

University of Dundee

Free Jazz in the Land of Algebraic Improvisation

Chiri, Claudia Elena; Fiadeiro, Jose

Published in:
Proceedings of the Seventh International Conference on Computational Creativity, UPMC, Paris, France, June
27 - July 1, 2016.

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Chiri, C. E., & Fiadeiro, J. (2016). Free Jazz in the Land of Algebraic Improvisation. In Proceedings of the
Seventh International Conference on Computational Creativity, UPMC, Paris, France, June 27 - July 1, 2016.
(pp. 322-329)

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/226755080?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://discovery.dundee.ac.uk/en/publications/6826a409-38d2-495a-bf33-3c6c729665d8

Free Jazz in the Land of Algebraic Improvisation

Claudia Elena Chiriţă, José Luiz Fiadeiro
Dept. of Computer Science, Royal Holloway University of London, UK

claudia.elena.chirita@gmail.com, jose.fiadeiro@rhul.ac.uk

Abstract
We discuss the connection between free-jazz music and
service-oriented computing, and advance a method for for-
mal, algebraic analysis of improvised performances; we aim
for a better understanding of both the creative process of mu-
sic improvising and the complexity of service-oriented sys-
tems. We formalize free-jazz performances as complex dy-
namic systems of services, building on the idea that an impro-
visation can be seen as a collection of music phase spaces that
organise themselves through concept blending, and emerge as
the performed music. We first define music phase spaces as
specifications written over a class of logics that satisfy a set
of requirements that make them suitable for dealing with im-
provisations. Based on these specifications we then formalize
free-jazz performances as service applications that evolve by
requiring other music fragments to be added as service mod-
ules to the improvisation. Finally, we present a logic for spec-
ifying free jazz based on one of Anthony Braxton’s graphic
notations for composition notes.

Introduction
Complex dynamical systems, more than being simply com-
plicated, are systems whose structure is intrinsically unpre-
dictable, as they are open to redesign. Their emergent be-
haviour is dictated by the interconnections and the inter-
actions of cooperation and competition between their enti-
ties. These systems are based on non-mereological com-
position, and thus should be seen as more than the sum of
their parts. We argue that both free-jazz performances and
service-oriented systems exhibit the characteristics enumer-
ated above and we thus adhere to the tenet expressed in
works such as (Borgo and Goguen, 2005), (Borgo, 2005),
and (Blackwell and Young, 2004), stating that free-jazz per-
formances are instances of complex systems.
What is free jazz? As it happens more often than not with
complex systems and creative processes, free jazz usually
gets its diagnosis per exclusionem, as it is easier to be under-
stood as the sum of things it is not, rather than of the things
it is. We adopt the stance of Mazzola and Cherlin (2008),
who propose a positive characterisation of free jazz, instead
of the usual negative definition: free jazz is the form of jazz
in which the performers are the only ones held accountable
for the music that is being played, since (generally) no (stan-
dard) notations are followed. The music results from a dy-
namic, complex game that changes its rules throughout the

performance. The success of the game is determined by the
identity that emerges from both coherence and conflict – the
emergent “dynamical orderings” of the music “that are both
surprising and comprehensible” (Borgo and Goguen, 2005).
As highlighted in (Borgo, 2005), free jazz is by no means
random or lacking rules, even if the evolution of an impro-
vising act is a priori unpredictable due to its transforming
constraints and rules: the standards of quality are high, al-
beit different from the ones of traditional music. Free-jazz
improvising is not typically pursuing the classical rhythms,
harmonies, or melodies; its valuable aspects are rather the
pervading creativity, the discovery of new musical dimen-
sions, the emergence of a collective purpose, or the unex-
pected synchronizations that interrupt divergence moments.
These features seem to challenge (or disregard at least) the
existing means of analysing and evaluating conventionally
notated music. This is why we believe new tools are required
for studying the phenomenon of self-organising music.

Computational models for free jazz Even if we do not
intend to address to the utmost the complexity of musical
improvisations, we focus on the dynamics of these perfor-
mances by means of formal, algebraic methods for complex
systems. What differentiates our paper from other previ-
ous work is the way we approach complexity. We formalize
free-jazz performances as complex dynamic systems of ser-
vices, building on the idea that an improvisation can be seen
as a collection of music phase spaces that organise them-
selves through concept blending, and emerge as the per-
formed music. The music improvised up to a point plays the
role of a service application, while all the music fragments
that could continue the performance are seen as external ser-
vice providers; these offer their intrinsic characteristics as
services meant to satisfy the ‘needs’ of the ongoing music
act. In (Borgo and Goguen, 2005) free-jazz performances
are modelled as non-linear dynamical systems of equations,
and in (Blackwell and Young, 2004) as swarm optimization
processes. It is worth mentioning that even if optimality is
hardly a global feature of free jazz, as improvisation is al-
most never concerned with meeting objectives in an optimal
way, all these computational approaches exploit optimiza-
tion techniques to model a step in the evolution of the sys-
tem. Borgo (2005) expresses the “sink or swim” character of
improvisations as the “sync or swarm” behaviour of a com-
plex system: either we select the states with the best fitness,

327

322Proceedings of the Seventh International Conference on Computational Creativity, June 2016

or we decide to let a process end. The swarm formalization
aims to echo the emergence of a collective direction of the
music performance as a whole, despite the seemingly diver-
gence of its individual components. Although we choose
to depart from the randomness inherent to swarm optimiza-
tion, our approach could be aligned to the Live Algorithms
for Music manifesto of Blackwell and Young (2004) if, in
the modular view of these complex systems, we replaced the
“Swarmer” component with the service-oriented framework
that we propose. Another notable difference between this
swarm approach and the model we advance is the fact that
the object of our optimisation is intrinsic to the music: since
the constraints are not extraneous, no input (to which the
music that we are creating should be compared) is needed.

The study of Ramalho and Ganascia (1994), proof of the
long-standing interest in modelling and simulating the mu-
sical creativity of improvisations, states similar claims to
our assumptions on knowledge and reasoning in jazz perfor-
mances, such as the fact that musical actions depend on con-
texts that evolve over time, and that musicians integrate rules
and constraints into their actions dynamically. Moreover, it
sets similar goals with respect to simulating creativity: ob-
taining a suitable trade-off between the ‘flexibility and ran-
domness’ and the ‘control and clear semantics’ in modelling
creativity in terms of classical problem solving.
Modelling aims The primary goal of the model that we
propose for free-jazz improvisations falls, according to the
taxonomy of motivations for the formalization and automa-
tion of music compositional processes defined by Pearce,
Meredith, and Wiggins (2002), in the domain of computa-
tional modelling of music cognition and musical creativity –
see (Wiggins et al., 2009). This includes studies having both
cognitive motivations and musicological goals that are not
focused on generating aesthetically appealing music or ob-
taining useful compositional tools, but are rather interested
in the degree in which a model serves the comprehension of
the cognitive processes within composition and improvisa-
tion. Although our main aim is not to propose and evaluate
hypotheses on stylistic properties of jazz compositions, on a
secondary level, our study lies at the intersection of compu-
tational modelling of musical styles and design of composi-
tional tools: the framework could be implemented and thus
used to create new computationally creative music systems.
Free-jazz semiotics: music phase spaces We follow the
lines of (Borgo and Goguen, 2005) and regard improvisation
processes as self-organisational systems of musical phase
spaces. We consider that the continuous flow of a free im-
provisation can be segmented into musical sections (regions
of a phase space) that capture a distinct musical feature or
that have a certain level of cohesion – a prominent quali-
tative character (related to the rhythm, tempo, timbre etc.).
The passage between these sections plays the important role
of a bifurcation in the evolution of the modelled improvisa-
tion, and will be referred to as a phase transition.

The phase space of a system is understood in (Borgo and
Goguen, 2005) as a multi-dimensional map which facili-
tates the description of the dynamics of the given system.
The number of dimensions is given by the number of mu-
sical variables. The standard music notation captures, for

example, a small number of dimensions: time, pitches, and
other marks regarding the tempo or other details. One might
think that since free jazz does not commit to notations, and
since it claims to be more flexible about tonalities and tim-
bre, we would have to deal with phase spaces having large
dimensions. What Borgo and Goguen (2005) propose is ac-
tually a reduction of the unnecessary variables. We abstract
over this representation of the phase spaces, and consider
them simply as “musical idea spaces”, or semiotic spaces.
We loosen the algebraic formalisation of semiotic spaces
of Goguen (1999) by considering that a musical phase space
could be described in principle through the use of algebraic
specifications such as sets of sentences over a given logic –
see (Sannella and Tarlecki, 2012). Thus, one should think
of a music phase space as a collection of music fragments
that share certain salient features and could be played at a
certain moment in the evolution of the improvisation. Ex-
amples of phase spaces, together with a formal definition of
the concept, are discussed in the next section.
Service binding as concept blending The notion of
concept blending as used by Goguen (1999) plays a key
role in defining the composition of musical phase spaces,
which in turn determines the outcome of the improvisa-
tion process. Similarly to the studies of Eppe et al. (2015)
and Kaliakatsos-Papakostas et al. (2014) on the role of con-
ceptual blending in computational invention of cadences and
chord progressions in jazz, we model the composition of
musical phase spaces as categorical colimits of algebraic
specifications. The context in which we consider such col-
imits is that of service-oriented computing – a paradigm
that supports the development of complex software appli-
cations based on dynamic reconfigurations of networks of
systems (Fiadeiro, 2012). These reconfigurations arise from
interactions between software entities, are governed by a
need-fulfilment mechanism (software applications connect
to external suppliers in order to meet their business goals),
and consist of three distinct run-time processes: service dis-
covery, selection and binding. What is particularly impor-
tant for our work is that the binding of services, which is
technically achieved through colimits, can be regarded as the
service-oriented counterpart of phase-spaces composition.

The consequences of constraining free jazz
Constraint programming has already proved to be appropri-
ate for computational music composition and modelling mu-
sic theory disciplines such as harmony, rhythm, instrumen-
tation and counterpoint (Anders and Miranda, 2011). The
declarative nature and the modularity of such constraint sat-
isfaction problem (CSP) systems match the way in which
composition rules are commonly expressed in standard mu-
sic theory. Deciding the satisfaction of certain properties or
rules based on the true/false dichotomy is however often in-
adequate for the purpose of composing music, even more so
when dealing with improvisation. Soft constraint satisfac-
tion problem systems, which generalise the classical crisp
variant of CSP by evaluating constraints over richer truth
structures like c-semirings, valuation structures, or residu-
ated lattices, mitigate the problem of expressing loose rules

328

323Proceedings of the Seventh International Conference on Computational Creativity, June 2016

and provide more flexibility in writing musical guidelines.
We enrich the specifications of music phase spaces with the
mechanism of soft CSP, considering that each musical sec-
tion has a set of preferences (soft constraints) that need to
be satisfied by the music that will follow it. The values with
which the requirements are satisfied are elements of the truth
structure’s underlying set denoted herein by Sat. The final
aim of this soft CSP formalization is to find those specifica-
tions of music phase spaces that optimize the satisfaction of
the given constraints.

We illustrate the formalization of free-jazz improvisations
in the context of service-oriented computing starting from
the example presented in (Borgo and Goguen, 2005). The
authors analysed an excerpt entitled “Hues of Melanin” from
the 1973 Sam Rivers Trio’s concert at Yale University. They
proposed a sectional interpretation of the performance and
highlighted the transitions between the music phases in or-
der to demonstrate the nonlinear dynamics of the improvi-
sation. The segmentation is natural and determined by the
frequent and clear variations – rhythmic, timbral or chro-
matic – of the music flow. We focus on the first part of
this examination, namely sections A to H. Although we try
to make the presentation of this example self-explanatory,
the reader is encouraged to consult the section “Hues of
Melanin” of (Borgo and Goguen, 2005).

We consider that each musical section imposes some con-
straints regarding the tempo, texture, intensity, or technique
details of the next musical phase to be played. But we keep
in mind that, as the improvisation builds, the constraints of
a musical segment evolve and adapt to the already unfolded
music: the same musical section or trigger of a transition
could require different continuations if played at two differ-
ent moments of the performance.

spec FREEJAZZ =
sorts Phase, Tempo, Texture, Instrument, Detail, Transition
ops slow, medium, fast : Tempo

repetition, groove, complexity, fragmentation, rubato : Texture
trill, cadence, groove, drone, glissando, ascent, pedal : Detail
N, T1, T2, T3, T4, T5, T6, T7 : Transition
tempo : Phase → Tempo
texture : Phase → Texture
detail : Phase → Detail
transition : Phase → Transition

Figure 1: The specification FREEJAZZ

We zoom in on the two transitions triggered by a so-
prano saxophone trill on D (sections C and G in Figure 2)
and we regard the trill as a determining component in the
evolution of the improvisation. We model these musical
phases as specifications written over first-order logic using
a CASL-like syntax (Mosses, 2004), sharing two common
sub-specifications: one describing the truth structures used
to evaluate the satisfaction of the constraints, i.e. residuated
lattices (Galatos et al., 2007), and the other, the specifica-
tion FREEJAZZ in Figure 1, listing the instruments played by
the musicians, possible values for measuring the tempo, tex-
ture descriptors, techniques, and ornamentations that consti-
tute the salient details of musical segments, as well as the

Letter Time Transition Type Overall Texture

C 5:29 T2 (soprano trill on D) FREE
C2 5:48 T7 (drum cadence)
C3 6:43 T2 (soprano high note)

C4 7:05 T2/T4/T6
(soprano, bass low A)

G 13:10 T2 (trill on D), GROOVET5 (bass groove)
G2 14:04 metric sync
G3 14:52 T6 (bass triggers descent) FREE

Transition types: T2 pseudo-cadential segue – an implied cadence
with sudden and unexpected continuation; T4 feature overlap – one
feature of the antecedent section is sustained and becomes part of
the consequent section; T5 feature change – a gradual change of
one feature that redirects the flow (usually subtly); T6 fragmenta-
tion – a gradual breaking up, or fragmenting, of the general texture
and/or rhythm; T7 internal cadence – a prepared cadence followed
by a short silence then continuation with new material.
Figure 2: Sections and Subsections of “Hues of Melanin”
(excerpt from (Borgo and Goguen, 2005), Figure 1)

types of transitions between the sections. Apart from these,
a specification describing a musical phase also records the
characteristics of the fragment and preferences on the mu-
sical section that will continue it. These are expressed as
ordinary first-order sentences. In Section “Anthony Brax-
ton Graphic Notation Logic” we make explicit the temporal
distinction that separates them into properties of the current
music fragment and properties of the next fragment.

spec TRIGGERINGPHASE = FREEJAZZ and RESIDUATEDLATTICES

then ops available : Phase × Instrument × Instruments → Sat
tempoPref : Tempo → Sat
texturePref : Texture → Sat
instrPref : Instrument → Sat
instrumentsPref : Set(Instrument) → Sat
detailPref : Detail × Instrument → Sat
transitionPref : Transition → Sat

∀ p : Phase; i : Instrument; is : Instruments
• available(p, i, is) = 1 ⇔ (detail(p) = trill) ∧ (i = sax)
• tempoPref(slow) ≤ tempoPref(medium)
• tempoPref(fast) ≤ tempoPref(slow)
• texturePref(complexity) ≤ texturePref(rubato)
• texturePref(complexity) ≤ texturePref(groove)
• instrPref(bass) = instrPref(drums) = instrPref(sax)
• instrPref(flute) ≤ instrPref(sax)
• instrumentsPref(S) = ∗(instrPref(S))
• detailPref(trill, sax) = 0
• transitionPref(N) = 0

Figure 3: The specification TRIGGERINGPHASE

For the triggering passage, we can distinguish a number
of general constraints that do not depend on the context in
which it is played, such as basic guidelines on the tempo, the
texture, or the instruments to be played. Even though more
specific preferences regarding the details of the section are
left to be fixed at the actual moment of the musicking, there
are some constraints regarding the need of a transition, and

329

324Proceedings of the Seventh International Conference on Computational Creativity, June 2016

thus a continuation of the passage – the concert can’t end
with the trill – and the repetition of the passage – it shouldn’t
be continued with another saxophone trill. These restric-
tions are expressed as soft constraint sentences, or require-
ments (here first-order terms), that extend the specification
TRIGGERINGPHASE in Figure 3:
cvars phase : Phase; instrument : Instrument;

instruments : Instruments
• tempoPref(tempo(phase)) • texturePref(texture(phase))
• instrumentsPref(instruments) • transitionPref(transition(phase))
• detailPref(detail(phase), instrument)

These restrict the entire musical phase space to several
smaller phase spaces that satisfy the ‘needs’ of our musical
component. In (Borgo and Goguen, 2005), the sections C
and G that follow the saxophone trills on D are considered
to be alternatives for the development of the performance
from our transitional point onwards: we can regard them as
different solutions for a constraint problem. Although both
sections satisfy the requirements imposed by playing the trill
(the sentences of the specification TRIGGERINGPHASE), the
valuation of the constraint sentences above (which come
with the already performed music) will discriminate be-
tween one choice and the other. We can think of sections
C and G as epitomes of two growth directions or musical
phase spaces: in the first phase, a medium-tempo short bass
groove passage is soon abandoned for a rubato (the phase
space fights the groove towards a modal area), while in the
second section a groove similar to the one that was ended
prematurely is explored (the phase space comprises passages
of groove exploration and/or increased complexity).

The specifications PHASESPACEC and PHASESPACEG
correspond to the two alternative phase spaces presented in
our example above. Each of these contains one of the two
sections played during the actual improvisation.

spec PHASESPACEC = FREEJAZZ and RESIDUATEDLATTICES

then ops available : Phase × Instrument × Instruments → Sat
p1, p2 : Phase

∀ p : Phase; i : Instrument; is : Instruments
• available(p, i, is) = 1 ⇔ (p, i, is) belongs to the following table

ph tempo texture instruments detail + in T

p1 medium rubato drums, bass, sax cadence: drums T7
p2 slow rubato drums, bass cadence: drums T6

Figure 4: The specification PHASESPACEC

spec PHASESPACEG = FREEJAZZ and RESIDUATEDLATTICES

then ops available : Phase × Instrument × Instruments → Sat
p1, p2, p3 : Phase

∀ p : Phase; i : Instrument; is : Instruments
• available(p, i, is) = 1 ⇔ (p, i, is) belongs to the following table

ph tempo texture instruments detail + in T

p1 medium groove drums, bass, flute drone: bass T5
p2 medium groove drums, bass, sax groove: bass T5
p3 fast complexity drums, bass, sax trill: sax T2

Figure 5: The specification PHASESPACEG

Service-oriented computing
Building on these specifications of music phases, we will
model free-jazz improvisations as service-oriented pro-
cesses. The framework of service-oriented computing that
we consider herein is in keeping with (Chiriţă, Fiadeiro, and
Orejas, 2016) and deals with two kinds of entities: service
applications and service modules. The former are the exe-
cuting units that trigger the discovery of a required service
or resource, whereas the modules providing services will be
executed only after they are bound to the application. Ser-
vice applications have an orchestration part, a specification
defining their behaviour, and interfaces describing the ser-
vices required: interfaces are sub-specifications of the given
orchestration together with properties that express prefer-
ences regarding the use of a given service. Modules are
similar to applications in that they comprise an orchestra-
tion and interfaces; in addition, they include a description of
the functionality or the resources provided.
Definition 1. A service application (Σ, I) consists of a
specification Σ, called orchestration, together with a finite
family I = {(ix, rx)}x∈n of interfaces, each of which con-
sisting of a mapping ix : Σx → Σ such that Σ and Σx

share the same residuated lattice, and a requirement rx ∈
CSen(Σx), where CSen(Σx) is the set of all constraint sen-
tences that can be associated to Σx.
Definition 2. A service module (Ω, P, J) consists of an or-
chestration Ω, a provides-property P ∈ CSen(Ω), and a
finite family J = {(jy, qy)}y∈m of interfaces, consisting of
mappings jy : Ωy → Ω and requirements qy ∈ CSen(Ωy).

We consider that the execution of service applications
takes place in the context of a fixed set of service modules
– a service repository. Each execution step is triggered by
the need to fulfil a requirement of the current application,
which in the context of our work corresponds to a requires-
interface. Similarly to conventional soft-constraint satis-
faction problems, the goal is to maximize the satisfaction
of the requirement. To this end, we distinguish three ele-
mentary processes: discovery, selection and binding. For
a service application and one of its requires-interfaces, the
discovery process will provide a set of possible matches,
i.e. pairs of service modules from the repository and at-
tachment mappings from the requires-specification to the or-
chestrations of the modules. Note that the output of the dis-
covery process only depends on the repository and the se-
lected requires-interface, and not on the application itself.
In the selection process, for every match retrieved in the
discovery phase, a score of compatibility with the require-
ment will be computed using the concept of graded semantic
consequence (Diaconescu, 2014): the value with which the
provides-property semantically entails the requirement. The
application then commits to the chosen provider through
the binding process: the orchestration of the application is
blended with the orchestration of the selected service mod-
ule (via the computation of a pushout of the two specifica-
tions), while the fulfilled requirement is replaced with the
requirements of the added module. For more technical de-
tails on how the service processes are modelled, we refer the
interested reader to (Chiriţă, Fiadeiro, and Orejas, 2016).

330

325Proceedings of the Seventh International Conference on Computational Creativity, June 2016

Music improvising as service-oriented processes
We model a free-jazz performance as a service application,
and each musical section to be played as a module. In both
cases, the first-order specifications of the music fragments
act as orchestrations, while the constraint sentences act as
requires-interfaces. Each musical transition determines a
round of processes of service discovery, selection and bind-
ing: for each section played, a best supplier (musical pas-
sage) will be selected from the pool of all possible continu-
ations, and it will be “added” to the current application, thus
extending the record of the music already played. Choosing
a version or another at a given point in the development of
the music depends on the way the selection of a best model
is defined, and also on the content of the orchestration at that
point: playing a musical trigger will influence both the way
we assign a preference value to a musical-fragment candi-
date – the interpretations of the constraints – and the space
of the satisfaction values upon which we judge the compati-
bility of two musical segments.

Upon the selection of one provider, the binding of the ap-
plication to the chosen service module represents the com-
mitment of the music performance to one of the two phase
spaces: the music blending is realized by the pushout of the
two specifications that define the orchestrations.1We stress
the fact that in this case, the concept blending is not de-
termined by the mere juxtaposition of musical fragments,
but by the fact that the class of possible music exploration
paths is narrowed with each binding through refinement. At
the end of each reconfiguration round, the performed im-
provisation could be evaluated using two results presented
in (Chiriţă, Fiadeiro, and Orejas, 2016): the formalization of
the concept of α-satisfiability (where α is a degree of sat-
isfaction) and a theorem stating that the binding process is
sound with respect to α-satisfiability.

Modelling “Hues of Melanin”
Consider the service application A = (Σ, I) whose orches-
tration Σ is TRIGGERINGPHASE (as in Figure 3), and whose
interface consists of the identity map and the requirement

tempoPref(tempo(phase)) ∧ texturePref(texture(phase))
∧ instrumentsPref(instruments) ∧ transitionPref(transition(phase))
∧ detailPref(detail(phase), instrument).

We fix the repository Rep = {C,G}, where

• the service module C = (Ω, P, J) has the orchestra-
tion PHASESPACEC in Figure 4, the provides-property
P = available(phase, instrument, instruments), and no re-
quirements, and

• the service module G = (Ω′, P ′, J ′) is such that Ω′ is as
in Figure 5, and P ′ = P .

1Although we use colimits to model concept blending, we are
not strictly following the approach from (Goguen, 1999). We do
not generate the input morphisms and the base space: the base
space and one of the input spaces are part of the service appli-
cation; the other input space, together with its corresponding mor-
phism, follow from the discovery process, which is modelled here
as an external mechanism that can be thought of as a ‘black box’.

When selecting a best supplier for A, the music phases that
best fit the preferences are phase p1 for C and phase p2 for
G. In principle, we would need to compute the compat-
ibility scores between TRIGGERINGPHASE and PHASES-
PACEC and PHASESPACEG, respectively, using all possible
models. However, due to the way the specifications are writ-
ten, the choice of the best phase for each phase space can
be inferred directly from the axioms. First, the constraint
variables phase, instrument and instruments are limited to the
interpretations defined in the tables. Second, the axioms of
TRIGGERINGPHASE that express specific preferences, such
as for a tempo, make it feasible to determine the best phases
provided by each phase space for any model. With respect
to tempo, phase G.p3 is the least preferred, while C.p1 and
G.p1, G.p2 are the most preferred because tempoPref(fast) ≤
tempoPref(slow) ≤ tempoPref(medium). However, we cannot
decide which one of the two phase spaces would be more
suitable, since we cannot decide whether C.p1 or G.p2 satis-
fies better the constraints. Therefore, any of the two modules
could be non-deterministically selected.

Logics for improvising
First-order logic, although standard for formal specifica-
tions, may not be the most suitable logic for describing the
features of a music fragment; we could specify music by em-
ploying other logics with a more convenient syntax, closer
to the usual musical notation. To ensure that the framework
presented in the previous section can still be used for deal-
ing with improvised music, we impose a set of reasonable
restrictions that the new logics must meet. We argue that
any logic satisfying the constraints described in (Chiriţă, Fi-
adeiro, and Orejas, 2016) is generally suitable for capturing
free-jazz improvisations: informally, the logic should

• permit the expression of constraints, as the aim of free
jazz is “to play together with the greatest possible free-
dom – which, far from meaning without constraint, actu-
ally means to play together with sufficient skill and com-
munication to be able to select proper constraints in the
course of the piece”(musician Ann Farber, see (Borgo,
2005), Chapter “Reverence for Uncertainty”),

• permit the partial satisfaction of constraints, as improvi-
sation requires flexibility and non-rigid answers, and

• allow the change of the truth system, as players in a col-
laborative performance usually have different beliefs and
value systems that they impose to the group alternately.

Non-standard notations used in composition notes and
guide scores for improvised performances could be used as
a basis for defining logics having the expressiveness needed
for specifying free jazz. In the following, we show how such
notations can be formalized as appropriate logics for impro-
visation processes, focusing on one of Anthony Braxton’s
alternative notations for free-jazz composition.

Anthony Braxton Graphic Notation Logic
Through the extensive use of graphic and symbolic nota-
tions, Braxton’s music positions itself at the fuzzy border
between composition and improvisation – see (Lock, 2008).

331

326Proceedings of the Seventh International Conference on Computational Creativity, June 2016

Neither completely notated, nor completely free, the scores
can be seen as an incipient guideline for the improviser: the
visual elements force the performer to assign personal in-
terpretations to rather abstract forms that would otherwise
make the scores unplayable by immutably following the
more conventional notations. The improviser must hence
intervene considerably in the composition, not in the usual
form of jazz extended solos, but with “tiny pockets of im-
provisational space” (Lock, 2008) that should fill the non-
finished musical structure. This porosity, an inviting-to-
improvisation characteristic of his compositions, is also ap-
parent in the work on which we will focus: “Composition
94 for Three Instrumentalists” (Braxton, 1988). In section
B of this piece, Braxton uses an image grouping notation
consisting of three types of contours that are overlaid on top
of standard pitches to create the so-called liquid, shape, and
rigid formations. The role of the formations is to indicate
the performers the outlines that they should follow in play-
ing the notes inside them: these pitches should not be played
as they appear in the score, but transformed according to the
distinctive interpretation of each improviser. The pitches in-
side liquid formations, figures resembling clouds, should be
played as “clouded mass sound imprints”, the shape forma-
tions should suggest “harder edges”, while the rigid forma-
tions, closer to geometrical figures, should highlight their
“composite state”. In this study, we loosen the restrictions
for the interpretation of the formations, blurring the distinc-
tion between the three types of formations, and we accept
as valid the improvisations that replace the notes within the
shapes with completely different pitches given that they both
allude to the original notes, and evoke the contours. We will
reduce the problem of quantifying the improvisation’s remi-
niscence of the original pitches to the problem of measuring
the similarity of two music fragments (the interested reader
is referred, for example, to (Mongeau and Sankoff, 1990) for
further details on the comparison of musical fragments).

The observations above lead to a straightforward formal-
ization of Braxton’s graphic notation as a many-valued logic
BGN . To obtain a representation of the scores, and further-
more, to express properties of the music segments at cer-
tain positions in a score, the language of BGN must com-
prise the universe of all possible music fragments written in
a standard notation, a set of formations, and an appropri-
ate truth structure that will allow us to manipulate partially
true statements. We define hence a signature Σ as a triple
(L,MF,FS), where L is a residuated lattice, MF is a set of
music fragments, and FS is a set of formation symbols. The
morphisms of signatures, i.e. mappings that permit transla-
tions from one language to another, are defined component-
wise: a morphism ϕ : Σ → Σ′ consists of a morphism of
residuated lattices ϕrl : L′ → L, a function ϕMF between
the sets of fragments MF and MF′, a function ϕFS from the
set of formation symbols FS to FS′, and a natural number l
representing a delay between the moment of playing a score
written over the first signature and the moment of playing a
score written over the second one. We admit three types of
atomic sentences built using the symbols in the signatures:
• m@p, with p ∈ N and m ∈ MF, which should be read as

“at position p we have the music fragment m”,

• ∼ m@p, with p ∈ N and m ∈ MF, which should be read
as “at position p we have a fragment similar with m”, and

• s(@p), with s ∈ FS and p ∈ N, which should be read as
“the fragment at position p is in the shape of s”.

We will denote by sp(m) the conjunction s(@p) ∧ ∼ m@p.
For any morphism of signatures ϕ : Σ → Σ′, we can

translate the atoms over Σ to atoms over Σ′ as follows:

• ϕ(m@p) = (m@(p+ l))

• ϕ(∼ m@p) = ∼ m@(p+ l)

• ϕ(s(@p)) = ϕFS(s)(@p+ l)

The semantics of BGN is given by classes of models corre-
sponding to every signature: every Σ-model M consists of
a set |M | of interpretations of music fragments, a method
M∼ : |M | × |M | → L for measuring the similarity of two
segments as a value of L, interpretations Ms : |M | → L
of the formation symbols s ∈ FS, and a sequence of mu-
sic fragments Mseq ∈ |M |∗ to be played. We will usually
denote the fragment at the position p in Mseq by Mseq[p];
we will sometimes describe a sequence through a regular-
expression-like string in which interrogation points mark the
parts that are yet to be fixed (containing formation symbols),
and the ∗ symbol marks the fact that the sequence is open
and admits any possible succession of music fragments.

Models M can satisfy a sentence ρ with a many-valued
truth degree from the residuated lattice, denoted by M |= ρ:

• M |= (m@p) is defined as
{
0, if Mseq[p] �= m

1, if Mseq[p] = m
,

• M |= (∼ m@p) is given by the similarity of m and the
music fragment at position p, i.e. M∼(m,Mseq[p]),

• M |= (s(@p)) is given by the resemblance Ms(Mseq[p])
of the fragment at position p with the shape s.

The fact that a signature does not determine the interpre-
tation of the music fragments, the similarity measure, or
the interpretation of the formation symbols, makes the logic
BGN too general for suitably specifying music: we would
like to be able to control, for example, which similarity mea-
sure to use in comparing music fragments. We hence de-
fine SBGN to be the logic having as signatures pairs con-
sisting of BGN -signatures Σ and fixed classes M of Σ-
models. The signature morphisms of SBGN , which will
play an important role in defining service discovery and
binding, are defined as usual, as the BGN -signature mor-
phisms ϕ : Σ → Σ′ for which the associated model reduct
ϕM

2 satisfies the property ϕM(M′) ⊆ M.

A “Clapping Music” improvisation
To illustrate how an improvised performance based on com-
position notes written using the graphic notation of Anthony
Braxton can be seen as a series of dynamic processes be-
tween service modules specified over SBGN , we choose to

2We recall that any Σ′-model M ′ can be reduced along the sig-
nature morphism ϕ to a Σ-model ϕM(M ′) simply by forgetting
the interpretations of the new symbols that the morphism intro-
duces; see (Sannella and Tarlecki, 2012) for more details.

332

327Proceedings of the Seventh International Conference on Computational Creativity, June 2016

�
�
��
�

�
�
��

����� ���
�

� ��
����� ���

�
���
�

�
�
��128� �� ���� �

�
�� ��

�
�
�

�
� ���A:

a x b

. . .

��
�
�
�

���
��� �

���
�

�� �
�
�
��

�
���

��
�
�

�
�

�
�812� �

� ���� �
�� �

�
�����

� ��
B:

x4

c be

. . .

�� �
�

������ ����
�

�� �
�
���
�

���
�

��
�
�

���
�

812� �� �
��� ��� �

�
����

� �
�
�

C:

bebe y

. . .

Figure 6: Scores A, B, C

reduce to a minimum the details particular to music-theory.
This simplification is intended to: (1) underline the fact that
the freeness of the performance does not reside primarily in
the qualitative aspects of the resulted music, but in the nature
of the musicking process itself, and (2) alleviate the effort of
the reader unfamiliar with basic notions of music theory.

We formalize our example starting from Steve Reich’s
minimalist composition “Clapping Music” written in 1972.
Although a complete composition, with no musical seg-
ments meant to be improvised, the piece constitutes a good
reference for our purpose due to its simplicity. Written
around a basic pattern very similar to the standard African
12 ⁄ 8 bell pattern, the piece should be played by two perform-
ers: one should continuously and unvaryingly repeat the ba-
sic pattern, while the other should repeat and shift the pattern
with one note after each eight bars.

We use fragments of this composition to exemplify the
binding of services that specify incomplete musical seg-
ments written in Braxton’s notation: we start from the first
bar of the piece, the basic pattern (see Figure 6, A), and we
let the performance develop according to both fixed, rigid
instructions, and loose, subject to improvisation guidelines.
Bar a is followed by a shape formation specifying that
the pattern should be repeated, but in a transformed state re-
minding of descending steps (fragment x), and by the fixed
fragment b, to which other fragments may be added.

In the following, we will consider the universe MF of mu-
sical fragments to be the set of all the possible score frag-
ments obtained from composing the basic pattern a and the
patterns obtained by shifting it, together with the prefixes
of these shifts. We formalize the starting score as a service
application A = (Σ, I) with
• the orchestration Σ given by (LΣ,MF, { },MΣ), where
MΣ is the class of the models that correspond to se-
quences of music fragments described as a?b∗;

• a single interface (i : Σ1 → Σ, R), where irl , iMF and
iFS are all identities, il = 1 (to indicate that the variable
fragment x appears at position 1) and iM the inclusion
of MΣ in the class M′

Σ of models that correspond to all

sequences of music fragments, which are described as ∗,3
and R = 0(x) = (@0) ∧ (∼ x@0).
To refine and continue the given music score, we con-

sider a round of processes of discovery, selection and bind-
ing of other music fragments to our original fragment. Let
the result of the discovery process be the set of the scores
B and C in Figure 6. Formally, they are service modules
B = (ΩB, PB, JB) and C = (ΩC , PC , JC) as follows:
• their orchestrations are ΩB = (LΩB ,MF, ∅,MΩB) and
ΩC = (LΩC ,MF, { },MΩC) with the classes of models
MΩB and MΩC defined by the sequences of music frag-
ments cbe∗ and bebe?∗, respectively;

• they guarantee to begin with the fragments c and bebe4

through the provides-properties PB = c@0 and PC =
bebe@0;

• we model the fact that the score B is completely fixed,
not demanding improvisation, by considering the set of
requirements to be empty;

• the interface jC : Ω′
C → ΩC of C is defined similarly to the

interface of A: it consists of identities for the residuated
lattice, the music fragment space and the set of formation
symbols, the natural number 1, indicating the position of
the formation symbol in the score, and the inclusion of the
class of models MΩC in the class MΩ′

C
of models having

all possible sequences of music fragments;
• the requirement QC = 0(y) = (@0) ∧ (∼ y@0).

In order to perform a selection between the two service
modules, we would have to further limit the classes of mod-
els MΣ, MΩB and MΩC . To determine how suitable one
fragment is for the intended improvisation, we would need
to fix a set of measures of similarity between music frag-
ments and of acceptable interpretations for the formation
symbol : How similar are the fragments c and bebe to x,
and how much can they be perceived as sounds in the shape
of ? Let us skip this phase of our running example, con-
sidering the score B to be the result of an arbitrary selection
process, and focus on the binding of modules as a process of
blending music fragments.

By computing the pushout of the morphisms i and φ that
map the requires-specification to the orchestration of the
application and to the provides-specification of the service
module, we amalgamate the models5 in MΣ and MΩB , and
hence their musical sequences, a?b∗ and cbe∗ respectively,
obtaining the contiguous music score acbe∗. (Note the role
of the delay 1 corresponding to the morphisms i and j.)

Σ1 Σ

ΩB Σ′

po

∗

cbe∗

a?b∗

acbe∗

i

φ i′

j

1

0 0

1

3We choose not to limit the class of models through the inter-
face because we want to be able to consider as a candidate in the
selection process any music fragment satisfying the requirement R.

4Note the ×4 superscript in Figure 6, B denoting that c is the
repetition of the highlighted fragment four times.

5Here we use the specification-theoretic notion of model amal-
gamation, see for example (Sannella and Tarlecki, 2012).

292333

328Proceedings of the Seventh International Conference on Computational Creativity, June 2016

The substitution of the orchestration Σ of A with the ver-
tex Σ′ of the pushout will hence determine the refinement
of the class of models MΣ, both filling the improvisational
gaps of the performance, and molding its evolution.

Conclusions
In this paper we have shown how the fundamental pro-
cesses of service discovery, selection and binding can be
used to model free-jazz performances. The main step in
this endeavour was to identify which logical formalisms are
suitable for capturing and reasoning about free-jazz, and
at the same time are compatible with the principles of the
service-oriented computing paradigm. To this end, we have
first discussed a variant of many-valued first-order logic en-
dowed with constraints, which is closer to the formalisms
used in previous developments on service-oriented comput-
ing (Chiriţă, Fiadeiro, and Orejas, 2016); we have then de-
fined a novel logic, particular to free-jazz, based on Anthony
Braxton’s graphic notations. The proposed formalization
paves the way to reasoning about improvisation processes:
one can now study aspects related to reliability (to what ex-
tend the user’s expectations can be met?), determine which
music fragments are hardly reachable (never or seldom used
during a play), or make predictions about the evolution of an
improvisation (e.g. how does the choice of a music fragment
affect the subsequent use of other fragments?).

Our work has focused on the musicking process itself, not
on the resulting music: we do not provide a way to record
the improvisation; instead, the music is played at run-time,
whenever a new fragment is sublated into the performance.
We would like to continue to pursue this line of research
by implementing an SBGN specification and programming
language whose operational semantics extends the logic pro-
gramming of services from (Ţuţu and Fiadeiro, 2015) by
taking into account many-valued truth spaces. In this way,
we could create novel computationally creative music sys-
tems that exploit the operational semantics of service ap-
plications to deliver improvised music to users based on an
online repository of music fragments. The repository would
be ever-changing, hence, even if the user’s input were the
same, the composed music could vary significantly.

Acknowledgements
The authors are grateful to Nuno Barreiro for his continu-
ous encouragement and helpful discussions throughout the
course of this work.

References
Anders, T., and Miranda, E. R. 2011. Constraint program-

ming systems for modeling music theories and composi-
tion. ACM Comput. Surv. 43(4):30.

Blackwell, T., and Young, M. 2004. Self-organised music.
Organised Sound 9(02):123–136.

Borgo, D., and Goguen, J. 2005. Rivers of consciousness:
The nonlinear dynamics of free jazz. In Jazz Research
Proceedings Yearbook, volume 25.

Borgo, D. 2005. Sync or swarm: Improvising music in a
complex age. A&C Black.

Braxton, A. 1988. Composition notes, volume 3. Synthesis
Music.

Chiriţă, C. E.; Fiadeiro, J. L.; and Orejas, F. 2016. Many-
valued institutions for constraint specification. In FASE
2016, volume 9633 of LNCS, 359–376. Springer.

Diaconescu, R. 2014. Graded consequence: an institution
theoretic study. Soft Comput. 18(7):1247–1267.

Eppe, M.; Confalonieri, R.; Maclean, E.; Kaliakatsos-
Papakostas, M. A.; Cambouropoulos, E.; Schorlemmer,
W. M.; Codescu, M.; and Kühnberger, K. 2015. Compu-
tational invention of cadences and chord progressions by
conceptual chord-blending. In IJCAI 2015, 2445–2451.
AAAI Press.

Fiadeiro, J. L. 2012. The many faces of complexity in soft-
ware design. In Conquering Complexity. Springer. 3–47.

Galatos, N.; Jipsen, P.; Kowalski, T.; and Ono, H. 2007.
Residuated Lattices: An Algebraic Glimpse at Substruc-
tural Logics. Studies in Logic and the Foundations of
Mathematics. Elsevier Science.

Goguen, J. 1999. An introduction to algebraic semiotics,
with application to user interface design. In Computation
for metaphors, analogy, and agents. Springer. 242–291.

Kaliakatsos-Papakostas, M.; Cambouropoulos, E.;
Kühnberger, K.-U.; Kutz, O.; and Smaill, A. 2014.
Concept invention and music: Creating novel harmonies
via conceptual blending. In CIM2014.

Lock, G. 2008. What I call a sound: Anthony Braxton’s
synaesthetic ideal and notations for improvisers. Critical
Studies in Improvisation 4(1).

Mazzola, G., and Cherlin, P. B. 2008. Flow, gesture, and
spaces in free jazz: Towards a theory of collaboration.
Springer Science & Business Media.

Mongeau, M., and Sankoff, D. 1990. Comparison of musical
sequences. Comput. Hum. 24(3):161–175.

Mosses, P. D. 2004. CASL Reference Manual, volume 2960
of LNCS. Springer.

Pearce, M.; Meredith, D.; and Wiggins, G. 2002. Motiva-
tions and methodologies for automation of the composi-
tional process. Musicae Scientiae 6(2):119–147.

Ramalho, G., and Ganascia, J. 1994. Simulating creativity in
jazz performance. In AAAI 1994, 108–113. AAAI Press /
The MIT Press.

Sannella, D., and Tarlecki, A. 2012. Foundations of Al-
gebraic Specification and Formal Software Development.
Springer.

Ţuţu, I., and Fiadeiro, J. L. 2015. Service-oriented logic
programming. LMCS 11(3):1–38.

Wiggins, G. A.; Pearce, M. T.; Müllensiefen, D.; et al. 2009.
Computational modeling of music cognition and musical
creativity. In Oxford Handbook of Computer Music. Ox-
ford University Press. chapter 19.

334

329Proceedings of the Seventh International Conference on Computational Creativity, June 2016

