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Abstract— We present a human-centric spatiotemporal model
for service robots operating in densely populated environments
for long time periods. The method integrates observations of
pedestrians performed by a mobile robot at different locations
and times into a memory efficient model, that represents the
spatial layout of natural pedestrian flows and how they change
over time. To represent temporal variations of the observed
flows, our method does not model the time in a linear fashion,
but by several dimensions wrapped into themselves. This
representation of time can capture long-term (i.e. days to weeks)
periodic patterns of peoples’ routines and habits. Knowledge
of these patterns allows making long-term predictions of future
human presence and walking directions, which can support
mobile robot navigation in human-populated environments.
Using datasets gathered for several weeks, we compare the
model to state-of-the-art methods for pedestrian flow modelling.

I. INTRODUCTION

The advances in artificial intelligence, machine vision, and
computer science, along with the ever-decreasing prices of
hardware allowed the introduction of robots into domestic
and office environments. These robots are supposed to share
their space with people, interact with them, and perform
tasks which are considered to be monotonous, tedious, or
boring. However, introducing mobile robots into human
environments faces several challenges.

One of such challenges is the reliability and safety of long-
term operation in environments that change over time due to
people activity. Unless properly addressed, the environment
changes cause gradual deterioration of robot localisation
robustness and, in turn, navigation efficiency. The effect of
changes can be suppressed by gradual adaptation of the
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Fig. 1. Directions of pedestrian movement at 9:15 and 16:30 predicted
by the proposed model. The arrow lengths correspond to flow intensity, i.e.
number of people walking in the directions indicated by the arrows.

spatial environment models [1]–[4] or by explicit represen-
tation of time, which allows to model persistence [5], [6],
periodicity [7] or more general long-term dynamics [8].

Another challenge is acceptance of the robots by the
humans, who might consider the robots to behave in an inap-
propriate, offensive, or even aggressive way. As pointed out
in [9], one of the critical aspects of long-term acceptance of
mobile robots in human-populated environments was the way
they navigate around humans. One of the problems is that
nowadays, navigation methods represent the environment as
a static structure and dynamic objects, such as humans, are
treated separately. That assumes a reactive approach, where
a robot estimates the people velocities by tracking them and
then replans its trajectory. As reported in [10], the errors of
state-of-the-art methods exceed 0.4 m for prediction horizons
of 1 s, which means that reactive navigation around people
still requires a high-speed sense-predict-plan-act loop.

To overcome the limitations of reactive approaches, a
robot could learn natural motion patterns from long-term
experience [11]–[13], and plan its path while anticipating
people walking in learned directions even if it does perceive
any humans at a given moment. In other words, knowledge
of the typical patterns of people movement could improve
socially-compliant navigation by planning robot trajectories
so that robots would follow the natural flows of people,
and avoid congestions and areas where they would cause a
nuisance. To address this, several authors [13]–[16] proposed
models specifically aimed to represent the natural movement
of people across the operational environment of the robot.
These works aim at the spatial aspects of pedestrian flows,
i.e., they represented the typical directions or velocities at
different areas. However, the pedestrian flows themselves are
not stationary, but, as shown in [16], [17], their intensities,
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velocities, and directions strongly depend on time. A robot,
capable of predicting future distributions of pedestrian flows,
would be able to plan its collision-free, socially-compliant
trajectories in advance, minimising the likelihood of having
to alter its plan in order to avoid collisions.

We present a method capable of learning the natural flows
of people and how they change over time. The core idea
of the method is to model the time domain by several
dimensions wrapped into themselves, which can efficiently
represent periodicities of the pedestrian flow characteristics.
Using a real-world dataset spanning over several weeks,
we compare the method’s predictive performance to state
of the art algorithms for pedestrian flow modelling. To
promote reproducible and unbiased comparison, the dataset,
code, and supporting materials publicly available [18], and
the comparisons are performed using data provided by the
authors of the methods mentioned above.

II. RELATED WORK

The ability to autonomously move across space, i.e.,
navigation, is a pivotal competence of mobile robots. To
navigate in an efficient, reliable and safe manner, a robot
needs to be able to determine its position, position of its
destination and it has to be able to plan its trajectory to
avoid collisions. Both the accuracy of self-localisation and
efficiency of the motion planning depend on the quality of
the robot knowledge about its operational environment, i.e.,
on the fidelity and faithfulness of its internal representation
of the surrounding world. Thus, a significant research effort
was aimed at methods for building large-scale and accurate
maps of the environment [19]. While most of the methods
developed so far model the environment by static structures,
deployment of robots in dynamic or changing environments
raised the need to model the environment dynamics as well.

In the mapping and localisation community, the effects
of the environment dynamics were studied mainly from
the perspective of localisation reliability, which gradually
deteriorates if the environment changes are neglected [20].
To deal with the changes, some approaches proposed to
gradually adapt the maps by incrementally replacing their
elements [4], by remapping the areas which changed [3], or
by allowing multiple representations of the same location [2],
by identifying the invariant characteristics of the world [21]
or by general schemes to incrementally update continuous
maps [22] using Bayesian techniques.

Another stream of the research proposed to exploit the
observed dynamics to obtain more information about the
environment. For example, Ambrus et al. [23] presented a
method that can identify clusters of 3d data which changed
between subsequent observations of the same location. Sub-
sequent work demonstrated, that these clusters can be used
for autonomous discovery of object models from the spatial
changes observed [24].

Other researchers proposed to process the changes ob-
served to obtain information about the temporal aspects of
the long-term environment dynamics. For example, Dayoub
et al. [25] and Rosen et al. [26] proposed to interpret the

changes in order to obtain models that would characterise the
persistence of the environment states. The persistence models
were then used to predict which elements of the environment
should be used for localisation. The work of Tipaldi et
al. [27] proposed to represent occupancy of grid cells by
a Hidden Markov model, which also characterises the state
persistence. Finally, the work of Krajnik et al. [7] proposed
to model the probability of environment states in the spec-
tral domain, which captures cyclic (daily, weekly, yearly)
patterns of environmental changes, which are often induced
by humans. The concept of Frequency Map Enhancement
(FreMEn) [7] was applied to a variety of scenarios, and was
shown to improve both localisation [7], motion planning [28]
and human-robot interaction [29].

Except for the FreMEn, the works mentioned above were
aimed at the problem of localisation in environments un-
dergoing a slow change. However, a substantial part of the
natural environment dynamics is constituted by the rapid
motion of people in the robot vicinity, which requires the
robot to plan its trajectory with respect of the people around.
As stated in [30], knowledge of the general pedestrian flows
will allow the robots to move in a socially compliant manner,
increasing not only their efficiency but also their acceptance
by the public. To characterise the flows, the work of [13]
proposes to extend an occupancy grid model by propagating
information about the changes in the adjacent cells. Another
discrete, grid-based model can be found in [14], where
authors predict the paths of people based on an input-output
Markov model associated with each cell. The authors of [31]
assume the pedestrian flows change over time in a periodic
fashion, and associate each cell of their grid with directional
information enhanced by FreMEn [7].

Other streams of research tried to model the pedes-
trian movement by continuous representations. For example,
in [32] authors show how to modify the plans of the robot
motion by taking into account the long-term observations of
people movement. However, this approach did not address
the multimodality of pedestrian motion distribution making
it unable to model motion in opposing directions. Later
work [33] improved this particular aspect and presented a
method that can model multimodal distributions of pedestrian
movement directions. Kucner et al. also improved their
approach in [13] and proposed a continuous representation
in [34]. To model speed and direction of people, [35]
introduced an expectation-maximisation scheme based on
the Independent von Mises-Gaussian distributions [36]. They
also showed that the model of the movement of people could
be used to achieve more efficient navigation of the robot
through human crowds [37].

Similarly, the work of [38] and [39] demonstrate that
the incorporation of techniques to model periodic aspects
of time into continuous spatial models results in powerful
predictive representations. Furthermore, [16] shows the
benefit of periodic temporal representations for pedestrian
flow modelling. Therefore we propose using continuous
spatiotemporal representations for modelling the pedestrian
flows and how they change over time.



III. METHOD DESCRIPTION

The aim of the proposed method is to find an estimation
of Bernoulli distribution of an occurrence of spatio-direction-
temporal events at time ti on position xi,yi with the speed vi at
angle φi. Since it is not possible to obtain multiple data with
the same ti by performing additional observations, one cannot
calculate the Bernoulli distribution in a straightforward,
frequentist way. This limitation is caused by the fact that the
modelled events are sparse, and the process generating them
is not stationary. To deal with the problem, we proposed in
our previous works to use a “warped-hypertime” (WHyTe)
projection of the timeline into a closed subset of multi-
dimensional vector space, where each pair of dimensions
would represent one periodicity [40]–[43]. Then, we create
a model characterising the probability distribution of spatio-
direction-temporal events in the vector space extended by the
warped hypertime. To do so, we estimate distributions of the
spatiotemporal events projected into the higher dimensional
vector space using Expectation Maximisation algorithm for
estimating Gaussian Mixture Models (EM GMM).

The idea behind the aforementioned projection is that
events which occur with the same periodicity will form
clusters in the hypertime space even if they are separated
by long intervals of time. An intuitive example, shown
in Figure 2 for the case of T = 1day, is that hypertime
associates the given observations with the time of the day.
Figure 2 shows an example output of a people detection
system located in an office building corridor. Here, the
detections overlap at mornings and evenings, when people
leave and enter work, while the non-detections form clusters
around noon and midnight, when people work or the building
is vacant.
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Fig. 2. Example of the warped hypertime projection on binary data (person
detection) and one periodicity T. The numbers xi observed at ti are projected
into a 3d vector space as (xi,cos(2π ti/T ),sin(2π ti/T )), where they form
clusters because they exhibit a periodic behaviour with a period T . The
warped hypertime dimensions define a base of a cylinder, and values of xi
define a cylinder side.

A. Warped Hypertime Projection

Let us assume that the robot pedestrian tracking system
provides us with vectors (xi,yi,vi,φi, ti), indicating the de-
tected people positions, velocities and orientations as well
as the timestamp of the observation. To avoid complications
caused by the ambiguity of angles, we transform the afore-
mentioned vector to (xi,yi,vi cosφi,vi sinφi, ti) and denote it
as (xi, ti).

Let us have a set of detections D(xi, ti), i = 1 . . .n of
occurrences and non-occurrences of some events at a location
xi at time ti, where D(xi, ti) = 1 for detected and D(xi, ti) = 0
for non-detected occurrences of the studied phenomenon.
To determine the parameters of the warped hypertime pro-
jection, we need to identify the most distinctive temporal
periodicities in the provided data. To do so, we create a time
series R(ti) = D(xi, ti) by neglecting spatial components of
the detections and apply the spectral decomposition method
derived from the Frequency Map Enhancement [7]. First, we
estimate the longest periodicity present in the data Tmax and
then we calculate ϒ periocities as Tτ = Tmax/τ , where τ =
1 . . .ϒ. Then, we calculate the prominence of each periodicity
as:

γτ =
1
n

n

∑
i=1

R(ti) e− j 2π ti/Tτ . (1)

Since the experiments performed in [7] indicate that the
most accurate predictions in human-populated environments
are obtained by modelling 2-3 periodicities, we select two
periodicities with the highest γτ and denote them as T1,2.
Then, we project every measurement (xi, ti) into the new
vector space by:

@xi =

(
xi,cos

2πti
T1

,sin
2πti
T1

,cos
2πti
T2

,sin
2πti
T2

)
. (2)

B. Model of the probability distribution

We assume that the time-dependent occurrences of the
phenomenon (xi, ti) projected into the warped hypertime
space as @xi are distributed in a way which allows mod-
elling their distribution by Gaussian mixtures. To model
the Bernoulli distribution of D(xi, ti), we split the dataset
to occurrences and non-occurrences (these are mutually
exclusive), and we build the mixture models of occurrences
GMM1(

@xi) and non-occurrences GMM0(
@xi) in separate

using an Expectation Maximisation algorithm. Thus, we
obtain two models, characterised by cluster weights α{0,1} j,
cluster centres c{0,1} j and covariances Σ{0,1} j. These allow
to determine the probability that a given projected sample
@x belongs to a particular cluster using a χ2 distribution:

P{0,1} j = 1−P
[
Q≤ (@x− cT

{0,1} jΣ
−1
{0,1} j(

@x− c{0,1} j)
]
,

(3)
where Q∼ χ2(d) and d is dimensionality of the constructed
vector space. The overall probability M{0,1}(@x) of gen-
erating an occurrence of @x by a mix of distributions
GMM{0,1}(@x) is estimated as:

M{0,1}
@x =

c

∑
j=1

α{0,1} jP{0,1} j. (4)

Then, the probability of the occurrence of (x, t) is given by
the following ratio based on its hypertime projection @x:

M(x, t) =
M1(

@x)
M1(@x)+M0(@x)

. (5)



IV. EVALUATION

A. Dataset

The approach described above was evaluated using a
dataset collected at the department of computer science at
the University of Lincoln. The data recording was performed
by a Pioneer 3-AT mobile robot equipped with a 3D lidar
(Velodyne VLP-16) and a 2D lidar (Hokuyo UTM-30LX),
using a reliable person detection method [44].

During the data collection, the robot remained stationary
in a T-shaped junction, which allowed its sensors to scan
the three connecting corridors simultaneously, covering a
total area of around 75 m2 (Fig. 3). However, since the
robot could not stay at the corridor overnight due to safety
rules, and it was needed by other researchers occasionally,
we did not collect the data on a full 24/7 basis. Instead,
the data collection was performed during ∼10 hour long
sessions starting before the usual working hours. Recharging
of the batteries was performed overnight, where the building
is vacant, and there are no people on the corridors.

The resulting dataset is composed of 9 data-gathering
sessions recorded over four weeks. A typical session contains
approximately 30000 detections of people walking in the
monitored corridors. Every detection is represented by a
vector (t,x,y,φ ,v) – the position, orientation, and speed of
detected human in time. Similar to [45], we added 70000 “no
detection” vectors of the positions, orientations, and speeds,
where no human was detected (such as random vectors
during the night, and people walking in the opposite direction
than detected ones). As some of the methods in comparison
do not model the speed, this value was set to v = 1.0 for
every measurement. For detailed information about particular
methods used in the comparison, see section IV-C. The
structured overview of the properties of individual methods
can be seen in Table I.

The 3D lidar has 16 scan channels with a 360◦ horizontal
and 30◦ vertical field-of-view, and was mounted at the height
of 0.8 m from the floor on the top of the robot (Fig. 3
left), which allows us to have a perspective that covers the
entire environment for data collection (Fig. 3 right). All
people appearing in the corridor are detected and tracked
in the 3D lidar’s frame of reference. More specifically, the
3D point cloud generated by the Velodyne lidar is first
segmented into different clusters using an adaptive clustering
method [44], then an offline trained SVM-based classifier
was used for human classification. The 2D positions of
the people are subsequently fed into a robust multi-target
tracking system [46] using Unscented Kalman Filter (UKF)
and Nearest Neighbour Joint Probability Data Association
method (NNJPDA), and the human-like trajectories (in XY-
plane) are eventually generated and recorded.

B. Evaluation methodology

Following [47], we divided the dataset into a training and
testing subset, where the training dataset consisted of seven
days from three weeks, and the test dataset consisted of two
days measured out of the time interval of the training dataset.

Fig. 3. Photo of the UoL dataset data collection setup: Robot location in
the corridor and example of a person walking as seen by the 3D lidar.

We chose two different criteria to measure the quality of
the model. The first is root-mean-square error (RMSE) [48]
between model predictions M(xi, ti) and test dataset values
D(xi, ti)

RMSE =

√
1
n

n

∑
i=1

(M(xi, ti)−D(xi, ti))
2, (6)

which is widely used in the time series forecasting [49].
The second criteria used is the level of similarity between

human motion distributions, occurring at certain times and
positions, obtained from the 2 test days and the ones pre-
dicted by the model. This metric is focused on how well the
model can predict how a person would move in the case it is
found, rather than how likely the robot is going to find one.

In order to do that, we have defined a spatial and temporal
grid in order to cover the full map and the whole 2 test days.
The different approaches can provide a probability motion
distribution for any point in time/space, however, obtaining
this same distribution with the ground truth data to make
the comparison at a single time instance is not possible.
The reason is that for an instance of time, we do not have
enough detections in order to build a meaningful distribution.
Instead, the idea is to compare the distribution obtained
from the test data during a defined interval of time. In our
evaluations, we have used a spatial grid, taking points every
1 meter in x and y directions, and 10 minutes long time
intervals. During night time, when there are no detections,
we assume equal probability for each orientation.

To make the comparison between the predicted and ground
truth histograms for each interval and position, we have used
the Chi-square distance. This distance indicates the level of
similarity between two discrete distributions or histograms,
so the higher the distance, the less accurate is our model
prediction compared with the test data. The total Chi-square
distance of the map for a single interval is defined as:

distancemap =
n

∑
i=1

k

∑
b=1

(xb− yb)
2

(xb + yb)
, (7)

where n is the number of positions, k is the number of
angular bins for the direction of people motion in the cells
(in our case we have chosen k = 8 taking the angles 0, 45,
90, 135, 180, 225, 270 and 315 degrees as values for each
bin), xb is the value of bin b in the predicted orientation
histogram, and yb is the value of the same bin b obtained
from the ground truth.



C. Methods compared in the experiment
1) WHyTe: There are two parameters, which affect the

quality of WHyTe - the number of clusters c and the set
of periodicities. The recent experiments showed that the
number of clusters could be relatively small (usually up to
9) [43], and it seems, that the number of clusters is in relation
with the topological structure of the space [42]. For this
dataset from T-junction, we chose c = 3 clusters. The second
parameter can be derived from data iteratively, but recent
experiments showed [42], [43], that the quality of prediction
does not usually grow with more than 3 added hypertime
circles. We selected the basic set of periodicities as proposed
in [7] and found out that there were three strongly prominent
components in the training data (six, twelve, and twenty-four
hours), which we used in our method.

2) STeF-Map: STeF-Map [16], which stands for Spatio-
Temporal Flow Map, is a representation that models the
likelihood of motion directions on a grid-based map by a set
of harmonic functions, which capture long-term changes of
crowd movements over time. The underlying geometric space
is represented by a grid, where each cell contains k temporal
models, corresponding to k discretised orientations of people
motion through the given cell over time. Since the total
number of temporal models, which are of a fixed size, is k×n
where n is the total number of cells, the spatiotemporal model
does not grow over time regardless of the duration of data
collection. The temporal models, which can capture patterns
of people movement, are based on the FreMEn framework
[7]. FreMEn is a mathematical tool based on the Fourier
Transform, which considers the probability of a given state
as a function of time and represents it by a combination
of harmonic components. The idea is to treat a measured
state as a signal, decompose it using the Fourier Transform,
and obtain a frequency spectrum with the corresponding
amplitudes, frequencies and phase shifts. Then, transferring
the most prominent spectral components to the time domain
provides an analytic expression representing the likelihood
of that state at a given time in the past or future.

This model assumes that it is provided with people detec-
tion data, comprising the person position, orientation and
timestamp of the detection (x,y,α, t). When building the
model, the x,y positions are discretised and assigned to the
corresponding cell, and the orientation α is assigned to one
of the k bins, whose value is incremented by 1. After a
predefined interval of time, the bins values are normalised,
and the results are used to update the spectra of the temporal
models. Then, the bin values are reset to 0, and the counting
starts again.

In order to retrieve the behaviour of human movement
through a given cell at a certain time t (which can be at
the future or at the past), the likelihood for each discretised
orientation associated with a cell can be computed as:

pθ (t) = p0 +
m

∑
j=1

p jcos(ω jt +ϕ j), (8)

where p0 is the stationary probability, m is the number of
the most prominent spectral components, and p j, ω j and

ϕ j are their amplitudes, periods and phases. The spectral
components ω j are drawn from a set of ωs that covers
periodicities ranging from 14 h to 1 week with the following
distribution:

ωs =
3600 ·24 ·7

s
, s ∈ 1,2,3, ...,12. (9)

3) Directional grid maps: Directional grid maps (DGM)
[50] are designed to model the directional uncertainty of dy-
namic environments. The inputs to the model are directions
of objects at different locations of the environment, and the
outputs are a set continuous probability density functions
indicating most probable directions dynamic objects move
at various locations of the environment. In order to build a
DGM, firstly, the 2D or 3D environment is divided into a
fixed-sized grid. Then, a mixture of von Mises distribution
is assigned to each cell to model the multimodal angular
uncertainty. Analogous to a Gaussian distribution, however
with a limited [−π,+π] support, a von Mises distribution
is controlled by its mean angle and concentration (inverse
variance) parameters. The number of von Mises components
for each mixture is determined by the number of density-
wide clusters using the DBSCAN algorithm. Having ini-
tialised the von Mises distributions with the cluster centres,
the parameters are learned using Expectation-Maximization
(EM). In experiments, it takes 1 to 4 iterations to converge
the EM. Since the directional grid maps are not designed to
deal with the spatiotemporal domain with periodic patterns,
in this experiment, the temporal domain is also discretised
every 15 minutes in addition to the 2 m × 2 m spatial
discretisation. For this experiment, as a proxy, we attempt to
estimate the people density by considering the cells where
the initial set of mixture parameters changes with time.
Therefore, the proxy count probabilities are always either
0 or 1 and not the exact people density. In the future, it
is possible to replace the von Mises distribution with a
Gaussian distribution or replace the Bernoulli likelihood in
[22] with a Gaussian likelihood to accurately model such
spatial density estimations.

4) CLiFF-Map Model: Circular Linear Flow Field map
(CLiFF-map) [35] is a technique for encoding patterns
of movement as a field of Gaussian mixtures. They can
be combined with semi-wrapped Guassian mixture models
(SWGMM) to model multi-modal motion.

p(VVV |ξξξ ) =
J

∑
j=1

π jN
S W

µµµ j ,ΣΣΣ j
(VVV ) (10)

with ∑
J
j=1 π j = 1.

This uses a semi-wrapped normal distribution, distributed
along the circumference and height of a cylinder. It is
represented as a semi-wrapped normal distribution. It can
be derived from:

N S W
µµµ,ΣΣΣ (VVV ) = ∑

k∈Z
Nµµµ,ΣΣΣ

([
θ

ρ

]
+2π

[
k
0

])
. (11)

where VVV = (θ ,ρ) represents the instantaneous velocities, θ ∈
[0,2π) is the direction, and ρ ∈ R+ the speed.



TABLE I
QUALITATIVE COMPARISON OF METHODS

Method Time Representation Complexity
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WHyTe [40] X × C C C C C 2 60
STeF [16] X × C D × D × 140 20
DGM [50] X × D D C C × 20 72
CLiFF [35] × × × D C C C 6k 104

LSTM [51] × X C C C C C 900 106

Note 1: In the ‘Representation’ columns, C stands for the continuous, and
D for the discrete representation of variables provided by the method.
Note 2: CLiFF-map was developed using Matlab and other methods are
based on the Python language.

5) LSTM: We also implemented a deep-learning model
for a point of comparison. A long short-term memory [51]
neural network was built using Keras atop of the TensorFlow
library. It consisted of 4 layers of 50 LSTM units followed
by a fully connected layer with 72000 trainable parameters.
It was then trained to convergence on the training set. It
is important to note, however, that this method consumed
significantly more computing power, both during training and
prediction.

D. Evaluation results

The results of the evaluation, which are summarised in
Table II, indicate that WHyTe achieved the lowest root mean
squared error, but for the χ2 distance, STeF present the lower
score. We believe that the reason behind that is because
STeF represents each orientation in each position by its own
temporal model. Although DGM is not designed to estimate
the probability of occurrence and it only returns 0 or 1,
and therefore RMSE is not a proper measurement for this
method, it was comparable with WHyTe in χ2 statistics.

To fit the evaluation procedure, CLiFF-map was discre-
tised into eight orientation bins. CLiFF-map predicts direc-
tions on specific positions better than WHyTe during the day,
but as this model does not take into account the temporal
dimension, its night results are worse.

Low values of RMSE in Table II show that WHyTe
can acurately model both movement directions and human
occurrences. Modelling the joint probability of occurrences
and directions is the crucial property of the WHyTe, which
is supposed to provide apriori knowledge of the dynamics of
human-populated environments to the autonomous robots.

We also include an LSTM model as it is commonly
considered a state-of-the-art method for temporal predictions.
The LSTM model was trained using four NVIDIA Tesla
V100 SXM2 32GB for 10 hours, and its model size was
900 KiB. However, as the LSTM is tailored for short-term
predictions (compared to the prediction horizons of STeF
or WHyTe), its predictions quickly converge to the mean
probability of people directions across the entire training
dataset (both spatially and temporally). Therefore, LSTM
predicts that in a long-term horizon, the distribution of people

TABLE II
PREDICTION ERRORS OF THE EVALUATED MODELS AND DATASETS

Testing sets Days Nights Days and nights
Criterion RMSE χ2 RMSE χ2 RMSE χ2

WHyTe 0.50 23.4 0.00 0.2 0.40 23.6
STeF 0.57 10.6 0.02 8.1 0.46 18.7
DGM 0.70 25.5 0.83 0.0 0.75 25.5
CLiFF 0.60 15.5 0.16 9.2 0.50 24.7
LSTM 0.57 25.5 0.22 0.0 0.48 25.5

movement directions will be uniform. DGM, as well as
WHyTe, predict very low probabilities of people presence
during the night, which corresponds to uniform distribution
of walking directions as well. Thus, the χ2 metric for these
three methods for the night data is lower compared to STeF
and CLiFF.

WHyTe, STeF and DGM were developed using Python
language, their training on regular personal notebooks lasted
about one minute, and the model sizes are 2 KiB, 140 KiB,
and 20 KiB respectively, which indicates, that they could
be applied in real robotic tasks. It should be noted, that
model created by WHyTe is smaller by magnitude(s) to
its competitors, which is an essential attribute for building
models over large areas, see Table I.

V. CONCLUSION

We propose an approach capable of representing pedes-
trian flows and how they change over time. Unlike methods,
that perform predictions based on recent observations, the
model presented can predict the pedestrian flow intensity and
direction using observations gathered days to weeks before
the prediction. Instead of short-term predictions based on
actual observations, which force the robot to react to the
current situation in a suboptimal manner, a robot utilising
our method would be able to anticipate human presence and
movement direction from long-term observations and plan
its trajectory to minimise the need to evade people. This
helps to avoid situations, where the robot interferes with
the natural pedestrian flows in its operational area, allowing
seamless, socially-acceptable navigation in human-populated
environments.

The proposed representation is based on the idea of
warped hypertime (WHyTe), which projects the time into
a constrained subset of a multidimensional vector space,
constructed to reflect the patterns of human habits.

We evaluated the presented method on a real dataset,
gathered over four weeks and compared its predictive ac-
curacy to state-of-the-art methods provided by their authors.
Two criteria were used: RMSE, which reflects the ability
to predict the joint probability of the presence and the
direction of pedestrian movement, and χ2 statistics, that
reflects the ability to predict the conditional probability of the
movement direction given that a human is present at some
specific position and time. Although the proposed method
was not able to compete with STeF and CLiFF methods
in χ2 statistics, it achieved the best prediction in terms of
RMSE. This indicates that while the method is not as good in



predicting the flow directions, it has a superior performance
in predicting intensities of the pedestrian flows. Moreover,
we showed that our method is by the magnitude(s) smaller
compared to the other ones, indicating its suitability to model
large-scale environments.

In the future, we will evaluate the impact of the methods
used in this comparison on the ability of robots to generate
collision-free trajectories in advance.

The WHyTe code, dataset, and other materials used for
our experiments are available at [18].
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