Contrasting studies exist which investigate the changes in LLA. One study 

showed for radiographs in standing and supine, that there is a mean difference of 

2°±0.45° (range: 1°-3°) more varus deviation for the standing position (Brouwer et al., 

2003). Similar results were obtained in another study, but with MR-imaging for the 

supine analysis (Winter et al., 2014). They concluded that MR-imaging 

underestimates the deformity of the knee by an average of 2°±3° (range: 0°-8°). A 

greater spread of data is shown in this study which potentially limits the interpretation 

of the comparison. In contrast, another study compared up-right MRI scans to standing 

radiographs and showed comparable results (Liodakis et al., 2011). LLA angles of 

4.5°±4.4° and 4.1°±3.3° were found respectively for the two measurement techniques. 

This suggests that the under estimation found by Winter et al. (2014) was due to the 

non-weight bearing position of the subjects.  

Dynamic variation of the varus-valgus angle was assessed and their results 

were compared to static trials and CT scans in a patient population (Duffell et al., 

2014). The same protocol was applied to a healthy subject group, but their motion 

capture results were compared to MRI measurements. For all subjects, there was an 

approximate 2°-4° increase in knee adduction angle (KAA) during gait when 

compared to static conditions. Interestingly, KAA when measured in supine where 

significantly higher than those measured in the static standing posture measured with 

the motion capture system. The drawback of this study is the cohort size, 15 patients 

and 9 healthy subjects, meaning the results should be interpreted with caution (Duffell 

et al., 2014). A similar study was conducted with a larger cohort (62 patients) and 

compared the mechanical axis during gait analysis with standing radiographs 

(Mündermann, et al., 2008). For both methods, the mean mechanical axis was 

3.8°±4.7° for the gait analysis and 2.6°±4.4° for the radiographs. A key finding was 

that varus malalignment measured with the motion capture increased as OA severity 

increased (measured with Kellgren-Lawrence grades).  

Lower limb alignment of 132 healthy subjects was measured with an intra-

operative device OrthoPilot® (Aesculap, Tuttlingen), like the one shown in Chapter 3 

(Deep, et al., 2015). Supine and standing measurements were conducted. Whilst 

normally used to aid TKA, this device was used non-invasively to quantify the LLA. 

Certain functional tasks were performed with clusters attached to the subject so that 

the device could track the subject’s movements. With this, a pointer, handled by the 
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assessor was also tracked, and aided the palpations of bony landmarks. With this 

information, the LLA was measured and there was a mean of 2.2°±3.6° more varus in 

standing than supine (Deep, et al., 2015). This agrees with the previously described 

literature which shows supine measurements underestimate LLA. 

To optimise the knee implant, the correct alignment needs to be measured 

intra-operatively. Quantifying this is not rudimentary, but some novel techniques have 

been attempted. One such technique, using intra-operative fluoroscopy, was attempted 

(Sabharwal and Zhao, 2008). They retrospectively analysed 80 patients requiring 

various surgeries and baseline imaging was either pre- or post-operative and therefore 

split into two groups. They quantified the amount of LLA by assessing the mechanical 

axis deviation (MAD) which measured the perpendicular distance from the 

mechanical axis (line joining the HJC and AJC) to the mid-point of the tibial splines 

(defined as the centre of the knee in this case). The mean MAD for the standing 

radiographs was 7.1mm medial (range; 86mm lateral to 126mm medial) and for the 

fluoroscopy was 7.7mm medial (range; 74mm lateral to 136mm medal). This study 

analysed a relatively young population (80 patients, 88% are ≤ 18 yr.), and their main 

limitation was the implication of the fluoroscopy technique on obese individuals, 

which would likely be a large proportion of persons undergoing TKA in a typical 

population of patients (Sabharwal and Zhao, 2008).  
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2.3.3 Measurement alternatives for pelvic tilt  

The Palpation Meter (PALM, Performance Attainment Associates, St. Paul, 

MN, USA) has been a popular measurement method for performing anatomical 

measurements on the pelvis since 1998 (Hagins et al., 1998). This has included the 

assessment of leg length discrepancy by measuring the iliac crest height difference on 

both sides of the pelvis (pelvic torsion) and the measurement of the sagittal plane PT 

using the anterior and posterior iliac spines (Petrone et al., 2003; Herrington, 2011). 

Whilst these landmarks are regarded as simple to palpate over soft tissue, there is 

contrasting literature on the reliability of performing palpations on the pelvis 

(Cooperstein and Hickey, 2016). Specifically, low inter and intra-operator agreement 

on the palpation of the PSIS and ASIS landmarks has been shown (Kmita and Lucas, 

2008). Their rigorous experimental procedure, which focussed on the standardisation 

of the palpation techniques, was the highest scoring paper for overall quality 

(Cooperstein and Hickey, 2016). Four examiners participated, and a Cohen’s kappa 

score was calculated from their categorical results. Scores range from -1 to 1 with 

scores close to 0 showing no agreement and it considers the possibility of agreement 

occurring by chance. In this study, only one instance of a kappa score between two 

operators was found for the ASIS palpation, and none for the PSIS landmarks. 

Agreement was found to be irrespective of operator experience (Kmita and Lucas, 

2008). Their main limitation was the low sample sized used (n=9) which meant 

population-based assumptions could not be made. Their palpations were performed in 

the prone and supine positions only, whereas several studies have also assessed the 

palpation reliability in standing and sitting positions (van Kessel-Cobelens et al., 

2008). It was found that palpation of the PSIS landmarks in the sitting position within 

a cohort of pregnant woman to assess pelvic asymmetry was unreliable. Kappa scores 

were consistently below 0.5 after a similar categorical measurement procedure was 

used (Kmita and Lucas, 2008; van Kessel-Cobelens et al., 2008).  

A similar method assessed the reliability of measuring the PT with a digital 

pelvic inclinometer (DPI, Sub-4 Limited, UK) (Beardsley et al., 2016). This involved 

simultaneously palpating the anterior and posterior iliac spines and reading off the 

angle in the sagittal plane as the pelvic tilt. This method is appealing as it is fast and 

efficient. Like this, but measured slightly differently, is research conducted by 

measuring the PT by palpating the posterior and anterior superior iliac spines and 
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simultaneously measuring the distance from each landmark, to the floor (Gajdosik et 

al., 1985). This method allowed the calculation of a height difference between the 

most posterior and anterior points on the pelvis and consequently, a pelvic angle 

(Gajdosik et al., 1985). Intra-operator reliability was good with Pearson coefficients 

of 0.88 for the standing pelvic tilt tests. Imposed anterior and posterior pelvic tilt 

measurements had r values of 0.92 and 0.88 respectively. Inter-operator reliability was 

not assessed and considered one of the main limitations of the study.  

EOS imaging has shown great appeal since its introduction into clinical and 

research settings (Melhem et al., 2016). A key advantage of the EOS is the 

measurement of pelvic parameters in sitting, squatting and standing positions 

(Lazennec et al., 2015). Its accuracy for lower limb measurements has been compared 

to CT scans and has shown robust results. For femur torsion measurements one study 

found values of 13.4°±9.1° and 13.7°±9.4° for EOS and CT respectively. For tibia 

torsion measurements, they found values of 30.8°±8.8° and 30.3°±9.6° for EOS and 

CT respectively (Folinais et al., 2013). It is a promising replacement but is currently 

expensive (€500,000 implementation plus yearly maintenance) and not cost-effective 

compared to X-rays which may be a reason it is not in many clinical settings (Lazennec 

et al., 2011; Faria et al., 2013; Melhem et al., 2016; Thelen et al., 2016). 

Another technique involved the use of a digitising arm, which could digitise 

the bony landmarks needed to measure the APP (Mayr et al., 2005). The difficulty in 

this technique, however, is the palpation of the PS landmark through the soft tissue 

without causing discomfort for the subject. In subjects with a large amount of soft 

tissue, this technique becomes problematic.  

Motion capture in the context of clinical biomechanics is used in gait analysis 

experiments to measure lower extremity joint kinematics and kinetics. In most cases, 

passive reflective markers are placed in clusters and on bony landmarks of the subject 

and detected by a series of non-invasive stereophotogrammetric infrared cameras. 

Estimates of the PT angle have been measured with respect to four markers attached 

to the anterior and posterior iliac spines (Vicon®, 2002; Perrott et al., 2017). However, 

the main problem with this approach for measuring PT is the STA associated with 

movement of the skin with respect to the underlying bony landmark. This in turn is 

linked to the palpation of the PSIS landmarks which has shown to be a cause of error 
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(Cooperstein and Hickey, 2016). Almost all the studies reviewed showed inter-

operator reliability was not attainable and this was irrespective of operator experience. 

All studies which calculated kappa agreements were noted to be less than substantial 

(< 0.60). Therefore, locating landmarks through conventional methods, such as 

radiographs is currently a favourable and more reliable method.  

Recently, an ultrasound system has been developed to measure the APP to 

offer an alternative to current methods (Martin 2016; Kochman et al., 2017; Marques 

et al., 2018). However, current results are highly variable, and, as emphasised, before 

introducing APP ultrasound measurements on a patient cohort, improvements in the 

ultrasound setup will be necessary for further studies to be pursued. Large variation is 

potentially explained by the operator dependence of ultrasound measurements or the 

identification of the pubic symphysis landmark. Therefore, expertise in ultrasound 

imaging is highly advised and there are several operator dependent processes 

(measurements, and then ultrasound image annotation) which potentially increase the 

variability in measurements (Kochman et al., 2017). As well as this, current attempts 

of APP measurements in positions apart from supine resulted in even greater 

variability. The main advantage of ultrasound is that it can penetrate through soft tissue 

and potentially overcome errors associated with STA. It is therefore an appealing 

technique which could be a useful tool in a clinical setting, if it can perform reliably 

and accurately. The device tested in this group of studies is also used in this chapter 

to partly try and determine the cause of the excessive intra-operator variability of 

subject measurements currently observed (Kochman et al., 2017; Marques, et al., 

2018).  

Having reviewed several non-invasive techniques for PT measurement in this 

chapter, a combination of techniques was used to measure the PT. Shown in Chapter 

4, this included measurements of the anterior and posterior iliac spine height 

difference, palpation of the anterior pelvic plane, and ultrasound measurements of the 

anterior pelvic plane (Gajdosik et al., 1985; Mayr et al., 2005; Martin, 2016).  

2.3.4 Sensitivity of pelvic alignment to subject positioning  

During pre-operative analysis to obtain the APP and other parameters, a 

continuous discussion is present as to whether this should be conducted in supine, as 

the subject will be during surgery, or in other positions which might provide insight 
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into the amount of PT change between typically assumed positions. The literature on 

the amount of change between different positions is extensive. Typically, research has 

focussed on supine, standing and sitting PT positions, but squatting and gait analysis 

have also been conducted to quantify dynamic changes. The sitting position is 

commonly analysed due to the importance of the acetabular cup positioning and the 

severity of the hip flexion angle when an individual is in a sitting position. If this 

position is not analysed, then vital information may be missing in the pre-operative 

analysis, as the amount of change between supine and sitting PT has been shown to be 

significant. A summary of the discoveries in this section is shown in Table 2.2.   
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 Table 2.3. Summary of literature findings for measurement of pelvic tilt. 

  

Group Author Methods 
Subjects/ 

Operators 
Results Conclusions 

Large 

differences 

between 

positions of 

analysis 

DiGioia, 

2006 

Radiographs 

(standing, 

sitting) 

84 patients, 1 

assessor 

• Mean APP in standing and sitting of 

1.2° (-22° to 27°) and -36.2° (-64° to 

4°) 

• No significant differences from pre to 

post-operative measurements 

• There were unpredictable variations in 

pelvic orientation when comparing 

standing and sitting results  

Philippot, 

2009 

Radiographs 

(supine, 

sitting, 

standing) 

67 patients, 1 

assessor 

• Means of the standing and lying PT 

are similar 

• Difference between the sitting position 

and the others is approximately 21° 

• Determine the position of the Lewinnek 

plane preoperatively when standing, lying, 

and during surgery 

Lazennec, 

2011 

EOS, 

conventional 

radiographs 

(sitting, 

standing) 

50 patients, 2 

assessors 

• Very similar results for the two 

techniques  

• Mean of the standing at sitting PT 

were 2.4°±7.3° and 16.9°±9.1° 

respectively  

• The image accuracy achieved using the 

EOS 2D imaging system is like 

conventional X-rays  

Taki, 2012  Radiographs 

(supine, 

standing) 

86 patients, 

pre, post at 1st, 

2nd, 3rd (55) 

and 4th (32) 

year 

• Mean PT in standing and supine pre-

operatively was 22.6°±10.4°& 
18.5°±8.0°  

• Mean PT significantly changed at each 

time point apart from 4th year  

• Older patients showed larger change in PT 

after THA 

• Suggest obtaining standing and supine 

pelvic radiographs to check PT 

Kanawade, 

2014 

Radiographs 

(standing and 

sitting) 

85 patients, 

pre and post 

• Mean difference between standing and 

sitting PT, pre and post-operatively 

was 28.7°±8.6° & 25.6°±10.6°  

• Cup positioning at surgery is not the same 

when the patient stands or sits 

• Acetabular component should be 

implanted with respect to ante-inclination 

during sitting 

Lazennec, 

2015 

EOS 

(standing, 

sitting, 

squatting) 

224 patients • Mean PT in standing and sitting was 

18.3°±11.2° & 36.0°±15.2°  

• Pelvic tilt increased posteriorly during 

squatting 

• A global analysis was performed in the 

true standing, sitting and even squatting 

positions 

• The comparison of standing and sitting 

positions shows importance of outlier 
detection for APP measurements 

Ranawat, 

2016 

Radiographs 

(standing, 

sitting) 

68 patients, 2 

assessors 

• Mean change between standing and 

siting was -21.4°±12.5° 

• High inter & intra- observer reliability 

• Significant change in PT from standing to 

sitting, especially in patients with a flexible 
spine 

Kochman, 

2017 

Ultrasound 

smart system 

(standing, 

sitting, 

supine) 

20 patients 

(14 sitting) 

• Mean in standing, supine and sitting 

was 19°±24.9°, -6.9°±16.2° & -
63.3°±13.6°  

• Large spread of data compared to 

literature, but averages in line with 
previous results 

• Sitting analysis was considerably out of 

range with other studies 

Small 

differences 

between 

positions of 

analysis 

Mayr, 2005 Digitising arm 

(supine and 

standing) 

120 subjects 

(several 

groups) 

• Mean supine and standing inclination 

were 5.6° (4.4-6.1) and 6.7° (5.2-8.7) 

respectively 

• 3.0°±5° difference on average in 

elderly group 

• The PT in the standing position increases 

when people become older 

• Changes in PT from standing to supine 

position were low in all but the elderly 

group 

Tamura, 

2014 

CT, 

radiographs 

163 patients, 

1assessor 

• Mean change from supine to standing 

was -6.9°±5.7° 

• Aging and spinal degeneration are related 

to PT 

Tamura, 

2015 

Radiographs 

(supine and 

standing), CT, 

motion 

capture  

44 patients, 2 

groups (group 

1, greater than 

10° of PT, 

group 2, less 

than) 

• Mean APP in standing and supine was  

-8.9°±18.0° & 1.3°±11.6°  

• Large differences for all motion 

capture results of PT 

• Sitting produced by far the largest 

change in PT 

• This study provides guidance for the pelvis 

and hip kinematics in the early 

postoperative period 

Tamura, 

2017 

CT, 

radiographs 

70 patients, 10 

years post 

THA 

• Mean change of -2.9°±5.6° in supine 

after 10 years 

• Standing PT showed a -11.4°±13.2° 

reduction on average  

• PT in the standing position showed 

continuous reclining, thought to be caused 

by spinal degeneration and aging 

Uemura, 

2017 

CT, 

radiographs 

422 patients, 1 

assessor 

• Mean change between standing and 

supine was -7.2° (-10.7° to 3.3°) 

• In 20% of the cases, there was over 

10° of change 

• The odds ratio of a ≥10° change of PSI 

from supine to standing increased 3.5% as 

patient age increased by 1 year 
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As previously stated, the clinical gold standard for PT measurements is 

standing radiographs, and supine analysis is performed by CT scans. Comparisons of 

pelvic parameters between various positions became increasingly of interest in the 

early 2000s. It was hypothesised that pelvic parameters would significantly change 

during dynamic tasks, particularly from sitting to standing or lying to standing (Ala 

Eddine et al., 2001). Therefore, quantifying the differences and compensating for them 

by optimising the cup position during surgery became a popular approach by 

clinicians.  

One study measured the PT change between standing and supine with the use 

of radiographs at five time points (pre-operatively, post-operatively, 1, 2, 3 and 4 years 

post-operatively) (Taki et al., 2012). This comprehensive study looked at the effect 

time had on pelvic parameters and determined small differences between standing and 

supine at all time points. Mean PT differed by about 4° on average in standing and 

supine pre-operatively. Mean PT significantly changed posteriorly at each time point 

apart from 4th year, with a reduction of 7° when moving from standing to supine 

respectively). Twenty five percent of the patients showed a PT change of over 10° 

between two time points (Year 1 and 3) in the standing position. Increases in PT causes 

an increase in cup anteversion which could potentially lead to dislocation or 

impingement. Therefore, measuring the PT over time post-operatively has given 

important information on implant position and potential longevity (Taki et al., 2012). 

Similarly, other research has shown a continuous posterior recline in PT over a 10 year 

period, thought to be caused by spinal degeneration associated with aging (Tamura et 

al., 2017). Large differences between supine and standing were found in other studies 

(Tamura et al., 2014; Uemura et al., 2017) which is different to the results in other 

studies (Philippot et al., 2009; Taki et al., 2012). Differences between supine and 

standing across the literature, however, were found rarely to exceed 10°.  

For differences between standing and sitting, much greater changes are 

observed (DiGioia et al., 2006; Philippot et al., 2009; Kanawade et al., 2014; Ranawat 

et al., 2016). The most recent study used two assessors to perform inter and intra-

assessor reliability on the radiographic measurements and found high agreement 

(Ranawat et al., 2016). Similar results were reported who also performed supine 

radiographs and found mean differences of approximately 22° between both supine 

and sitting and standing and found a small difference of 1° between supine and 
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standing (Philippot et al., 2009). Large differences between standing and sitting has 

also been found in other research but concentrated on the difference between pre- and 

post-operative PT where the mean difference for both time points was approximately 

26° and 29° respectively (Kanawade, Dorr and Wan, 2014). Another study also 

concentrated on the pre-and post-operative change but measured the APP and found 

large ranges of approximately 38° between standing and sitting at both time points 

(DiGioia et al., 2006).  

The use of low-dose radiographs with EOS imaging has been used for the past 

decade and published several studies which include standing, sitting and squat 

measurements of the APP and PT in a bid to reduce the use of conventional 

radiographs (Lazennec et al., 2011, 2016; J. Lazennec et al., 2015; J. Y. Lazennec et 

al., 2015). Similar results were found for standing measurements in their first 

validation study with EOS but lower sitting values were measured (DiGioia et al., 

2006). For their EOS measurements, the mean of the standing and sitting were 

approximately 3° and 18°. The mean of the standing and sitting APP were 

approximately 2° and 17° respectively for their conventional X-ray measurements 

(Lazennec et al., 2011). The results showed that EOS could be a promising alternative 

to conventional X-rays. Their research continued further and an article showing their 

first 8 years using the technology summarised all their initial findings including the 

measurement of over 300 THA patients in standing, sitting and squatting positions (J. 

Lazennec et al., 2015). A key finding from one of the studies questioned the usefulness 

of the Lewinnek safe zone which assumed a vertical APP for all positions. Such 

information has shown to be difficult to ignore and the ‘safe zone’ in contradicting 

studies has shown dislocation to be just as likely when positioned to the ‘safe’ 

specification previously described. Another author also pursued the use of EOS and 

focussed on the 3D orientation of the acetabulum in healthy subjects in the standing 

position only (Thelen et al., 2016). This included the measurement of the PT defined 

with respect to the sacral segment S1 with a mean value over the whole population 

(102 subjects) of 11.5°±6.4°. This is comparable to a study which also used EOS to 

measure pelvic, femoral and acetabular parameters on healthy subjects in the standing 

position who found a mean PT of approximately 15 with a sample size of 30 (Bendaya 

et al., 2015). Their measurements were also performed on an OA population and found 
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almost identical pelvic tilt values which is much lower than results previously 

discussed in this section.  

Another study went one step further in their research by analysing and 

comparing APP measurements during gait with supine and standing radiographs, and 

three other dynamic movements (1. picking up an object whilst seated on a chair, 2. 

stretching the Achilles tendon and 3. bending backwards holding both hands up) to 

mimic hip flexion and extension tasks, all measured with a motion capture system 

(Tamura et al., 2015). Two groups were analysed in this study, one for patients who, 

on the standing and sitting radiographs, exhibited a change in APP greater the 10° and 

one group of a change of less than 10°. On average for all patients, the change in APP 

over the gait cycle was 5.3°±2.1°. There was no significant difference for this 

parameter (Arc of APP sagittal tilt during walking) between the two groups. The four 

motions analysed gave an estimated maximum degree of change in sagittal pelvic 

kinematics which is why they were chosen. Such movements will not be analysed in 

this thesis but are certainly clinically relevant for determining the most effective cup 

orientation for THA based on tasks which may be performed by individuals post-

operatively.  

Herrington measured the PT of 120 healthy subjects with the Palpation Meter 

(PALM). Average anterior and posterior PT for males and females were very similar 

with no significant differences between the two groups. Differences were apparent 

between the left and right side of the pelvis however, for males but not for females 

(Herrington, 2011).  

One study conducted their PT measurements with a digital inclinometer on 18 

healthy subjects in the standing position. Their technique of measuring the PT with 

the DPI on key palpable landmarks, allows measurements on both sides of the pelvis. 

For the right and left side of the subjects, the PT measured was 10.6°±5.0° and 

10.5°±5.8° anteriorly respectively (Beardsley et al., 2016). Whilst it is difficult to link 

these results to more typical techniques (X-rays), these measurements are comparable 

to previously discussed results (Bendaya et al., 2015; Thelen et al., 2016). However, 

the results contrast slightly another study who found much lower values, especially in 

the female group (2.71° and 2.51° on average for the left and right side respectively, 
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SD not quoted) (Herrington, 2011). Though, comparing these two results should be 

interpreted with caution, as Herrington (2011) used a much larger sample of subjects.  

Another study measured a large cohort of 120 subjects split into 4 groups 

(young healthy, old healthy, hip arthroplasty and coxarthrosis) to measure the APP 

with a digitising robotic arm in both supine and standing positions (Mayr et al., 2005). 

Similar results were found in all groups, however, interestingly, the largest difference 

was between the young and old healthy groups in standing. Low measurements of the 

APP have also been found by previously discussed results (Lazennec et al., 2011). The 

fact that such small changes were found between supine and standing positions 

questions the clinical relevance of measuring the APP in the two positions. This 

contradicts previously described studies which show large differences between the two 

positions.  

One study measured 20 THA patients in standing, supine and sitting positions 

and their results were considerably more dispersed compared to other studies which 

measured the APP (Kochman et al., 2017). This currently underlines the need for 

investigating the excessive spread of the measurements performed with the device to 

improve its clinical viability. 

Overall, whilst non-invasive pelvic tilt and varus-valgus measurements have 

been investigated, there is still the need for a simple measurement process which can 

be easily translated into clinical settings. It is also apparent that these measurements 

need to be conducted in at least supine and standing positions for varus-valgus 

measurements and additionally, sitting should be measured for pelvic tilt 

quantification. The degree to which both measurements change between different 

positions has been conveyed by various authors and this thesis will take this impact 

into consideration through attempting to observe these differences through non-

invasive measurements. Chapter 3 conveys the reliability of an ultrasound and motion 

capture device for lower limb characterisation in supine and standing positions. 

Chapter 4 introduces several approaches for measurements of pelvic tilt through 

ultrasound and motion capture techniques in supine, standing and sitting. And chapter 

5 focusses on a preliminary pipeline for lower limb joint axes calculations but 

currently in supine only.   
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 Chapter III 

Reliability of an integrated 

ultrasound and 

stereophotogrammetric system 

This chapter investigates the reliability of an integrated ultrasound and motion 

capture system. Considering what was discussed in the introduction, this chapter aims 

to show that ultrasound can be an efficient method for measuring several key lower 

limb parameters, all essential for pre-operative planning of total knee and hip 

replacements. 

A considerable part of the material presented in this section is based on:  

Greatrex, F., Montefiori, E., Grupp, T., Kozak, J., & Mazzà, C. (2017). 

“Reliability of an Integrated Ultrasound and Stereophotogrammetric System for 

Lower Limb Anatomical Characterisation”. Applied bionics and biomechanics. doi: 

https://doi.org/10.1155/2017/4370649 

3.1 Introduction 

TKA is a common procedure for individuals suffering from severe knee pain, 

most commonly caused by osteoarthritis (Kurtz, 2007). Such a procedure requires 

meticulous planning in order to achieve a long surviving implant and long term patient 

satisfaction (Pietsch et al., 2013). Preoperative planning partly consists of 

anteroposterior lower limb standing radiographs which image bone geometry and 

orientation that can be digitally annotated, aiding crucial surgical decision making 

such as the relative position of the femur with respect to the tibia (DiGioia et al., 2006; 

Hunt et al., 2008; Babazadeh et al., 2013). Whilst this is considered the clinical gold 

standard, it is an invasive procedure which subjects the patient to significant radiation 

dosages (Hart and Wall, 2004). This method is also subject to rotation and 

magnification errors which significantly impact the measured lower limb angles 
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(Radtke et al., 2010; Archibeck et al., 2016; Maderbacher et al., 2017). Key 

information gained during the pre-operative planning stage is LLA, described by the 

hip-knee-ankle angle, which for the purpose of this chapter, it is defined as the angle 

formed between the mechanical axis of the femur and mechanical axis of the tibia.  

As well as LLA, several other parameters are important in pre-operative 

planning for TKA, such as leg length and femoral torsion. Maintaining leg length 

equality is important due to the potential post-operative impact it may have on an 

individual’s gait and comfort (Lang et al., 2012; Goldstein et al., 2016; Chinnappa et 

al., 2017). Therefore, measuring and compensating for the cuts made during the 

surgery is essential and accurate leg length measurements are important. This is also 

measured on standing radiographs, as leg length can be easily annotated. It is typically 

measured as a straight line from the centre of the femoral head to the mid-point of the 

medial and lateral malleoli.  

Rotational alignment of the knee is also an important factor in TKA due to the 

positioning of the femoral component of the implant. This can be associated with 

several different definitions with respect to the knee orientation. For example, femoral 

cuts are often conducted parallel to the epicondylar axis and in turn, is out of line with 

the posterior condylar axis, which is often used to measure the torsion of the femur 

(Whiteside and Arima, 1995).  

Pre-operative analysis is typically conducted in one position. For example, 

standing, with feet shoulder width, at a comfortable, but not extreme foot rotation 

position for full lower limb radiographs (Hunt et al., 2006). Foot rotation, either 

externally or internally above 15° has shown to have an impact on alignment 

measurements conducted with standing radiographs (Hunt et al., 2006). As this is 

considered the gold standard setup, other methods of analysis are typically not 

conducted, for example, MR images or CT scans. Research into the importance of 

whether other positions should be analysed, typically the supine position as it is non-

weight bearing on the lower limb, is extensive. Studies have shown differences 

between measuring the LLA in weight bearing and non-weight bearing positions 

(Sabharwal and Zhao, 2008; Winter et al., 2014). Therefore, as well as being non-

invasive, new methods should have the flexibility to conduct measurements in at least 

standing or supine and if possible, other positions such as sitting.  
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Currently, the pre-operative planning is based on the weight-bearing 

approximation of the LLA, not the supine value, which potentially offsets the true 

value of the knee alignment when the surgery is being performed. However, it is the 

combination of the two positions of interest which would be most informative for the 

surgical planning and currently, whilst studies have addressed and quantified the 

differences, its implementation into a clinical setting is not known. Therefore, two 

questions arise which form the main themes of this chapter: 

1. What alternatives currently exist to overcome the invasiveness?  

2. Is it clinically relevant to consider the positional (lying/standing) change 

during the pre-operative planning stage?  

The advantages and disadvantages of various techniques to quantify LLA that 

have been highlighted in Chapter 2 with emphasis on the need for a non-invasive 

alternative which can be used for supine and standing measurements. The aim of this 

chapter was to assess the reliability of OrthoPilot® in its integration with an ultrasound 

system for pre- and post-operative non-invasive lower limb anatomical analysis, by 

initially performing measurements on a phantom and then by assessing the lower limb 

alignments in standing and supine positions in healthy subjects. 

3.2 Methods 

The OrthoPilot® (Aesculap, Tuttlingen) system, shown in Figure 3.1, is a 

medical navigation system most commonly known for its use in computer assisted 

surgery in knee, hip and spine procedures. During surgery, it relies upon registration 

processes which aid the surgeon in identifying landmarks necessary for optimising the 

surgical outcome (Hauschild et al., 2009). OrthoPilot consists of two infrared cameras 

(NDI Polaris Spectra optical tracking system) which are used to detect two, pre-

calibrated rigid bodies. One is attached to the proximal tibia and the other is securely 

fastened to an ultrasound probe. The ultrasound device (7MHz transducer with 128 

piezoelectric elements and a width of 90mm, penetration depth of 60mm, an axial 

resolution of 0.3mm and a lateral resolution of 0.5mm) is synchronised with the system 

and software is used to measure six variables of interest (varus-valgus, flexion-

extension, femur and tibia lengths, and femur and tibia torsions) from the acquisition 

of a series of ultrasound images and their immediate annotation. 
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Figure 3.1 The Orthopilot device and its main components.  

This section consists of two main sub-sections involving the validation of the 

integrated system on a phantom and then the assessment of its reliability on healthy 

subjects. Firstly, a summary of each variable of interest and how it is calculated is 

explained.  

  

Two infrared cameras (Polaris Spectra) 

Ultrasound device (7MHz 

transducer)  

Computer for ultrasound 

acquisition and analysis  
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3.2.1 Investigated variables 

Nine images are needed for measuring all the variables in this chapter. Figure 

3.2 shows a schematic with the orientation of the probe at each landmark for each 

image taken. The following paragraphs will describe the image acquisitions in more 

detail.  

 

Figure 3.2. The orientation of the probe for the 9 images (imaging order in brackets) needed for full 

quantification of the lower limb. The dashed lines indicate images taken posteriorly on the limb. 

A transverse and longitudinal image of the femoral head (Figure 3.3) determine 

the HJC. In the post-processing step, circles are manually fitted (automatic fittings not 

yet possible) to the femoral head curvature and cross-correlated to determine the HJC.  

(1, 2) Longitudinal and transverse 

femur head image 

(3) Femur neck orientation  

 

 

(5) Transverse posterior condyles 

(4) Transverse trochlea notch 

(6) Transverse posterior tibia plateau  

 

(7) Transverse distal tibia 

(8) Transverse talus 

(9) Longitudinal tibia-talus interface 
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Figure 3.3. Femoral head in transverse and longitudinal probe positions with circle fittings shown. 

A transverse image along the axis of the femoral neck and a transverse image 

of the posterior femoral condyles are needed to calculate the femur torsion (Figure 

3.4). The relative difference in the angle formed by the two lines in the transverse 

plane, manually fitted during the post-processing, calculates the torsion.  

 

Figure 3.4. Left; femoral neck. Right; posterior femoral condyles.  

One transverse, posterior image of the proximal tibia plateau, a transverse 

image of the anterior distal tibia and a transverse image of the talus calculates the tibia 

torsion (Figure 3.5). The latter two images form the ankle joint axis and the relative 

difference in the angle formed by the ankle joint axis and tibia plateau in the transverse 

plane, fitted during the post-processing, determines the torsion angle 
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Figure 3.5. Left; posterior tibial plateau. Middle; distal tibia. Right; talus.  

For the calculation of the KJC, one image is captured of the femoral trochlea 

notch (Figure 3.6). A single point is palpated on the image in the post-processing. The 

distance from the HJC to this point calculates the femur length.  

 

Figure 3.6. Femoral trochlea notch annotated with a single point at the deepest point. 

The AJC is calculated by two images (Figure 3.7). A transverse image of the 

talus to calculate its mid-point and orientation. The second image is a longitudinal 

capture of the tibia-talus interface. A single point is then palpated to estimate the depth 

of the AJC which is then cross correlated with the mid-point of the talus to calculate 

the AJC.  

 

Figure 3.7. Left; talus. Right; tibia-talus interface.  



 

 

38 

 

The tibia length is calculated from the KJC to the AJC. Varus-valgus is 

calculated as the relative angle between the femur and tibia length vectors in the frontal 

plane. Flexion-extension is calculated as the relative angle between the femur and tibia 

length vectors in the sagittal plane. 

For the generation of the variables in 3D space, the 2D image co-ordinates of 

the ultrasound image are converted into the 3D co-ordinate system of the ultrasound 

probe’s rigid body cluster. Each pixel on the ultrasound image is displayed in the 

camera co-ordinate system. Once the landmark is identified on the ultrasound image 

during the acquisition, the pose of the two rigid bodies is captured and temporarily 

stored on the device. The 3D co-ordinates of all image points in the reference (tibia 

cluster) co-ordinate system is then calculated. This allows small movements of the 

subject without compromising the calculations, if the tibia cluster is not adjusted. 

Phantom tests  

3.2.2 Phantom tests 

Inter and intra-operator tests with the system took place with measurements 

conducted on a phantom (Aesculap, Tuttlingen). This was to test the resolution of the 

NDI and ultrasound system and assess the repeatability of the measurements in 

absence of movement or soft tissue artefacts. The phantom, as shown in Figure 3.8, 

consists of two hard plastic segments which are attached with a one degree of freedom 

joint which is adjusted to mimic the varus-valgus angle. At the proximal end of the 

longer (femur) segment is a sphere which mimics the femur head and an offset which 

mimics the femur neck. This can also be adjusted to alter the neck angle. Towards the 

distal end of the longer segment is a raised block with two landmarks used to mimic 

the condyles of the femur. At the centre is the one degree of freedom joint which also 

features a raised notch which is represents the femur trochlea notch. At the proximal 

end of the small segment (tibia), is another raised block with two landmarks to mimic 

the tibia plateau. And the same feature is found at the distal end for measurement of 

the distal tibia and ankle joint.  

An inclinometer (Digi-Pas® DWL-80E, SD ±0.1°) measured the angles at 

which the phantom was manually set and was considered the gold standard for these 

tests. Four operators were asked to measure the phantom at -15°, -10°, -5°, 0°, 5°, 10° 

and 15° (-ve valgus, +ve varus) for a mimicked left leg. On the final repeat for each 
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angle, one operator evaluated the same set of images three times in the post-processing 

step, outputting five data sets for each angle. This quantified two elements of 

variability; the identification of the landmarks on the phantom and, the geometric 

evaluation of the ultrasound images. Three additional operators conducted one 

complete measurement of the phantom at the seven chosen angles. 

 

Figure 3.8. Landmarks needed for full analysis of the phantom, shown at 23° varus for a ‘left’ leg. 

With respect to the images gained from the phantom, Figure 3.9 shows an 

example of an image gained from a spherical femur head, like the phantom used in the 

study. A very defined curvature is detected by the ultrasound.  

Femoral head  

Femoral neck 

Trochlea notch 

Femoral epicondyles 

Tibial plateau 

Distal tibia 

Talus orientation 

Tibia-talus interface 

Reverse order of 

image capture:  

Femur Length: 510mm 

Tibia Length: 338mm 
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Figure 3.9. Measurement of the phantom femur head and evident absence of soft tissue artefacts.  

3.2.3 Subject tests  

The University of Sheffield Ethics committee approved this study. For the 

inter-operator analysis, the reliability of the measurements was assessed having three 

operators (OP001, OP002 and OP003) repeating all the measurements three times on 

three young (age 27.7±1.5) healthy male subjects (S001, S002 and S003) of different 

body sizes (BMI: 19.9 kg/m², 29.9 kg/m² and 26.2 kg/m², respectively). The 

experiments were repeated on both legs in standing and supine positions. Supine 

examination took place across a bed and footrest, with the posterior knee exposed. 

Standing examination was conducted asking the subjects to keep their feet just over 

shoulder width apart. All image captures were performed in the same order for 

standing and supine analysis, as previously described, on both legs. A power analysis 

based on the data form the inter-operator analysis showed that to achieve a power 

greater than 0.8 with a SD of 1°, a sample size of at least 6 subjects was needed for 

the intra-operator reliability analysis. To this purpose, OP001 conducted the same 

experiments on six further young healthy subjects (4 males, 2 females, age 27.5 ± 4.5 

y.o., and BMI 21.4 ± 4.0 kg/m2).  

3.2.4 Statistics 

Statistical analysis was performed using SPSS (IBM Corp., Armonk, New 

York). For phantom measurements, inter and intra-operator analysis was performed 

by assessing the mean and standard deviation (SD) of all variables at each angle. 

Bland-Altman analysis was performed to interpret the level of agreement between the 
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true and measured value of all variables. Comparisons were initially tested for 

normality (Shapiro-Wilk test).  

For analysis on healthy subjects, the mean and SD was calculated in both 

supine and standing positions. Inter-operator reliability was assessed using a two-way 

random effects model. The intraclass correlation coefficient (ICC) with 95% 

confidence intervals (CI) was computed across the three operators for all the variables 

in the standing and supine positions. For this analysis, subject legs were not considered 

individually. To complement these results, a randomised one-way analysis of variance 

(ANOVA) was used to determine whether there were significant differences between 

the mean standard deviations of the three operators (alpha level set at 0.05 for all tests). 

3.3 Results 

3.3.1 Phantom tests  

The OrthoPilot provided highly repeatable measurements when used on a 

phantom (Figure 3.8) with small measured differences between the operators. The 

inter-operator study showed that varus-valgus measurements were slightly over 

estimated, with a mean error of 0.4°±0.3°. Flexion-extension (set at 0°) and the 

remaining variables were slightly underestimated (-0.5°±0.1°). Femur and tibia torsion 

values (set at 37° and 89° respectively) were consistent across all operators 

(34.8°±0.5° and 87.3°±0.6° respectively). Femur and tibia measurements (actual 

lengths 510mm and 338mm respectively) were consistent for all operators, with a 

slightly higher range for the femur lengths over the 7 measurements of the phantom 

(506mm±1.1mm and 337mm±0.7mm respectively).  

Intra-operator varus-valgus measurements were also slightly over estimated, 

with a mean error 0.3°±0.2°. Flexion-extension was underestimated (-0.7°±0.3°) and 

similarly, the remaining variables were also underestimated. Femur and tibia torsion 

values were 35.0°±0.5° and 86.0°±0.7° respectively. Femur and tibia lengths showed 

consistency and were 508mm±1.4mm and 335mm±0.6mm respectively.  

For the variability in geometric evaluation, the highest error, albeit small, was 

shown for the segment length calculations with a standard deviation of ±0.6mm 

occurring in six out of the fourteen measurements (femur and tibia). In the remainder, 
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it was 0mm. For the varus-valgus, flexion-extension, femur and tibia torsion angles, 

the largest SD was ±0.2°, with an average of ±0.1°. 

Figure’s 3.10, 3.11 and 3.12 shows Bland-Altman plots for all variables and 

visually interprets the comparison in bias between inter and intra-operator results. The 

bias is measured from the zero line (dashed) to the mean line (solid) and indicates 

underestimation of the variable with respect to the true value if the mean is negative 

and overestimation if the mean is positive. It is shown from the Bland-Altman plots 

that there is little difference between the measurements when conducted by four 

operators or one. Underestimation of all variables with respect to the true value is 

shown both inter and intra-operatively.  
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Figure 3.10. Inter (left) and intra (right) operator Bland-Altman plots of the difference between the measured and 

actual variable plotted against the mean of the measured and actual variable on the phantom. The mean (solid line), 

zero (dashed line) and limits of agreement at ±1.96SD (dotted lines) are shown.  
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Figure 3.11. Inter (left) and intra (right) operator Bland-Altman plots of the difference between the measured and 

actual variable plotted against the mean of the measured and actual variable on the phantom. The mean (solid line), 

zero (dashed line) and limits of agreement at ±1.96SD (dotted lines) are shown.  
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Figure 3.12. Inter operator Bland-Altman plots of the difference between the measured and actual variable plotted 

against the mean of the measured and actual variable on the phantom. The mean (solid line), zero (dashed line) and 

limits of agreement at ±1.96SD (dotted lines) are shown.  
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3.3.2 Subject tests  

For all measures of length, in standing and supine, ICC values were > 0.99. 

For varus-valgus and flexion-extension, in standing and supine, ICC values were > 

0.93. For measures of the torsions, except supine femur torsion measurements, the ICC 

drops to lower than 0.70 for the tibia torsion. For the ANOVA, all tests showed no 

significance between the standard deviations of each operator for all variables in 

supine and standing (p > 0.17). For the intra-operator results, varus-valgus and flexion-

extension measurements was an average of 1° of SD across nine subjects (18 limbs) 

for OP001. The same results were observed also for OP002 and OP003, when looking 

at corresponding data from three subjects (6 limbs). The length measurements were 

also very consistent with few SD exceeding 5mm. For both femur and tibia torsions 

as measured by OP001 across nine subjects, the average SD was less than 4°. Many 

measurements, however, exceeded 5° of SD for OP002 and OP003. 

Table 3.1. Individual and overall results for the three operators across n subjects (2n limbs) for all 6 variables in 

standing and supine positions.  

Variable  Position  
OP001 

(n=9) 

OP002 

(n=3) 

OP003 

(n=3) 

Average¥ 

(n=3) 

ICC (95% CI) § 

(n=3) 

P-

value¢ 

Varus (+ve)/ 

Valgus (-ve)(°) 

Standing 0.2 ± 3.2 0.1 ± 2.6 0.3 ± 3.2 0.2 ± 2.8 0.97 (0.86 – 0.99) 0.61 

Supine 1.1 ± 2.7 0.4 ± 1.8 0.0 ± 1.6 0.3 ± 1.8 0.93 (0.71 – 0.99) 0.63 

Flexion (+ve)/ 

Extension (-ve)(°) 

Standing 0.7 ± 6.2 4.2 ± 8.4 3.9 ± 8.5 3.6 ± 8.1 0.99 (0.97 – 0.99) 0.39 

Supine 1.3 ± 3.4 1.8 ± 4.5 2.0 ± 4.0 1.7 ± 4.2 0.99 (0.97 – 0.99) 0.80 

Femur Length 

(mm) 

Standing 435 ± 31 457 ± 37 457 ± 35 456 ± 35 0.99 (0.99 – 1.00) 0.66 

Supine 439 ± 29 454 ± 34 456 ± 33 455 ± 33 0.99 (0.99 – 1.00) 0.49 

Tibia Length 

(mm) 

Standing 410 ± 27 426 ± 22 429 ± 23 428 ± 22 0.99 (0.98 – 0.99) 0.55 

Supine 406 ± 25 427 ± 21 424 ± 22 425 ± 21 0.99 (0.98 – 0.99) 0.17 

Femur Torsion 

(°) 

Standing 32.7 ± 10.2 27.2 ± 16.0 36.5 ± 10.3 31.7 ± 12.2 0.68 (-0.09 – 0.95) 0.43 

Supine 28.6 ± 9.6 25.0 ± 17.9 26.2 ± 12.0 26.2 ± 13.3 0.95 (0.78 – 0.99) 0.74 

Tibia Torsion 

(°) 

Standing 30.9 ± 9.4 28.0 ± 6.9 28.2 ± 12.5 28.5 ± 10.4 0.69 (-0.61 – 0.96) 0.17 

Supine 32.1 ± 8.5 32.4 ± 7.8 36.6 ± 8.6 33.5 ± 8.9 0.65 (-0.35 – 0.95) 0.78 

Mean and SD of values measured by each operator over n subjects. ¥Mean and SD across all operators for the same 

three subjects. §Inter-rater correlation coefficient (ICC) and 95% confidence intervals (CI). ¢One-way ANOVA 

values. 
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 Table 3.2. Differences between the measurements of each operator and the means for all the operators in the supine 

and standing position for the three subjects. 

  

 Supine 

 S001 OP diff. from mean S002 OP diff. from mean S003 OP diff. from mean 

 
OP  

Mean 
OP 
001 

OP 
002 

OP 
003 

OP 

Mean 

OP 
001 

OP 
002 

OP 
003 

OP 

Mean 

OP 
001 

OP 
002 

OP 
003 

Varus/ 

Valgus (°) 
1.9±0.4 -0.4 -0.1 0.4 

-1.6± 

0.2 
0.1 0.1 -0.3 0.5±0.6 -0.4 -0.4 0.7 

Flexion/ 

Extension (°) 
4.9±0.4 0.4 -0.1 -0.3 

-3.7± 

0.6 
0.4 0.3 -0.6 4.1±0.2 -0.1 -0.1 0.3 

Femur  

Length (mm) 
501±0 0 0 0 430±1 0 -1 0 435±3 -1 3 -2 

Tibia  

Length (mm) 
454±1 0 -1 1 412±1 1 0 0 409±4 0 -4 4 

Femur 

Torsion (°) 

24.1± 

2.5 
-8.0 -12.6 -12.0 

32.6± 

3.1 
-1.3 -2.2 3.6 

11.1± 

6.7 
-5.3 7.6 -2.2 

Tibia  

Torsion (°) 

37.5± 

4.8 
-5.3 4.1 1.2 

28.2± 

2.5 
1.6 1.4 -2.9 

35.0± 

8.5 
9.3 -2.0 -7.3 

 Standing 

 S001 OP diff. from mean S002 OP diff. from mean S003 OP diff. from mean 

 
OP 

Mean 

OP 
001 

OP 
002 

OP 
003 

OP 

Mean 

OP 
002 

OP 
003 

OP 
001 

OP 

Mean 

OP 
001 

OP 
002 

OP 
003 

Varus/ 

Valgus (°) 
3.5±0.6 0.4 0.4 -0.7 

-2.5± 

0.3 
0.1 -0.4 0.2 

-0.4± 

0.5 
-0.6 0.3 0.2 

Flexion/ 

Extension (°) 
12.5±1.7 1.9 -1.4 -0.5 

-5.8± 

0.3 
0.1 -0.3 0.2 4.2±0.6 0.6 0.0 -0.5 

Femur  

Length (mm) 
504±4 3 -4 0 430±2 2 -1 0 434±4 3 1 -4 

Tibia 

Length (mm) 
458±2 0 2 -2 412±2 -2 2 -1 414±2 -1 2 0 

Femur 

Torsion (°) 

40.1± 

4.0 
3.9 0.1 -4.0 

32.5± 

10.7 
-3.4 12.0 -8.5 

22.5± 

1.8 
0.6 1.4 -2.1 

Tibia  

Torsion (°) 

37.0± 

5.4 
-6.1 4.2 2.0 

25.0± 

4.3 
4.4 -0.1 -4.2 

23.7± 

2.8 
-0.8 -2.3 3.1 
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The following bar charts in Figure’s 3.13 and 3.14 summarise the inter-

operator results for the right and left knee flexion-extension, femur and tibia torsion 

and femur and tibia lengths. 

 

Figure 3.13. Right leg variables in supine and standing positions for the three operators and three subjects. 
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Figure 3.14. Left leg variables in supine and standing positions for the three operators and three subjects. 
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The right and left, supine and standing varus-valgus results are visualised 

below in Figure’s 3.15 and 3.16 and show the difference in measurements between the 

operators for the three subjects.  

 

  

Figure 3.15. Standing varus-valgus results for each operator and subject for the left and right leg respectively. The 

red shows SD that is greater than 1.5° 

  

Figure 3.16. Supine varus-valgus results for each operator and subject for the left and right leg respectively. The 

red shows SD that is greater than 1.5° 
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3.4 Discussion  

Pre-operative analysis of key lower extremity variables such as varus-valgus 

and femur torsion for TKA is vitally important for surgical planning (Gbejuade et al., 

2014; Nakano et al., 2016). This part of the thesis aimed to assess the reliability and 

repeatability of an integrated ultrasound and motion capture system which could 

potentially be used as an alternative to invasive methods, such as full-length X-rays. 

In addition, its suitability to measure the anatomical variables of interest for surgical 

planning in standing (weight bearing) and supine (surgery like) positions was shown.  

Reported results showed that the OrthoPilot can detect both joint angles and 

segment lengths when used on a phantom to within a reliable resolution. The results 

are comparable with length measurements performed by an author who compared four 

different measurement techniques (standard radiographs, CT scans, EOS-slow and 

EOS-fast) for length measurements with respect to a phantom of known dimensions 

(Escott et al., 2013). EOS-slow and EOS-fast are two different acquisition procedures 

of approximately 8 seconds and 4 seconds respectively. EOS-slow measurements 

performed most accurately with an average 0.5% underestimation of the phantom 

length. In this study, the smallest and largest underestimation from the true value for 

the tibia and femur phantom measurements was 0.3% and 0.8% of their length, 

respectively. A key limitation of this part of the study, aiming at testing the resolution 

of the measurement devices, was that actual accuracy of the system was not quantified 

either on more realistic phantoms (e.g. adding silicon pads with plastic bones in water) 

or even better using alternative imaging systems (e.g. CT scans) on the healthy 

subjects. The main advantage of the phantom analysis, however, was the 

quantification of known angles and lengths regardless of the operator. This gave a 

great deal of confidence that the system was accurately measuring known parameters 

even if it was not comparable to subject measurements with respect to the anatomical 

features. For example, the images, overall, were not comparable to the subject 

measurements. The femur head was the only landmark which was comparable due to 

the curvature that could be easily detected. The other landmarks were distortions in 

the ultrasound image which were easily identifiable for the post-processing step but 

did not represent realistic human anatomy.  
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For lower limb segment length measurements on subject cohorts, few studies 

have been conducted using ultrasound (Terjesen et al., 1991; Junk et al., 1992). Most 

studies use conventional means such as radiographs or MRI (Leitzes et al., 2005; 

Hinterwimmer et al., 2008; Escott et al., 2013; Lazennec et al., 2016). Terjesen et al. 

however, showed that 95% of the ultrasound leg length measurements on 45 subjects 

were within 7mm of the radiographic measurements (Terjesen et al., 1991). Their 

follow up study (Junk et al., 1992) further emphasised the potential for ultrasound as 

a clinical tool with a study on 100 healthy subjects and showed that 95% of the 

differences for the length measurements between the two operators was less than 5mm. 

Similar repeatability values were found in this study, the average SD for both femur 

and tibia lengths over three repeats for all operators on both limbs was 3mm2mm 

(with highest value being 11mm). Interestingly, the intra-operator results showed more 

spread for the tibia length measurements than across the four operators. The opposite 

was found for the femur measurements. The importance of leg length in TKA and 

THA is paramount, as bone is removed and replaced with an implant, careful 

consideration of the size and positioning of the implant is necessary in order for limb 

length to be sustained at the patients’ pre-operative length (Pierrepont et al., 2017).  

For varus-valgus measurements on subject cohorts, standing radiographs, CT 

scans or MRI’s are the most common choice for analysis, depending on availability. 

On patients, studies have taken place to determine whether such methods correlate 

with measurements taken intra-operatively, whereby surgeons have attempted to 

measure varus-valgus with a navigation system before proceeding with the surgery 

(Yaffe et al., 2008). This study showed a large discrepancy between pre-operative 

standing radiographs and pre-operative navigation measurements (4.7°±2.9° 

difference) (Yaffe et al., 2008). It was noted however, that the difference may have 

resulted from weight bearing against non-weight bearing analysis and its influence on 

lower limb kinematics which has shown to be significant (Brouwer et al., 2003; Hunt 

et al., 2008). Bellemans et al. (2012) investigated the HKA angle with full weight 

bearing radiographs on 250 males and 250 females, a considerably larger cohort than 

this study. Their varus-valgus measurements performed on young, healthy subjects 

suggested a certain degree of varus deformation is more likely than neutral alignment 

(average of 1.9° in males and 0.8° in females) (Bellemans et al., 2012), which is 

consistent with the values found in this study (average of 0.2° and 0.3° in standing and 
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supine, respectively). For the inter-operator standing results compared to the supine, 

as shown in Figures 3.15 and 3.16, it was found that 4/18 results had a SD of greater 

than 1.5° compared to 2/18 for the supine results. This emphasises the current 

difficulties in performing the measurements in standing compared to supine. For 

example, the measurement of the femur trochlea notch in the standing position was 

the most problematic point and is a single measurement which influences both the 

femur length and the varus-valgus values. This is due to the difficulty in imaging the 

trochlea notch anteriorly, capturing an imaging beneath the knee cap. This can be 

avoided by imaging the posterior of the knee only. Peak error was less than 2.0° in all 

cases and with a typical mechanical alignment threshold of 0 ± 3° for TKA surgery, 

this is an acceptable level of error.  

Although the knee flexion-extension angle may not immediately seem like an 

important parameter in the context of surgical planning, it has actually been shown 

that it affects the varus-valgus when analysed on cadavers in the frontal plane 

(Hauschild et al., 2009). This might have indeed affected some of the results of this 

study, where a larger knee flexion of ≈15º was observed, on average, by all operators 

for subject S001 in the standing position, as shown in Figure 3.13 and 3.14. Whilst 

this angle was surprisingly large, it was double checked with a goniometer, which 

provided consistent findings. Hauschild et al. (2009) showed that with increasing 

amounts of flexion, the reliability of the measurements decreases significantly 

compared to extended measurements. Therefore, controlling for the flexion-extension 

when measuring the varus-valgus is important. Further studies should investigate this 

observation more thoroughly in a patient cohort. The high variability shown for 

subject S001 in Figure 3.13 and 3.14 for both legs, conveys the need for standardising 

the standing position to avoid measuring the subjects in different poses. The 

measurement process that was implemented meant that the subject was measured in 

supine and standing in a random order. As there were three repeats for each operator, 

this meant a lot of changing between standing and supine which may have led to 

different standing poses between repeats and therefore the high variability. As a result, 

the peak error was 5°. Lower variability was found in the supine due to its inherently 

easy pose to adopt for the subject and analyse as an operator.  

For torsion measurements, Kulig et al. (2010) validated an ultrasound graphic 

tilting method based on the use of an inclinometer attached to an ultrasound probe. 
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This technique highly correlates with MRI data for measurements of the femur torsion 

(Kulig et al., 2010). Another author used a similar technique and found much higher 

inter-operator reliability for the tibia torsion measurements (ICC > 0.84) than those 

found in this study (Hudson et al., 2006). Both studies showed average tibia torsions 

which were comparable to our findings, but their femur torsion measurements are 

considerably lower. The CI values in this study, conversely, portrayed a lack of inter-

operator reliability. The negative CI values suggest an intra-operator variability which 

exceeds the inter-operator variability. Peak errors for the torsion measurements were 

also quite significant, with the highest at 20°. This is much higher than what would be 

considered clinically useful. A reason for this inconsistency, especially for the tibia 

torsion, is likely due to the measurements needed for its calculation. Three images are 

needed, the tibia plateau and two for the ankle joint axis. This dependence on three 

images, compared to two for the femur torsion potentially increased the variability 

between the operators. Further studies are needed to fully elucidate this aspect. Table 

3.2 shows large differences between each operator compared to their overall mean for 

subject 2 in the standing position for the femur torsion. Differences were found for 

each subject, but this was the largest instance and up to 12° of variability between 

operators. The most likely cause of this was the high BMI of the subject (29.9kgm-2) 

which made the standing measurements challenging. Further measurements on a 

larger cohort would be needed to verify this.  

The above results are likely linked to one of the main limitations encountered 

in this study, which was the difficulty in the ultrasound image capturing associated 

with the application of pressure along the entire surface of the probe, especially in the 

standing position. This means that capturing the desired anatomy can be more 

challenging compared to supine measurements as you cannot rest the probe on the 

subject which assists image capture. For subjects which have low BMI (S001) this is 

not much of a concern. However, as tissue artefacts increase, optimal ultrasound image 

generation might become a problem, possibly causing restrictions in the systems 

capability for high BMI individuals, as also suggested by the error for the femur 

torsion measurements in S002. Imaging the femur neck orientation for example, 

required an equal pressure distribution over a relatively large probe face (90mm 

length). This point ties in with operator experience and possible varying interpretations 

of the ultrasound images (Smith and Finnoff, 2009). OP003 had been properly trained 
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and went through various sessions to familiarise themselves with the procedures, but 

their knowledge and experience with ultrasound was lower than the other operators 

Also, all the images were captured without any adjustment of the ultrasound 

parameters between trials or operators. Altering the ultrasound settings and using a 

smaller probe in the standing position might have led to even better results. It must 

also be emphasised however, that there was difficulty in measuring some of the points 

in the standing position and this was potentially pushing the system beyond what it 

was originally designed for.  

The subject cohort size for this study was small, which of course does not allow 

for generalisation about the changes observed between the supine and standing 

positions. The subject cohort was also healthy, which meant conditions for 

measurements with ultrasound are easier than that of a patient population. For 

example, a cohort of patients requiring total knee arthroplasty will potentially suffer 

from osteoarthritis which may impact the quality of the images due to bone 

deterioration. A patient cohort may also be overweight or obese meaning the use of 

ultrasound becomes considerably more challenging. This could be overcome through 

allowed changes in the ultrasound parameters which the OrthoPilot system did not 

permit. Further investigation into this will be needed. Conclusions are therefore 

limited to the reliability and feasibility of the proposed approach. According to the 

reported results, especially for length, varus-valgus and flexion-extension 

measurements, these can be deemed satisfactory.  

For certain measurements, improvements could be adopted. For example, the 

knee joint centre was measured from a single point and anteriorly (problematic in the 

standing position). This could be improved through analysing the femoral condyles 

and fitting a cylinder to measure the knee joint rotation axis and corresponding centre. 

This will be discussed in more detail in Chapter 5. What may be more beneficial in 

general, is a portable ultrasound system which can be used in a more flexible manner, 

and not reliant on a device used mainly for aiding orthopaedic surgeries, which is the 

main use of the OrthoPilot. Such a system is currently not established for LLA 

measurements but is in development for measurements of pelvic tilt with respect to 

the anterior pelvic plane. This measurement aids decision making in total hip 

replacement surgeries and is currently measured through invasive methods. This topic 

will be discussed in detail in Chapter 4.  
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 Chapter IV 

Non-invasive measurements of 

pelvic tilt  

This chapter investigates the reliability of several experimental methods for 

the measurement of pelvic tilt. These were performed in parts by an ultrasound smart 

system, and an infrared stereophotogrammetric motion capture system. This chapter 

aims to show that several methods for measuring pelvic tilt, in different positions, can 

be fast and informative, which could potentially enhance the pre-operative planning 

stage of hip replacement surgeries.  

4.1 Introduction  

Pelvic tilt indicates how inclined the acetabulum is with respect to the femoral 

head and is therefore considered a crucial parameter in THA. Accurately assessing this 

angle is therefore an essential part of pre-operative planning in THA.  

A commonly used method in pre-operative planning of pelvic tilt is the use of 

sagittal plane radiographs (DiGioia et al., 2006; Philippot et al., 2009; Taki et al., 

2012; Kanawade et al., 2014; Tamura et al., 2014; Tamura et al., 2015, 2017; Ranawat 

et al., 2016; Uemura et al., 2017). This is the current clinical gold standard due to its 

availability and simplicity of analysis in terms of annotating the radiographs, however, 

its invasiveness associated to the use of X-Rays is a substantial draw back.  

When PT is measured during a surgery, accurate measurements are essential 

for PT to act as a reference for the acetabular inclination. Intra-operative CT-based 

navigation has been shown to be equal in accuracy when compared to freehand surgery 

(Martin and von Strempel, 2006). Irrespective of surgical experience, CT-based 

navigation has shown to be accurate (Iwana et al., 2013). Other methods have included 

the use of a pointer, or ultrasound (Hasart et al., 2008). These techniques measure a 

set of landmarks, typically different from the radiographic measurements, to define a 

plane which helps orientate the implant as accurately as possible. This parameter is 
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called the Lewinnek plane, or the anterior pelvic plane (APP), and was previously 

described in Chapter 2 in Figure 2.4.  

In their original paper, Lewinnek et al. (1978) suggested to use a zero PT angle, 

i.e. to make the APP coincide with the coronal plane, when referencing the implant 

position. However, using the information from standing radiographs to reference an 

implant insertion while lying might be inaccurate  (Lazennec et al., 2011). Real-time 

measurements of the APP during surgery are essential for ideal cup orientation 

(Philippot et al., 2009).  

Whilst many alternative methods have been shown and compared here for PT 

and APP measurements, very few have been adopted for pre-operative planning 

alternatives, with lower limb X-rays and CT scans still preferred as the THA planning 

methods. Ultrasound, as it has already been introduced into intra-operative scenarios, 

seems like the most promising alternative theoretically (Parratte et al., 2008). Motion 

capture has been used in clinical settings for the past few decades. Gait analysis has 

become a collective part of clinical checks and a tool used in aiding the understanding 

of diseases associated with musculoskeletal defects (Wren et al., 2011). Therefore, it 

is also a useful instrument in which other measurements for pre-operative purposes 

could be made. Accordingly, the following sections include a series of experimental 

methods which non-invasively measure the APP and PT in healthy subjects with the 

use of ultrasound and motion capture systems. It is broken down into two core 

sections: 

1. The ultrasound experiments consisted of assessing the reliability of an 

integrated motion capture and ultrasound system (smart system; including an 

ultrasound device, smart phone and surface tablet) which allow real time 

measurements of the APP. 

2. The motion capture experiments consisted of several different pilot 

measurement techniques to quantify the APP and PT through palpable, 

external landmarks.   
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4.2 Methods  

4.2.1 Integrated smart system  

The smart system consists of one surface tablet, one smart phone and an 

ultrasound device (Telemed – Echo Blaster 128) with an attached 9-MHz linear probe. 

The surface tablet shows the real time ultrasound image and interface for the 

processing of the measurements. The smart phone uses its light to detect the pose of 

two, pre-calibrated rigid bodies, with four reflective markers on each. One rigid body 

is attached to the ultrasound probe, and the other is used as a reference and is fixed in 

the proximity of the subject (Figure 4.1). Measurements were performed with an 

ultrasound probe and ultrasound gel for optimal image generation. The positions of 

the rigid bodies were recorded when the landmarks were located. Once the three 

positions (ASIS and PS ultrasound images shown in Figure 4.2) were measured, the 

system returned to the first ultrasound image for evaluation. Each identified landmark 

was marked on the image by one operator (same operator as the physical 

measurements) for all measurements, and the pelvic tilt and sagittal balance was 

calculated and shown in real time. The process and calculations for measuring the 

pelvic tilt with the smart system have been previously described (Martin, 2016).  

 

Figure 4.1. On the left is the ultrasound probe and attached is a cluster of markers used to track the probe position 

and transform the ultrasound co-ordinates into the global reference frame. On the right is the reference cluster.  
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Figure 4.2. Pubic symphysis (left) and anterior superior iliac spine (right). The green crosses mark the positions 

of interest for the PT calculations. 

In brief, to calculate PT, the APP is calculated first. This is defined with two 

vectors (𝑎⃗ and 𝑏⃗⃗) calculated from measuring the location of the RASIS, LASIS and 

PS bony landmarks: 

 𝑎⃗ =  𝐿𝐴𝑆𝐼𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑃𝑆⃗⃗ ⃗⃗ ⃗  (3.1) 

 𝑏⃗⃗ =  𝑅𝐴𝑆𝐼𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ −  𝑃𝑆⃗⃗ ⃗⃗ ⃗ (3.2) 

The cross product of the two vectors is taken to generate a vector perpendicular 

to the APP at the PS: 

 𝑐 =  𝑎⃗ × 𝑏⃗⃗ (3.3) 

The dot product of the newly calculated vector and the vector defined by 

gravity, 𝑧, is calculated which generates an angle 𝛽̃: 

 
𝛽 = 𝑎𝑟𝑐𝑐𝑜𝑠

𝑐. 𝑧

|𝑐|. |𝑧|
 (3.4) 

The pelvic tilt is then calculated between the APP and the gravity vector: 

 𝛼̃𝑃𝑇 =  90 – 𝛽  (3.5) 

It was hypothesised that the probe angle might affect PT measurements. To test this 

hypothesis, the effect of changes in the probe angle (with respect to contact with the 

skin) on the PT estimates were quantified with one operator measuring the pelvic tilt 

and sagittal balance of one healthy, male subject (age: 29, BMI: 26.5kgm-2) at three 

probe angles (0°, 30° and 60°), at the PS landmark, three times at each angle in supine 

position. The probe angle was not considered at the two ASIS landmarks as their 

identification was deemed standardised at a consistent angle. The probe angle was 

monitored in real time using an inclinometer (Digi-Pas® DWL-80E, SD ±0.1°), and 
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verified after the acquisitions using a synchronised motion capture system (Vicon, 

Oxford, T160 series, 10 cameras). The angles were expressed in the same reference 

system as the smart system, by using the pre-calibrated rigid bodies.  

 

Figure 4.3. Sensitivity of measurements with respect to the angle of the probe at 0° (perpendicular), 30° & 60° (as 

shown in the plot) in the y-z plane. The red ‘x’s’ indicate the three landmarks needed for the APP calculation. 

  

A resolution test was then performed to determine the minimum detectable changes in 

pelvic tilt. To perform this, the bed was initially tilted by 1°, and the same subject 

previously described was measured three times, with the probe kept perpendicularly 

(optimum theoretical angle). This was repeated at 2°, 3° and 8°. The results were then 

analysed by assessing the means of the pelvic tilt measurements at each angle and 

quantifying the differences between the inclined value and 0°. The pelvis was assumed 

to remain completely rigid during the incline.  

Figure 4.4. Changes in bed angle to measure the minimum detectable change of the pelvic tilt when slanted by 

known angles. 

 

30° 

60° 

𝑧 

𝑦 

𝜃 



 

 

62 

 

Repeatability and accuracy tests were performed after the previous trials to try 

and determine the cause of the significant variation in the measurements and validity 

of the measurement process. Accuracy measurements involved the use of a flat 

surface, which would theoretically produce 90° PT angles. The hypothesis was that 

freehand measurements with the smartphone would produce more variability than if it 

were fixed onto a tripod. Three locations were marked and then scanned in the same 

manner as the subject measurements. In the post-processing step, the most superficial 

and central location on the ultrasound image was marked on each ultrasound image. 

Repeatability was assessed by performing eight measurements with the smart phone 

freehand and fixed at bed angles of 0° and 5°. Mean and standard deviations were 

reported for all measurements. The accuracy was calculated as the difference between 

the surface measurements and the inclinometer value. 

4.2.2 Motion capture measurements of the anterior pelvic plane  

For the motion capture measurements of PT with reference to the APP (Figure 

4.5), the previously described Vicon system was used to capture the location of three 

retroreflective markers attached to a wand, see Appendix section B. This was used to 

identify the three landmarks (RASIS, LASIS and PS) directly via palpation. Firstly, a 

resolution test was performed with the wand to test the minimum detectable change of 

the motion capture system. This involved palpating the surface of a physiotherapy bed, 

which was considered rigid for this purpose. 0°, 1°, 2°, 3° and 5° were implemented 

and theoretically would produce “PT” angles of 90°, 91°, 92°, .93° and 95° 

respectively with respect to the global co-ordinate system of the motion capture 

system. All angles were found accurately (mean difference and SD of 0.0° ± 0.3° 

between known angle and calculated angle).  

 

Figure 4.5. Sagittal view of the plane formed by the two anterior superior iliac spines and the pubic 

symphysis. In this schematic, the angle is slightly anterior. 

θ, Pelvic tilt  

APP  
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Validation of this protocol consisted of measuring the APP at two supine angles, 0° 

and 5°. This implemented change in bed angle should theoretically produce a 5° 

change in the APP. The two ASIS landmarks were identified by the operator and 

palpated with the tip of the wand. The PS landmark was self-palpated by the 

participant. All participants (male: 2, female: 2, age: 26.8±3.2, BMI: 20.5kgm-

2±2.9kgm-2) underwent strict instruction for identifying the PS landmark beforehand. 

If the participant found its identification challenging through touch, then ultrasound 

was used to help find the landmark and then removed prior to the measurements. The 

PS landmark was palpated first so that the subject was not rushing during the palpation, 

and verbal confirmation of its identification was made before the trial recording 

started. The wand was then handed to the operator who palpated the two ASIS 

landmarks. The subject was asked to lie comfortably and still, keeping their feet 

pointing upwards throughout. This was repeated three times at each bed angle and the 

subject was kept in place during the angle change. The pelvis was assumed to remain 

completely rigid during the incline.  

Three male subjects (age: 21.0±3.1, BMI: 21.2kgm-2±1.6kgm-2) were then 

measured in supine and standing positions with the palpation conducted in the same 

way as previously stated. For the standing measurements, the subjects were asked to 

stand with their arms across their chests, after the self-palpation of the PS landmark, 

to keep their feet point forward and to remain as still as possible throughout.  

The PT is calculated, initially in the same way as the ultrasound smart system 

for the APP measurements by defining the cross product from the two vectors defined 

in equations 3.1 & 3.2. Two planes are then needed and are defined in the global co-

ordinate system by: 

 𝑋𝑌 = [0,0,1] (3.6) 

 𝑋𝑍 = [0,1,0] (3.7) 

Where XY and XZ are the required planes for calculating the PT in the supine 

and standing positions respectively. The angle between the vector z and the respective 

plane is the PT.  
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4.2.3 Motion capture measurements of the superior iliac spines 

Pelvic tilt in this section is described in two ways. Firstly, with reference to the 

iliac spine height difference (Figure 4.6), and secondly by the plane formed by the four 

superior iliac spines (Figure 4.7). This method does not require the palpation of the 

awkward PS landmark but instead utilises the palpable posterior superior iliac spines 

and the previously used anterior superior iliac spines. Three measurements were 

gained from this technique. Two side specific measurements, as shown in Figure 4.6, 

for the left and right iliac spine height differences and one measurement of the angle 

of the plane formed by the four landmarks with respect to the transverse plane, shown 

in Figure 4.7. The latter measurement is used routinely in gait analysis for the 

quantification of the pelvis orientation from skin markers (Perrott et al., 2017).  

 

Figure 4.6. Sagittal plane view of the pelvis. The difference in the height of most posterior point (PSIS) and most 

anterior point (ASIS) of the pelvis is shown. Theta represents the PT measured from this method and in this 

example, the pelvis is anteriorly tilted.  
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Figure 4.7. Transverse plane and pelvic plane (formed by the right and left anterior and posterior iliac spines). The 

angle between the two planes in the sagittal plane is the pelvic tilt. The angle between the two planes in the frontal 

plane is the pelvic obliquity.  

Like the APP measurements, these trials were also conducted with a palpating wand. 

Validation of this protocol consisted of measuring three male subjects (age: 21.0±3.1, 

BMI: 21.2kgm-2±1.6kgm-2) in a level and tilted sitting position. The four landmarks 

were palpated in a level position and then the chair was manually tilted by a known 

quantity (4°). Subject positioning was controlled by setting the knee and hip angle at 

90° and 100° respectively at the level position. Subjects were asked to keep their feet 

pointing forward and were outlined to standardise their positioning for each repeat. 

For the chair tilt, subjects were asked to extend their knees whilst plantar flexing their 

feet to lift the chair, which enabled enough room for two wooden blocks to be slid 

under the chair legs. A marker cluster was placed on the lower back to construct a 

local co-ordinate system to compensate for any slight movements of the subject during 

measurements. The accuracy was quantified by calculating the change in pelvic tilt 

between the two positions and comparing it to the real value of the change in chair 

angle. This process was repeated three times for the three subjects. The pelvis was 

assumed to remain completely rigid during the incline.  

The main experiments consisted of quantifying the difference in pelvic tilt 

between the supine and standing positions for the same three subjects. For the supine 

position, a mesh gridded bed was used to have access to the posterior landmarks. A 

custom designed alignment device enabled control in subject positioning. Subjects 

were asked to relax, cross their arms against their chest and keep their feet pointing 

Transverse 

plane 

Pelvic plane 
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upwards, minimising any external rotation. For the standing position, subjects crossed 

their arms against their chest and stood with their feet shoulder width apart and 

pointing forward. The local cluster for these measurements was placed laterally on the 

iliac crest as the lower back could not be utilised when the subject was supine. 

Palpation of the four landmarks took place in the supine position and then immediately 

in standing. This was repeated three times with a rest in between each repeat. Written, 

informed consent was obtained from each subject prior to the experiment.  

For processing the PT measurements with respect to iliac crest height 

difference, the calculations were performed in a similar fashion to Gajdosik et al. 

(1985) and visually shown in Figure 4.6. In brief, it follows a trigonometric calculation 

as:  

 𝑠𝑖𝑛𝜃 =  
𝑠𝑖𝑑𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 (3.8) 

where side opposite was the height difference between the PSIS and the floor and the 

ASIS and the floor, and the hypotenuse was the distance between the PSIS and ASIS 

(Gajdosik et al., 1985).  

For processing the PT measurements with respect to the anterior and posterior 

superior iliac spines, a mid-point of the PSIS landmarks was initially calculated. This 

allowed the calculation of a pelvic plane based on the two ASIS landmarks and the 

mid-PSIS landmark. From here, the calculations were the same as those for the APP 

measurements. An angle close to 90° meant the pelvic plane was almost coincident 

with the transverse plane of the subject as shown in Figure 4.7.  

4.2.4 Post-processing 

Motion capture data were processed in MATLAB and Nexus 2 (Vicon, 

Oxford, UK). The calculations performed to determine the wand tip were performed 

in MATLAB. The MATLAB interface within Nexus 2 meant certain processes could 

be streamlined, such as determining which frames each of the landmarks were being 

palpated between, as shown in Figure 4.8. For the APP motion capture measurements, 

each trial had three stable periods, meaning 6 frames were identified for these periods. 

For the chair tilt experiments, four landmarks were recorded (left and right anterior 

and posterior iliac spines) in separate trials, and finally, for the supine and standing 

measurements, five landmarks were recorded (left and right anterior and posterior iliac 
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spines and pubic symphysis) in separate trials. The mean 𝑥, 𝑦 and 𝑧 co-ordinates for 

each period was then carried forward for the calculations of the pelvic tilt.  

 

Figure 4.8. Example of the palpating periods for the APP motion capture measurements (three landmarks) and 

order, and the frames chosen to extract the wand tip co-ordinates from the trials in Nexus.  

4.2.5 Statistics 

Mean and standard deviations were recorded for all measurements.  
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4.3 Results 

For all the measurements, an angle of greater than 90° was considered posterior 

PT and less than 90° was considered anterior PT.  

4.3.1 Integrated motion capture and ultrasound results of APP 

For the one subject measured, the mean and SD of the PT with respect to 

changing the angle of the probe (0°, 30° and 60°) at the PS landmark were 89.1°± 4.0°, 

95.1°±7.3° and 80.9±7.0° respectively.  

Fixed and freehand measurements performed with the smartphone showed 

equal repeatability with standard deviations of 2.1° or less. 4.3° and 1.9° differences 

were found for an incline of 5° for fixed and freehand measurements respectively. The 

results are shown in Table 4.2.  

Table 4.2. Fixed and freehand smartphone measurements at 0° and at a 5° incline (for a targeted difference in angle 

of 5°). 

Bed Angle 0° 5° 
Difference (°) 

 Mean (°) SD (°) Mean (°) SD (°) 

Fixed 92.7 2.1 97.0 1.3 4.3 

Freehand 94.6 1.8 97.5 1.4 1.9 

 

Four initial angles were imposed to the bed, 1°, 2°, 3° and 8° (maximum safe 

angle). The mean and SD of the PT at each angle respectively on the one subject 

measured were 89.9°±1.7°, 92.7°±2.8°, 92.1°±2.8° and 103.2°±2.7°. From these initial 

results, a minimum of 5° was imposed on the bed angle when testing the PT accuracy 

of further subjects.  

4.3.2 Motion capture results of APP 

For the measurements performed on the bed surface, the mean and SD of the 

“PT” from the imposed angles (0°, 1°, 2°, 3° and 5°) were 90.3° ± 0.1°, 90.8° ± 0.0°, 

91.7° ± 0.1°, 92.8°±0.1° and 95.2°±0.2° respectively.  

Differences in PT from an imposed bed angle of 5° ranged from 3.5° up to 

7.9°. All results are shown in Table 4.3.  
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Table 4.3. Difference in PT from imposed bed inclination of 5° (for a targeted change in PT of 5°). 

Bed Angle 0° 5° 
Difference (°) 

 Mean (°) SD (°) Mean (°) SD (°) 

S001 97.5 0.6 105.4 0.7 7.9 

S002 94.8 1.1 102.3 0.3 7.5 

S003 96.1 1.6 101.0 1.2 4.9 

S004 91.9 1.3 95.4 0.5 3.5 

 

The mean and standard deviation for the supine and standing PT measurements 

are shown in Table 4.4. Differences of 54.1°, 52.4° and 10.3° between the two 

positions were found for subjects 1, 2 and 3 respectively.  

Table 4.4. Differences in PT from measurements in supine and standing. 

Position Supine Standing 
Difference (°) 

 Mean (°) SD (°) Mean (°) SD (°) 

S001 104.0 10.9 158.1 53.0 54.1 

S002 94.4 0.6 146.8 25.4 52.4 

S003 96.3 4.0 106.6 17.7 10.3 

 

4.3.3 Motion capture results of the superior iliac spines 

measurements 

There were small differences in all subjects between the left and right sides, 

less than 3° in 5/6 cases. The largest difference found was in standing for S002 (7.9°) 

however, the measurements were accompanied with very large SD (11.5° and 11.9° 

for the right and left side respectively). All subjects showed anterior changes when in 

the standing position compared to supine on both left and right sides (range: -9.2° to -

15.6°).  
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Table 4.5. Differences in PT between the left and right sides, and, supine and standing, measured from the 

superior iliac spine height difference. 

    Differences (°) 

Position  Supine Standing Left/right Supine/standing 

  Mean (°) SD (°) Mean (°) SD (°) Supine  Standing Left Right 

S001 Right 78.2 1.6 93.8 0.9 
2.1 0.9 -14.4 -15.6 

 Left 80.3 3.3 94.7 0.7 

S002 Right 83.5 4.1 94.1 11.5 
1.9 7.9 -10.6 -16.6 

 Left 85.4 6.1 102.0 11.9 

S003 Right 84.4 3.6 96.7 4.2 
2.9 -1.2 -13.3 -9.2 

 Left 86.3 2.1 95.5 1.8 

 

The accuracy of the PT measurements showed significant variation in most 

subjects as shown in Table 4.6. Subjects S001 and S003 showed low SD and good 

accuracy with PT changes of -2.3°±3.2° and -3.1°±3.3° respectively. S002 had 

significant variation with a standard deviation of ±13.1°.  

Table 4.6. Mean difference in PT between level and tilted (-4°) sitting positions (for a targeted change in PT of 

4°). 

 
PT Difference 
 

Mean (°) SD (°) 

S001 -2.3 3.2 

S002 -1.7 13.1 

S003 -3.1 3.3 

The difference in PT between supine and standing was then quantified with all 

results shown in Table 4.7. Subjects S002 and S003 both showed posterior changes of 

7.2° and 2.1° respectively. Subject S001 showed an anterior change of -7.3°.  

Table 4.7. Difference in PT from between supine and standing positions.  

Position Supine Standing 
Difference (°)  

Mean (°) SD (°) Mean (°) SD (°) 

S001 101.9 2.1 94.6 0.7 -7.3 

S002 98.3 0.7 105.5 10.1 7.2 

S003 96.1 3.2 98.2 5.2 2.1 
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4.4 Discussion  

Pre-operative planning of pelvic orientation for implant positioning in total hip 

arthroplasty is important for implant longevity and most critically, patient satisfaction 

(Hassan et al., 1998). This part of the thesis aimed at assessing the differences in PT 

measurements between supine and standing positions. This was performed after 

developing several non-invasive experimental pilot protocols with ultrasound and 

motion capture systems. This section reflects on the results obtained the ultrasound 

experiments and two motion capture protocols.  

4.4.1 Integrated ultrasound and motion capture system  

Ultrasound has been used extensively in a clinical setting for a wide range of 

applications (Mozaffari and Lee, 2017). Its role in determining segment orientation, 

specifically for pre-operative planning in arthroplasty interventions is much less 

common and a recent development (Greatrex et al., 2017). The recent progress of a 

portable, integrated ultrasound and motion capture system has opened up the 

opportunity to replace conventional X-ray methods of PT measurements with 

ultrasound (Martin, 2016). The major advantage of this system is its potential to 

measure subjects in many different postures. However, whilst it has been shown to be 

accurate and repeatable on a phantom, measurements within healthy and osteoarthritic 

populations have been less promising (Martin, 2016; Kochman et al., 2017; Marques 

et al., 2018). This part of the chapter aimed at sourcing the errors within subject 

measurements on healthy participants.  

The first measurements quantified the change in PT with adjustments in the 

probe angle at the PS landmark. Due to the anisotropic properties of ultrasound, the 

probe angle was considered to affect the measurements. The PS landmark is often not 

measured at a perpendicular orientation due to its sensitive location. The results from 

this experiment, conducted on one subject, showed an extreme range in measurements 

at 30° and 60° probe angles and slightly less perpendicularly. It is not known at what 

angle previous studies. performed their measurements for the PS landmark, but it 

cannot be suggested whether the probe angle adversely affects the PT measurements 

(Kochman et al., 2017; Marques et al., 2018). Hence, further investigation is needed 

on the sensitivity of probe angle on PT measurements. With restrictions on access to 
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the raw data, co-ordinates of the three landmarks could not be accessed which would 

provide crucial information for determining the variability of the landmark with 

respect to the probe position.  

The second batch of tests examined whether freehand or fixed measurements 

with the smart phone impacted the PT calculations. Optimising the position of the 

smart phone as it captured the position of the two rigid bodies was hypothesised to 

improve the results. For these experiments, to reduce the potential error obtained from 

subject measurements, a physiotherapy bed was used as a phantom. This enabled a 

repeatable environment and isolation of the measurement process. During normal use 

(free hand measurements) the results on a flat plane at 0° and tilt of 5° were consistent 

with previous phantom measurements (Martin, 2016). Low standard deviations for 

both freehand and fixed smartphone measurements showed that this factor did not 

adversely affect the PT measurements. However, the difference between the mean 

value of the fixed and freehand measurements at 0° was 1.9°. This is relatively large 

compared to the 0.5° difference found at the 5° incline. Therefore, the measurements 

performed were precise but not accurate compared to the inclinometer values. 

The third set of experiments consisted of measuring the resolution of the 

system within a subject cohort as this has not been previously performed. This 

consisted of detecting the minimum change of the PT measurements in supine when 

implementing known bed angles. It was found that a change in bed angle of 8° was 

detectable whereas angles up to 3° showed no differences. However, the mean and 

standard deviation of the measured PT from the one subject measured at 3° and 8° was 

92.1°±2.8° and 103.2°±2.7°. This shows considerable variation in the measurements 

between the largest bed inclinations. A 10° change was observed as oppose to a 5° 

change. After this set of experiments, it was decided that a full-scale investigation into 

the PT differences between the supine and standing positions would not produce 

clinically meaningful results.  

All measurements with the smart system were analysed by one operator who 

annotated the ultrasound images in real time. Comparisons between and within 

different operators were not performed which limits the interpretation of the results. 

However, the simplicity of the annotation and interpretation of the three ultrasound 

images meant this part of the post-processing was not considered to be a large 
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contributing factor to the variability of the results. It is likely similar inconsistency 

would have been found if the physical measurements were performed by more than 

one operator (Kochman et al., 2017; Marques et al., 2018). Kochman et al. (2017) 

found large differences in PT between supine, standing and sitting, outside of the 

ranges found in the literature. Marques et al. (2018) found large differences in PT 

measurements between operators for the same healthy participants. In standing and 

supine, the largest differences between operators were 15.6° and 12.6° respectively 

(Marques et al., 2018). This amount of variation would not be clinically meaningful 

in measuring the PT and requires improvements in the precision of the experimental 

procedure. Considering also that participants were healthy subjects with low BMI 

(23.0kgm-2±1.3 kgm-2, n=12), subjects in a patient cohort requiring THA would be 

significantly higher and most likely average > 30kgm-2 (Marques et al., 2018). 

Increases in BMI will raise the difficulty in obtaining reliable measurements with 

ultrasound, therefore initially, it is essential that consistency within and across 

operators is found in a healthy cohort. Accuracy in a patient population would also 

need to be eventually quantified. In this experiment, the measurements were found to 

be similarly variable within one operator, therefore performing more trials with other 

operators was not conducted.  

4.4.2 Motion capture measurements of the anterior pelvic plane 

The inaccuracies and unidentifiable errors of the ultrasound experiments led to 

a protocol development using a high-resolution motion capture system. Motion 

capture systems are used for a wide variety of applications, including within clinical 

settings to conduct various experiments for aiding disease diagnosis and rehabilitation 

(Wren et al., 2011). This makes it suitable to develop new protocols to potentially 

integrate into pre-operative planning routines, which, for knee and hip arthroplasty 

patients, is typically utilised (Stief et al., 2014, 2018; Bloomfield et al., 2018). The 

APP is considered crucial in pre-operative planning as previously described, therefore 

a non-invasive protocol was developed to reliably and accurately measure this 

parameter.  

An initial set of resolution experiments were performed to test the minimum 

detectable change on a phantom with the palpating wand. This was performed 
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accurately as the phantom was inclined at several different angles, all of which were 

detected by the motion capture system, as expected.  

The first batch of subject measurements consisted of measuring the accuracy 

within a small cohort. Like the ultrasound measurements, the subjects were measured 

in a level supine position and at an inclination of 5°, and the subject did not stand 

between measurements. The range across the four subjects was from 3.5° to 7.9°. The 

range is almost as much as the amount of imposed inclination. Whilst this range is 

quite large, a small batch of subject measurements were performed to quantify the 

standing and supine PT differences.  

Inconsistencies were found in the measurements which showed very high 

standard deviations in the standing position. Whilst strict instruction was given on the 

palpation of the PS landmark, it was conducted by the subject which is a potential 

limitation. It could not be verified in real-time whether the same point was palpated 

precisely, only verbal confirmation that they were ready for the trial to commence, 

having found the landmark, was performed. However, the supine measurements 

showed more consistency across the three repeats with standard deviations much less 

than the standing measurements. For S002, these were comparable to the accuracy 

experiments which showed low SD for all subjects. The supine and standing 

measurement, which were conducted alternatively between repeats, potentially had an 

impact on the PT measurements. This was performed to vary the measurement 

procedure to see whether repositioning of the participant adversely impacted the 

results. Due to the large variation in all results however, whether standing up and then 

going back to supine had an influence on the measurements could not be quantified. 

Though it may be the reason for the greater SD found in subjects S001 and S003 in 

the main experiments.  

Few studies have attempted to measure the APP in a similar, non-invasive 

method to that discussed here. One study used a digitising robotic arm to palpate the 

three bony landmarks (Mayr et al., 2005). Measurements were performed on a large 

cohort of 120 subjects including 30 healthy individuals, in both supine and standing 

positions. Within the healthy group, the mean PT angle in the supine position was 

95.2°±2.7° compared to 95.1°±2.4° in this study. The much smaller sample size must 

be considered when making this comparison, for example for the measurements at the 
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5° inclination, the SD across the 4 subjects almost doubles to 4.2°. The greater spread 

questions whether the values at 0° are truly representative of the measured precision. 

An old study measured the APP using a custom made inclinometer and pressed it 

against the anterior pelvis (Anda et al., 1990). They showed comparable results to 

those found by Mayr et al. (2005) but showed no difference in pelvic orientation 

between supine and standing positions. Non-invasive measurements of the APP seem 

to contrast to those who have quantified positional changes of the pelvis with 

conventional methods (X-rays, MRI, CT). For example, standing pelvic radiographs 

performed one author showed a mean anterior PT pf 4.68° ± 0.68° which is low, and 

similar to those found here and in other literature (Blondel et al., 2009). In this paper 

however, supine analysis was not performed. One study retrospectively analysed the 

PT measurements of THA patients who had supine, standing, and sitting positions 

analysed, with CT for the former and radiographs for the two latter measurements 

(Pierrepont et al., 2017). Their study highlighted the importance of individual 

consideration in THA as extreme ranges in all positions was observed across the 

subject population.  

For these measurements, certain limitations were difficult to remove from the 

experimental setup. Subject movement and controlling the position of the pelvis is 

very difficult to account for and even subtle re-adjustments may have impacted the 

measurements. Another limitation was the identification of the pubic symphysis 

landmark which proposed more difficulty than the ASIS landmarks. Each subject was 

asked to self-palpate the PS landmark, meaning accurate measurements cannot be 

confirmed. Even after strict instruction, how much the subjects pressed on the soft 

tissue for example, could not be quantified.  

4.4.3 Motion capture measurements of the superior iliac spines 

Using the PSIS and ASIS landmarks instead of the PS landmark to quantify 

PT was appealing due to their relative ease of palpation. The PS landmark is in a region 

which may cause discomfort to some subjects; therefore, this alternative was also 

advantageous in that respect. It is not a novel method for measuring the pelvic 

inclination as it is commonly used in gait analysis from the measurement of skin 

markers on the four superior iliac spines (Perrott et al., 2017). However, measurements 

in several static positions have not been quantified to the best of my knowledge.  
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From the measurements of PT with respect to the height difference of the 

anterior and posterior superior iliac spines on the left and right sides respectively, it 

was shown that the difference between the left and right side was small in all cases 

except for S002 on the right-hand side (7.9° difference in the standing position). All 

other measurements were below 3° and not meaningful due to the errors shown in 

some cases, especially for S002 were high standard deviations were found. 

Determining where this error came from is difficult, as there are several potential 

sources. Although a specific subject group was chosen (low BMI, healthy adult males), 

there was still potential error in the palpation of the landmarks. Even when chosen for 

reducing the soft tissue artefact error, palpation can still be a problem, and the posterior 

superior iliac spines have shown to be challenging to identify and in cases, not 

clinically reliable for measurements in various positions (Cooperstein and Hickey, 

2016). Quantifying the impact of posture between repeats is also challenging, as the 

subjects were measured alternately from lying to standing. This was performed to vary 

the experimental process and not have subjects lying or standing for extended periods 

of time, which could lead to discomfort and posture changes.  

Measuring the accuracy of the technique was found to be problematic, and not 

repeatable even though a standardised protocol was followed. The action of tilting the 

chair with the subject in place should have theoretically tilted the pelvis by four 

degrees and this change should have been detected in the calculations. The error in 

palpating the landmarks as well as the potential error in subject movement is likely to 

be equal or greater than the tilted angle. Determining a minimum detectable change 

would have been difficult as angles much larger than the one chosen would put the 

participants in uncomfortable positions which would compromise the protocol.  

For the differences in PT between supine and standing, small differences were 

found in the PT angle between the two positions (< 8°). This is comparable to literature 

which in several cases found differences of less than 10°. For example, a mean 

posterior change of -7.2° (range: -10.7° to 3.3°) and -6.9° ± 5.7°, respectively have 

been found previously (Tamura et al., 2014; Uemura et al., 2017). These two studies, 

however, were conducted in a patient population for individuals about to undergo 

THA, therefore comparisons should be treated with caution. A study conducted on 

healthy participants was performed and found a mean anterior change in PT of 1° ± 

4.6° (Mayr et al., 2005). This was measured with respect to the APP, however. The 
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small change suggests that regardless of what is used as a reference for measuring the 

pelvic tilt, the change between supine and standing is relatively small compared to the 

changes found from sitting to standing or sitting to supine. Two out of the three 

subjects showed a posterior change in PT in these experiments. As it was a proof of 

concept study with a small sample size, the results must be treated with caution, as 

large SD exist within the subject measurements in some cases.  

Overall, it seems that the most variation was shown in the standing 

measurements. This was potentially down to the posture adopted by the subject which 

may have changed between repeats even though foot positioning and upper body 

posture was standardised. Position was less of a problem in supine due to the alignment 

device used and relative ease of remaining stationary. The supine position is also 

problematic however, with pelvic posture likely to change between each repeat. The 

mesh gridding of the bed to allow access to the PSIS landmarks presented a small 

amount of discomfort that may have influenced the results. This was minimised as 

much as possible with the use of the alignment device which meant only the pelvis 

and lower back were exposed to the mesh. The palpation of the rear landmarks was 

not rudimentary, as it required both palpation as well as making sure the wand markers 

were visible to the motion capture system. Low-lying cameras meant this was feasible, 

but the set up involved trial and error to achieve the least marker occlusion. It was also 

only practical to perform the experiments with two people, as checking in real-time 

that the markers were visible to the cameras streamlined the experimental procedure. 

This degree of effort in attaining data may not be best suited for a large sample size or 

within a clinical setting where time is valuable. Therefore, from an experimental point 

of view, using the PS landmark for measuring the PT would be more convenient. 

However, from this set of experiments, using motion capture in this manner also does 

not currently provide a reliable framework for measuring the PT with respect to the 

APP.  

Trying to quantify pelvic tilt with ultrasound and motion capture experiments 

to potentially aid pre-operative planning for THA is challenging, with proof of concept 

approaches showing no valid reason for further study at this stage. The use of smart 

system for APP measurements with ultrasound were found to be unreliable, with root 

causes not determined for the spread of the results having performed various 

assessments of the system. The use of a palpating wand and motion capture did not 
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lead to improvements when identical measurements were performed as to those with 

the smart system for APP measurements. Asking the subject to perform palpation of 

the PS landmark on themselves may have been the main reason for this. Quantification 

of PT from other landmarks on the pelvis were also deemed unreliable in their 

measurements. Controlling the pelvis for movement in general and particularly when 

imposed inclinations of the subject were conducted were expected to be the main cause 

of unreliability.  

However, ultrasound use for the development of lower limb alignment 

measurements, crucial for pre-operative planning in TKA, has shown promise in 

Chapter 3. Chapter 5 evaluates ultrasound as a tool for image based musculoskeletal 

modelling. Briefly, the experiments involved the reconstruction of ultrasound images 

from sequences of 2D scans to 3D volumes through a synchronised motion capture 

and ultrasound setup.  
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 Chapter V 

3D ultrasound methods for 

image-based personalisation of 

musculoskeletal models 

This chapter investigates the use of ultrasound and motion capture as a tool for 

image based musculoskeletal modelling, potentially replacing current techniques 

based on MRI. This chapter used a Python based package (Py3DFreeHandUS) for the 

motion capture and ultrasound data processing developed by Dr. Francesco Cenni. The 

musculoskeletal modelling was performed with help from Erica Montefiori.  

5.1 Introduction  

Musculoskeletal (MSK) modelling has been an increasingly popular aid in the 

analysis of human movement within the biomechanics community. Its inception was 

almost 30 years ago when its importance was initially conceived (Delp et al., 1990) as 

a tool to quantify muscle and joint forces, which cannot be directly measured, but have 

a high potential to help the diagnosis and rehabilitation of musculoskeletal and 

neurodegenerative diseases.  

Currently, to build a personalised MSK model, gait analysis and imaging data 

are combined to drive and scale the models. Typically, gait analysis provides the 

kinematic data from the marker set which is used to compute joint angles. Imaging 

data is used to gain subject specific anatomical features, such as bone geometries, 

muscle volume, and muscle paths and soft tissue volume. While certainly informative, 

MRI scans are time-consuming, cumbersome to the patient and relatively costly.  

As shown in previous chapters, a valid method for low cost imaging is 

ultrasound. Ultrasound is typically performed in 2D which limits its use in terms of 

gaining volumes. One solution for this is to combine the imaging method with a 

motion capture system for 3D reconstructions. The combined motion capture and 



 

 

80 

 

ultrasound systems shown in the previous chapters were not flexible for experiments 

outside of their intended purpose. For example, measurements were restricted to lower 

limb alignment, torsion and segment lengths with OrthoPilot, and pelvic tilt with the 

smart system.  

The enabling of 3D reconstructions of subject anatomy provides information 

that can be compared to segmented MRI scans. The potential to reduce the dependency 

of MRI scans in the production of MSK models with 3D ultrasound is appealing as 

the experiments can be performed in conjunction with gait analysis as portable 

ultrasound systems now exist at relatively cheap prices.  

One of the main benefits of image-based musculoskeletal models is that they are 

characterised by higher fidelity to the anatomy and consequently provide an improved 

estimate of the joint centres and functional axes. This is indeed critical in gait analysis, 

especially for what concerns the hip joint centre (HJC). Historically, the HJC is 

calculated by regression equations, derived from skin marker locations, or through 

functional calibration techniques (Bell et al. 1989; Leardini et al. 1999; Harrington et 

al. 2007; Fiorentino et al. 2016). The error associated with HJC mis-location has been 

found to be significant in gait analysis (Stagni et al., 2000). More recently, other 

authors attempted to estimate the HJC with an US based approach (Peters et al., 2010; 

Upadhyaya et al., 2015).  

Upadhyaya et al. (2015) performed several functional tasks with the ultrasound 

device attached to the proximal femur. The femur was tracked, and bone depth was 

registered for each task and the main output was tissue thickness measured at each 

time point. A reduction in error of the HJC location using the registered bone position 

compared to a motion capture algorithm was found for the four participants.  

Another study measured the HJC directly with motion capture and ultrasound 

by scanning key landmarks of the femoral head (Peters et al., 2010). They validated 

their experiments with MRI scans by measuring the inter-HJC distance for both 

methods. The mean difference between the two methods was 4mm ± 2mm. The same 

method used in their study is performed in this chapter for HJC calculation. A follow 

up study was performed on cerebral palsy subjects which clinically tested their 

measurement technique in a patient population (Peters et al., 2012). Whilst not 

validated against MRI scans, they performed an extensive comparison study against 
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regression, functional and fitting techniques for HJC calculations. They showed that 

Harrington’s regression equations were most similar to their ultrasound measurements 

and concluded these would be most appropriate for HJC determination in a young 

cerebral palsy cohort (Harrington et al., 2007; Peters et al., 2012). The gold standard 

was 3D ultrasound and therefore the study was looking for an approach which could 

produce similar accuracies (Peters et al., 2012). Functional tasks within the young, 

cerebral palsy cohort, performed less well. Therefore, due to the ease of regressive 

approaches, it was concluded that Harrington’s equation was suitable in a cerebral 

palsy cohort, but 3D ultrasound is still considered the most accurate technique 

compared to MRI.  

Defining the knee joint axis with ultrasound was first performed by Passmore 

et al., who used the most posterior points of the femoral condyles to define the knee 

joint axis (Passmore and Sangeux, 2016). These measurements were compared to 

three functional calibration techniques for defining the knee joint axis of rotation. 

Whilst being repeatable landmarks to scan, accuracy of the measurements was not 

conducted in the study and it was a relatively small cohort. A follow up study was 

conducted on a young cohort with lower limb torsional deformities (Passmore et al., 

2018). Their ultrasound condylar measurements, and three other methods for knee 

joint axis calculation were compared to EOS measurements of the lower limb, which 

was used as a gold standard. The difference between the knee joint axis measured from 

ultrasound and the EOS was 1°±4°. This was the most accurate method compared to 

the other measurement techniques. The same author conducted a literature review on 

ultrasound and MSK modelling work, including their own studies, which highlighted 

the flexibility and impact ultrasound can potentially have on subject specific 

modelling (Passmore et al., 2017). Their work included subject specific modelling of 

muscle-tendon properties as well as the previously mentioned bone geometry work. 

This has been an area of interest due to the evidence of improved accuracy in muscle 

force prediction from incorporating subject specific muscle-tendon data into the 

models (Passmore et al., 2017).  

Another study has also utilised combined ultrasound and motion capture 

techniques to track the motion of the greater trochanter during gait and simultaneously 

compensate for soft tissue artefact (Jia et al., 2017). Currently, and debatably their 

main limitation is the fact that they only compensate the soft tissue artefact for one 
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skin marker out of the entire gait protocol. Whilst being able to do this accurately, it 

is not clinically meaningful until more soft tissue artefact of the lower limb is 

accounted for, especially for a single segment, such as the femur.  

In summary, this chapter builds on previous knowledge of 3D ultrasound 

techniques in the context of pre-operative planning and MSK modelling. It has been 

shown that accurate measurements can be conducted with this technique. Whilst the 

knee and hip joints have been previously analysed, the ankle, to the best of my 

knowledge has not been investigated in this context for implementation into 

musculoskeletal models. And further, a combination of the lower limb joints has not 

been analysed with respect to their impact on joint axis calculations in MSK models. 

Therefore, the aim of this chapter was to propose a method for lower-limb joint axis 

calculation through geometric fittings of segmented surfaces captured by an 

ultrasound and motion capture setup to reduce the dependency of MRI in MSK 

models.  
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5.2 Methods 

5.2.1 Configuration 

An ultrasound system (Telemed Echo Blaster 128 and linear probe, 

LV7.5/60/128Z-2, Lithuania) and a 10-camera motion capture system (Vicon T160 

series, Oxford, UK) were digitally synchronised (0.010s delay). A custom designed 

marker cluster (Matijevich et al., 2018), shown in Figure 5.1 was 3D printed (EOS 

Formiga P100, Munich, Germany) and attached to the ultrasound transducer. To gain 

the 2D ultrasound image pixels in 3D space, the location of the ultrasound image was 

transformed into the global reference frame. The transformations and rotations 

between the probe reference frame and ultrasound image were known for every time 

point. The ultrasound images and each pixel could then be transformed into the global 

co-ordinate system. DICOM sequences and c3d files were exported for the ultrasound 

and motion capture data respectively.  

 

Figure 5.1. Custom marker cluster for attachment to ultrasound probe. The reflective markers form a reference 

system for the tracking of the ultrasound probe (Matijevich et al., 2018) . Translation and rotations from the 

ultrasound image origin to the cluster origin are known from the external measurements.  

5.2.2 Calibration 

Although accurate measurements from the probe reference frame origin to the 

ultrasound image origin were known, a calibration procedure was undertaken as a 

check for these values. This was performed in a way similar to one study which 

scanned the bottom of a water bath (Single-wall calibration method) with an 
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ultrasound probe in a variety of orientations and motions (Prager et al., 1998). A clear 

line is produced when scanning the phantom floor, as shown in Figure 5.2. To calculate 

the transformation matrix from the probe reference frame to the ultrasound reference 

frame, six parameters (three translations, three rotations) are needed from the 

transformation matrix, 𝑇𝑜
𝑅

𝑃 , as shown in Equation 5.1:  

(

𝑥
𝑦
0
1

) = 𝑇∙0
𝐶

𝑇 𝑇0
𝑇

𝑅 𝑇𝑜
𝑅

𝑃 (

𝑠𝑥𝑢
𝑠𝑦𝑣

0
1

) (5.1) 

Where  𝑇0
𝑇

𝑅 and 𝑇∙0
𝐶

𝑇 are known at all time points as the transformations from 

the probe cluster reference frame to the global and from the global to the phantom 

reference frame respectively. 𝑠𝑥 and 𝑠𝑥 are the pixel to millimetre ratios. 𝑢 and 𝑣 are 

the pixel image co-ordinates. 𝑥 and 𝑦 are the co-ordinates of the ultrasound image in 

3D space. To solve for  𝑇𝑜
𝑅

𝑃, two points are chosen on each ultrasound image which 

allows the calculation of an equation of a line for every frame.  

Line detection is performed automatically with a line detection algorithm 

(Hough transform). This means an overdetermined problem needs to be solved to 

calculate the six parameters of  𝑇𝑜
𝑅

𝑃 and this is performed using the Levenberg-

Marquardt optimisation algorithm. For a successful calibration, the probe needs to be 

moved extensively in various orientations to avoid repeat positioning.  

 

Figure 5.2. Co-ordinate systems of the global, probe, ultrasound and phantom reference frames. Example of the 

line generated in the ultrasound images during calibration is shown on the right (Cenni et al., 2016).  
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5.2.3 Reconstruction 

To reconstruct the 2D ultrasound images into 3D volumes, Py3DFreeHandUS, 

an open source package developed in Python and specifically for this task was used 

and adapted for the purposes of this chapter (Cenni et al., 2016). In brief, a 3D voxel 

array is constructed containing the grey values of the repositioned pixels from the 

ultrasound images. The voxel array is a parallelepipedon and is the smallest possible 

reconstruction containing all the ultrasound images from the sequence of realigned 

scans. Gap filling was performed through the voxel nearest neighbour (VNN) 

algorithm which assigns the same grey value to the gap nearest the closest voxel. From 

here, MeVisLab (MeVis Medical Solutions AG, Bremen, Germany) was used to check 

the quality and alignment of the voxel array and once suitable, exported as a DICOM 

sequence for segmentation and volume calculation. A custom workflow, as shown in 

appendix section A was used for the segmentation and volume calculations in 

MeVisLab.  

5.2.4 Phantom measurements 

Point measurements were performed to see whether the setup could accurately 

measure a known point in 3D space. This was performed by scanning a wand tip (the 

same wand previously described in Chapter 4) within a water bath which is known in 

global space from three external markers and calculating the distance between the real 

value and the calculated global co-ordinates from the ultrasound image. This was 

repeated three times for the same distance in two sessions.  

Measurements were conducted on a plastic natural cast phantom femur (3B 

Scientific® GmbH, Hamburg, Germany) with no mimicking soft tissue to see whether 

the femur head and condyles could be reconstructed accurately. A laser scanner 

(FARO Edge ScanArm HD, Lake Mary, Florida) was used to measure its dimensions 

at a resolution of 0.1mm. This was considered the gold standard for the following 

measurements, which compared the ultrasound reconstructions of the phantom to the 

laser scanned model.  

The femur was submerged in a water bath and securely fastened. The first 

ultrasound measurement consisted of a medio-lateral scan of the posterior condylar 

region. The probe was positioned longitudinally, and a freehand scan over the 

posterior medial and lateral condyles was performed in one sweep at 15Hz. The 
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condyles were then reconstructed into a 3D volume through segmentation having 

followed the previously described reconstruction process. An extra step involved 

exporting the reconstruction in DICOM format for processing in ITK-SNAP to 

reconstruct the 3D volume to allow the export of the volume in a stereolithography 

file format for further processing (Yushkevich et al., 2006). The reconstruction was 

performed semi-automatically. A cylinder was then attached to the condyles in the 

same way as currently implemented in musculoskeletal models for the calculation of 

the knee joint axis in subject specific models (Yin et al., 2015; Montefiori et al., 2019). 

This involved highlighting the proximal curvature of the posterior condylar region in 

MeshLab, as shown in Figure 5.7 (Cignoni et al., 2008). The cylinder was calculated 

from the data points obtained from the highlighted surfaces by a Gauss-Newton non-

linear least squares approximation in MATLAB. The cylinder radius calculated from 

the reconstructed ultrasound images was compared to the cylinder attached to the laser 

scanned model.  

Secondly, a transverse, proximal to distal scan of the femur head was 

conducted at 15Hz. This allowed the calculation of the femur head size from the 

reconstructed ultrasound images which was compared to the laser scanned femur head. 

The calculation was estimated through a spherical regression approximation 

calculated in MATLAB which fits a sphere to a series of data points obtained from the 

bone surface in MeshLab through a similar highlighting process as performed for the 

femur condyles. This highlighting included the outer circumference of the 

reconstructions, eliminating the main body and flat surfaces at the beginning and end 

of the reconstructions. Five repeats of the ultrasound scans were performed in two 

sessions and mean and standard deviations for the radii were used for the statistical 

comparisons. This process will indicate whether the ultrasound reconstructions can 

accurately measure realistic bone geometries in the absence of soft tissue artefacts.  

 

Figure 5.4. Laser scanned model femur, proximal to distal sweep over the femur head and lateral to medial sweep 

of the posterior femur condyles.  
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5.2.5 Subject measurements  

One healthy female subject (age: 29, BMI: 18.7kgm-2) signed informed 

consent and agreed to participate in the pilot experiments whereby a series of 

ultrasound measurements were conducted on the lower limb. The subject had an MRI 

consisting of 5 transverse e-THRIVE 3D gradient echo sequences with 3 mm slice 

thickness at the pelvis, knee and ankle and 5mm slice thickness for the femur and tibia 

shafts. Gait analysis (Vicon, AMTI) was also performed which consisted of five 

natural walking trials. The MRI segmentations for the purpose of this pilot were 

considered the gold standard for measurement comparisons.  

Ultrasound measurements of the lower limb were conducted at each joint for 

both legs. A proximal to distal ‘sweep’ of the ultrasound probe over the femur head, 

lateral to medial sweep over the posterior femur condyles and a proximal to distal 

sweep over the talar dome were performed for defining the joint axis of the hip, knee 

and ankle respectively. Figure 5.5 shows the areas ‘swept’ of each joint with the 

ultrasound probe. The speed of the sweeps was estimated to be 20mm/s, as calculated 

from a condylar sweep (longest sweep performed). This resulted in a series of 

ultrasound images which could be reconstructed into 3D space. The images were 

processed in the ways previously performed on the phantom and their geometries were 

segmented. A sphere was fitted to the femur head, and a cylinder was fitted to the 

curvature of the posterior femur condyles and talar dome for both legs. The fittings 

were compared to the same fitting procedure conducted on the segmented MRI. The 

difference in radius of the cylinders were calculated to provide the accuracy of the 

measurements.  

A subject-specific model for the subject was built from the MRI scans, and the 

kinematics and kinetics from the gait analysis were used to drive the model in 

OpenSim (Delp et al., 2007). The fittings for each joint were inputted into the model 

for output comparison between the ultrasound joint axis and MRI joint axis. The 

kinematics and joint contact forces (JCF) were calculated for three gait trials. The 

mean and SD were reported.  
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Figure 5.5. Proximal to distal sweep of the femur head (left), lateral to medial sweep of the posterior femur condyles 

(middle), proximal to distal sweep over the talar dome (right). 

Two operator dependent post-processing steps were conducted in the femur 

phantom and subject trials and only the first step was used for the bottle measurements. 

The first is the segmentation of the object. This was standardised through segmenting 

the objects every five slices to reduce the time taken for segmentation. This meant 

segmentation times of approximately 5 minutes instead of up to 25-30 minutes. This 

time was considered important to keep low due to the processing of large numbers of 

trials. The second operator dependent step is the highlighting of the bone structures of 

the segmented ultrasound images for the geometric fittings. This involved selecting a 

portion of the segmented reconstructions and eliminating parts of the surface which 

will have a negative effect on the cylindrical fitting.  

 

Figure 5.6. Original reconstructions of the lateral and medial condyles from the ultrasound segmentation (far left 

and middle left respectively). Final highlighted portion of the lateral and medial condylar surfaces (middle right 

and far right respectively) used for the cylinder fitting calculation. 

Removing sections which are not critical is relatively subjective, meaning 

differences between different operators needs to be quantified. In brief, once the key 

curvature was highlighted and cropped, as shown in Figure 5.6, small sections of the 

final reconstructions (middle right and far right condyles in Figure 5.6) which did not 

follow a uniform curvature, was removed in a “clean-up”, as it was assumed the distal 
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femur followed a uniform curvature. This was performed in the same manner as what 

is currently applied to processing the segmented MR-images.  

 

Figure 5.7. Schematic of the experiment performed for the scanning of the femoral condyles and segmented MRI 

with a cylinder fitted to the curvature of the condyles. 
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5.3 Results 

5.3.1 Phantom measurements  

Point detection with the ultrasound probe showed accuracy measurements 

under 10mm from the detectable wand tip. Table 5.1 shows the mean and standard 

deviation of the measurements.  

Table 5.1. Accuracy of wand tip measurements from ultrasound scans conducted in two sessions. The mean of the 

differences is specified.  

 
Accuracy  

Mean (mm) SD (mm) 

Session 1 8.2 1.1 

Session 2 8.9 0.1 

 

Next, radii measurements were performed on a femur phantom in the absence 

of any soft tissue artefact. For the cylinder fitting, 3/5 and 4/5 trials were successful in 

session 1 and session 2 respectively. The cylinder fitting of the phantom measurements 

overestimated the radii by 1.6mm in the two sessions with a peak error of 1.3mm. For 

the sphere fitting, 4/5 and 3/5 trials were successful in session 1 and session 2 

respectively. Sphere fitting of the femur head overestimated the radii by 0.7mm and 

0.2mm in the two sessions respectively with a peak error of 1.2mm. Table 5.3 shows 

the mean and standard deviations of the measurements.  

Table 5.3. Accuracy of cylinder and sphere radius calculations from the reconstruction of the femur condyles and 

femur head respectively of a phantom femur conducted in two sessions.  

 

Femur Condyles 

(r=18.8mm)  

% 

Error 

Femur Head 

(r=22.8mm) 

Accuracy 

(mm) 

% 

Error 

Mean 

(mm) 

SD 

(mm) 
Accuracy 

(mm) 

Mean 

(mm) 

SD 

(mm) 

Session 1 20.4 1.2 1.6 8.5 23.5 1.9 0.7 3.1 

Session 2 20.4 0.4 1.6 8.5 23.0 1.5 0.2 0.9 
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Figure 5.10. Cylinder fitting of the posterior femoral condyles from the laser scanned phantom (left column) and 

cylinder fitting of the reconstructed ultrasound scans (trial 1, session 1) of the phantom femur (right). 

 

Figure 5.11. Laser scanned phantom femur head (left) and reconstructed femur head from the segmented ultrasound 

images (right).  

r=18.8mm 
r=21.4mm 
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Figure 5.12. Sphere fitting (radius=22.8mm) to the laser scanned phantom (left) and sphere fitting (r=25.22mm) to 

the ultrasound reconstruction from trial 1, session 1. The red markers are the 3D locations of the mesh surface. The 

grey shell is the fitted sphere.  

5.3.2 Subject measurements  

The radii of the cylinders fitted to the posterior femur condyles were 

overestimated by 0.7mm and underestimated by 0.5mm for the left and right leg 

respectively with a peak error of 1.7mm. The radii of the spheres fitted to the femur 

head were underestimated by -4.1mm and -1.5mm for the left and right leg 

respectively with a peak error of 1.5mm. Table 5.4 shows the mean and standard 

deviations of the measurements.  

Table 5.4. Accuracy of cylinder radius calculations from the reconstructed ultrasound images with respect to the 

MRI reconstructions of one subject for both legs.  

L 

 

Femur Condyles (Left: r=17.2mm, 

Right: r=18.3mm) 

Femur Head (Left: r=24.8mm, 

Right: r=23.3mm) 

Mean 

(mm) 

SD 

(mm) 
Accuracy 

(mm) 

% 

Error 

Mean 

(mm) 

SD 

(mm) 
Accuracy 

(mm) 

% 

Error 

Left 17.9 1.8 0.7 4.1 19.2 0.8 -4.1 -16.5 

Right 17.8 1.2 -0.5 -2.7 23.3 0.3 -1.5 -6.4 
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Figure 5.13. Difference between the MRI (top) and ultrasound (bottom) cylindrical fittings of the right posterior 

condyles. 

 

 

Figure 5.14. Difference between the MRI (left) and ultrasound (right) sphere fittings of the right femur head.  

r=17.8mm r=18.3mm 
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For the talus measurements, only one ultrasound trial was successfully 

segmented for the left foot. The radius for the cylinder attached to the ultrasound 

reconstruction was 24.9mm for the talar dome, an overestimate of 8.2mm compared 

to the MRI fitting (16.7mm).  

For the outputs of the subject specific model, negligible differences were found 

between the MRI and US models for the hip and knee kinematics. A 12° difference 

was found over the entire gait cycle for the ankle joint kinematics. Negligible 

differences were found between the JCF at the knee. Differences of 0.40 body weight 

(BW) were found between the MRI and US simulations of peak JCF for the hip and 

ankle as shown in Figure 5.15. Figure 5.16 shows shifts in the kinematic curve at the 

ankle for manually implemented radii values and the resultant impact on the JCF at 

the ankle. Three shifts were implemented: +5mm, +10mm and -5mm from the original 

radii calculated from the US geometric fitting.  

  

Figure 5.15. Mean and SD for the kinematics (top) and joint contact forces (bottom) using MRI (Blue) or US (Red) 

based joint axes estimates. 
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Figure 5.16. Mean and SD of the ankle kinematics (left) and resulting JCFs (right) from inputting different US 

talus radii with the original MRI (Blue), original US (Red), US (+5mm light blue), US (+10mm light green) and 

US (-5mm yellow). 
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5.4 Discussion  

A protocol has been proposed which uses an open source package 

(Py3DFreeHandUS) to combine motion capture data with ultrasound data to 

reconstruct anatomical structures into three-dimensions. The aim of this proof of 

concept study was to partially replace the current techniques used to build 

musculoskeletal models from MR images with combined ultrasound and motion 

capture data.  

5.4.1 Phantom measurements  

Firstly, a wand tip was scanned with the ultrasound probe to see whether a 

known point in 3D space could be detected accurately. An accuracy of under 10mm 

was found in both sessions, which is less accurate than what reported in the literature 

of approximately 2mm (Cenni et al., 2016). However, specifically identifying the 

wand tip with the ultrasound device may have been the main source of error. As the 

accurate location of the tip was identified on the ultrasound image as a single point, 

this may lead to a small error due to the subjectivity of the tips feature. The low SD of 

the measurements suggests consistency and in terms of accuracy, a slight offset is 

present during the processing and identification of the wand tip in the ultrasound 

images.  

Measurements conducted on the femur phantom were performed to see 

whether realistic anatomical features without the interference of soft tissue artefact 

could be accurately determined. The first measurement consisted of reconstructing the 

posterior aspect of the femoral condyles such that a cylinder could be attached which 

in turn would define the knee joint axis of the phantom. Assumptions within the 

literature showing the knee joint axis of rotation moves about a cylindrical axis has 

been previously shown (Colle et al., 2016; Renault et al., 2018; Montefiori et al., 

2019). Cylinders can be predicted to a high degree of accuracy with small detected 

curvatures from least-squares algorithms and have shown to be robust in their 

estimation. This is shown by the measurements performed on the phantom, with 

cylinder radius calculations from the ultrasound reconstructions only slightly 

overestimating the cylinder fitted to the laser scanned phantom by up to 

1.6mm±1.2mm on average in both sessions.  
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The second measurement consisted of reconstructing the femur head. Greater 

accuracy was observed for both sessions compared to the condyle measurements (less 

than 1mm of radii overestimation). A consequence of overestimating the 

measurements of the femur head was likely in the reconstruction process. Figure 5.17 

shows the full curvature of the femur head could not be identified with ultrasound, 

which limits the segmentation process to approximately a hemisphere. This however, 

if accurately segmented is effective for the fitting of a full sphere and accurate 

calculation of the radius. The difference between the sphere fitting to the laser scanned 

femur (left) and fitting to a reconstructed trial (right) is shown in Figure 5.12 which 

displays that less structure in the reconstruction may lead to slight overestimations of 

the fitting.  

  

Figure 5.17. Best possible outline of the phantom femur head at its maximum diameter (left) and surface 

deformation on phantom (right). 

Quantifying geometries such as the femoral head is extremely relevant in 

defining the rotation of the hip joint, and consequently the HJC of the subject. It is 

shown from non-image based methods, locating the HJC can be mis-calculated by up 

to 30mm (Sangeux, Peters and Baker, 2011). Being able to attach a sphere to 

reconstructed bone geometries from imaging methods allows a much greater accuracy 

of HJC calculation (Kainz et al., 2015). The values quoted (SD < 2mm) here are well 

below those predicted by external anatomical landmarks and like accuracies shown by 

other image-based techniques. For example, Harrington et al. showed SD values of 7-

8mm for HJC predictions (Harrington et al., 2007).  

A problem with the measurements on the femur head was an area of surface 

deformation which may have adversely impacted the segmentation process. This is 



 

 

98 

 

shown in the right image of Figure 5.11 which displays an indent in the femur head 

which could not be avoided in the scanning procedure. Tying to predict the curvature 

of the circumference may have introduced errors into the segmentation process and 

therefore estimation of the sphere. Whilst this deformation was not a problem when 

fitting a sphere to the laser scanned model, it may have had an impact in the ultrasound 

segmentation.  

Overall, the accuracy shown in the phantom experiments meant that subject 

measurements were potentially feasible, and the pilot study was conducted.  

5.4.2 Subject measurements  

Accurately measuring the anatomy of the lower limb is essential for subject 

specific musculoskeletal models. Currently, internal anatomies, such as muscles and 

bones are dependent on gold standard imaging techniques such as MR imaging and 

CT-scans. Whilst this technique is non-invasive, it is expensive, meaning repeat 

measurements are problematic to obtain and the need for other, cheaper measurement 

methods is desirable. B-mode ultrasound has the potential to partially replace the need 

for MR-imaging due to its ability to detect various superficial anatomical features. 

One key part of subject specific modelling is the definition of the joint rotations of the 

hip, knee and ankle. This preliminary study focused on the knee joint only. This is 

currently defined as a one degree of freedom joint which rotates about an axis defined 

by a cylinder attached to the posterior condylar surface (Eckhoff et al., 2005; Hancock 

et al., 2013; Yin et al., 2015; Renault et al., 2018). This is the first time, to the best of 

the author’s knowledge, that the same process has been attempted with 2D ultrasounds 

sequences reconstructed into 3D volumes.  

The impact of geometric fitting for joint articulation on the prediction of joint 

kinematics is considered to be low due to the low sensitivity the knee joint axis has on 

musculo-skeletal models (Martelli et al., 2015). For average standard deviations of 

2.3mm in landmark identification of the medial and lateral epicondyles, Martelli et al. 

found a variation in knee axes orientation of less than 2°. This led to an average joint 

angle variation of 2.3° from the imposed uncertainties. It was shown that the joint co-

ordinate definition has a large impact on the muscle force prediction within the model 

but low impact on joint contact forces. Whilst individual anatomical landmarks were 

not examined in this study, it is difficult to contrast whether geometric fitting of 
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surfaces would result in similar axis deviations and subsequent joint kinematics. 

However, one author studied the variation of geometric fitting to anatomical structures 

for ankle articulation (Hannah et al., 2017). They fitted a cylinder to the ankle joint to 

represent the medio-lateral axis for dorsi/plantar flexion movement. They found a 

maximum 1.7° inter-operator (three operators, fitting a cylinder to three subjects, for 

three gait trials) variation for the medio-lateral axis measurement which is similar to 

other reported results (Martelli et al., 2015).  

The measurements performed showed high accuracy on both legs, with 

cylinder radii predictions from the ultrasound reconstructions overestimating the MRI 

fitted cylinders by only 2mm for both legs. For measurements on this scale, predictions 

under 5mm are highly desirable, and these measurements fall well under this mark. 

However, the standard deviation is perhaps larger than desirable, as the raw data 

suggests dispersion about the real value is like the calculated difference meaning 

single measurements should be considered with caution at this point. Determining 

what causes the lack of precision in the current measurements is a key next step. With 

respect to the impact this may have on the subject specific model, a sensitivity analysis 

should also be conducted for the impact of axis location in the model.  

Geometric fitting of the posterior femoral condyles to define the 

flexion/extension axis of the knee is not a novel concept, and literature has shown its 

usefulness in several biomechanical fields, including musculoskeletal models and total 

knee arthroplasty interventions (Eckhoff et al., 2007; Niki et al., 2017). Furthermore, 

Eckhoff et al. (2007) found no differences between and within operators for posterior 

condyle cylinder attachments to 23 segmented CT scans of cadaver knees.  
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Figure 5.18. Lateral (left) and medial (right) femoral condyles at their greatest curvature during an ultrasound 

sweep of the posterior distal femur. 

Marker based axis calculations are commonly used in gait analysis for the 

calculation of the knee flexion/extension axis. Specifically, the medio-lateral axis of 

the knee joint is calculated as a vector from the palpated medial and lateral epicondyles 

of the distal femur. For static measurements of the medio-lateral axis, one study has 

shown that marker based measurements varies considerably to gold standards (EOS 

radiographs) (Passmore et al., 2018). The average difference in the static standing 

position between the measurement techniques for the knee flexion angle was 10°±11°. 

Their ultrasound measurements showed a much closer agreement to the reference of 

1°±4° showing the effectiveness of ultrasound in young subjects with lower limb 

deformities.  

For the femur head measurements, consistency was found and shown to be like 

other studies which quantified the HJC in a similar manner. For example, one study, 

which used a least-squares fitting approach to ultrasound reconstructions showed a 

median under estimation of the radius for her cohort of -2.5mm (intervals up to 3.5mm 

and down to -4.5mm) compared to MRI measurements (Peters et al., 2012). It can be 

confidently stated that supine HJC measurements can be accurately measured with 

ultrasound.  

This is the first time, to the best of my knowledge, the use of ultrasound for 

joint axis measurements for all lower limb joints has been used as inputs into a subject 

specific model. The results shown on the one subject analysed show small differences 

at each joint for the JCF with ultrasound slightly overestimating the JCF at all joints 
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by up to 0.75 BW. Figure 5.16 shows that the ankle JCF is sensitive to changes in the 

ankle joint kinematics. By implementing known changes in the model input (talus 

fitting radius), the model was sensitive to them. This shows that accuracy in measuring 

the talus radii is essential for future work.  

The same two operator dependent stages as described in the phantom 

measurements were also present in the subject measurements. The first operator 

dependent stage was the segmentation of the 2D sequences of ultrasound images. 

Detecting and segmenting the curvature of the condyles was not considered to be 

subjective in interpretation due to the surface of the femur producing a bright, 

hyperechoic reflection. However, detecting the condyles, as they were emerging 

during the sweep was challenging in the segmentation process. This was not deemed 

problematic as it is not essential for last post-processing step of highlighting the 

condyle curvature. The second operator dependent stage was the mesh cleaning which 

involved removing parts of the segmentations not desirable for the cylindrical fitting. 

This was not quantified in terms of one operator assessing the same trial several times 

or across operators, but it should be a key point of investigation in the future for 

assessing the robustness of the workflow.  

Figure 5.13 shows the difference between the cylinder attachment to the 

segmented MR-images (top) and segmented ultrasound images (bottom). As is clear, 

there is a difference in the amount of surface selected for the cylinder attachment, 

which was mainly down to the relatively small amount of selectable surface from the 

reconstructed ultrasound images. However, it is apparent that this has little impact on 

the results.  

5.4.3 Current limitations  

One of the assumptions behind this study was that there was negligible 

difference in the size of the medial and lateral condyles of the distal femur, which 

might affect the validity of the cylindrical fitting. One study conducted a rigorous 

analysis of the curvature of the condyles with the use of 16 laser scanned cadaver 

lower limbs. They measured the radius of the medial and lateral as 18.71mm±1.71mm 

and 20.33mm±1.80mm (Kosel et al., 2010). However, a later study has found no 

differences in medial and lateral condyle radii (17.4mm±1.6mm and 17.3mm±1.4mm 

respectively) through a cylindrical fitting method conducted on 3D models 
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reconstructed from the CT scans of 122 knees (Niki et al., 2017). Whilst these two 

studies oppose one another, overall, this was considered not to have an impact on the 

cylindrical fitting in this study but there is the potential this may adversely impact the 

results. This would currently be challenging with ultrasound, as its limited view of the 

posterior condyles limits the extent of the analysis which can be conducted, therefore 

MRI may be a better initial alternative. Other literature shows the knee to consist of 

two points of curvature, with differences in the radius of the condyles between anterior 

and posterior aspects of the distal femur (Pinskerova et al., 2000). Therefore, this 

highlights the current relative simplicity of cylinder attachment to the posterior 

condyles, though the impact of this would need to be quantified.  

The current method of gap filling for the voxel-array reconstruction, VNN, 

used in the data processing of this study is known for its fast implantation, but is less 

accurate than other methods (Rohling et al., 1999). For these measurements, the 

longest reconstructions took 30 minutes (bottle scans and subject scans took 

approximately the same amount of time). When processing relatively large volumes, 

such as the posterior knee, it is undesirable to use an algorithm which takes in the order 

of hours to process. For the current overall method, it is realistic to conceive, from 

measurements to radii calculation, a total time of 2-3 hours.  

The main disadvantage of the VNN algorithm is the “collage” artefact it 

presents in the gap filling process, which is mainly sensitive to tissue movements and 

instrument error (Rohling, Gee and Berman, 1999). It occurs due to a slice plane which 

intersects several ultrasound images. This was the main reason for discarding some of 

the trials, as the segmentation process was impeded due to the artefacts. Whilst present 

in most trials, rarely was it severe enough to affect the objectivity of the segmentation. 

Figure 5.19 shows the impact this has on the reconstruction.  
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Figure 5.19. Severe (left) and minor (right) artefacts from VNN reconstructions. Left ultrasound slice is affected 

by the reconstruction, making segmentation challenging. Right ultrasound slice has minor distortion in the top right 

section but does not affect the segmentation process.  

All motion capture data were filtered with a fourth order, low pass Butterworth 

filter at a cut off frequency of 5Hz as is common practice with kinematic marker 

trajectories. This minimised the instrumental noise which in some cases was apparent 

on the ultrasound probe’s marker cluster. In all cases where the data filtering was not 

enough to smooth the data set, the trial was re-performed and, if significant artefacts 

were observed in the gap filling, trials were discarded.  

Freehand ultrasound presents a flexible measurement method for the 

assessment of musculoskeletal parameters, but it doesn’t come without disadvantages. 

The main disadvantage is the ability of the operator which will need at least a basic 

understanding in image optimisation and knowledge in the interpretation of the 

features of an ultrasound image. The scanning of bone, however, is probably the least 

susceptible anatomy to anisotropy during an ultrasound scan due to its high relative 

density difference compared to the surrounding tissue (muscles, tendons etc.). 

Manipulation and control of the ultrasound probe in a freehand sweep takes practice 

and the dependence of the measurement conducted in this study on the operator should 

be quantified. It also not known how much the speed of the acquisition impacts the 

reconstructions. An estimated speed has been given (20mm/s), though what may be 

interesting for future analysis is the sensitivity of sweep speed to the reconstructions. 

Whilst the measurements felt consistent, purposefully measuring slower and faster 

sweeps may determine whether acquisition speed adversely impacts the results or not 

at all.  
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One method for potentially improving image quality is to average image 

acquisitions gained to improve the smoothness of the bony surfaces which appear very 

clearly on the image. Smoothing from multiple images may allow for the ‘cleaning’ 

of images which were prone to being less distinct and subject to significant noise. This 

is a key disadvantage to ultrasound which is reliant on expertise in identifying 

distinguishing features on the image. If this dependency can be reduced by improving 

the image quality and contrast between certain features through averaging, the 

reliability of using ultrasound could be improved in this context.  

The time required currently for going from the measurements to the final 

processed geometries is also relatively long. For a single trial, the experimental trial is 

very quick (<1 minute). For the initial post-processing (labelling the trial in Nexus) is 

also fast (<2 minutes) however the reconstruction into the relative co-ordinate system 

is currently time consuming (15 minutes) with room to be speeded up. The next 

processing step (reconstruction of the ultrasound images) takes up to 10 minutes. Then 

the segmentation and organisation of the DICOM file can take 15 minutes. The next 

step is the cleaning of the geometries (15 minutes). Following this is the geometric 

fitting of the geometries which is a further 5 minutes. Therefore, a total time of an hour 

per trial. This scaled up to several repeats over several joints makes this a time-

consuming process.  

Currently, only a small investigation into the impact of ultrasound on the 

musculoskeletal model has been performed which limits the interpretation of the 

results. A comprehensive validation will be needed including the sensitivity of single 

axis measurements on the outputs of the MSK model. Currently, the talus 

measurements inputted into the model is a single value as only one measurement was 

collected. An evaluation of whether the ankle can be considered for the ultrasound 

measurements needs to be performed through further investigation.  

Alternatives to this current setup exist and could be considered viable 

alternatives in the future. Cenni et al. (2016) showed that similar accuracies in 

reconstruction and calculations can be obtained with an OptiTrack (OptiTrack, 

NaturalPoint, USA) system which reduces the need for an expensive motion capture 

system, which us beneficial for experiments using relatively small volumes.  
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To conclude, a promising pipeline for ultrasound measurements of lower limb 

joint axis has been developed and implemented into subject specific models. The next 

step will be for a significant validation of the measurement process on a healthy cohort. 

Another step will be the implementation of the hip and knee joint axis measurement 

techniques used in this chapter into the OrthoPilot device for potentially improving 

the accuracy of the system and therefore pre-operative planning measurements.  
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 Chapter VI 

Conclusion 

In this chapter, an overview is given of the key work achieved, the novelty and 

the future of the research. In brief, the aim of the thesis was to establish non-invasive 

protocols for pre-operative planning in knee and hip surgeries. Several objectives 

included developing motion capture and ultrasound experiments for measurements of 

knee and pelvic alignment. The ultrasound measurements were also applied to the 

development of musculoskeletal models to reduce the dependency of MR-imaging.  

6.1 Summary 

Chapter 3 showed that pre-operative planning with the use of ultrasound and 

motion capture is practical, as performed with OrthoPilot for measurements of varus-

valgus, flexion-extension, and femur and tibia lengths. Initial reliability was shown on 

a phantom which was followed by a small subject cohort. Supine and standing 

measurements were conducted which showed the flexibility of the measurement 

system unlike common alternatives (X-Ray, MRI, CT) which are typically limited to 

standing or supine positions. Three operators performed precise measurements of key 

lower limb parameters. For varus-valgus measurements, there was a maximum of one-

degree difference between operators. For the segment lengths, there was less than 

5mm difference for all measurements between operators. Femur and tibia torsions on 

the other hand, showed less precision in their measurements. All three operators 

exhibited the same imprecision in these measurements. Due to the small cohort, 

quantifying the differences between supine and standing can only be treated on 

individual cases and no population-based assumptions could be drawn from the results 

unlike that shown by other studies (Bellemans et al., 2012).  

The use of the smart system in Chapter 4 for pre-operative planning in hip 

arthroplasty operations was shown to be less feasible and quantification of potential 

errors in the measurement process did not get to the root cause of the variability. 

Equivalent measurements using only a motion capture system and palpating wand also 
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were deemed unsatisfactory and not fit for further development. The reasons for 

developing these methods were like the reasons discussed with respect to the 

OrthoPilot measurements due to their flexibility in subject positioning. The variability 

between sitting, supine and standing positions for measurements of pelvic tilt has been 

extensively investigated in the literature but often through invasive means (Philippot 

et al., 2009; J. Lazennec et al., 2015; Uemura et al., 2017). The need for a non-invasive 

measurement method for pelvic tilt measurements is still desired.  

Three-dimensional reconstructions of ultrasound images for joint axis 

calculation of the lower limb, as shown in Chapter 5 demonstrated feasibility for 

implementation into musculoskeletal models. Initial ultrasound trials on a femur 

phantom showed good accuracy of measuring the radii of the femur head and femur 

condyles with accuracies of less than 1mm for condyle reconstructions and less than 

5mm for femur head reconstructions. For the one subject measured, a pipeline has 

been developed that allows for the calculation of knee and hip joint axis to be measured 

accurately with ultrasound with small impacts (less than one body weight of joint 

contact forces) on the musculoskeletal model outputs. The measurement of the ankle 

joint axis was less robust and subject to difficulties.  

The scientific output from the thesis included publication of the work in 

Chapter 3 (Greatrex et al., 2017). The work from Chapter 3 was also presented at the 

International Society of Biomechanics conference, 2017. The work from Chapter 5 

resulted in a poster presentation at the Computer Methods in Biomechanics and 

Biomedical Engineering conference, 2019.  

6.2 Main Limitations 

One of the main limitations was the use of a phantom in absence of soft tissue 

for the initial accuracy measurements. This could have been assessed with the use of 

several cadaver limbs which would provide a realistic measurement process as the 

presence of soft tissue artefact greatly affects the operator’s ability to distinguish key 

features. Comparisons could then have been assessed with MRI of the cadaver limbs.  

The second main limitation was that the experiments were all performed on 

healthy subjects. Assessing a patient cohort would have tested the robustness of the 

protocols and assessed whether using ultrasound in patients with degenerative diseases 
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that affect bone geometries and are potentially higher BMI as a feasible approach for 

assessment in pre-operative planning.  

6.3 Novelty 

For the measurements of lower limb parameters with OrthoPilot, this was the 

first time several lower limb parameters such as varus-valgus and femur and tibia 

torsion, have been quantified in both supine and standing with the use of ultrasound. 

Varus-valgus has been quantified in supine and standing in the literature only with 

invasive techniques, such as lower limb radiographs, or lengthy imaging procedures 

like MRI (Brouwer et al., 2003; Sabharwal and Zhao, 2008; Duffell et al., 2014; 

Gbejuade et al., 2014; Guggenberger et al., 2014; Winter et al., 2014). Chapter 3 and 

its related publication portray the potential of ultrasound in pre-operative planning 

with the use of an intra-operative aid. The flexibility to switch between pre-operative 

planning and surgical execution could streamline the overall procedure for the patient. 

Chapter 3 is the first step in achieving this aspiration.  

Chapter 4 showed the need and challenges for a non-invasive measurement 

method for pre-operative planning in total hip arthroplasty. The measurements 

conducted were the first attempted in terms of using motion capture for pelvic tilt 

detection from several different sets of palpable landmarks on the pelvis in several 

positions. The development of the protocol was the first of its kind and sets out a 

process which can be developed and worked on for future testing. Measuring subjects 

in the supine position was found to be problematic compared to standing and sitting.  

Chapter 5 quantified for the first time the impact of replacing all lower limb 

joint axes, typically gained from MRI, with ultrasound for inputs into musculoskeletal 

models. The differences quantified in the joint reaction forces at each joint were small. 

This was the first time, to the best of my knowledge, such a procedure has been 

performed. Though individually, for the hip joint for example, reconstructions of the 

femur curvature with ultrasound has been previously performed (Peters, Baker and 

Sangeux, 2010). Comparable accuracies were found in Chapter 5. For the knee joint 

axis, no other studies have been found which have reconstructed the posterior condyles 

with ultrasound. Whilst the ankle joint was less successful in ultrasound 

reconstructions, this was the first time this has been attempted as well.  
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6.4 Future Work 

The OrthoPilot results represented the first step in crossing over pre-operative 

planning with the intra-operative procedure. This will need to be developed further 

through testing on a large patient cohort who will undergo knee surgery with the 

primary aim of quantifying the varus-valgus difference between supine and standing. 

This additional information for the surgeon will be a useful addition in potentially 

quantifying the best re-alignment angle for the prosthesis. The information gained 

from this thesis should also be tested with respect to improving the image acquisition 

protocol that is currently required with OrthoPilot. It is hypothesised that gaining 3D 

reconstructions of each joint, following a procedure like the one used in the final 

chapter of this thesis, will provide greater accuracy in lower limb parameter 

calculations.  

The potential of ultrasound and its impact on musculoskeletal models has been 

explored at a pilot level. Undoubtedly, a crucial limitation of the study was that only 

one subject was tested, meaning a restricted conclusion could be made about the 

results. Therefore, the key next step will be a large validation study on healthy 

subjects. Moreover, the ultrasound measurements were only successfully performed 

in the supine position. Therefore, performing the measurements reliably and 

accurately in the standing position will also be a key point of investigation. This will 

then help with the proposed improvements to the OrthoPilot system.  
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 Appendix 

A. Free-hand US and motion capture bone segmentation 

walkthrough 

This section is a guide for bone segmentation from ultrasound and motion 

capture data with a Python based package, Py3DFreeHandUS 

(https://github.com/u0078867/Py3DFreeHandUS) and MeVisLab 

(https://www.mevislab.de/mevislab).  

Step 1. Installation  

Install Py3DFreeHandUS package via the HTML guide. This may require 

sometime if not experienced with Python, but there is good documentation. Once 

installed, become accustomed to the code with some of the example scripts given.  

Step 2. Data Capture  

It is explicit in the documentation that synchronised c3d motion capture data 

and DICOM sequences are needed for optimal post-processing of the data. 

Synchronisation can be achieved through hardware or digital means. For example, a 

hardware synchronisation would be possible with trigger out synchronisation ports on 

the ultrasound device. If these are not present, a digital synchronisation may be easier 

with the use of a National Instruments card and LabVEIW. Note: this has only been 

tested with a Vicon motion capture system.  

To gain the ultrasound images in global space, the ultrasound probe is tracked 

by the motion capture system to obtain its roto-translational pose. This can be achieved 

through calibration with a generic cluster attached to the probe as extensively 

explained in the package, or through known measurements of the ultrasound image 

origin with respect to an accurately attached cluster. This can be attained if you have 

access to a high-quality 3D printer. An example of this technique is shown by a group 

based at Vanderbilt University (https://my.vanderbilt.edu/batlab/resources/motion-

analysis). Once confident in obtaining ultrasound sweeps in known space, the post-

processing can begin.  

  

https://github.com/u0078867/Py3DFreeHandUS
https://www.mevislab.de/mevislab
https://my.vanderbilt.edu/batlab/resources/motion-analysis
https://my.vanderbilt.edu/batlab/resources/motion-analysis
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Step 3. Data Processing (Python) 

1. Several example scripts are given within the Python package which form 

the basis of the processing needed to gain the data for the segmentation. It 

is advised to run the scripts within Spyder to gain relevant outputs which 

can be used to check the data and potentially debug any code.  

2. Two files are needed to run the code; 1. The motion capture data in c3d 

format containing the position and names of the markers within the 

cluster attached to the probe. 2. The ultrasound data in DICOM format 

and completely void of RGB colour formatting within the ultrasound 

software during the export process. This has only been tested in 

EchoWave which requires editing of several formats within the 

source code of the software*.  

3. Additional information required to run the scripts; pixel to mm ratio 

dependent on the width and depth of the ultrasound image respectively, 

calibration/known measurements of the ultrasound image with respect to 

the probes’ marker cluster (3 translations and 3 rotations), and sample 

frequency of motion capture system, choice on frames to be included in 

the voxel array, choice on calculation of pose of voxel array, choice on 

scale and size of voxel array (IMPORTANT: scaling up voxel array 

will require scale down in the export), choice on ultrasound image 

alignment, choice on gap filling parameters of voxel array, choice on 

export properties of voxel array. All voxel array parameters and 

functions are described in detail within the documentation and a 

working example script will be added to this documentation.  

4. Two .vti files are saved which can be viewed, checked and processed in 

MeVisLab for the next step of the processing.  

Step 4. Data Processing (MeVisLab) 

Two MeVisLab (.mlab) files are used within this documentation for initial vti 

processing and then segmentation which were supplied by the same author of the 

Python package and will be explained in detail here.  

1. View_vti.mlab: Views and re-orientates voxel-array for eventual export into 

DICOM format for segmentation. Each file contains a series of modules 

linked together, each serving individual purposes of which can be explained 

by right clicking the modules and finding the help sections. In the Figure A1 

below, the .vti files are loaded in the bottom most module and will alert you 

if there are errors with the files. View3D will show the voxel array 

reconstruction and is a clear indication of the quality of the reconstruction. 

View2D is the voxel array broken back down into 2D slices and will also 

indicate the quality of processing so far. OrthoSwapFlip allows for manual 

orientation of the slices if there is a rotation offset. OrthoView2D visualises 

the slices in the three orthogonal planes. ImageSave allows the export of the 

slices into DICOM format in one file and is needed for the next step in this 
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format. DicomTool allows for the slices to be exported individually if needed 

for processing in other software. 

 

Figure A.1. View_vti.mlab file for voxel array check and export in DICOM format for further processing.  
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Figure A.2. CSO Segmentation linear inter final.mlab: workflow for image loading, resizing and reorientation (middle), segmentation (right), and 3D reconstruction, volume 

calculation, and export (left).  

2. Segmentation  

1. Image optimisation 

3. 3D reconstruction and 

volume calculation  
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2. CSO Segmentation linear inter final.mlab: Figure A2 on the previous page 

represents the workflow needed to manually segment the structures you have 

previously captured if they are in the correct format as guided by the previous 

.mlab file. It consists of three main sections which will be discussed in detail 

here.  

1. Image optimisation: Load the DICOM file saved from the previous 

step within ImageLoad. SubImage is important as it fits the size of the 

DICOM images to an ideal fit in View2D. Double-click SubImage 

and click ‘Full Size’, the X, Y and Z parameters should adjust 

accordingly, and make sure the ‘Mode’ is on ‘Voxel Start and End’.  

This process should be repeated every time you load a new image 

sequence. Finally, if necessary, use OrthoSwapFlip to orientate the 

images in user friendly manner, this should have been achieved in the 

previous .vti file.  

2. Segmentation: Firstly, double click CSOSave and save a new .cso 

file for each sequence of images you segment to avoid over-writing 

previous .cso files. This keeps an associated CSO (contour segment 

object) with each segmentation you perform. View2D opens the main 

image plane of the loaded DICOM sequence, this is where you 

perform the segmentations. OrthoView2D allows for segmentation in 

the other two orthogonal planes if necessary. CSOManager saves each 

contour drawn during segmentation and is useful to keep open so that 

each contour can be investigated and deleted if a mistake is made. 

CSOFreehandProcessor gives options on the way the contours are 

mapped onto the images (spline, polyline, freehand etc.) which can be 

adjusted according to personal preference. All other CSO modules for 

the segmentation should not need adjusting.  

3. 3D reconstruction: Once you have finished the segmentation, you 

should save the .cso file and then close the CSOManager. Then 

double click the CSOShapeBasedInterpolation module and make sure 

Update is selected next to ‘On Input Change Behaviour’ and then 

click Update. This produces and a 3D output viewed in View3D1 

based on the linear interpolation performed between the drawn 

contours. Whilst a 3D model can be viewed, saving the model surface 

as a .stl file is not currently an option from MeVisLab. Therefore, the 

next step is to save it as a final DICOM file in ImageSave which can 

then be automatically segmented in other image processing software 

(ITK-snap for example) and then saved as a .stl.  

4. Further processing: Dependent on your required final output, this 

walkthrough will go through the necessary steps needed to obtain 

articular surfaces (representing the rotation of the hip, knee and ankle 

joints) from the final MeVisLab output. This is achieved by following 

step 1.3 in the ‘guide to building an MSK model’ attached in this 

document.  
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Step 5. Alternative to part 2 of Step 4 

It is clear from the segmentation in part 2 of step 4 and the further processing 

needed that this has a lot of potential operator variability which can introduce 

unwanted errors in the final outputs. In this section, an alternative is suggested which 

allows the direct, automatic processing of the required surfaces with minor ‘cleaning 

up’ to remove unwanted artefacts.  

1. Step 4, part 1 explains the final DICOM export of the voxel array 

reconstruction. This same sequence can be exported; however, this must be 

processed through DicomTool which exports the sequence in their individual 

slices to a new folder.  

2. This sequence can then be loaded into nmsBuilder for automatic construction 

of a .stl file containing the all the surfaces captured in the ultrasound sweep. 

(EXPLAIN PROCESS).  

3. Load the final version into MeshLab for final processing which just involves 

‘cleaning up’ the file. Use the ‘Select Connected Components in a Region’ 

tool to select and remove all artefacts which aren’t connected to the articular 

surfaces desired. Then use the ‘Select Faces in a Rectangular Region’ tool to 

remove the remaining surfaces.  

4. Surface fitting algorithms can then be applied to the joint surfaces for 

estimations of the position and size of the measurements conducted.  

*For optimising the ultrasound image (especially if you need to calibrate 

the system) for raw DICOM exports after measurements, the following 

parameters need to be adjusted:  

1. Deselect ‘save video with surrounding information’ which should be under 

menu/option/tools.  

2. The Telemed logo cannot be removed. However, scale lines can be 

permanently removed by changing their color to black in skin 

file "...\Config\Skins\PhantomDark\data.dat" (if is used default PhantomDark 

skin): 

<b_scale_lines_color_red value="0"/> 

<b_scale_lines_color_green value="0"/> 

<b_scale_lines_color_blue value="0"/> 

Set all these values to.  
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B. Wand design 

To facilitate precise palpation of bony landmarks, a palpating wand was 

designed. Such devices have been used in the past and have shown to be more efficient 

and more accurate than skin markers in using the CAST (calibrated anatomical 

systems technique) method (Cappozzo et al., 1995; Donati et al., 2007).  

Design evaluation 

Several iterations were produced before arriving at a design which was best 

suited for fast and accurate palpation, and for simple post-processing steps. A decision 

matrix, shown in Table 4.1 was constructed to help quantify the best design.  

Table B.1. Wand decision matrix including five weighted factors to help quantify the best initial design. The red 

and blue shaded rows show the worst and best designs respectively. 

Weightings       Total 

 /10 8 6 10 4 1 29 

 % Total 28% 21% 34% 14% 3% 100% 

 Handling Weight 

Palpation 

Factor 

Marker 

Occlusion Aesthetics /100 

Cardboard 50 90 60 30 10 58 

Antenna 30 90 85 30 50 62 

Steel Rod 10 5 20 60 20 20 

Pencil  70 90 50 30 30 60 

Paintbrush 85 85 90 80 80 86 

 

It was decided that an object which could be readily found and amended was 

suitable for the task. Design preferences included handling, weight, palpation factor 

(appropriateness of the end point for palpation), marker occlusion (how effective the 

motion capture system was at locating the attached markers) and aesthetics. Five ideas 

were conceived including a piece of cardboard (lightweight), an antenna (clear tip and 

light), a large rod (like in Cappozzo, 1994), pencil and paintbrush. The cardboard cut-

out proved, before testing, and by feel, to be highly unusable for motion capture 

experiments. The antenna was too difficult to adapt for motion capture experiments, 

for example, there was difficulty in attaching the reflective markers. The large rod was 

too heavy (2.3kg) to easily palpate the landmarks. The pencil was difficult to amend 

due to its size and inability to successfully attach markers onto.  

A paint brush was found to be the best candidate as it covers several of the 

design considerations, including a convenient taper towards the tip, which meant it 
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was ideal for palpation. In terms of amending the paint brush to hold the skin markers, 

three screws were implemented perpendicularly to one another to form an out of plane, 

robust cluster for the calculation of the tip, like that shown in the literature (Donati et 

al., 2007). 

 

Figure B1. Paint brush wand design with three retro-reflective markers implemented and masking tape applied to 

minimise unwanted reflection. 

A batch of pilot experiments went ahead with this design to see whether it 

could accurately locate palpable landmarks.  

Final design  

It was decided that accuracy in calculating the tip was key and the previous 

devices could not provide this. Therefore, a wand was designed using SolidWorks 

(Dassault Systèmes, Waltham, MA) based on the shape and size of the paint brush. 

This was 3D printed using an Ultimater 3 (Ultimaker B.V., Geldermalsen, The 

Netherlands), as one, solid part. One key problem with using this device is the 

resolution of the printing nozzle. This is only problematic when printing fine 

geometries, such as the location of the tip in this design which tapers from the main 

shaft. It was therefore difficult to avoid slight warping, which could offset the tips real 

location in global space. The design and main dimensions are shown in Figure B2.  
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Figure B2. Final wand design. Max length: 279.5mm. One 14mm diameter reflective marker is attached to each 

offset arm to form a cluster.  

Wand tip calculation  

To calculate the tip of the wand from the three markers, a three-sphere 

trilateration method was used. The three retroreflective markers (14mm ø), WAND1, 

WAND2 and WAND3 each had centre co-ordinates (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) which subsequently 

represented the centre of a sphere which had known radii with respect to the tip of the 

wand. The intersection of three spheres produces two points, therefore the tip of the 

wand could be located accurately. This was calculated by the following method: 

Firstly, two vectors were defined: 

 𝑣21⃗⃗⃗⃗⃗⃗⃗ =  WAND2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ −  WAND1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  (B.1) 

 𝑣31⃗⃗⃗⃗⃗⃗⃗ =  WAND3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ −  WAND1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  (B.2) 

Where 𝑣21⃗⃗⃗⃗⃗⃗⃗ and 𝑣31⃗⃗⃗⃗⃗⃗⃗ define the centre of WAND2 and WAND3 with respect to 

WAND1. The cross product of these two vectors is then computed to define the third 

direction with respect to the plane formed by the three sphere centres: 

 𝑐 = 𝑣21⃗⃗⃗⃗⃗⃗⃗ × 𝑣31⃗⃗⃗⃗⃗⃗⃗ (B.3) 

Each sphere has its respective equation, which are necessary for determining 

the intersection points and are as follows: 

          (𝑥 − 𝑥𝑛)2 +  (𝑦 − 𝑦𝑛)2 + (𝑧 − 𝑧𝑛)2 =  𝑟𝑛
2 (B.4) 

𝑟𝑛 is the radius of each sphere. Two linear equations are obtained by 

subtracting the 2nd and 3rd sphere equation from the first. This generates two unique 

planes. A third plane is also needed which is defined by the three sphere centres (𝑐). 

With this information, the three-plane intersection, 𝐿, a unique point relative to 

WAND1 can be found by:  

WAND1 

 

WAND2 

 

WAND3 
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        𝐿 = 

(
(𝑠𝑢𝑚(𝑣21⃗⃗⃗⃗ ⃗⃗⃗)2) + 𝑟1

2 − 𝑟2
2).∗ 𝑣31⃗⃗⃗⃗ ⃗⃗⃗ − (𝑠𝑢𝑚(𝑣31⃗⃗⃗⃗ ⃗⃗⃗)2) + 𝑟1

2 − 𝑟3
2).∗ 𝑣21⃗⃗⃗⃗ ⃗⃗⃗

2
 × 𝑐)

𝑠𝑢𝑚(𝑐.2 )
  

(B.5) 

From here, two solutions are found which are defined from this point 𝐿 in the 

positive and negative direction of 𝑐 after being tested for real roots by the following 

equation: 

 

      𝑢⃗⃗ = ±√(𝑟1
2 − 𝑠𝑢𝑚(𝐿2)) ∗ (

𝑐

√𝑠𝑢𝑚(𝑐.2 )
) (B.6) 

The tip of the wand is then found by: 

                                         𝑊𝐴𝑁𝐷𝑡𝑖𝑝 = 𝑊𝐴𝑁𝐷1 + 𝐿 − 𝑢 (B.7) 
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C. Phantom bottle 

For the 3D freehand ultrasound reconstructions, an initial validation 

experiment was performed on a bottle of known dimensions. To gauge whether the 

setup could accurately estimate the radii of the main body of the bottle, one plastic 

bottle was filled with water and placed into a water bath and scanned by the ultrasound 

transducer at 15Hz. The 2D ultrasound images were manually segmented and the radii 

was calculated from fitting a cylinder to the main body of the bottle. The mean value 

from the five repeats was carried forward and compared to the real value (27mm). The 

difference between the calculated radii and reconstructed radii was defined as the 

accuracy.  

Water bottle reconstructions showed an overestimation 0.5mm. Table C.1 

shows the mean and standard deviations of the measurements.  

Table C.1. Accuracy of water bottle volume calculations from the reconstruction of 2D ultrasound scans conducted 

in two sessions and as a function of the main body radius. 

Radius 

(r=27mm) Accuracy 

(mm) 

% 

Error Mean 

(mm) 

SD 

(mm) 

27.5 0.1 0.5 2 

 

Figure C.1 Voxel array construction of the aligned ultrasound images from a water-bottle scan 
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Figure C.2. Reconstructed water bottle from the ultrasound segmentation with bottle sections indicated. 

 

Figure C.3. Cylinder fitting to the circumference of the main body ultrasound reconstruction.  

An object which could be easily analysed with ultrasound and fit within the 

field of view of the probe was chosen for preliminary accuracy measurements. A bottle 

filled with water allowed its entire circumference to be visible during a scan. This 

meant potentially accurate reconstruction and segmentation.  

It was shown that the reconstructions overestimated the real radius by 2% 

(0.5mm) by approximately. Whilst artefacts not associated with the features of the 

water bottle are present in both, this was considered not to have an impact in the 

segmentation process. This analysis showed that fitting a cylinder to known 

geometries from ultrasound reconstruction was a robust procedure.  
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