

University of Dundee

Heterogeneous and asynchronous networks of timed systems

Fiadeiro, José L.; Lopes, Antónia

Published in:
Theoretical Computer Science

DOI:
10.1016/j.tcs.2016.12.014

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Fiadeiro, J. L., & Lopes, A. (2017). Heterogeneous and asynchronous networks of timed systems. Theoretical
Computer Science, 663, 1-33. https://doi.org/10.1016/j.tcs.2016.12.014

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Sep. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/226755042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.tcs.2016.12.014
https://discovery.dundee.ac.uk/en/publications/ae6a575b-26eb-4572-ac03-50b2d5d7dc05
https://doi.org/10.1016/j.tcs.2016.12.014

Heterogeneous and Asynchronous Networks of
Timed Systems

José L. Fiadeiroa, Antónia Lopesb

aDepartment of Computer Science, Royal Holloway University of London, UK
bDepartment of Informatics, Faculty of Sciences, University of Lisbon, Portugal

Abstract

We present a component algebra and an associated logic for heterogenous timed
systems that can be interconnected at run time. The components of the algebra
are asynchronous networks of processes, where processes are sets of traces that
model the behaviour of the software applications or devices that are intercon-
nected and execute according to the clock granularity of the network node in
which they are placed. The advantage of a trace-based model is that it abstracts
from the specificities of the different classes of automata that can be chosen as
models of implementations and characterises at a higher level the topological
properties of the languages generated by such automata that support several
compositionality results; in the paper, such properties are supported by a new
time refinement relation and its related closure operator. The main novelty and
contribution of our theory lies in the fact that we do not assume that all net-
work nodes have the same clock granularity and that interconnections can be
established, at run time, among nodes with different clock granularities. We in-
vestigate conditions under which the interconnected processes can communicate
and make progress, generating a collective non-empty behaviour, i.e., conditions
that ensure that the interconnection is consistent. Those conditions can be ver-
ified at design time, thus allowing that systems can be interconnected at run
time without further checking for compatibility; to the best of our knowledge,
no other component algebra has been put forward for timed heterogeneous sys-
tems that does not require a-priory knowledge of their structure. Finally, we
propose a logic that can support specifications for this component algebra and
prove associated compositionality results.

Keywords: asynchronous process networks, component algebra,
heterogeneous time, orchestration, temporal logic

1. Introduction

The systems that are now operating in cyberspace are best modelled as
networks of ‘machines’ (software applications, or devices such as sensor and
actuators), where each machine performs local computations and can be inter-
connected dynamically (at run time) to other machines to achieve some goal.
Systems such as these often have real-time requirements, i.e., their correctness
depends not only on what outputs are returned to given inputs, but also on the
time at which inputs are received and corresponding outputs are produced and
communicated.

Preprint submitted to Theoretical Computer Science January 4, 2017

Author Accepted Manuscript version of Fiadeiro, JL & Lopes, A 2017, 'Heterogeneous and
asynchronous networks of timed systems', Theoretical Computer Science, vol. 663, pp. 1-33.
https://doi.org/10.1016/j.tcs.2016.12.014
©2017 released under the terms of a CC-BY-NC-ND License

Because of the distributed nature of such networks, it does not make sense
to assume that the nodes of the networks at which machines execute have the
same clock granularity. This means that interconnections can only be estab-
lished asynchronously (synchronicity being only possible if machines execute
over compatible clocks) through connectors that can orchestrate the interac-
tions between machines according to the clock granularities of the nodes at
which they execute.

Several researchers have recently addressed discrete timed systems with het-
erogeneous clock granularities – an overview of related work is presented in
Sec. 7. However, those approaches generally suffer from two major shortcom-
ings:

(a) They do not provide a theory of composability for such systems that can
support compositional reasoning about the properties of the composition
operation, including that it preserves consistency, i.e., that the behaviour
generated by a network is not empty, meaning that the machines can co-
operate as interconnected.

(b) They rely on design-time modifications of the time structures to ensure
compatibility, i.e., component implementations might have to be changed for
the composition to work; this makes them unsuitable for addressing global
properties of systems interconnected at run time as actually implemented.

In this paper, we put forward a component algebra for heterogeneous and asyn-
chronous networks of timed systems that addresses both challenges: composi-
tional reasoning and run-time interconnection. To the best of our knowledge, no
other component algebra has been put forward for timed heterogeneous systems
that does not require a-priory knowledge of their structure, i.e., that ensures
run-time compositionality.

Our algebra abstracts the behaviour of machines as processes whose traces
are generated according to the clock granularity of the network node in which
they execute. The advantage of building the component algebra over sets of
traces is that it makes our results independent of the specific choice of more
operational abstractions that generate those behaviours, which in the literature
on timed systems include, for example, discrete timed input/output automata
(TIOA) [22, 9]. In order to illustrate how a specific type of operational model
can be used in this context we use the version of TIOA defined in [11].

Our model is based on the component and interface algebra for service-
oriented computing that we proposed in [13] for un-timed domains. A first
extension of this model for timed systems was presented in [10] based on a
(homogeneous) notion of time in which all processes execute according to the
same time granularity. The present extension to a heterogeneous setting is not
trivial (which justifies this paper) because, where the algebraic properties of
composition in an homogenous time domain generalise those of the un-timed
domain presented in [13], interconnection in a heterogeneous setting is much
more involved — indeed, not even always admissible. More specifically, the
main challenges come from:

(a) the fact that, in a heterogeneous timed domain, different clock granularities
interfere with the way processes need to be coordinated in order to ensure
that they can cooperate; and,

2

(b) the fact that the topological properties of timed traces are more intricate
than those of un-timed ones, which means that we need to go beyond the
usual Cantor topology of trace-based domains.

In relation to (a), we define in Sec. 3 a notion of connector through which pro-
cesses can be interconnected into networks and a composition operator through
which networks can be interconnected at run time. We investigate conditions
that guarantee that every joint finite trace can be extended by an execution step
(i.e., that the networks are ‘progress-enabled’), i.e., that the machines can agree
on what to execute next. Being progress-enabled is particularly important for
run-time interconnection because it guarantees that, when binding to another
process (or network), the current trace of a network can be extended to a trace
of the newly formed network.

In relation to (b), we define in Sec. 2 a new time-related refinement relation
and a new time-related closure operator that provide us with the topological
properties required for characterising consistency of networks (Theo. 5.5), and
for proving one of our major compositionality results (Theo. 5.8), which provides
us sufficient conditions for ensuring that a network of progress-enabled processes
is itself progress-enabled. Time refinement and its related closure operator are
then investigated in Sec. 6 from the point of view of a suitable logic for our
component algebra, including a compositionality property (Theo. 6.21).

The structure of the paper is as follows:
Section 2 introduces basic notions of trace-based semantic models, including

the usual Cantor topology, and the new time-related refinement relation and
closure operator. Notions of projection and translation are also introduced to
account for interconnections.

Section 3 introduces the notion of process that we use to abstract from the
behaviour on timed system components and, crucially, an explicit notion of
connection through which process interconnections can be orchestrated.

Section 4 introduces the component algebra proper: the components are
heterogeneous timed asynchronous relational nets – ht-ARNs – which are hy-
pergraphs whose nodes are labelled with processes and whose hyperedges are
labelled with connections; the composition operator allows two networks to be
interconnected via interaction points. The fact that we work with a heteroge-
neous timed model implies a major departure in relation to traditional models
of reactive systems such as process algebras, where composition results in a pro-
cess; we define instead what it means for an ht-ARN to be approximated by
a process and prove that for every connected ht-ARN there is a process that
best approximates it (though the behaviour of the process does not necessarily
coincide with that of the network). Such an approximation is useful to prove
properties of the network and for simulating the network.

Section 5 investigates a major property of networks: consistency, i.e., the
property that an ht-ARN has a non-empty set of behaviours meaning that its
processes can co-operate as interconnected. We prove compositionality results
for consistency through criteria that can be checked on processes at design time
guaranteeing the consistency of interconnections when performed at run time
across different clock granularities. We also show how such criteria can be
checked over more operational abstractions of process implementations such as
automata, and analyse the associated complexity.

Section 6 introduces a logic through which the behaviour of machines can be

3

specified or analysed. We abandon the implicit-time model used in [13], which is
not realistic for the class of applications that need to run across heterogeneous
time domains, in favour of a metric temporal logic [24]. The challenges here
concern the need for topological notions of closure that go beyond the traditional
safety-related ones [2], which leads us to investigate a continuous semantics with
a new operator that captures the new notion of closure introduced in Sec. 2.

Finally, we provide an overview of related work (Sec. 7). Proofs of our main
results are collected in an appendix at the end of the paper.

This paper is itself a revised and extended version of [14]. More specifically,

(a) we expand on the topological properties and constructs that are used for
defining the component algebra and characterising consistency;

(b) we use deterministic timed input-output machines to illustrate how a spe-
cific class of machines can be used as implementations of our notions of
process and of connector, and prove compositionality results for that class;
and

(c) we revise the semantics of the continuous temporal logic used therein for
specification, investigate a pointwise (discrete) semantics, and develop a new
fragment in which the continuous and pointwise semantics coincide; in this
fragment, we characterise satisfiability of specifications and the existence of
canonical models.

2. Preliminaries

The processes that execute in cyberspace are typically open, reactive and
interactive. Their behaviour can be observed in terms of the actions that they
perform. For simplicity, we use a linear time model, i.e., we observe streams
of actions. In order not to constrain the environment in which processes exe-
cute and communicate, we take streams that capture complete behaviours to be
infinite (which we call traces) and we allow several actions to occur ‘simultane-
ously’, i.e., the granularity of observations may not be so fine that we can always
tell which of two actions occurred first. The execution of an empty set of actions
corresponds to a step during which a process is idle, i.e., a step performed by
the environment without the involvement of the process.

The following definition sets out terminology and notation that is used
throughout the paper. We start by recalling a few standard concepts related to
traces and their Cantor topology.

Definition 2.1 (Trace, segment, property, closure). Let S be a set.

• A trace λ over S is an element of Sω, i.e., an infinite sequence of elements
of S. We denote by λi the prefix of λ that ends at λ(i − 1) if i > 0, with
λ0 being the empty sequence.

• A segment π is an element of S∗, i.e., a finite sequence of elements of
S, the length of which we denote by |π|. We use π < λ to mean that the
segment π is a prefix of λ. Given s ∈ S, we denote by π · s the segment
obtained by extending π with s.

• A property Λ over S is a set of traces. For every property Λ, we define:

4

– ↓Λ = {π : ∃λ ∈ Λ(π < λ)} — the segments that are prefixes of traces
in Λ, also called the downward closure of Λ.

– Λ̄ = {λ : ∀π < λ(π ∈ ↓Λ)} — the traces whose prefixes are in ↓Λ,
also called the closure of Λ.

• A property Λ is said to be closed iff Λ ⊇ Λ̄ (and, hence, Λ = Λ̄).

In our model, timed traces consist of an infinite sequence of pairs of a set of
actions and an instant of time — the actions that are observed at that instant,
typically performed by different components of a network. That is, henceforth
we work with traces over S = 2A×R≥0 where A is a set (of actions) and R≥0 is
the set of the non-negative real numbers. Notice that any such trace is uniquely
defined by a pair consisting of a trace over 2A and a trace over R≥0.

Definition 2.2 (Timed traces). Let A be a finite set (of actions).

• A time sequence τ is a trace over R≥0 (the non-negative real numbers)
such that: τ(0) = 0; τ(i) < τ(i+ 1) for every i ∈ N; the set {τ(i) : i ∈ N}
is unbounded, i.e., time progresses (the ‘non-Zeno’ condition).

• An action sequence σ is a trace over 2A — i.e., an infinite sequence of
sets of actions — such that σ(0) = ∅.

• A timed trace over A is a trace 〈σ, τ〉 over 2A × R≥0 such that σ is an
action sequence and τ is a time sequence. We denote by ttra(A) the set of
timed traces over A.

• A timed segment over A is a segment 〈π, τ〉 over 2A × R≥0 such that, if
the segment is not empty, π(0) = ∅, τ(0) = 0, and τ(i) < τ(i + 1) for
every i < |τ | − 1. We denote by tseg(A) the set of timed segments over A.

• A timed property over A is a subset of ttra(A). Given a timed property
Λ, we define:

– ↓Λ = {π ∈ tseg(A) : ∃λ ∈ Λ(π < λ)}.
– Λ̄ = {λ ∈ ttra(A) : ∀π < λ(π ∈ ↓Λ)}.

That is, we restrict closure as introduced in Def. 2.1 to the sub-space of
timed traces and timed segments.

• Given δ ∈ R>0,

– The δ-time sequence τδ is defined by τδ(i) = i · δ for every i∈N, i.e.,
it consists of all multiples of δ.

– A δ-timed trace over A is a timed trace 〈σ, τδ〉, the set of which is
denoted by ttraδ(A).

– A δ-timed property is a timed property that consists of δ-timed traces.

Notice that, by allowing sets of actions to be empty, we can model finite
behaviours through timed traces that, after some point, have only the empty
set, i.e., which are of the form 〈π.∅ω, τ〉 where π∈(2A)

∗
— the system stops

executing actions after a certain point in time whilst still part of a network.

5

The empty set also allows us to model observations that are triggered by actions
performed by components outside the system.

This time model falls under what is often known as a ‘point-based semantics’,
as opposed to an ‘interval-based semantics’ in which observations are made at
every instant of time — our systems are discrete and, therefore, a continuous
observation model is not required. The advantages of the adopted model are
that, on the one hand, it offers a natural extension of a trace-based model (as
adopted, for example, in [13]) and, on the other hand, it has been recently
studied from the point of view of a number of decidability results [26].

This model is still realistic for hybrid systems of software and physical de-
vices: typically, a physical device interacts with software applications via a
‘sampler’, a component that observes the state of the physical device at some
periodical rate δ and communicates the observations to software components of
the system (such as a controller) [17]. In other words, for modelling cyberphys-
ical systems, we take into account the discrete-time behaviour that results from
the interaction of physical devices with their samplers.

The closure operator introduced in Def. 2.1 can be applied directly to S =
2A × R≥0, i.e., to the Cantor topology defined over timed traces. However, it
is often useful to separate properties required of action sequences from those of
time sequences, which is why we define a different operator for timed properties
that uses the closure of operator over (2A)ω for fixed time sequences.

Definition 2.3 (t-closure). Given a timed property Λ over A we define,

• for every time sequence τ , Λτ = {σ∈(2A)
ω

: 〈σ, τ〉∈Λ} — the action
property defined by Λ and τ

• Λtime = {τ : ∃σ∈(2A)
ω

(〈σ, τ〉∈Λ)} — the time sequences of traces in Λ

• Λt =
⋃
τ∈Λtime

{〈σ, τ〉 : σ ∈ (Λτ)} — the t-closure of Λ

We say that Λ is closed relative to time or, simply, t-closed, iff Λ ⊇ Λt (and,
hence, Λ = Λt).

In order to be able to model networks of systems whose nodes have dif-
ferent time granularities, we need a notion of time refinement through which
behaviours observed at different nodes can be brought down to a finer time
granularity:

Definition 2.4 (Time refinement). Let ρ : N→ N be a monotonically increas-
ing function that satisfies ρ(0) = 0.

• Let τ , τ ′ be two time sequences. We say that τ ′ refines τ through ρ, which
we denote by τ ′ �ρ τ , iff, for every i ∈ N, τ(i) = τ ′(ρ(i)). We say that τ ′

refines τ , which we denote by τ ′ � τ , iff τ ′ �ρ τ for some ρ.

• Let λ = 〈σ, τ〉, λ′ = 〈σ′, τ ′〉 be two timed traces. We say that λ′ refines λ
through ρ, which we denote by λ′ �ρ λ, iff

– τ ′ �ρ τ
– for every i ∈ N and ρ(i) < j < ρ(i+1), σ(i) = σ′(ρ(i)) and σ′(j) = ∅.

We also say that λ′ refines λ, which we denote by λ′ � λ, iff λ′ �ρ λ for
some ρ.

6

• The r-closure of a timed property Λ over A is Λr = {λ′ ∈ ttra(A) :
∃λ∈Λ(λ′ � λ)}. We say that Λ is closed under time refinement, or r-
closed, iff Λr ⊆ Λ.

We extend the notion of refinement to timed properties:

• A timed property Λ′ refines a timed property Λ — Λ′ � Λ — if, for every
λ′∈Λ′, there exists λ∈Λ such that λ′ � λ.

• A timed property Λ′ approximates a timed property Λ — Λ′ w Λ — if
Λ′ � Λ and, for every λ∈Λ, there exists λ′∈Λ′ such that λ′ � λ.

A time sequence refines another if the former interleaves time observations
between any two time observations of the latter. Refinement extends to traces by
requiring that no actions be observed in the finer trace between two consecutive
times of the coarser (see Fig. 1 and also Fig. 5).

ρ

τ'(ρ(1))
λ'

λ

∅ ∅

∅

∅

0

0

∅∅

τ(1) τ(2) τ(3) τ(4)

���

���

���

���

���

���

���

���

���

���

���

���

τ'(ρ(2)) τ'(ρ(3)) τ'(ρ(4))
���

���

���

���

σ(1) σ(2) σ(3) σ(4)

σ'(ρ(1)) σ'(ρ(2)) σ'(ρ(3)) σ'(ρ(4))

Figure 1: Time refinement – for every i ∈ N, τ(i) = τ ′(ρ(i)) and σ(i) = σ′(ρ(i))

Proposition 2.5. The following properties of time refinement are useful:

• Given τ ′ �ρ τ and a timed trace λ = 〈σ, τ〉, there is a single timed trace
λ′ = 〈σ′, τ ′〉 such that λ′ �ρ λ — we call λ′ the refinement of λ over τ ′.

• τδ′ � τδ iff δ is a multiple of δ′.

• If two timed properties Λ1 and Λ2 are r-closed so is their intersection
Λ1 ∩ Λ2.

• If Λ is r-closed, Λ′ � Λ iff Λ′ ⊆ Λ.

It is not difficult to prove that the refinement relation makes the space of all
time sequences a complete meet semi-lattice. The meet of two time sequences
τ1 and τ2 always exists and is given by the recursion

τ(i+ 1) = min({τ1(j) > τ(i), j ∈ N} ∪ {τ2(j) > τ(i), j ∈ N})

together with the base τ(0) = 0. However, if one considers the space of all time
sequences of the form τδ for some δ∈R>0, it is easy to see that a meet of τδ1
and τδ2 exists iff δ1 and δ2 are commensurate (have a common divisor), i.e., if
there are n,m∈N>0 such that δ1/n = δ2/m, in which case the meet is τδ where
δ is their greatest common divisor (which always exists and can be calculated
using Euclid’s algorithm provided that δ1 and δ2 are commensurate).

Functions between sets of actions (alphabet maps) are useful for defining
relationships between individual machines and the networks in which they op-
erate:

7

Definition 2.6 (Projection and translation). Let f : A → B be a function
(alphabet map).

• For every σ∈(2B)ω, we define σ|f∈(2A)ω pointwise as σ|f (i) = f−1(σ(i)) =
{a ∈ A : f(a) ∈ σ(i)} — the projection of σ over A. If f is an inclusion
(A ⊆ B), then we tend to write |A instead of |f .

• For every timed trace λ = 〈σ, τ〉 over B, we define its projection over A
to be λ|f = 〈σ|f , τ〉 and, for every timed property Λ over B, we define
Λ|f = {λ|f : λ ∈ Λ} — the projection of Λ to A.

• For every timed property Λ over A, we define f(Λ) = {〈σ, τ〉 : 〈σ|f , τ〉 ∈ Λ}
— the translation of Λ to B.

• For every timed property ΛA over A and every timed property ΛB over
B we write ΛB �f ΛA (resp. ΛB wf ΛA) to mean ΛB � f(ΛA) (resp.
ΛB w f(ΛA)).

That is, σ|f projects every trace σ over B to a trace over A by taking the
inverse image of the set of actions at every point of σ. An inclusion A⊆B defines
a function that maps every element in itself. We denote by |A the corresponding
projection of traces over B to traces over A, which forgets the actions of B that
are not in A. An example is given in Sec. 3.2. Notice that the inverse image
of a set of actions in B that are not in the range of f is the empty set; if f
captures the way in which a machine is part of a network, this means that sets
of actions of the network in which the machine is not involved are projected to
the machine as ∅.

A timed property Λ over A is mapped forwards to a timed property over B by
taking the set of all traces over B that are projected back to a trace of Λ. Notice
that this is different from applying f pointwise to every trace λ of Λ: instead,
our construction maps λ = 〈σ, τ〉 to all traces 〈σ′, τ〉 over B such that, for all i,
σ(i) = f−1(σ′(i)), which means that every σ′(i) may contain any actions of B
that are not in the range of f . In particular, we have that f(ttra(A)) = ttra(B).
Again, if f captures the way in which a machine is part of a network, f(Λ) will
open every trace of Λ to actions of the network in which the machine is not
involved. This is essential for defining the semantics of networks (which we do
in Sec. 4.1).

The following proposition provides useful properties: that projections pre-
serve time refinement and translations preserve r-closure and t-closure.

Proposition 2.7 (Preservation). Let f : A→ B be a function (alphabet map).

• Given two timed traces λ and λ′ over B such that λ′ �ρ λ, λ′|f �ρ λ|f .

• Let Λ be a timed property over B. If Λ is r-closed, so is Λ|f .

• Let Λ be a timed property over A. If Λ is r-closed, so is f(Λ).

• Let Λ be a timed property over A. If Λ is t-closed , so is f(Λ).

We are particularly interested in translations defined by prefixing every ele-
ment of a set with a given symbol. Such translations are useful for identifying in
a network the machine to which an action belongs — because they can bind to
other machines at run time, not design time, it would not be realistic to assume
that machines have mutually disjoint alphabets. More precisely, given a set A

8

and a symbol p, we denote by (p.) the function that prefixes the elements of A
with ‘p.’. Note that prefixing defines a bijection between A and its image p.A.

3. Processes and Connections

In this section, we put forward a component algebra for heterogenous timed
systems. Components are networks of processes (not individual processes) and
the composition operator of the algebra creates complex networks out of simpler
ones. This is important to support modern systems of systems that operate in
cyberspace, where systems (networks of simpler components) can bind at run
time to other systems to obtain required resources or to jointly achieve some
goal.

This framework generalises the component algebra proposed in [13] for service-
oriented systems. The main differences are that (1) we address networks of pro-
cesses that operate over heterogeneous time, and (2) we generalise the intercon-
nection and coordination model to account for multi-party, not just peer-to-peer
interactions.

We start by detailing the communication model and then proceed to defining
networks and investigating some of their properties.

3.1. Processes

Processes are behavioural abstractions of units of computation and commu-
nication (machines) that execute at network nodes. Our communication model
is asynchronous, interactions between machines being based on the exchange of
messages; as explained in the previous section, in the case of cyberphysical sys-
tems, we assume that physical devices interface with software components via
samplers that observe the states of the devices and publish their observations
as messages.

We organise messages in sets that we call ports: a port is a finite set (of
messages). Ports are communication abstractions that are convenient for or-
ganising networks of systems as formalised below. Every message belonging to
a port has an associated polarity : − if it is an outgoing message (published at
the port) and + if it is incoming (delivered at the port); this is the notation
used in [6], among others. Therefore, every port M has a partition M− ∪M+.
For every port M we define its dual Mop, which is obtained by swapping the
polarities of the messages in M , i.e., Mop− = M+ and Mop+ = M−.

The actions of sending (publishing) or receiving (being delivered) a message
m are denoted by m! and m¡, respectively. More specifically, if M is a port, we
define:

• AM− = {m! : m ∈M−} — the set of publications (of outgoing messages)
associated with M

• AM+ = {m¡ : m ∈ M+} — the set of deliveries (of incoming messages)
associated with M

• AM = AM− ∪ AM+ — the set of actions associated with M

Note that even if a process does not refuse the delivery of messages, it can decide
to discard them, for example if they arrive outside the expected protocol. Not all
published messages can be guaranteed to be delivered to their destination either,

9

i.e., we do not make any default assumptions on the transmission protocols
through which processes exchange messages.

Definition 3.1 (Process). A process is a triple P = 〈δ, γ,Λ〉 where:

• δ ∈ R>0 is the granularity of the clock of the process;

• γ is a finite set of mutually disjoint ports;

• Λ is the r-closure of a non-empty δ-timed property over Aγ =
⋃
M∈γ AM .

We call Aγ the alphabet of the process and Λ the behaviour of the process.

The fact that processes are r-closed means that they contain all possible in-
terleavings of empty observations, thus capturing their behaviour in any possible
environment. This notion of closure can be related to mechanisms that, such as
stuttering [1], ensure that components do not constrain their environment.

Given a port M , we designate the process 〈δ, {M}, ttraδ(AM)r〉 by �δM . This
is a process with a single port M that, at any multiple of its clock granular-
ity, accepts any set of actions belonging to AM , which in the literature, and
henceforth, is named run (see Fig. 2).

AM

δ

AM

2.δ

AM

3.δ

AM

4.δ

∅

0
...

Figure 2: One of the top traces of �δM .

Another example of a process, which we will use later on, is CreditRequest =
〈δ, γ,Λ〉 where:

• δ = 0.5

• γ = {M} where M− = {creditReq , accept}, i.e. the process can send
creditReq and accept , and M+ = {approved , denied , transferDate}, i.e., it
can receive approved , denied and transferDate.

• Λ consists of the closure of all those 0.5-timed traces where the process
starts by sending creditReq , after which it waits up to ten time units for
receiving approved or denied ; in the first case, it sends accept and waits
up to fifty time units for receiving transferDate, after which it stops; in
the second case, it stops. An example of such a trace is depicted in Fig. 3.

3.2. Attachments and connections

Our model of interaction is based on orchestrating the joint behaviour of a
collection of parties, each of which defines a process; the same party may engage
in different orchestrations. Each such orchestration is performed by another
process – the orchestrator – that synchronises separately with each party to
coordinate their joint behaviour. Each party is connected to the orchestrator
by what we call an attachment:

10

∅

0

creditReq!

4 8.5

approved¡ accept!

9

∅

10

transferDate¡

creditReq
approved

denied

transferDate
accept

CreditRequest

: 0.5

9.5

∅

...

∅

...

∅

...τ0.5

Figure 3: Process CreditRequest and one of its top traces.

Definition 3.2 (Attachment). An attachment is a triple 〈C, ξ : MC →MP , P 〉
where C = 〈δC , γC ,ΛC〉 and P = 〈δP , γP ,ΛP 〉 are processes, and ξ is a bijection
between two ports MC∈γC and MP∈γP that reverses polarities, i.e., ξ(M+

C) =
M−P and ξ(M−C) = M+

P .
An attachment is well formed iff δP is a multiple of δC .
We often use ξ to designate the whole attachment (triple) if it is clear from

the context which are the processes involved.

Notice that ξ induces a translation ξa between AMC
and AMP

by switching
publications and deliveries, i.e., ξa(m¡) = ξ(m)! for m∈M+

C and ξa(m!) = ξ(m)¡
for m∈M−C — this is because what one party sends, the other receives, and
vice-versa. The condition that δP is a multiple of δC for the attachment to be
‘well formed’ reflects the fact that the source C (the orchestrator) needs to be
able to ‘tick’ (deliver and receive messages) in a way that is compatible with
the target P (the process that is a party in the orchestration).

creditReq

approved

denied

transferDate
accept

Clerk

ge
tRi

sk
ris

kV
alu

e

ge
tCl

ien
tRi

sk
clie

ntR
isk

Va
lue

clie
ntR

isk
Un

kn
ow

n processCredit

expectedDate

P1

P2 P3

P4

: 0.1

∅

0

creditReq¡

4

getClientRisk!

4.2 5

clientRiskValue¡

8.5

approved! accept¡

9 10

transferDate!

9.3

processCredit!

9.9

expectedDate¡

τ0.1

∅

...

∅

...

∅

...

∅

...

∅

...

∅

...

∅

...

∅

...

Figure 4: The orchestrator Clerk and one of its top traces.

As an example, consider the process (an orchestrator) Clerk depicted in
Fig. 4. This process has four ports: P1, P2, P3, P4. For instance, in port
P1, it receives messages creditReq and accept and sends approved , denied and
transferDate. Its clock rate is 0.1. After the delivery of the first creditReq on

11

P1, it publishes getClientRisk on P2 within five time units; then it waits for the
delivery of clientRiskValue or clientRiskUnknown in the same port. If the risk
of the transaction is known, this is enough for making a decision and sending
approved or denied in port P1 within 10 time units. After sending approved ,
Clerk waits at most five time units for the delivery of accept on P1, upon which
it publishes processCredit on P3 within three time units and waits for the deliv-
ery of expectedDate on the same port; when this happens, it sends transferDate
on P1 within one time unit.

The identity between the unique port of CreditRequest and the port P1 of
Clerk establishes an attachment of Clerk to CreditRequest . The attachment is
well formed because the clock rate of CreditRequest(0.5) is a multiple of that of
Clerk(0.1).

Notice that, because CreditRequest has only one port (the one through which
it is attached to Clerk), the attachment defines a (polarity reversing) mapping
from the alphabet of CreditRequest to that of Clerk . It is easy to see that
the projection (see Def. 2.6) of the trace of Clerk in Fig. 4 along this map-
ping is a refinement of that of CreditRequest in Fig. 3 and, hence, belongs to
CreditRequest (processes being r-closed). This is depicted in Fig. 5.

projection

refinement

∅

0

creditReq¡

4

getClientRisk!

4.2 5

clientRiskValue¡

8.5

approved! accept¡

9 10

transferDate!

9.3

processCredit!

9.9

expectedDate¡

τ0.1

∅

���

∅

���

∅

���

∅

���

∅

���

∅

���

∅

���

∅

���

∅

0

creditReq!

4

∅

4.2 5

∅

8.5

approved¡ accept!

9 10

transferDate¡

9.3

∅

9.9

∅∅

���

∅

���

∅

���

∅

���

∅

���

∅

���

∅

���

∅

���τ0.1

∅

0

creditReq!

4 8.5

approved¡ accept!

9 10

transferDate¡

9.5

∅∅

���

∅

���

∅

���τ0.5

Figure 5: The middle trace is a polarity-reversing projection of the trace depicted in Fig. 4
and a refinement of the trace depicted in Fig. 3.

Attachments are used for building connections:

Definition 3.3 (Connection). A connection is a triple Ξ = 〈C, γF , ξ〉 where:

• C is a process 〈δ, γ,Λ〉 — the orchestrator of the connection;

• γF ⊆ γ consists of the ports of C that are ‘free’;

• ξ assigns to each M∈γ a well-formed attachment 〈C, ξM , PM 〉 for some
process PM such that,

– if M 6= M ′ and PM = PM ′ , then ξM and ξM ′ have different target
ports, i.e., if two attachments connect C to the same process P then
they use different ports of P

– for every M ∈ γF , PM = �δMop and ξM is the identity, i.e., the free
ports are attached to run.

12

That is, a connection consists of a process that orchestrates interactions
among a number of parties. Those parties are attached to the orchestrator,
not directly to each other, thus making communication between parties to be
asynchronous. Some of the ports of the orchestrator may be ‘free’, thus ac-
counting for the ability of the connection to grow at run time by accepting new
parties, i.e., connections may be open. Those free ports are attached to run —
a ‘dummy’ process that exhibits any possible behaviour — precisely so that it
can be replaced at run time by other processes. Each port of a party can only
be used by at most one attachment, i.e., if a party plays different roles in the
same connection, it does so via different ports.

Because all the attachments in a connection need to be well formed, the clock
granularity of each party PM needs to be a multiple of that of the orchestrator
C. Therefore, not all sets of processes can be interconnected: in order to be
part of a connection, their clock rates need to have a common divisor, precisely
so that they can interact via the orchestrator.

As an example, consider the connection depicted in Fig. 6, where Clerk
orchestrates CreditRequest and two other processes, all the attachments being
identities:

• ClientsDB is a process that gets information on risk from a database of
clients. It has a single port through which it receives getClientRisk and
sends clientRiskValue and clientRiskUnknown. When the first getClientRisk
is delivered, it takes no more than seven time units to publish either
clientRiskValue or clientRiskUnknown. The granularity of its clock is 0.2.

• CreditMgr handles approved credit requests. It has a single port through
which it receives processCredit and sends expectedDate. When the first
processCredit is delivered, CreditMgr takes no more than four time units
to publish expectedDate. The granularity of its clock is 0.3.

The fact that in the connection the port P4 is free (which is represented in Fig. 6
by a grey shadow) means that, should Clerk need to assess the risk of a non-
client, another network would have to be found that can be attached, through
that port, to Clerk . The idea is that the discovery and binding can be made at
run time, possibly based on additional information that may be available about
the non-client. This will be discussed in the next section.

4. Heterogeneous Timed Asynchronous Relational Nets

4.1. Networks

The model that we present for networks of timed systems generalises the
notion of asynchronous relational network (ARN) proposed in [13] so as to
capture a larger class of systems where coordination of interactions takes place
among groups of processes, not just between pairs of processes (which are typical
of service-oriented computing). This extension requires a different algebraic
structure for the networks, which is why we adopt hypergraphs instead of simple
graphs as the underlying mathematical structure.

Very briefly, a finite hypergraph is a pair 〈N,E〉 where N is a non-empty
finite set of nodes and E is a finite set of hyperedges, each hyperedge being a
non-empty set of nodes (in a graph, an edge is a pair of nodes). We label nodes

13

creditReq
approved

denied

transferDate
accept

Clerk

ClientsDB CreditMgr

getRisk
riskValue

RUNCreditRequest

getClientRisk

clientRiskValue
clientRiskUnknown

processCredit
expectedDate

P1
: 0.5

: 0.1

: 0.1

: 0.3: 0.2

P4

P2
P3

Figure 6: A connection with a free port and three processes.

with processes and hyperedges with connections that attach the processes at
the nodes to the orchestrator of the connection.

Definition 4.1 (HT-ARN). A heterogenous timed asynchronous relational net
(ht-ARN) α is a tuple 〈N,E,Ω,Ξ〉 where:

• 〈N,E〉 is a finite hypergraph.

• Ω is a labelling function that, to every p ∈ N ∪E (i.e., to every node and
hyperedge) assigns a process Ωp = 〈δp, γp,Λp〉

• Ξ is a labelling function that, to every c ∈ E (i.e., to every hyperedge)
assigns a connection Ξc = 〈Ωc, γcF , ξc〉 such that:

i) For every hyperedge c, we have an onto mapping κc from the set γc
of ports of Ωc to c, i.e., each of its nodes is associated with at least
one of the ports of the orchestrator Ωc.

ii) For every hyperedge c and port M ∈ γc, ξc assigns an attachment
〈Ωc, ξcM : M → M ′,Ωκc(M)〉 between the orchestrator Ωc and the
process Ωκc(M).

iii) If two hyperedges c1 and c2 share a node p then, for any ports M1 ∈ γc1
and M2 ∈ γc2 such that κc1(M1) = κc2(M2) = p, ξc1M1

and ξc2M2

have different codomains, i.e., attach to different ports of Ωp.

We also define the following sets and mappings:

• Aα =
⋃
p∈N p.Aγp is the alphabet associated with α — the union of the

alphabets of the processes that label the nodes translated by prefixing all
actions with the corresponding node (which ensures that the union is dis-
joint).

iv) For every node p ∈ N , we denote by ιp the function that maps Aγp to
Aα, which prefixes the actions of Aγp with p.

v) For every hyperedge c ∈ E, we denote by ιc the function that maps
Aγc to Aα. This function is such that, for every M ∈ γc, ιc(AM) =

14

ικc(M)(ξc
a
M (AM)). That is, actions of the orchestrator that belong to

a port M are translated through ξc
a
M to the attached process κc(M)

(reversing polarities) and then according to ικc(M).

• Λα = {λ ∈ ttra(Aα) : ∀p ∈ N ∪ E (λ|ιp ∈ Λp)}

Note that, for every p∈N , (|ιp) first removes the actions that are not in
the alphabet p.Ap and then removes the prefix p, and similarly for every p ∈ E.
Therefore, the set Λα consists of all traces over the alphabet of the ht-ARN that
are projected to traces of all its processes and orchestrators:

Λα =
⋂
p∈N∪E ιp(Λp)

We take this set to represent the behaviour of α. That is, the behaviour of
the ht-ARN is given by the intersection of the behaviour of the processes at
the nodes and the hyperedges (connections) translated to the alphabet of the
ht-ARN — this corresponds to what one normally understands as a parallel
composition in trace-based models. This is justified by the fact that, when
applied to a set of traces, the translations effectively open the behaviour of the
processes to actions in which they are not involved (see the discussion after
Def. 2.6).

As an example, consider the ht-ARN whose hypergraph has {c, d,m, r} as
its set of nodes and as its single hyperedge (that is, the hyperedge connects
all nodes). The labelling function is, on nodes, c:CreditRequest , d:ClientsDB ,
m:CreditMgr and r:run, and assigns the connection 〈Clerk , {P4}, {ξP1

, . . . , ξP4
}〉

in Fig. 6 to the hyperedge, with ξP1
= 〈Clerk , id,ClientsDB〉, ξP2

= 〈Clerk , id,
CreditRequest〉, ξP3

= 〈Clerk , id,CreditMgr〉 and ξP4
= 〈Clerk , id,run〉. The

ht-ARN itself is depicted in Fig. 7, the difference from the previous figure being
that the nodes of the ht-ARN are represented explicitly, i.e., the figure depicts
an hypergraph. Note that Clerk is not labelling a node (the hypergraph has
four nodes, not five) but part of the label of the hyperedge.

creditReq
approved

denied

transferDate
accept

Clerk

d:ClientsDB m:CreditMgr

getRisk
riskValue

r:RUNc:CreditRequest

getClientRisk

clientRiskValue
clientRiskUnknown

processCredit
expectedDate

P1
: 0.5

: 0.1

: 0.1

: 0.3: 0.2

P4

P2
P3

Figure 7: A ht-ARN consisting of a connection with a free port and three processes.

The alphabet of this ht-ARN is the set

{c.creditReq !, c.accept !, d.clientRiskValue!, d.clientRiskUnknown!,

m.expectedDate!, r.getRisk !, c.approved ¡, c.denied ¡, c.transferDate¡,

15

d.getClientRisk ¡,m.processCredit ¡, r.riskValue¡}

To illustrate how the projections work, Fig. 8 depicts a timed trace of the ht-
ARN (in the middle) and its projections to the alphabet of Clerk (above) and to
the alphabet of CreditRequest (below) — for simplicity, we omitted the empty
actions except where they appear as projections. For the middle trace to be
accepted as a behaviour of the ht-ARN, its projections to Clerk , CreditRequest ,
run, ClientsDB and CreditMgr would have to be traces of the corresponding
processes. This is the case of run because this is a process that accepts all
traces. As can be seen in Figs. 4 and 5, the trace also projects to a behaviour of
Clerk and a behaviour of CreditRequest (it refines the trace in Fig. 3). It is also
easy to see that the projections to ClientsDB and CreditMgr satisfy the informal
description of their behaviour as given in the previous section. In Sec. 6, we
discuss a logic in which specifications of process behaviour can be formalised
and against which traces can be formally checked.

∅

0

creditReq¡

4

getClientRisk!

4.2 5

clientRiskValue¡

8.5

approved! accept¡

9 10

transferDate!

9.3

processCredit!

9.9

expectedDate¡

∅

0

c.creditReq!

4

d.getClientRisk¡

4.2 5

d.clientRiskValue!

8.5

c.approved¡ c.accept!

9 10

c.transferDate¡

9.3

m.processCredit¡

9.9

m.expectedDate!

∅

0

creditReq!

4

∅

4.2 5

∅

8.5

approved¡ accept!

9 10

transferDate¡

9.3

∅

9.9

∅

projection to CreditRequest

projection to Clerk

τ0.1

τ0.1

τ0.1

Figure 8: Projection of a trace of the ht-ARN in Fig. 7 (in the middle) to the alphabet of
Clerk (above) and of CreditRequest (below).

An important property of ht-ARNs is that their behaviours are closed under
refinement, which, as seen in the next section, makes them able to engage with
other ht-ARNs.

Proposition 4.2. For every ht-ARN α, Λα is r-closed.

This follows from the fact that all processes are r-closed by construction,
that translations preserve r-closure (Prop. 2.7) and that intersections of r-closed
properties are r-closed (Prop. 2.5).

Although every ht-ARN is r-closed, not every ht-ARN has an ‘equivalent’
representation as a process, i.e., there is not necessarily a process that has the
same alphabet of actions and the same set of traces as the ht-ARN, which
would allow for the ht-ARN to be implemented over (or simulated by) a single
processor. This is because, when time is heterogenous, there is not necessarily
a time granularity over which all the traces of a ht-ARN can be generated.

However, if a ht-ARN is connected, i.e., every pair of processes is linked
via a path of connections, a common divisor exists for all clock granularities.

16

In this case, although an equivalent process does not necessarily exist, a best
approximation can be found in the sense of Def. 2.4:

Theorem 4.3. If a ht-ARN α is connected and Λα 6= ∅, there is a process Pα =
〈δα, γα,ΛPα〉 such that ΛPα w Λα and, for any other process P = 〈δ, γα,ΛP 〉
such that ΛP w Λα, ΛP w ΛPα .

A constructive proof is given in the Appendix.

4.2. Composition

Two ht-ARNs can be composed through the ports that are still available
for establishing further interconnections, i.e., not connected to any other port,
which we call interaction-points.

Definition 4.4 (Interaction-point). An interaction-point of a ht-ARN α =
〈N,E,Ω,Ξ〉 is a pair 〈v,M〉 such that v ∈ N is a node and M∈γv is a port of
the process Ωv at that node, and either (1) M is not involved in any attachment
of any hyperedge to which v belongs — what we call a process interaction-point,
or (2) Ωv is a run process �δM and v belongs to an hyperedge c such that
Mop ∈ γcF (is a free port) — what we call a connection interaction-point. We
denote by Jα the collection of interaction-points of α.

That is, either M is not attached to any port (process interaction-point)
or M is the port of a run process attached to a free port of a connection
(connection interaction-point). For example, the ht-ARN depicted in Fig. 7
has only one interaction-point: 〈r, {getRisk , riskValue}〉, which is a connection
interaction-point. Notice that, if 〈v,M〉 is a connection interaction point, there
is only an hyperedge to which v belongs, which we denote by cv.

We can interconnect two ht-ARNs by merging process interaction-points
with connection interaction-points via attachments that are well-formed:

Definition 4.5 (Composition of HT-ARNs). Let α = 〈Nα, Eα,Ωα,Ξα〉 and
β = 〈Nβ , Eβ ,Ωβ ,Ξβ〉 be two ht-ARNs with disjoint sets of nodes and θ be a
family of wires between α and β, where every wire is a triple

θi = 〈〈vi,Mvi〉, ξi, 〈pi,Mpi〉〉

such that either

1. 〈vi,Mvi〉 is a connection interaction-point of α, 〈pi,Mpi〉 is a process
interaction-point of β and 〈Ωαcvi , ξi : Mop

vi →Mpi ,Ωβpi〉 is a well-formed
attachment, or

2. 〈vi,Mvi〉 is a connection interaction-point of β, 〈pi,Mpi〉 is a process
interaction-point of α and 〈Ωβcvi , ξi : Mop

vi →Mpi ,Ωαpi 〉 is a well-formed

attachment,

and all sets of interaction-points are mutually disjoint, i.e., no interaction-point
can be involved in more than one wire.
We define the ht-ARN α ‖θ β = 〈N,E,Ω,Ξ〉 as follows:

• N is obtained from Nα ∪Nβ by removing the nodes corresponding to the
connection interaction-points, and E is obtained from Eα ∪Eβ by replac-
ing, for each wire θi, the node vi by pi in the hyperedge cvi .

17

• Its node-labelling function Ω coincides with Ωα or Ωβ on the corresponding
remaining nodes.

• Its hyperedge-labelling function Ξ is as Ξα ∪ Ξβ except that, for each wire
θi, the attachment of the run process at vi is replaced with ξi and Mop

vi is
removed from the set of free ports of the connection that labels the hyper-
edge cvi .

In order to illustrate this operation, consider the ht-ARN depicted in Fig. 9,
whose hypergraph has {e, b} as its set of nodes and as its single hyperedge (that
is, the hyperedge connects all nodes). The actual processes involved are not
relevant for the composition so we omit them.

get
return

e:RiskEvaluator

: 0.4

b:RiskDataDB

Straight
: 0.1

: 0.5

Figure 9: A ht-ARN that provides a risk-evaluation service

This ht-ARN has as a process interaction-point the pair 〈e, {get , return}〉,
which we can use to compose with the ht-ARN depicted in Fig. 7 via the
connection interaction point 〈r, {getRisk , riskValue}〉. The corresponding wire
identifies getRisk with get and riskValue with return. The result of the compo-
sition is depicted in Fig. 10: an hypergraph with five nodes and two hyperedges,
the node e belonging to both hyperedges.

creditReq
approved

denied

transferDate
accept

Clerk

d:ClientsDB m:CreditMgr

get
return

e:RiskEvaluator

c:CreditRequest

getClientRisk

clientRiskValue
clientRiskUnknown

processCredit
expectedDate

P1
: 0.5

: 0.1

: 0.4

: 0.3: 0.2

P4

P2
P3

b:RiskDataDB

Straight
: 0.1

: 0.5

Figure 10: The composition of the ht-ARNs of Fig. 7 and Fig. 9.

Composition can take place at run time, allowing for parties to join connec-
tions at ports that are free, for example using service-oriented middleware.

5. Consistency

The joint consistency of the processes and the orchestrators operating in a
ht-ARN is an important property because it ensures that their implementations
can work together; consistency is understood as the existence of a timed trace
of the ht-ARN that projects to traces of all the parties involved, i.e., one in
which all processes and orchestrators agree.

18

Definition 5.1 (Consistent HT-ARN). A ht-ARN α is said to be consistent iff
Λα 6= ∅.

For example, the ht-ARN depicted in Fig. 7 is consistent because, as argued
in the previous section, the trace depicted in the middle of Fig. 8 projects to
traces of all the processes and of the orchestrator.

5.1. Progress-enabled HT-ARNs

In general, identifying a joint trace that is accepted by all the parties (pro-
cesses and orchestrators) is not easy; a proof of consistency is not normally
constructive. Furthermore, consistency is an existential property that does not
necessarily inform us of how the parties should behave to jointly build a timed
trace. A related property is instead the ability of ht-ARNs to make progress,
i.e., that any joint segment can be extended through a set of actions in which
the parties (not necessarily all, or even any, given that time can just be allowed
to flow) can engage in.

In [13] we characterised that property in an un-timed model, which we now
extend to ht-ARNs by considering progress along a fixed time sequence.

Definition 5.2 (Progress-enabled). For every ht-ARN α = 〈N,E,Ω,Ξ〉 and
time sequence τ , let

Πατ = {π∈(2Aα)
∗

: ∀p∈N ∪ E (π|ιp∈↓Λpτ)}

We say that α is progress-enabled in relation to τ iff

ε ∈ Πατ and ∀π∈Πατ ∃A⊆Aα((π·A) ∈ Πατ)

We say that α is progress-enabled iff there is a time sequence τ such that α is
progress-enabled in relation to every τ ′ � τ .

The set Πατ consists of all the segments that the processes can jointly engage
in across the time sequence τ .

Notice that if ε /∈ Πατ then τ is not a refinement of δp-time sequence for at
least one node or hyperedge p of α. Therefore, being progress enabled in relation
to τ means that τ is an admissible time sequence for every node or hyperedge p
of α and that, after any initial joint segment, all the processes can keep making
progress along τ . Furthermore, because the intersection of A with the alphabet
of any process can be empty, being progress-enabled does not require all parties
to actually perform an action as long as being idle is admissible for those parties.

By itself, being progress-enabled does not guarantee that a ht-ARN is con-
sistent: it guarantees the ability of a ht-ARN to make any number of finite
moves but guaranteeing the existence of an infinite behaviour requires the anal-
ysis of what happens ‘at the limit’. To do so, we need to use the topological
properties of the space of timed traces.

Definition 5.3 (Closure relative to time). A t-closed ht-ARN is one in which
all processes that label nodes or hyperedges (connections) are t-closed in the
sense of Def. 2.3.

Processes that are t-closed define safety properties in the usual un-timed
sense: over a fixed time sequence, which cannot be controlled by the process,
the violation of the property can be checked over a finite trace. In Sec. 6, we
show how t-closure is related with the usual notion of safety for timed traces.

19

Corollary 5.4. Let α be a ht-ARN. If α is t-closed then so is Λα.

The corollary follows from the fact that the intersection of t-closed properties
is also t-closed.

The following theorem generalises to a timed domain the characterisation of
consistency that we proved in [13].

Theorem 5.5. A ht-ARN is consistent if it is t-closed and progress-enabled.

5.2. Compositionality

We now show how ht-ARNs can be guaranteed to be progress-enabled by
construction: we identify atomic ht-ARNs that are progress-enabled and prove
that the class of progress-enabled ht-ARNs is closed under composition. We
start by remarking that, because processes are consistent and r-closed, given a
process P , the ht-ARN that consists of a single node labelled with P is progress-
enabled in relation to at least a δ-time sequence and all its refinements, and
therefore is progress-enabled. The same applies to any ht-ARN that consists
of a finite set of unconnected processes – in fact, this generalises to any finite
juxtaposition of progressed-enabled ht-ARNs (or, indeed, consistent ht-ARNs);
the challenge is in checking that progress-enabled ht-ARNs are closed under
composition because composition connects ht-ARNs, i.e., it creates connected
components.

In [13], we gave criteria for the composition of two (un-timed) progress-
enabled ARNs to be progress-enabled based on the ability of processes to buffer
incoming messages – being ‘delivery-enabled’ – and of connections to buffer
published messages – being ‘publication-enabled’. In a timed domain, it becomes
necessary to identify time sequences across which all parties can work together.
Given a ht-ARN and one of its interaction-points 〈v,M〉, we define the set
D〈v,M〉 of deliveries that can be made at that point:

• D〈v,M〉={v.m¡ : m∈M+} if 〈v,M〉 is a process interaction-point.

• D〈v,M〉 = {v.m! : m∈M−} if 〈v,M〉 is a connection interaction-point.

Notice that in the latter case we are actually interested in the deliveries that
are made to the orchestrator, which are the publications made at the free port.

Definition 5.6 (Delivery-enabled HT-ARN). A ht-ARN α is delivery-enabled
in relation to one of its interaction-points 〈v,M〉∈Jα if, for every B ⊆ D〈v,M〉,
τ∈Λtime and (π·A)∈Πατ such that τ(|π|) is a multiple of the time granularity
δv of the process at v (i.e., α makes a step in sync with the process at v),
(π · B ∪ (A \D〈v,M〉)) ∈ Πατ (i.e., α accepts the actions in B instead of those
in A).

That is, being delivery-enabled at an interaction point requires any joint
segment of the ht-ARN over a time sequence to be extensible with any set
of messages delivered at that interaction-point. Note that in the case of a
connection interaction-point, being delivery-enabled means that the orchestrator
of the connection is ready to accept publications made at the node v (the free
port). Also note that being delivery-enabled does not interfere with the decision
to publish messages: B ∪ (A\D〈v,M〉) retains all the publications in A. See also
Fig.11.

20

∅

0

∅ <v,M>

0

π(1)

τ(1)

π(1)

τ(1)

τ(n)

π(n)

π(n)

τ(n)

...

...

...

...

τ(n+1)

B∪A\D

A

τ(n+1)

⇓

k.δv
=(k+1).δv

δv

Figure 11: Being delivery enabled: deliveries are accepted at any multiple of the granularity
of the interaction point.

Finally, we need to make sure that the processes that orchestrate connections
can work together with the processes that they interconnect, i.e., that they do
not force the delivery of messages when the processes cannot receive them:

Definition 5.7 (Cooperative process). Let C = 〈δ, γ,Λ〉 be a process. For every
port M∈γ, let EM = {m! : m ∈M−}. The process is said to be cooperative in
relation to M and a multiple δ′ of δ if, for every (π·A)∈↓Λτδ , if τ(|π|) is not a
multiple of δ′ then π · (A \ EM) ∈ ↓Λτδ .

That is, if after π the process wants to publish at a port M when it is not in
sync with δ′, there is an alternative path from π where no publication is made
at that time. Notice that τ(|π|) is the time at which A is executed. See also
Fig.12.

∅

0

π(1)

δ n.δ
=m.δ'

π(n)

A\EM

(n+1).δ

A

⇓
...

...

k.δ	
=	 δ'

π(k)

...

...

∅

0

π(1)

δ n.δ

π(n)

(n+1).δ...

...

k.δ	

π(k)

...

...

Figure 12: Being cooperative: deliveries to peers are not forced when they are not in sync.

We can now state our main compositionality result:

Theorem 5.8. Let α be a composition of progress-enabled ht-ARNs through a
family of wires with mutually-disjoint sets of interaction points i.e.,

α = (α1

ni=1...n

〈〈vi,Mvi
〉,ξi,〈pi,Mpi

〉〉
α2)

where each 〈〈vi,Mvi〉, ξi, 〈pi,Mpi〉〉 is a wire between α1 and α2. If the orches-
trators involved in the wires (those that label the hyperedges cvi) are cooperative
in relation to the free ports Mvi that are being connected and the time gran-
ularity of the processes at the corresponding interaction points 〈pi,Mpi〉, and
both ht-ARNs are delivery-enabled in relation to the interaction-points being
connected, then α is progress-enabled.

To further guarantee that the ht-ARN that results from the composition is
consistent, it is sufficient to choose processes and orchestrators that are t-closed

21

(implement safety properties), which is something that can be done at design
time, not at composition time.

Another important property is that composition preserves being delivery-
enabled in the following sense:

Proposition 5.9. Let α be the composition of two ht-ARNs α1 and α2 through
a family of wires. Let 〈v,M〉 be an interaction-point of one of the αi that is not
involved in any of the wires. If αi is delivery-enabled in relation to 〈v,M〉, so
is α.

Because every ht-ARN can be seen as the result of a composition of elemen-
tary networks (individual processes or connections), this means that the proof
that an ht-ARN is delivery-enabled can be reduced to checking that individual
processes (including the orchestrators) are delivery-enabled in relation to their
ports. That is, the checking can be done at design time, not at composition
time. Checking that an individual process is delivery-enabled can be done as
follows:

Corollary 5.10 (Delivery-enabled process). A process 〈δ, γ,Λ〉 is delivery-
enabled in relation to one of its ports M if, for every B ⊆ DM = {m¡ : m ∈M+}
and (π·A) ∈ ↓Λτδ , (π ·B ∪ (A \DM)) ∈ ↓Λτδ .

Checking that processes are cooperative in relation to their free ports and
multiples of their clock granularities can also be done at design time though the
multiples that are of interest will only be known at composition time.

5.3. An automata-theoretic view

Checking that processes are delivery-enabled and that connections are co-
operative is easier over more operational abstractions of the implementations
that generate behaviours, such as automata. In this section, we give as an ex-
ample abstractions of implementations of processes through discrete timed I/O
machines as defined in [11].

We start by recalling the notion of timed I/O automata (TIOA) as defined
in [9] except that transitions perform sets of actions instead of single actions.
A TIOA is defined in terms of a finite set C of clocks. A condition over C is a
finite conjunction of expressions of the form c ./ n where c ∈ C, ./∈{≤,≥} and
n∈N. We denote by B(C) the set of conditions over C.

Definition 5.11 (TIOA). A timed I/O automaton A (TIOA) is a tuple

A = 〈Loc, q0,C, E,Act, Inv〉

where:

• Loc is a finite set of locations;

• q0∈Loc is the initial location;

• C is a finite set of clocks;

• E ⊆ Loc× 2Act × B(C)× 2C × Loc is a finite set of edges;

• Act = ActI ∪ActO ∪Actτ is a finite set of actions partitioned into inputs,
outputs and internal actions, respectively;

22

• Inv: Loc → B(C) is a mapping that associates an invariant with every
location.

In addition, we impose that every TIOA does not interfere with the ability of
the environment to make progress, i.e., is open: for all l∈Loc, there is an edge
(l, ∅, φ, ∅, l′)∈E for some location l′ such that Inv(l′) is implied by Inv(l) and
for some tautology φ.

Given an edge (l, S, C,R, l′), l is the source location, l′ is the target loca-
tion, S is the set of actions executed during the transition, C is a guard (a
condition that determines if the transition can be performed), and R is the set
of clocks that are reset by the transition. The requirement that every location
is the source of a transition labelled by ∅ that is always enabled means that
the behavior of A is always open to the execution of actions in which it is not
involved.

A clock valuation over a set C of clocks is a mapping v: C → R≥0. Given
d ∈ R≥0 and a valuation v, we denote by v+d the valuation defined by, for any
clock c∈C, (v+d)(c) = v(c)+d. Given R ⊆ C and a clock valuation v, we denote
by vR the valuation where clocks from R are reset, i.e., such that vR(c)=0 if
c∈R and vR(c)=v(c) otherwise. Given a condition C in B(C), we use v � C to
express that C holds for the clock valuation v.

Definition 5.12 (Execution). Let A = 〈Loc, q0,C, E,Act, Inv〉 be a TIOA. An
execution of A starting in l0 and valuation v0 is a sequence

(l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . .

where, for all i:

(1) li∈Loc, vi is a clock valuation over C and di∈R>0;

(2) Si⊆Act and Ri⊆C;

(3) for all 0 ≤ t ≤ di, vi + t � Inv(li);

(4) vi+1=(vi + di)
Ri ; and

(5) there is (li, Si, C,Ri, li+1)∈E such that vi + di � C.

A partial execution is of the form

(l0, v0, d0)
S0,R0−→ · · · Sn−1,Rn−1−→ (ln, vn, dn)

where (1) and (3) hold for all i∈[0..n], and (2), (4) and (5) for all i∈[0..n− 1].

That is, each triple (li, vi, di) consists of a location, the value of the clocks
when that location is reached at that point of the execution, and the duration
for which the automaton remains at that location before the next transition
(which can leave the automaton in the same location). During this time, the
invariant Inv(li) must hold. A transition out of (li, vi, di) happens at the end
of di units of time and needs to be made by an edge whose guard Ci holds at
that time and leads to a location whose invariant is satisfied. As a result of the
transition, the clocks are updated to (vi + di)

Ri .

23

A pair (l, v) where l is a location and v is a clock valuation is said to be
reachable at time T ∈ R≥0 if either (a) (l, v) = (q0, 0), T = 0 and, there exists
d0>0 such that t � Inv(q0) for all 0 ≤ t ≤ d0; or (b) there exists a partial exe-
cution that starts at (q0, 0) and ends at (ln, vn) = (l, v), and T =

∑
i=0..n−1 di.

Note that, in the last case, condition (3) of Def. 5.12 must hold until n and,
hence, there exists dn>0 such that Inv(ln) holds for dn time instants.

A timed machine is a TIOA that executes in the context of a clock granularity
δ, i.e., its actions are always executed at instant times that are multiples of δ.

Definition 5.13 (DTIOM). A discrete timed I/O machine is a pair M =
〈δM,AM〉 where δM∈R>0 and AM is a TIOA.

The executions and partial executions of M are those of AM restricted to
transitions at every δM, i.e.,

(l0, v0, d0)
S0,R0−→ (l1, v1, d1)

S1,R1−→ . . .

such that all the durations di are δM. Therefore, we represent executions of
DTIOMs as sequences

(l0, v0)
S0,R0−→ (l1, v1)

S1,R1−→ . . .

and call each pair (li, vi) an execution state.
The behaviour JMK of M is the set of executions such that l0=q0 and

v0(c)=0 for all c∈C, i.e., those that start in the initial location with all clocks
set to 0.

Every execution of a DTIOMM defines the δM-timed trace λ=〈σ, τδM〉 over
Act where σ(0)=∅ and, for i ≥ 0, σ(i+1) = Si. We denote by ΛM the r-closure
of the set of timed traces defined by JMK, which we call its language.

Definition 5.14 (Implementation of a process defined by a DTIOM). An im-
plementation of a process 〈δ, γ,Λ〉 is a DTIOM M = 〈δ,A〉 such that:

• ActIA =
⋃
M+∈γ AM+

• ActOA =
⋃
M−∈γ AM−

• ActτA = ∅

• Λ = ΛM

That is, the input actions of the DTIOM are the message deliveries, its
outputs are the publications, and there are no internal actions (internal actions
arise when DTIOM are composed). The behaviour of the process must be the
language of the DTIOM.

Definition 5.15 (Cooperative). A DTIOM M = 〈δM,AM〉, where AM =
〈Loc, q0,C, E,Act, Inv〉, is said to be cooperative in relation to Q⊆Act and a
multiple δ of δM if the following holds for every (l, v) reachable at a time T such
that (T + δM) is not a multiple of δ:

for every edge (l, A, C,R, l′) ∈ E such that v+δM � C and (v+δM)R+t �
Inv(l′) for all 0 ≤ t ≤ δM — i.e., the machine makes a transition at a
time that is not a multiple of δ — there exists an edge (l, A\Q,C ′, R′, l′′)

24

such that v+δM � C ′ and for all 0 ≤ t ≤ δM, (v+δM)R
′
+ t � Inv(l′′) —

i.e., the machine can make an alternative transition that does not perform
any actions in Q.

Essentially, being cooperative in relation to Q and δ means that the ma-
chine will not force transitions that perform actions in Q at times that are not
multiples of δ.

The following result follows trivially from Def. 5.7:

Proposition 5.16. Let P be a process with granularity δ, M one of its ports
and M one of its implementations. If M is cooperative in relation to AM− and
a multiple δ′ of δ, then P is cooperative in relation to M and δ′.

Definition 5.17 (DP-enabled). A DTIOM M = 〈δM,AM〉, where AM =
〈Loc, q0,C, E,Act, Inv〉, is DP-enabled in relation to J⊆ActI if the following
property holds for every B⊆J and state (l, v) reachable at a time T :

for every edge (l, A, C,R, l′) ∈ E such that v + δM � C and, for all
0 ≤ t ≤ δM, (v + δM)R + t � Inv(l′) — i.e., the machine can make
a transition — there exists an edge (l, B ∪ (A\J), C ′, R′, l′′) such that
v + δM � C ′ and, for all 0 ≤ t ≤ δM, (v + δM)R

′
+ t � Inv(l′′) — i.e.,

the machine can make an alternative transition that accepts instead B as
inputs and still performs the same outputs (and inputs outside J).

The term DP-enabled stands for delivery/publication-enabled and it reflects
that inputs received by machines in a network with the role of components
are deliveries made by orchestrators, and inputs received by orchestrators are
publications made by components.

Therefore, a DTIOM is DP-enabled in relation to a set of inputs J if, when-
ever it leaves a reachable state, it can do so by accepting any subset of J , and
if its outputs are independent of the inputs in J that it receives.

The following result follows trivially from Cor. 5.10:

Proposition 5.18. Let P be a process with granularity δ, M one of its ports
and M one of its implementations. If M is DP-enabled in relation to AM+ ,
then P is delivery-enabled in relation to M .

In order to estimate the complexity of checking these properties, it is useful
to use the Büchi-automata “equivalent” of DTIOM defined in [11].

Let A = 〈Loc, l0,C, E,Act, Inv〉 be a TIOA. Given a clock c, let MaxA(c)
denote the maximal constant with which c is compared in the guards and in-
variants of A. Let M = 〈δ,A〉 and BM = 〈Q, q0, 2

Act,→, Q〉 be the Büchi
automaton such that:

• Q = Loc×
∏
c∈C[0 .. bMaxM(c)

δ c+ 1] (i.e., states consist of a location l and

a natural number nc ≤ bMaxM(c)
δ c+ 1, for every c ∈ C);

• q0 = (l0,0);

• (l,ν)
S→ (l′,ν′) iff there exists a transition (l, S, C,R, l′) ∈ E such that:

(i) for all 0 ≤ t ≤ δ, ν · δ + t |= Inv(l),

(ii) ν · δ + δ |= C,

25

(iii) for all c ∈ C, ν′(c) =

0 if c ∈ R
ν(c) if c /∈ R and ν(c) = bMaxA(c)

δ c+ 1
ν(c) + 1 otherwise

(iv) ν′ · δ |= Inv(l′).

Notice that Q involves only natural numbers. The size of BM is in O(|Loc| ·
(bMax

δ c + 2)|C|), where |Loc| and |C| are the size of Loc and the number of

clocks, respectively, and Max = max{MaxA(c) | c ∈ C} is the maximal constant
considered in all constraints and invariants of M.

The Büchi automaton BM is equivalent to M in the following sense:

Theorem 5.19 ([11]). For all action sequences σ over Act, 〈σ, τδ〉∈JMK iff the
infinite sequence σ(1)σ(2) . . . is in the language of BM.

In practice, being cooperative can be verified using a syntactic check on the
states of the equivalent Büchi automaton that can be reached with a number
of transitions n such that n+ 1 is not a multiple of δ/δM. This can be done in
time in O(δ

δM
· |BM| · |EM|2), with |BM| being the size of the Büchi automaton

BM.
Likewise, DP-enabledness can be verified in O(δ

δM
· |BM| · |EM|2 · 2|Act

I
M|).

6. A Compositional Theory for HT-ARNs

In this section, we discuss a logic that supports the specification of timed
properties as defined in Sec. 2, and define a specification theory for our compo-
nent algebra. More specifically, we want to be able to specify processes through
a finite collection Φ of sentences of the logic and use the inference mechanisms of
the logic to derive properties of processes and ht-ARNs using the specifications
of the intervening processes. This requires a logic in which we can specify and
reason about timed traces.

We are interested in answering the following specific questions:

δ-Satisfiability Given a specification Φ and a clock granularity δ, is there a
process 〈δ, γ,Λ〉 that satisfies Φ?

δ-Canonicity Given a specification Φ and a clock granularity δ, is there a
canonical process (in the sense of being maximal for Φ and δ) that satisfies
Φ?

The typical answer to these questions is, for satisfiability, that the specification
is consistent (i.e., ΛΦ = {λ : λ � Φ} 6= ∅), and for canonicity that one takes
ΛΦ as the canonical model of Φ (the largest set of timed traces that satisfy the
specification).

Because the behaviour of a process is the r-closure of a non-empty δ-timed
property (Def. 3.1), where δ is a clock granularity, and that we are interested in
t-closed processes in order to guarantee good properties of ht-ARNs (such as
consistency), the answers to our questions are not so simple and lead to another
set of questions:

• Is there a logic in which we can guarantee that ΛΦ is t-closed, r-closed,
and such that all its models are refinements of a δ-timed trace?

26

• If not, is there an alternative way of defining a canonical model?

• If ΛΦ 6= ∅, i.e., if there is a timed trace that satisfies Φ, can we guarantee
satisfiability, i.e., the existence of a process that satisfies Φ?

More specific questions that would help us choose an appropriate logic are:

1. Is the logic closed under limits in the Cantor topology for a fixed time
sequence, i.e., if a set of timed traces satisfies Φ, can we guarantee that
its t-closure also satisfies Φ?

2. Is the logic closed under refinement, i.e., if a set of timed traces satisfies
Φ, can we guarantee that its r-closure also satisfies Φ?

If the answers are positive, then we could choose as a behaviour for the canon-
ical process the set ΛδΦ that is the r-closure of the t-closure of the set {λ :
λ∈ttraδ(Aγ)∧λ � Φ}, i.e., we choose first the δ-timed traces that satisfy Φ, and
then close it for time, and then for refinement. This would give us the r-closure
of a δ-timed property that is also t-closed, which would satisfy Φ. Sec. 6.1 and
Sec. 6.2 discuss answers to those two questions.

In order to check for δ-satisfiability, in particular that the set ΛδΦ is not empty
(and, hence, defines a process), one would have to find a δ-timed trace (or the
refinement of a δ-timed trace) that satisfies Φ. This could be done, for example,
by building a DTIOM (which by definition generates only δ-timed traces) that
satisfies Φ. An alternative, which we explore in Sec. 6.3, is to identify a formula
Axδ that is only satisfied by timed traces that are refinements of a δ-timed
trace. In this case, one would check for the satisfiability of Φ and Axδ over the
space of all timed traces.

6.1. Logics for specifying timed properties

Several extensions of LTL have been proposed to express and reason about
real time, which are usually based on Metric Temporal Logic (MTL) [24].
MTL works over timed traces and has been studied extensively in relation to
important properties such as satisfiability and model-ckecking. The formulas of
MTL are built from a set of A of actions (atomic propositions) using Boolean
connectives and time-constrained versions of the until operator of the form UI
where I ⊆ [0,∞) is an interval with endpoints in Q≥0∪{∞}:

φ ::= a | ¬φ | φ ⊃ φ | φ UI φ

where a ∈ A. Fragments of MTL have been characterised in which only
safety properties can be expressed; for example, safety-MTL [26] requires that
sentences are in negation normal form and all eventualities are time-bounded.
safety-MTL has a pointwise semantics, i.e., one evaluates sentences over the
indexes of timed traces.

Definition 6.1 (Pointwise semantics of MTL). For every timed trace λ = 〈σ, τ〉
over A and i ∈ N:

• λ, i �pw a iff a ∈ σ(i)

• λ, i �pw ¬φ iff λ, i 2pw φ

• λ, i �pw φ1 ⊃ φ2 iff if λ, i �pw φ1 then λ, i �pw φ2

27

• λ, i �pw φ1 UI φ2 iff there exists k ≥ i such that (τ(k) − τ(i)) ∈ I,
λ, k �pw φ2 and, for all i ≤ j < k, λ, j �pw φ1

We say that λ satisfies φ in the pointwise semantics, denoted by λ �pw φ, iff
λ, 0 �pw φ. We write Λ �pw φ to mean that, for all λ ∈ Λ, λ �pw φ; λ �pw Φ
to mean that, for all φ ∈ Φ, λ �pw φ; and Λ �pw Φ to mean that, for all φ ∈ Φ,
Λ �pw φ.

In a time context, a safety property Λ is one that is divergent safe [20], i.e.,
for any timed trace λ, if for all π<λ there is λ′∈Λ such that π<λ′, then λ∈Λ.

Proposition 6.2. Given a set Φ of sentences in safety-MTL, ΛpwΦ = {λ :
λ �pw Φ} is divergent safe.

It is easy to see that divergent-safe properties are also t-closed:

Proposition 6.3. Let Λ be a timed property. If Λ is divergent safe then it is
also t-closed.

Corollary 6.4. Let Φ be a set of sentences in safety-MTL. Then,

• ΛpwΦ is t-closed.

• If Λ �pw Φ then Λt �pw Φ.

This answers Question 1 above. Furthermore, safety-MTL is fully decid-
able [26]. However, ΛpwΦ is not necessarily r-closed (even when Φ is in safety-
MTL) and, more generally, if Λ �pw Φ then it is not necessarily the case that
Λr �pw Φ, even if Λ is divergent safe. This is why in [14] we adopted a con-
tinuous semantics defined in terms of signals [21]. Herein, we use instead the
continuous interpretation over timed traces proposed in [30], which is equivalent
but simpler.

Definition 6.5 (Continuous semantics of MTL). For every timed trace λ =
〈σ, τ〉 over A and t ∈ R≥0:

• λ, t �c a iff exists i ∈ N such that τ(i) = t and a ∈ σ(i)

• λ, t �c ¬φ iff λ, t 2c φ

• λ, t �c φ1 ⊃ φ2 iff if λ, t �c φ1 then λ, t �c φ2

• λ, t �c φ1 UI φ2 iff there exists u ≥ t such that (u − t) ∈ I, λ, u �c φ2

and, for all t ≤ r < u, λ, r �c φ1

We say that λ satisfies φ in the continuous semantics, denoted by λ �c φ, iff
λ, 0 �c φ. We write Λ �c φ to denote that, for all λ ∈ Λ, λ �c φ.

According to the terminology of [18], this version of MTL is non-strict and
non-matching: φ1 U φ2 does not constrain strictly the future or the current
time, and does not require φ1 to hold together with φ2. This variant, under
an interpretation with dense time (based on signals), is proved in [18] to be
equivalent to the (most common) variant in which the until operator is strict
and non-matching.

An important result is that the interpretation of a formula over a trace is
the same over any of its refinements:

28

Proposition 6.6. Given timed traces λ and λ′ such that λ′ � λ, λ �c φ iff
λ′ �c φ. It follows that, for every Φ, ΛcΦ = {λ : λ �c Φ} is r-closed, and that,
for every Λ, if Λ �c Φ then Λr �c Φ.

This answers Question 2 above. However, ΛcΦ is not necessarily t-closed and,
more generally, Λ �c Φ does not necessarily imply that Λt �c Φ. Furthermore,
MTL has been proved to be undecidable in the continuous semantics based on
signals [3].

Therefore, to be able to answer both Question 1 and Question 2, we decided
to investigate the existence of a sub-logic of safety-MTL that has the same
semantics under a continuous and a pointwise semantics.

6.2. safety-MTL(R)

We identify a fragment of safety-MTL with the same continuous and point-
wise semantics by making use of two functions that connect the continuous and
the pointwise time domains:

Definition 6.7 (next, previous). Given a time sequence τ , we define the func-
tions nextτ : R≥0 → N and previousτ : R≥0 → N as follows:

(a) nextτ (t) = min{i ∈ N : τ(i) ≥ t};

(b) previousτ (t) = max{i ∈ N : t ≥ τ(i)}.

For simplicity, given a timed trace λ = 〈σ, τ〉, we use nextλ and previousλ to
mean nextτ and previousτ , respectively.

These functions, as shown in Fig. 13, map time instances to indexes of a given
timed trace. It is easy to see that both functions map the time instants τ(i)
into i. We use these functions to identify the formulas of safety-MTL that, in
the continuous semantics, are satisfied by all the timed traces that satisfy them
under the pointwise semantics.

τ
2 5 60

next
previous

0 1 2 3i

τ(i) t

τ
τ

Figure 13: Next and previous functions.

Definition 6.8 (PW2C). Consider the sub-logic PW2C with the following syn-
tax:

φ◦ ::= true | false | a | ¬a | φ◦ ∧ φ◦ | φ◦ ∨ φ◦ | φ◦ RI< φ−

| φ◦ RI+ φ+ | φ◦ RI∀ φ� | φ− UI φ◦

φ− ::= true | false | ¬a | φ− ∧ φ− | φ− ∨ φ− | φ◦ R φ− | φ− UI−0 φ◦

φ+ ::= true | false | ¬a | φ+ ∧ φ+ | φ+ ∨ φ+ | φ◦ R φ+

φ� ::= true | ¬a | φ� ∧ φ� | φ� ∨ φ◦ | φ◦ ∨ φ�

where I< is of the form [0, t) or [0, t] or [0,∞), I−0 is of the form (0, t) or (0, t],
I+ is of the form [t,∞) or (t,∞), I∀ is any interval, and I is any bounded
interval.

29

The pointwise and continuous semantics of formulas written in terms of true,
false, ∧, ∨, R are derived from Defs. 6.1 and 6.5, respectively, considering the
usual abbreviations. In particular, the semantics of formulas of the form φ1 R φ2

and φ1 RI φ2 is as follows:

• λ, i �pw φ1 R φ2 iff for all k ≥ i, λ, k �pw φ2 or there exists i ≤ j < k
such that λ, j �pw φ1

• λ, i �pw φ1 RI φ2 iff for all k ≥ i such that (τ(k)− τ(i)) ∈ I, λ, k �pw φ2

or there exists i ≤ j < k such that λ, j �pw φ1

• λ, t �c φ1 R φ2 iff for all u ≥ t, λ, u �c φ2 or there exists t ≤ r < u such
that λ, r �c φ1

• λ, t �c φ1 RI φ2 iff for all u ≥ t such that (u− t) ∈ I, λ, u �c φ2 or there
exists t ≤ r < u such that λ, r �c φ1

The following properties of these four classes of formulas are of special interest:

Lemma 6.9. Let λ = 〈σ, τ〉 be a timed trace, i ∈ N and t ∈ R≥0.

1. If for all i ∈ N τ(i) 6= t then λ, t �c φ�

2. If λ, nextλ(t) �pw φ+ then λ, t �c φ+.

3. If λ, previousλ(t) �pw φ− then λ, t �c φ−.

4. If λ, i �pw φ◦ then λ, τ(i) �c φ◦.

That is:

1. Formulas of the form φ� are satisfied in the continuous semantics at times
that are not in the pointwise semantics.

2. Formulas of the form φ− are satisfied in the continuous semantics at a
time t if they are satisfied in the pointwise semantics at previousλ(t).

3. Formulas of the form φ+ are satisfied in the continuous semantics at a
time t if they are satisfied in the pointwise semantics at nextλ(t).

4. Formulas of the form φ◦ are satisfied in the continuous semantics at the
time τ(i) of an index i if they are satisfied in the pointwise semantics at i.

Corollary 6.10. If λ �pw φ◦ then λ �c φ◦.

That is, formulas of the form φ◦ are satisfied in the continuous semantics if
they are satisfied in the pointwise semantics.

The other fragment of safety-MTL that is of interest consists of the formu-
las that in the pointwise semantics are satisfied by all timed traces that satisfy
them under the continuous semantics.

30

Definition 6.11 (C2PW). Consider the sub-logic C2PW with the following
syntax:

φ• ::= true | false | a | ¬a | φ• ∧ φ• | φ• ∨ φ• | φ?• RI∀ φ• | φ• UI φ?•

φ? ::= false | a | φ? ∧ φ | φ ∧ φ? | φ? ∨ φ? | φ RI< φ?

φ?• ::= false | a | φ• ∧ φ?• | φ?• ∧ φ• | φ?• ∨ φ?• | φ?• RI< φ?•

where φ is any formula of safety-MTL, I< is of the form [0, t) or [0, t] or
[0,∞), I∀ is any interval, and I is any bounded interval.

Lemma 6.12. Let λ = 〈σ, τ〉 be a timed trace, i ∈ N and t ∈ R≥0.

1. If λ, t �c φ? then there exists i such that τ(i) = t.

2. If λ, t �c φ?• then there exists i such that τ(i) = t and λ, i �pw φ?•.

3. If λ, τ(i) �c φ• then λ, i �pw φ•.

That is:

1. Formulas of the form φ? are satisfied in the continuous semantics only at
the instants of time that occur in the pointwise semantics.

2. Formulas of the form φ?• are satisfied in the continuous semantics only at
those instants of time in which they are satisfied in the pointwise seman-
tics.

3. Formulas of the form φ• are satisfied in the pointwise semantics at an
index i if they are satisfied in the continuous semantics at time τ(i).

Corollary 6.13. If λ �c φ• then λ �pw φ•.

That is, formulas of the form φ• are satisfied in the pointwise semantics if
they are satisfied in the continuous semantics (i.e., • is the dual of ◦).

Therefore, formulas that are both of the form φ◦ (in the language of PW2C)
and φ• (in the language of C2PW) have the same continuous and pointwise
semantics. We refer to the language of these formulas as safety-MTL(R), the
syntax of which can be found in the Appendix.

Theorem 6.14. Given a set Φ of safety-MTL(R) sentences and a sentence
φ also of safety-MTL(R):

• λ �c φ iff λ �pw φ

• ΛpwΦ = ΛcΦ.

As a consequence, for any set Φ of safety-MTL(R) sentences and sentence φ
in safety-MTL(R), we use λ � φ instead of λ �c φ (or, equivalently, λ �pw φ)
and ΛΦ instead of ΛpwΦ (or, equivalently, ΛcΦ).

We additionally have that:

• ΛΦ is both r-closed and t-closed.

• If Λ � Φ then Λr � Φ.

31

• If Λ � Φ then Λt � Φ.

That is, safety-MTL(R) answers both Question 1 and Question 2.
As an example, consider the following MTL formula over the alphabet of

process CreditMgr introduced in Sec. 3:

φ = processCredit ¡R(¬processCredit ¡ ∨3<4expectedDate!)

where 3<t φ abbreviates (true U[0,t) φ). This formula specifies that expectedDate
is published within four time units from the first delivery of processCredit . We
show that this formula is both in the language of PW2C and C2PW.

1. φ is of the form φ◦:

(a) φ◦ has clause φ◦ RI∀ φ
�

(b) processCredit ¡ is of the form φ◦ (third clause)

(c) (¬processCredit ¡ ∨ (true U[0,4) expectedDate!)) is of the form φ�:

i. φ� has clause φ� ∨ φ◦

ii. ¬processCredit ¡ is of the form φ� (third clause)

iii. true U[0,4) expectedDate! is of the form φ◦:

A. φ◦ has clause φ− UI φ◦

B. true is of the form φ− (first clause)

C. expectedDate! is of the form φ◦ (third clause)

D. [0, 4) is a bounded interval

2. φ is of the form φ•:

(a) φ• has clause φ?• RI∀ φ
•

(b) processCredit ¡ is of the form φ?• (second clause)

(c) (¬processCredit ¡ ∨ (true U[0,4) expectedDate!)) is of the form φ•:

i. φ• has clause φ• ∨ φ•

ii. ¬processCredit ¡ is of the form φ• (fourth clause)

iii. true U[0,4) expectedDate! is of the form φ•:

A. φ• has clause φ• UI φ?•

B. true is of the form φ• (first clause)

C. expectedDate! is of the form φ?• (second clause)

D. [0, 4) is a bounded interval

In a similar way, we could prove that the formula

getClientRisk ¡R(¬getClientRisk ¡∨3<7(clientRiskValue!∨clientRiskUnknown!))

is also in the language of safety-MTL(R). This formula specifies the be-
haviour of process ClientsDB we informally described in Sec. 3: when the first
getClientRisk is delivered, it takes no more than seven time units to publish
either clientRiskValue or clientRiskUnknown.

safety-MTL(R) also allows us to specify the properties of the orchestrator
Clerk we have formulated before:

32

• creditReq ¡R(¬creditReq ¡ ∨ 3<5getClientRisk !) — getClientRisk is pub-
lished within five time units from the first delivery of creditReq ;

• clientRiskValue¡R(¬clientRiskValue¡ ∨ 3<10(approved ! ∨ denied !)) — ei-
ther approved or denied are published within ten time units from the first
delivery of clientRiskValue;

• falseR(¬approved ! ∨ (accept ¡R<5(¬accept ¡ ∨ 3<3processCredit !))) — if
accept is delivered within five time units of the publication of approved ,
processCredit is published within three time units;

• expectedDate¡R(¬expectedDate¡∨3<1transferDate!) — transferDate is pub-
lished within one time unit from the first delivery of expectedDate.

Some other examples of formulas in the language of safety-MTL(R) are
presented below. We use 3Iφ and �Iφ to abbreviate (true UI φ) and (false RI φ),
respectively.

• �(¬a ∨3{7}b) — every execution of a is followed by an execution of b in
exactly seven time units (e.g., setting of a timer and its timeout);

• �(¬a ∨ (3(0,10)c ∨ 3{10}b)) — every execution of a is followed by an
execution of b in exactly ten time units unless c is executed first;

• �(¬a∨ (�(0,4)¬a∧3{4}a)) — after the first execution of a, it is executed
regularly with a period of 4 time units.

6.3. Specifications

In this section, we work in safety-MTL(R).

Definition 6.15 (Process specification). A specification of a process 〈δ, γ,Λ〉 is
〈Aγ ,Φ〉 such that Φ is in safety-MTL(R) and Λ ⊆ ΛΦ, i.e., for every λ ∈ Λ,
λ � Φ.

As an example, consider the process CreditMgr informally described in Sec. 3
and assume that its behaviour Λm is the r-closure of the set of timed traces
〈σ, τ0.3〉 satisfying

∀i∈N (processCredit ¡∈σ(i) ∧ ∀j<i processCredit ¡/∈σ(j))⇒
∃k>i (expectedDate!∈σ(k) ∧ τ(k)−τ(i)<4))

It is not difficult to prove that, for every λ∈Λm, λ � φ where φ is the formula
(processCredit ¡R(¬processCredit ¡ ∨3<4expectedDate!) discussed above.

Given now a clock granularity δ and a specification 〈Aγ ,Φ〉, we are interested
in knowing if there is actually a process 〈δ, γ,Λ〉 that it specifies. As already
argued, the existence of such a process does not reduce to the consistency of
the specification (i.e., the existence of a timed trace that satisfies Φ). This is
because, although the set ΛΦ is guaranteed to be r-closed, it is not necessarily
the r-closure of a set of δ-timed traces, which is a requirement for ΛΦ to be the
behaviour of a process.

As also discussed at the beginning of this section, we consider instead the
set

ΛδΦ = {λ : λ ∈ ttraδ(Aγ) ∧ λ � Φ}t
r

33

It turns out that, in fact, {λ : λ ∈ ttraδ(Aγ)∧λ � Φ} is already t-closed. This is
because ΛΦ = {λ : λ � Φ} is t-closed (Theo. 6.14) and ttraδ(Aγ) is also t-closed
(the intersection of t-closed sets being t-closed). Therefore,

ΛδΦ = {λ : λ ∈ ttraδ(Aγ) ∧ λ � Φ}r

Because the r-closure of the intersection of two sets is the intersection of their
r-closures, and that ΛΦ is r-closed (Theo. 6.14), we obtain

ΛδΦ = ttraδ(Aγ)r ∩ ΛΦ

We also have that ttraδ(Aγ)r = {λ = 〈σ, τ〉 : τ � τδ}, i.e., that set consists of
all timed traces that refine a δ-timed trace. Therefore,

ΛδΦ = {λ = 〈σ, τ〉 : τ � τδ ∧ λ � Φ}

is t-closed and the r-closure of a δ-timed property and, if it is not empty,
〈δ, γ,ΛδΦ〉 is indeed a process — the canonical process specified by 〈Aγ ,Φ〉. To
determine if ΛδΦ is not empty, as discussed at the beginning of this section, one
could build a DTIOM (which by definition generates only δ-timed traces) that
satisfies Φ.

An alternative, which we explore here, is to identify a formula Axδ that is
only satisfied by timed traces that are refinements of a δ-timed trace. In this
case, one would check for the satisfiability of Φ∪{Axδ}. Unfortunately, safety-
MTL(R) is not expressive enough to define such a formula (nor is MTL). There-
fore, we introduce a new class of unary operators �δ where δ∈Q>0, which allow
us to express that a timed trace contains all instants that are multiple of δ and
that a sentence holds at all such instants:

〈σ, τ〉 � �δ φ iff for all n∈N, there exists j s.t. τ(j) = n · δ and 〈σ, τ〉, j � φ

Notice that restricting δ to Q>0 is not a real limitation. On the one hand, a
connected ht-ARN is such that all the clock granularities are commensurate,
which means that we can convert them to rational numbers by dividing them
by a common divisor. On the other hand, reasoning about ht-ARNs that are
not connected is not relevant because disconnected components do not interfere
with each other. Notice that, for r-closure, one simply needs a dense set of time
granularities.

In the extended language, the sentence �δ (�(0,δ)∧a∈A¬a) — where �(0,t) φ is
an abbreviation of (false R(0,t) φ) — expresses a key property of δ-timed traces
over A: empty observations occur at all time instants that are not multiple of
δ. We denote this sentence by Axδ and, more generally, given B ⊆ A, we use
AxBδ to denote �δ (�(0,δ) ∧a∈B ¬a).

Proposition 6.16. Let λ be a timed trace over A, and δ ∈ Q>0: λ � Axδ iff λ
refines a δ-timed trace. That is, ΛAxδ = ttraδ(A)r.

Corollary 6.17. Let λ and λ′ be timed traces such that λ′ � λ. If λ � Axδ
then λ′ � Axδ.

Proposition 6.18. The sentence Axδ defines a divergent safe property.

34

The following corollary allows us to make use of Axδ when deriving proper-
ties of a process specification. We use Φ ` φ to mean that φ is a consequence of
Φ, i.e., there is no timed trace λ such that λ 2 φ and, for every φ′ ∈ Φ, λ � φ′.

Corollary 6.19. Let 〈Aγ ,Φ〉 be a specification of 〈δ, γ,Λ〉. If Φ,Axδ ` φ then,
for every λ ∈ Λ, λ � φ.

We are now interested in reasoning about properties of ht-ARNs. That is,
given a ht-ARN α and a sentence φ in the language of Aα, we are interested in
determining whether Λα � φ, i.e., λ � φ for every λ ∈ Λα.

Proposition 6.20. For every sentence φ in the language of safety-MTL(R),
Λα � φ iff ΛPα � φ.

This result, which is an immediate consequence of Prop. 6.6, ensures that
the sentences satisfied by a ht-ARN α are precisely those that are satisfied
by its best process approximation Pα (c.f. Theo. 4.3). However, one needs to
calculate Pα explicitly to use this result; a more useful result is one that supports
compositional reasoning as below.

Theorem 6.21. Let α be a ht-ARN and, for every node (resp. hyperedge) p,
let Φp be a specification of the process (resp. orchestrator) at p. Let

Φα =
⋃

p∈N∪E
ιp(Φp ∪Ax

Aγp
δp

)

where the functions ιp translate the sentences in the specification of the process
at p (resp. of the orchestrator at c) to the language Aα. We have that Λα � φ
if Φα ` φ.

That is, to prove that φ expresses a property of α, it is sufficient to derive
φ from specifications of the processes and orchestrators of α enriched with the
corresponding Axδ axioms.

7. Related Work

Several researchers have recently addressed discrete timed systems with het-
erogeneous clock granularities. However, they have not focused on the devel-
opment of theories of composability for such systems that can support compo-
sitional reasoning about the properties of the composition operation, which is
what we addressed in this paper, especially in the context of run-time composi-
tion. An exception is [25], which studies when the composition of heterogeneous
tag machines [4] is sound and complete. However, the notion of composition
considered therein is more relaxed than ours, allowing for the delay between
events to be modified. As a consequence, that notion is not appropriate for
addressing global properties of systems interconnected at run time as actually
implemented (i.e., implementations might have to be changed for the composi-
tion to work). By adopting instead a trace-based model in which composition
corresponds to intersection, the model that we propose herein has the advan-
tage of abstracting from the specificities of the different classes of automata
that can be chosen as models of implementations. Because un-timed networks
were investigated in [13] over traces, adopting a similar model for timed ones

35

also allows us to better appreciate the differences between un-timed and timed
domains.

Formal clock calculi have also been developed that address heterogeneity,
for example [15] in which a synchronous data-flow language is proposed that
supports the modelling of multi-periodic systems and the refinement of clock
granularities in a way that is similar to what we propose in this paper. However,
the main focus of such calculi has been on modelling and simulation, not so
much on the challenges that heterogeneity raises on run-time interconnection of
systems; therefore, they are too specific on aspects that do not directly impact
on system properties such as consistency. In fact, to the best of our knowledge,
ours is the first model that adopts networks as components of systems and,
therefore, addresses (run-time) compositionality at the network level.

Similarly, in [8], the authors introduce a formal communication model of be-
haviour for the composition of heterogeneous real-time cyber-physical systems
based on logical clock constraints. Although this model supports the combina-
tion of heterogeneous timed systems, the authors do not consider the class of dis-
crete periodic systems, which is particularly relevant for the processor-enabled
systems that are now proliferating in cyberspace. To cope with heterogenous
time scales, several approaches to the specification of real-time systems, notably
the Timebands Framework [7], have also adopted an explicit representation of
time granularity. However, neither composition (at design or run time) nor
compositionality have been investigated in such frameworks.

Several frameworks have also been proposed for component/service-based
software systems that exhibit timed properties, although not in a heterogeneous-
time context. Algebraic frameworks such as [12, 19, 23, 28] address global
properties similar to consistency, such as compatibility — i.e., that the con-
versation protocols (modelled as timed automata) followed by the peers in a
choreography do not lead to deadlocks or time conflicts that prevent them from
completing (e.g., reaching final states). However, the focus in this context is
on the modelling of the (timed) conversation protocols that characterise the
global behaviour of a (fixed) number of peers that exchange services. What this
paper investigated is, instead, conditions through which we can guarantee that
networks of components can work together when interconnected at run time to
form larger networks. This has implications on the properties that need to be
required of networks in order to guarantee consistency. An example is the way
time is managed: in choreography, this is done globally for the (fixed) set of
peers; in our approach, this needs to be done locally at level of each process
because composition is dynamic.

The logical specification of properties of timed systems has been addressed
since the beginning of the 90’s, resulting in many different logics. Among them
is MTL[24], upon which we built safety-MTL(R) for expressing properties
of heterogeneous networks of processes. The expressiveness of different log-
ics, namely of variants and fragments of MTL (over both discrete and con-
tinuous time) has also been extensively addressed (e.g., [18, 21, 30]). More-
over, these logics have been studied for the purpose of verification (satisfiability,
model-checking, bounded model-checking)[5, 26, 27]. The tension between the
un-intituitive meaning of MTL with pontwise semantics and the decidability
properties of MTL with continuous semantics have led Reynolds to propose
1CMTL [29], a new metric temporal logic that has a continuous semantics and
a decision procedure for satisfiability. In this logic, temporal constraints are

36

associated with the reading of an arbitrary but not infinitely precise single uni-
versal clock. This logic is considered suitable for hybrid systems because it
allows for imprecision in metric constraints.

In this paper we have defined a subset of MTL formulas that have the
same semantics under continuous and pointwise semantics. In order to support
the description of systems with physical and digital components in an unifying
framework, Furia and Rossi have identified sufficient conditions under which
formulas in the TRIO metric temporal logic have a consistent truth value when
moving from continuous to discrete-time semantics and vice-versa [17]. These
conditions rely on a class of sampling invariant formulas whose intending mean-
ing is preserved when samplings of continuous behaviours are considered. In
[14] we have also explored this way of relating continuous and discrete time
domains, but the continuous interpretation over timed traces proposed in [30]
revealed to be more appropriate for achieving the envisaged results.

As recognised in [16], properties such as ‘a predicate p holds at all time
instants that are multiple of δ’ are of interest in timed systems namely to express
the behaviour of a clock signal. These properties, which can be expressed by
�δ p in the extension of safety-MTL(R) that we defined in this paper, are
not expressible in MTL and we are not aware of any extension of MTL that
specifically deals with this problem (except that second-order extensions are
known to solve it).

8. Concluding remarks

In this paper, we have proposed a component algebra for heterogenous timed
systems that can be interconnected at run time. This algebra addresses the new
class of systems that are beginning to operate in cyberspace where they con-
nect dynamically to other systems to achieve some goal. Systems such as these
often have real-time requirements, i.e., their correctness depends not only on
what outputs are returned to given inputs, but also on the time at which inputs
are received and corresponding outputs are produced and communicated. When
software applications, usually written in a high-level programming language and
relying on particular time abstractions, are deployed on a given platform, their
real-time behaviour is additionally restricted by the clock period of that plat-
form. Applications interconnected at run time across different platforms will be
likely to operate over different clock periods, resulting in a timed heterogeneous
system.

The elements of the proposed algebra are called ht-ARNs: multigraphs of
nodes, each with its own clock granularity, where processes execute, and hyper-
edges where interactions among sets of such processes are orchestrated. Every
hyperedge also has its own clock granularity, which needs to be a divisor of
the clock granularities of the nodes that it connects so that they can interact.
We provided compositionality results for ensuring the consistency of intercon-
nections when performed at run time across different clock granularities. Con-
trarily to techniques that operate at design time (e.g., [4]), our results do not
require changes to be performed on the processes that execute in such systems so
that they can be interconnected, which would defeat the purpose of supporting
dynamic binding.

Our algebra is based on timed traces, which allows us to abstract from the
specificities of the different classes of automata that can be chosen as models of

37

implementations and characterise at a higher level the topological properties of
the languages generated by such automata that support our compositionality
results — in a companion paper [11] we investigate an algebra of automata-based
machines, which we intend to extend to networks of automata.

Our results are based on a new time-related refinement relation and a new
time-related closure operator that does not reduce to the Cantor topology of
trace-based domains. Another area of further work concerns the logics that
support an interface algebra for ht-ARNs: the logic that we proposed in the
paper meets the requirements imposed by the new refinement and time-closure
operators to make it suitable as a semantic domain, but further work is required
to endow it with effective proof techniques.

Acknowledgments

This work was partially supported by the Engineering and Physical Sci-
ences Research Council UK (EPSRC) through the grant EP/K000683/1, by the
Royal Society International Exchange grant IE130154, and by the AFOSR grant
FA9550-14-1-0043 “Semantic Completions: Unifying the Wave and the Particle
Views of Information”.

We would like to thank the reviewers for many useful comments and sugges-
tions.

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theor.
Comput. Sci., 82(2):253–284, 1991.

[2] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2(3):117–126, 1987.

[3] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctu-
ality. J. ACM, 43(1):116–146, 1996.

[4] A. Benveniste, B. Caillaud, L. P. Carloni, and A. L. Sangiovanni-
Vincentelli. Tag machines. In EMSOFT, pages 255–263. ACM, 2005.

[5] M. M. Bersani, M. Rossi, and P. S. Pietro. A tool for deciding the satisfia-
bility of continuous-time metric temporal logic. In Proceedings of the 2013
20th International Symposium on Temporal Representation and Reasoning,
TIME ’13, pages 99–106, Washington, DC, USA, 2013. IEEE Computer So-
ciety.

[6] D. Brand and P. Zafiropulo. On communicating finite-state machines. J.
ACM, 30(2):323–342, 1983.

[7] A. Burns and I. J. Hayes. A timeband framework for modelling real-time
systems. Real-Time Syst., 45(1-2):106–142, June 2010.

[8] Y. Chen, Y. Chen, and E. Madelaine. Timed-pNets: a communication
behavioural semantic model for distributed systems. Frontiers of Computer
Science, 9(1):87–110, 2015.

38

[9] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed
I/O automata: a complete specification theory for real-time systems. In
HSCC, pages 91–100. ACM, 2010.

[10] B. Delahaye, J. L. Fiadeiro, A. Legay, and A. Lopes. A timed component
algebra for services. In D. Beyer and M. Boreale, editors, FORTE, volume
7892 of LNCS, pages 242–257. Springer, 2013.

[11] B. Delahaye, J. L. Fiadeiro, A. Legay, and A. Lopes. Heterogeneous timed
machines. In ICTAC, volume 8687 of LNCS, pages 115–132. Springer, 2014.

[12] G. Dı́az, J. J. Pardo, M.-E. Cambronero, V. Valero, and F. Cuartero. Verifi-
cation of web services with timed automata. Electr. Notes Theor. Comput.
Sci., 157(2):19–34, 2006.

[13] J. L. Fiadeiro and A. Lopes. An interface theory for service-oriented design.
Theor. Comput. Sci., 503:1–30, 2013.

[14] J. L. Fiadeiro and A. Lopes. Heterogeneous and asynchronous networks of
timed systems. In S. Gnesi and A. Rensink, editors, FASE, volume 8411 of
LNCS, pages 79–93. Springer, 2014.

[15] J. Forget, F. Boniol, D. Lesens, and C. Pagetti. A multi-periodic syn-
chronous data-flow language. In HASE, pages 251–260. IEEE Computer
Society, 2008.

[16] C. A. Furia, M. Pradella, and M. Rossi. Comments on temporal logics for
real-time system specification. ACM Comput. Surv., 41(2), 2009.

[17] C. A. Furia and M. Rossi. Integrating discrete- and continuous-time metric
temporal logics through sampling. In E. Asarin and P. Bouyer, editors,
FORMATS, volume 4202 of LNCS, pages 215–229. Springer, 2006.

[18] C. A. Furia and M. Rossi. On the expressiveness of MTL variants over
dense time. In J.-F. Raskin and P. S. Thiagarajan, editors, FORMATS,
volume 4763 of LNCS, pages 163–178. Springer, 2007.

[19] N. Guermouche and C. Godart. Timed model checking based approach for
web services analysis. In ICWS, pages 213–221. IEEE, 2009.

[20] T. A. Henzinger. Sooner is safer than later. Inf. Process. Lett., 43(3):135–
141, 1992.

[21] P. Hunter, J. Ouaknine, and J. Worrell. Expressive completeness for metric
temporal logic. In LICS, pages 349–357. IEEE Computer Society, 2013.

[22] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of
Timed I/O Automata. Morgan & Claypool Publishers, 2006.

[23] R. Kazhamiakin, P. K. Pandya, and M. Pistore. Representation, verifica-
tion, and computation of timed properties in web. In ICWS, pages 497–504.
IEEE Computer Society, 2006.

[24] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299, 1990.

39

[25] T. T. H. Le, R. Passerone, U. Fahrenberg, and A. Legay. Tag machines
for modeling heterogeneous systems. In ACSD, pages 186–195. IEEE Com-
puter Society, 2013.

[26] J. Ouaknine and J. Worrell. Safety metric temporal logic is fully decidable.
In TACAS, volume 3920 of LNCS, pages 411–425. Springer, 2006.

[27] J. Ouaknine and J. Worrell. Some recent results in metric temporal logic.
In FORMATS, volume 5215 of LNCS, pages 1–13, 2008.

[28] J. Ponge, B. Benatallah, F. Casati, and F. Toumani. Analysis and applica-
tions of timed service protocols. ACM Trans. Softw. Eng. Methodol., 19(4),
2010.

[29] M. Reynolds. A new metric temporal logic for hybrid systems. In Proceed-
ings of the 2013 20th International Symposium on Temporal Representation
and Reasoning, TIME ’13, pages 73–80, Washington, DC, USA, 2013. IEEE
Computer Society.

[30] D. Souza and P. Prabhakar. On the expressiveness of MTL in the pointwise
and continuous semantics. Int. J. Softw. Tools Technol. Transf., 9(1):1–4,
Feb. 2007.

40

Appendix

Proof of Thm. 4.3

If a ht-ARN α is connected and Λα 6= ∅, there is a process Pα = 〈δα, γα,ΛPα〉
such that ΛPα w Λα and, for any other process P = 〈δ, γα,ΛP 〉 such that
ΛP w Λα, ΛP w ΛPα .

Proof. Let P = 〈δ, γα,ΛP 〉 be such that ΛP w Λα. Because ΛP 6= ∅, let λ ∈ ΛP ;
because ΛP � Λα, we know that there is λ′ ∈ Λα such that λ �ρ λ′, for some
ρ. Because λ′ necessarily contains all multiples of the clock granularities of the
processes of α, so does λ, which implies that δ is a common divisor of all those
clock granularities. Therefore, it makes sense to choose the granularity δα to be
the greatest common divisor of the clock granularities of the processes of α.

The property ΛPα is constructed as follows:

• Let λ = 〈σ, τ〉 ∈ Λα be a trace of α.

– Let p be a node or hyperedge of α.

∗ We can project λ over the language of the process at p – λ|ιp
– which we know to be a trace of Λp. By definition, there is a
δp-timed trace λp in Λp such that λ|ιp � λp.

∗ Because δp is a multiple of δα, we know by Prop. 2.5 that there
is a single δα-timed trace λ∗p = 〈σ∗p , τδα〉 that refines λp, which
therefore belongs to Λp.

– Let p be a node and λαp = 〈σαp , τδα〉 be the timed trace with σαp
obtained from σ∗p by prefixing all the actions with p. — this action
sequence is in the language of Aα. We now build the trace λα =
〈σα, τδα〉 such that σα(i) =

⋃
p∈N σ

α
p (i).

– Because for all p ∈ N the renaming ensures that unions are disjoint,
λα|ιp = λ∗p.

– Taking now an hyperedge c, we know that, because σ is a trace over
Aα, σc(i) =

⋃
p∈c σp(i). Because the refinement to δα adds ∅ to the

new time instants, we conclude that λα|ιp = λ∗p also holds for all
p ∈ c.

– It then follows that λα|ιp ∈ Λp for all p ∈ N ∪ E, which by the
definition of Λα implies that λα ∈ Λα.

• Let ΛPα = {λα : λ ∈ Λα}r.

– It follows from the previous line that ΛPα ⊆ Λα and, therefore, ΛPα �
Λα.

– Given any λ = 〈σ, τ〉 ∈ Λα, the refinements of λ and of λα to the
meet of τ and τδα coincide. Therefore, ΛPα w Λα.

Notice that, because Λα 6= ∅, ΛPα 6= ∅; therefore, Pα is a process (and it
approximates α.)

It remains to prove that Pα is the best approximation of α. For that purpose,
let P = 〈δ, γα,ΛP 〉 be such that ΛP w Λα We are going to prove that ΛP w ΛPα .
Because we already know that δα is necessarily a multiple of δ, let n be δα/δ.

41

We start by remarking that, given λ′ = 〈σ′, τ ′〉 ∈ Λα and k ∈ N, if there is
i ∈ N such τ ′(i) = k.δα, then σ′α(k) = σ′(i), otherwise σ′α(k) = ∅.

• Let λ be a δ-timed trace of P .

– Because ΛP � Λα, we know that there is λ′ ∈ Λα such that λ �ρ λ′
for some ρ.

– It also follows that λ � λ′α:

∗ λ′α is a δα-timed trace and δα is a multiple of δ, so τ � τ ′α;

∗ for all i such that i = k.n for some k, if i is in the range of ρ,
then σ(i) = σ′(ρ−1(i)) = σ′α(k), otherwise σ(i) = σ′α(k) = ∅;

∗ for any i that is not a multiple of n, σ(i) = ∅ because in this case
τ(i) is not a multiple of the clocks of all processes in α.

– Therefore, ΛP � ΛPα .

• Consider now a trace λ = 〈σ, τ〉 ∈ ΛPα .

– We know that there is a trace λ′ ∈ Λα such that λ �ρ λ′α for some
ρ. Since λ′α also belongs to Λα,

– Because ΛP w Λα, we know that there exists a trace λ′′ = 〈σ′′, τ ′′〉 ∈
ΛP such that λ′′ �ρ′ λ′ for some ρ′.

– Let λ′′′ be the refinement of λ′′ to the meet of τ and τ ′′ (which implies
that λ′′′ ∈ ΛP).

– We can prove that λ′′′ is also the refinement of λ to the meet of τ
and τ ′′ as follows:

(1) For all j ∈ N such that τ(j) is not a multiple of δα, since λ′α is a
δα-timed trace and λ �ρ λ′α, it follows that σ(j) = ∅. (a) If there is
k ∈ N such that τ ′(k) = τ(j), since τ ′(k) cannot be a multiple of the
clocks of all processes of α, σ′(k) must be ∅. In this case, τ ′′(ρ′(k)) =
τ ′(k) and σ′′(ρ′(k)) = ∅. Since λ′′′ is the refinement of λ′′ to the meet
of τ and τ ′′, for m ∈ N such that τ ∧ τ ′′(m) = τ ′′(ρ′(k)), we have
σ′′′(m) = σ′′(ρ′(k)). Hence we can conclude that, τ ∧ τ ′′(m) = τ(j)
and σ′′′(m) = ∅. (b) If for all k ∈ N, τ ′(k) 6= τ(j) and there is l such
that τ ′′(l) = τ(j), then σ′′(l) is necessarily ∅. In this case, as before,
we can conclude that for m ∈ N such that τ ∧ τ ′′(m) = τ ′′(l) = τ(j),
σ′′′(m) = ∅. (c) If for all l ∈ N, τ ′′(l) 6= τ(j), since λ′′′ is the
refinement of λ′′ to the meet of τ and τ ′′, for m ∈ N such that
τ ∧ τ ′′(m) = τ(j), σ′′(l) must be ∅.
(2) For all j ∈ N such that τ(j) is a multiple of δα (and, hence, also
multiple of δ), since λ′α is a δα-timed trace, we have that i = ρ−1(j) is
defined and σ(j) = σ′α(i). (a) If there is k ∈ N such that τ ′(k) = τ(j)
(and, hence, τ ′(k) = τ ′α(i)), as remarked above, σ′α(i) = σ′(k).
Since λ′′ �ρ′ λ′, τ ′′(ρ′(k)) = τ ′(k) and σ′′(ρ′(k)) = σ′(k). Since λ′′′

is the refinement of λ′′ to the meet of τ and τ ′′, for m ∈ N such that
τ ∧ τ ′′(m) = τ ′′(ρ′(k)), we have σ′′′(m) = σ′′(ρ′(k)). Hence we can
conclude that, τ ∧ τ ′′(m) = τ(j) and σ′′′(m) = σ(j). (b) If for all
k ∈ N, τ ′(k) 6= τ(j), τ(j) cannot be a multiple of the clocks of all
processes of α and, hence, σ(j) = ∅. The result follows using the
reasoning of 1(b) and 1(c) above.

42

Therefore, ΛP w ΛPα , i.e., Pα is the best approximation of α.

Proof of Thm. 5.5

A ht-ARN is consistent if it is t-closed and progress-enabled.

Proof. Let α = 〈N,E,Ω,Ξ〉 be a t-closed ht-ARN and τ a time sequence relative
to which it is progress-enabled. Given that Πατ is not empty (it contains at least
the empty segment ε), Πατ can be organised as a (non-empty) tree. This tree
is finitely branching because Aα is finite. Given that the ht-ARN is progress-
enabled in relation to τ , the tree is infinite. By Kőnigs lemma, it contains an
infinite branch σ.

We now prove that σ∈Λατ , i.e., σ|ιp∈Λpτ for all p∈N ∪ E:

1. Let p∈N ∪ E and π ≺ σ|ιp . We know that π is of the form π′|ιp where
π′∈Πατ . Therefore, π∈↓Λpτ .

2. It follows that σ|ιp∈Λpτ .

3. Because Λp is t-closed, we can conclude that σ|ιp∈Λpτ .

Proof of Thm. 5.8

Let α be a composition of progress-enabled ht-ARNs through a family of wires
with mutually-disjoint sets of interaction points, i.e.,

α = (α1

ni=1...n

〈〈vi,Mvi
〉,ξi,〈pi,Mpi

〉〉
α2)

where each 〈〈vi,Mvi〉, ξi, 〈pi,Mpi〉〉 is a wire between α1 and α2. If the orchestra-
tors involved in the wires (those that label the hyperedges cvi) are cooperative
in relation to the free ports Mvi that are being connected and the time gran-
ularity of the processes at the corresponding interaction points 〈pi,Mpi〉, and
both ht-ARNs are delivery-enabled in relation to the interaction-points being
connected, then α is progress-enabled.

Proof. To simplify the notation, we consider the case of a single wire with
a connection interaction point from α1, i.e., α = (α1

f
〈v,Mcv 〉,ξ,〈p,Mp〉 α2) is a

composition of progress-enabled ht-ARNs and α1cv
is a cooperative connec-

tion, α1 is delivery-enabled in relation to 〈v,Mcv 〉 and α2 is delivery-enabled
in relation to 〈p,Mp〉. Also to simplify the notation, and since the two net-
works have disjoint sets of nodes, we rename the node v with p in α1. Notice
that, after this renaming, cp denotes the hyperedge of α1 that is changed by
the composition, the connection interaction-point of α1 becomes 〈p,Mcp〉 and
ξ(ι1cp(AMcp

)) = ιcp(AMcp
) = ι2p(AMp

). We now prove that α is progress-
enabled.

Let τ1, τ2 be time sequences relative to which α1 and α2 are progress-enabled,
respectively. The idea of the proof is to show that α is progress-enabled in
relation to any τ that refines (τ1∧τ2). Let τ be such a time sequence. Because

43

α1 and α2 are progress-enabled in relation to τ1 and τ2, respectively, they are
also progress-enabled in relation to τ (which refines both).

We start by noticing that ε∈Πατ . This is because α1 and α2 are r-closed
and progress-enabled in relation to τ1 and τ2, respectively.

Let now π∈Πατ and π1, π2 be the corresponding projections to the languages
of α1, α2, respectively. We know that π1∈Πα1τ

and π2∈Πα2τ
.

Because α1 and α2 are progress-enabled in relation to τ , let (π1·B1)∈Πα1τ

and (π2·B2)∈Πα2τ
.

The change in the hyperedge cp only interferes with the ability of the co-
ordinator in cp (from α1) and the process in p (from α2) to move — in α, the
language of the coordinator only intersects that of the process p. Therefore, we
need to adjust the deliveries in B2 ∩D〈p,Mp〉 (the deliveries to the process in p
through Mp) and the publications in B1 ∩D〈p,Mcp 〉 (the publications by p that

correspond to deliveries to the coordinator in cp).
The proof proceeds by analysing different cases depending on whether the

process in p and the coordinator in cp synchronise. Let k = τ(|π|) be the time
instant that follows the end of π — that at which B1 and B2 are executed. Since
the attachment ξ : Mcp →Mp of α1cp to α2p is well-formed we know that δp is
a multiple of δcp .

1. k is not a multiple of δcp : In this case, we know that B1∩ ι1cp(Aγcp) = ∅.
We also know that B2 ∩ ι2p(Aγp) = ∅ because k is also not a multiple of δp. We
have that π · B1 ∪ B2 ∈ Πατ , because the projection over αi is (B1 ∪ B2)|ιi =
B1|ιi ∪ B2|ιi = Bi (neither B1 intersects the language of α2 nor B2 intersects
the language of α1).
2. k is a multiple of δcp but not of δp: In this case, we know that B2 ∩
ι2p(Aγp) = ∅. We now prove that π ·B′1 ∪B2 ∈ Πατ with B′1 = B1 \ ι1cp(AMcp

).

projection over α1 — We have that (π1·B1)∈Πα1τ
. Because α1cp is a coop-

erative connection and α1 is delivery-enabled in relation to 〈p,Mcp〉, π1·B′1
is also in Πα1τ

— the coordinator that orchestrates the connection α1cp

is ready to accept any set of publications at the node p and cannot force
deliveries to a process that it connects when it is not in sync with it, so we
can remove all deliveries to p from B1; being publication-enabled, we can
replace the publications that it was expecting from the process with those
that it wants to do, which in this case is none (the processes not being in
sync). On the other hand, (B′1 ∪ B2)|ι1 = B′1|ι1 because B2|ι1 = ∅ (recall
that B2 ∩ ιp(AMp

) ⊆ B2 ∩ ι2p(Aγp) = ∅).

projection over α2 — We have that (π ·B′1∪B2)|ι2 is π2 ·B2 because B′1 does
not intersect ι1cp(AMcp

) and, hence, ξ(B′1) does not intersect ι2p(AMp
)

(recall that ξ(ι1cp(AMcp
)) = ι2p(AMp

)).

3. k is a multiple of δp: We prove that π · B′1 ∪ B′2 ∈ Πατ with B′1 =
B1 \ ι1cp(AMcp

)∪ξ((B1∩ ι1cp(AMcp
))\D〈p,Mcp 〉) and B′2 = B2 \D〈p,Mp〉. In this

way, (1) we remove from B1 the deliveries that the coordinator cp expects from
p and consider only those that p wants to do (in B2), which is possible because
α1 is delivery-enabled in relation to 〈p,Mcp〉 and (2) we remove from B2 the
deliveries that p expects from the coordinator cp and consider only those that
the coordinator wants to do to p (the translation by ξ of those in B1), which is
possible because α2 is delivery-enabled in relation to 〈p,Mp〉.

44

We have that:
B1 ∩ ξ−1(D〈p,Mp〉) = (B1 ∩ ι1cp(AMcp

)) \D〈p,Mcp 〉
B2 ∩ ξ(D〈p,Mcp 〉) = (B2 ∩ ι2p(AMp

)) \D〈p,Mp〉

projection over α1 — (B′1∪B′2)|ι1 = B1\D〈p,Mcp 〉∪ξ
−1(B2∩ξ(D〈p,Mcp 〉)).

Because (π1·B1)∈Π1τ and α1 is delivery-enabled in relation to 〈p,Mcp〉
and

ξ−1(B2∩ξ(D〈p,Mcp 〉)) is a subset ofD〈p,Mcp 〉, we know that π1·(B′1∪B′2)|ι1∈Π1τ .

projection over α2 — (B′1∪B′2)|ι2 = B2\D〈p,Mp〉∪ξ(B1∩ξ−1(D〈p,Mp〉)).

Because (π2·B2)∈Π2τ and α2 is delivery-enabled in relation to 〈p,Mp〉 and

ξ(B1∩ξ−1(D〈p,Mp〉)) is a subset ofD〈p,Mp〉, we know that π2·(B′1∪B′2)|ι2∈Π2τ .

Proof of Prop. 6.2

Given a set Φ of sentences in safety-MTL, ΛpwΦ = {λ : λ �pw Φ} is divergent
safe.

Proof. We need to prove that every trace that fails to satisfy a safety-MTL for-
mula φ has a finite bad prefix π, i.e., none of π’s extensions satisfies φ. This
follows from the following result:

if λ, i 2pw φ, there is i ≤ k such that, for every λ′ : λk < λ′,
λ′, i 2pw φ

which can easily be proved by induction in the structure of safety-MTL for-
mulas.

Proof of Prop. 6.3

Let Λ be a timed property. If Λ is divergent safe then it is also t-closed.

Proof. The fact that Λ is divergent safe means that for any timed trace λ, if for
all π<λ there is λ′∈Λ such that π<λ′, then λ∈Λ. We need to prove that for
every τ∈Λtime, Λτ is closed, i.e., that for any action sequence σ, if for all action
segments π′<σ there is σ′∈Λτ such that π′<σ′, then σ∈Λτ .

Let σ be an action sequence such that for all action segments π′<σ there is
σ′∈Λτ such that π′<σ′. Then 〈σ, τ〉 is a timed trace such that for all π<〈σ, τ〉
there is 〈σ′, τ〉∈Λ such that π<〈σ′, τ〉. Since Λ is divergent safe, we have that
〈σ, τ〉∈Λ and, hence, σ∈Λτ .

45

Proof of Prop. 6.6

Given timed traces λ and λ′ such that λ′ � λ, λ �c φ iff λ′ �c φ. It follows that,
for every Φ, ΛcΦ = {λ : λ �c Φ} is r-closed.

Proof. Let λ = 〈σ, τ〉 and λ′ = 〈σ′, τ ′〉 be two timed traces. We prove by
induction on the structure of the formula that, if λ′ �ρ λ, for some ρ then, for
every t ∈ R≥0, λ, t �c φ iff λ′, t �c φ :

a : By definition, λ, t �c φ iff there exists i ∈ N such that τ(i) = t and a ∈ σ(i)
and λ′, t �c φ iff there exists j ∈ N such that τ ′(j) = t and a ∈ σ′(j).
⇒ If there exists i ∈ N such that τ(i) = t and a ∈ σ(i), we take j = ρ(i)
since σ′(ρ(i)) = σ(i).

⇐ If there exists j ∈ N such that τ ′(j) = t and a ∈ σ′(j), then σ′(j) is
not empty. Because λ′ � λ, then there exists i ∈ N such that ρ(i) = j
and, hence, the result follows immediately.

¬φ : It follows straightforwardly from the induction hypothesis.

φ1 ⊃ φ2 : It follows straightforwardly from the induction hypothesis.

φ1 UI φ2 : It follows straightforwardly from the induction hypothesis.

An observation useful in the proof of Lemma 6.9 is the following:

Lemma 8.1. Given a time sequence τ and t ∈ R≥0, the following conditions
are equivalent:

• there exists i ∈ N such that t = τ(i);

• nextτ (t) = t;

• previousτ (t) = t.

Proof. This follows straightforwardly from Def. 6.7.

Proof of Lemma 6.9

Let λ = 〈σ, τ〉 be a timed trace, i ∈ N and t ∈ R≥0.

1. If for all i ∈ N τ(i) 6= t then λ, t �c φ�

2. If λ, nextλ(t) �pw φ+ then λ, t �c φ+.

3. If λ, previousλ(t) �pw φ− then λ, t �c φ−.

4. If λ, i �pw φ◦ then λ, τ(i) �c φ◦.

Proof. We prove (1)-(4) by simultaneous induction on the number of connectives
that occur in the formulas φ�, φ+, φ− and φ◦.

Base case:

46

φ� is true: Follows trivially from the fact that, for every t, λ, t �c true.

φ+ is true: Similar to the previous case.

φ+ is false: By Def. 6.1, λ, nextλ(t) 2pw false.

φ− is true: Similar to the first case.

φ− is false: By Def. 6.1, λ, previousλ(t) 2pw false.

φ◦ is true: Similar to the first case.

φ◦ is false: By Def. 6.1, λ, i 2pw false.

φ◦ is a: By Def. 6.1, λ, i �pw a implies that a ∈ σ(i) and, hence, by
Def. 6.5, λ, τ(i) �c a.

Inductive step:

φ� is ¬a: By Def. 6.5, the fact that, for all i ∈ N, τ(i) 6= t implies λ, t �c
¬a.

φ� is φ�1 ∧ φ�2: If, for all i ∈ N, τ(i) 6= t, then by the induction hypothesis
of (1) we have that λ, t �c φ�1 and λ, t �c φ�2 and, hence, by Def. 6.5,
λ, t �c φ�.

φ� is φ�1 ∨ φ◦2: If for all i ∈ N, τ(i) 6= t, then by the induction hypothesis
of (1) we have that λ, t �c φ�1 and, hence, by Def. 6.5, λ, t �c φ�.

φ� is φ◦1 ∨ φ�2: Similar to the previous case.

φ+ is ¬a: By Def. 6.1, λ, nextλ(t) �pw ¬a implies that a /∈ σ(nextλ(t)).
If τ(nextλ(t)) = t then, by Def. 6.5, λ, t �c ¬a. If τ(nextλ(t)) 6= t,
then, for all i ∈ N, τ(i) 6= t and it follows that λ, t �c ¬a.

φ+ is φ+
1 ∧ φ

+
2 : By Def. 6.1, λ, nextλ(t) �pw φ+ implies that λ, nextλ(t) �pw

φ+
1 and λ, nextλ(t) �pw φ+

2 . By the induction hypothesis of (2), we
have that λ, t �c φ

+
1 and λ, t �c φ

+
2 and, hence, λ, t �c φ+.

φ+ is φ+
1 ∨ φ

+
2 : By Def. 6.1, λ, nextλ(t) �pw φ+ implies that λ, nextλ(t) �pw

φ+
1 or λ, nextλ(t) �pw φ+

2 . By the induction hypothesis of (2), we
have that λ, t �c φ

+
1 or λ, t �c φ

+
2 and, hence, λ, t �c φ+.

φ+ is φ◦1Rφ+
2 : By Def. 6.1, λ, nextλ(t) �pw φ+ implies that, for all k ≥

nextλ(t), either λ, k �pw φ+
2 or there exists j such that nextλ(t) ≤

j < k and λ, j �pw φ◦1. Let t′ ≥ t and k = nextλ(t′). Since k ≥
nextλ(t), we have that either λ, nextλ(t′) �pw φ+

2 or there exists j
such that nextλ(t) ≤ j < nextλ(t′) and λ, j �pw φ◦1. In the first
case, by the induction hypothesis of (2), we have that λ, t′ �c φ

+
2 .

In the second case, by the induction hypothesis of (4), we have that
λ, τ(j) �c φ◦1. Let r = τ(j). Since nextλ(t) ≤ j < nextλ(t′) implies
t ≤ τ(j) < t′, then we have t ≤ r < t′ and λ, r �c φ◦1. We can then
conclude that λ, t �c φ+.

φ− is ¬a: By Def. 6.1, if λ, previousλ(t) �pw ¬a, a /∈ σ(previousλ(t)). If
τ(previousλ(t)) = t, then λ, t �c ¬a. If τ(nextλ(t)) 6=t, then for all
i ∈ N, τ(i) 6= t and it follows that λ, t �c ¬a.

47

φ− is φ−1 ∧ φ
−
2 : By Def. 6.1, we have that λ, previousλ(t) �pw φ− implies

that λ, previousλ(t) �pw φ−1 and λ, previousλ(t) �pw φ−2 . By the
induction hypothesis of (3), we have that λ, t �c φ

−
1 and λ, t �c φ

−
2

and, hence, λ, t �c φ−.

φ− is φ−1 ∨ φ
−
2 : By Def. 6.1, we have that λ, previousλ(t) �pw φ− implies

that λ, previousλ(t) �pw φ−1 or λ, previousλ(t) �pw φ−2 . By the in-
duction hypothesis of (3), we have that λ, t �c φ

−
1 or λ, t �c φ

−
2 and,

hence, λ, t �c φ−.

φ− is φ◦1Rφ−2 : By Def. 6.1, λ, previousλ(t) �pw φ− implies that, for all
k ≥ previousλ(t), either λ, k �pw φ−2 or there exists j such that
previousλ(t) ≤ j < k and λ, j �pw φ◦1. Let t′ ≥ t and k =
previousλ(t′). Since k ≥ previousλ(t), either λ, previousλ(t′) �pw
φ−2 or there exists j such that previousλ(t) ≤ j < previousλ(t′) and
λ, j �pw φ◦1. In the first case, by the induction hypothesis of (3),
we have that λ, t′ �c φ

−
2 . In the second case, by the induction hy-

pothesis of (4), we have that λ, τ(j) �c φ◦1. Let r = τ(j). Since
previousλ(t) ≤ j < previousλ(t′) implies t ≤ τ(j) < t′, then we have
t ≤ r < t′ and λ, r �c φ◦1. We can then conclude that λ, t �c φ−.

φ− is φ−1 UI−0 φ
◦
2: By Def. 6.1, λ, previousλ(t) �pw φ− implies that there

exists k ≥ previousλ(t) such that (τ(k) − τ(previousλ(t))) ∈ I−0 ,
λ, k �pw φ◦2 and, for all j such that previousλ(t) ≤ j < k, λ, j �pw φ

−
1 .

Let t′ = τ(k). On the one hand, we have that τ(previousλ(t)) ≤ t
and, hence, (t′ − t) ≤ (t′ − τ(previousλ(t))). On the other hand,
since 0 /∈ I−0 , k > previousλ(t) and, hence, t′ > t. The fact that I−0
is of the form (0, u) or (0, u] allows us to conclude that (t′ − t) ∈ I−0 .
By the induction hypothesis of (4), we additionally have that λ, t′ �c
φ◦2. Let r be such that t ≤ r < t′. We have that previousλ(t) ≤
previousλ(r) < k. Hence, we can apply the induction hypothesis of
(3), which ensures that λ, r �c φ

−
1 .

φ◦ is ¬a: By Def. 6.1, if λ, i �pw ¬a, we have that a /∈ σ(i). Then, by
Def. 6.5, λ, τ(i) 2c a and, hence, λ, τ(i) �c ¬a.

φ◦ is φ◦1 ∧ φ◦2: By Def. 6.1, we have that λ, i �pw φ◦ implies that λ, i �pw
φ◦1 and λ, i �pw φ◦2. By the induction hypothesis of (4), we have that
λ, τ(i) �c φ◦1 and λ, τ(i) �c φ◦2 and, hence, λ, τ(i) �c φ◦.

φ◦ is φ◦1 ∨ φ◦2: By Def. 6.1, we have that λ, i �pw φ◦ implies that λ, i �pw
φ◦1 or λ, i �pw φ◦2. By the induction hypothesis of (4), we have that
λ, τ(i) �c φ◦1 or λ, τ(i) �c φ◦2 and, hence, λ, τ(i) �c φ◦.

φ◦ is φ◦1RI<φ−2 : By Def. 6.1, λ, i �pw φ◦ implies that, for all k ≥ i such
that (τ(k)−τ(i)) ∈ I<, either λ, k �pw φ

−
2 or there exists j such that

i ≤ j < k and λ, j �pw φ◦1. Let t ≥ τ(i) such that (t − τ(i)) ∈ I<
and k = previousλ(t). It follows that k ≥ i and that τ(k) ≤ t, which
implies (τ(k)−τ(i)) ≤ (t−τ(i)). Since I< is any interval starting in 0,
(τ(k)−τ(i)) ∈ I<. Then, we have that either λ, previousλ(t) �pw φ

−
2

or there exists j such that i ≤ j < previousλ(t) and λ, j �pw φ◦1.
In the first case, by the induction hypothesis of (3), we have that
λ, t �c φ

−
2 . In the second case, by the induction hypothesis of (4),

48

we have that λ, τ(j) �c φ◦1. Let r = τ(j). Since i ≤ j < previousλ(t)
implies τ(i) ≤ τ(j) < t, then we have τ(i) ≤ r < t and λ, r �c φ◦1.
We can then conclude that λ, τ(i) �c φ◦.

φ◦ is φ◦1RI+φ+
2 : By Def. 6.1, λ, i �pw φ◦ implies that, for all k ≥ i such

that (τ(k) − τ(i)) ∈ I+, either λ, k �pw φ+
2 or there exists j such

that i ≤ j < k and λ, j �pw φ◦1. Let t ≥ τ(i) such that (t − τ(i)) ∈
I+ and k = nextλ(t). It follows that k ≥ i and τ(k) ≥ t, which
implies (τ(k)− τ(i)) ≥ (t− τ(i)). Since I+ is an unbounded interval,
(τ(k) − τ(i)) ∈ I+. Then, we have that either λ, nextλ(t) �pw φ+

2

or there exists j such that i ≤ j < nextλ(t) and λ, j �pw φ◦1. In the
first case, by the induction hypothesis of (2), we have that λ, t �c φ

+
2 .

In the second case, by the induction hypothesis of (4), we have that
λ, τ(j) �c φ◦1. Let r = τ(j). Since i ≤ j < nextλ(t) implies τ(i) ≤
τ(j) < t, then we have τ(i) ≤ r < t and λ, r �c φ◦1. We can then
conclude that λ, τ(i) �c φ◦.

φ◦ is φ◦1RI∀φ�2: By Def. 6.1, λ, i �pw φ◦ implies that, for all k ≥ i such
that (τ(k)− τ(i)) ∈ I∀, either λ, k �pw φ�2 or there exists j such that
i ≤ j < k and λ, j �pw φ◦1. Let t ≥ τ(i) such that (t − τ(i)) ∈ I∀.
If, for all i ∈ N, τ(i) 6= t, then by the induction hypothesis of (1),
λ, t �c φ�2. If there exists k such that t = τ(k), we have that either
λ, k �pw φ�2 or there exists j such that i ≤ j < k and λ, j �pw φ◦1. It is
easy to see that all �-formulas are also ◦-formulas and, hence, in the
first case, we can apply the induction hypothesis of (4) to conclude
that λ, t �c φ�2. In the second case, also by the induction hypothesis
of (4), we have that λ, τ(j) �c φ◦1. Let r = τ(j). Since i ≤ j < k
implies τ(i) ≤ τ(j) < t, then we have τ(i) ≤ r < t and λ, r �c φ◦1.
We can then conclude that λ, τ(i) �c φ◦.

φ◦ is φ−1 UIφ◦2: By Def. 6.1, λ, i �pw φ◦ implies that there exists k ≥ i
such that (τ(k) − τ(i)) ∈ I, λ, k �pw φ◦2 and, for all j such that
i ≤ j < k, λ, j �pw φ−1 . Let t′ = τ(k). We have that t′ ≥ τ(i)
and, by the induction hypothesis of (4), λ, t′ �c φ◦2. Let r be such
that τ(i) ≤ r < t′ = τ(k). We have that i ≤ previousλ(r) < k.
Hence, we can apply the induction hypothesis of (3), which ensures
that λ, r �c φ

−
1 . We can then conclude that λ, τ(i) �c φ◦.

Proof of Corollary 6.10

If λ �pw φ◦ then λ �c φ◦.

Proof. This follows from (4) of Lemma 6.9. By Def. 6.1, λ �pw φ◦ iff λ, 0 �pw φ◦.
By definition of timed trace τ(0) = 0 and, hence, λ, 0 �c φ◦. By Def. 6.5, we
then conclude λ �c φ◦.

Proof of Lemma 6.12

Let λ = 〈σ, τ〉 be a timed trace, i ∈ N and t ∈ R≥0.

49

1. If λ, t �c φ? then there exists i such that τ(i) = t.

2. If λ, t �c φ?• then there exists i such that τ(i) = t and λ, i �pw φ?•.

3. If λ, τ(i) �c φ• then λ, i �pw φ•.

Proof. We prove (1)-(3) by simultaneous induction on the number of connectives
that occur in the formulas φ?, φ?• and φ•.

Base case:

φ? is false: The result follows from the fact that, by Def. 6.5, λ, t 2c false
for every t.

φ? is a: The result follows from the fact that, by Def. 6.5, λ, t �c a implies
that there exists i such tthat t = τ(i).

φ?• is false: Similar to the case of φ?.

φ?• is a: The result follows from the fact that, by Def. 6.1, λ, t �c a
implies that there exists i such that τ(i) = t and a ∈ σ(i). Hence, by
Def. 6.1, λ, i �pw a.

φ• is false: Similar to the case of φ?.

φ• is true: The result follows from the fact that, by Def. 6.1, for every t,
λ, t �c true.

φ• is a: By Def. 6.5, λ, τ(i) �c a implies that a ∈ σ(i) and, hence, by
Def. 6.1, λ, i �pw a.

Inductive step:

φ? is φ?1 ∧ φ2: By Def. 6.5, λ, t �c φ?1. By the induction hypothesis of (1),
we have that there exists i such that t = τ(i).

φ? is φ1 ∧ φ?2: Similar to the previous case.

φ? is φ?1 ∨ φ?2: By Def. 6.5, either λ, t �c φ?1 or λ, t �c φ?2. By the induction
hypothesis of (1), in both cases, there exists i such that t = τ(i).

φ? is φ1RI<φ?2: By Def. 6.5, λ, t �c φ? implies that, for all u ≥ t such that
(u − t) ∈ I<, either λ, u �c φ?2 or there exists r such that t ≤ r < u
and λ, r �c φ1. Because 0 ∈ I<, this also holds for u = t, i.e., either
λ, t �c φ?2 or there exists r such that t ≤ r < t and λ, r �c φ1. Because
there is no r such that t ≤ r < t, it follows that λ, t �c φ?2. By the
induction hypothesis of (1), there exists i such that t = τ(i).

φ?• is φ•1 ∧ φ?•2 : By Def. 6.5, λ, t �c φ?• implies that λ, t �c φ•1 and
λ, t �c φ?•2 . By the induction hypothesis of (2), we have that there
exists i such that t = τ(i) and λ, i �pw φ?•2 . Then, we are also in
the conditions of applying the induction hypothesis of (3), and can
conclude that λ, i �pw φ•1. Hence, there exists i such that t = τ(i)
and λ, i �c φ?•.

φ?• is φ?•1 ∧ φ•2: Similar to the previous case.

50

φ?• is φ?•1 ∨ φ?•2 : By Def. 6.5, either λ, t �c φ?•1 or λ, t �c φ?•2 . By the
induction hypothesis of (2), we have that there exists i such that t =
τ(i) and either λ, i �pw φ?•1 or λ, i �pw φ?•2 . Therefore, λ, i �pw φ?•.

φ?• is φ?•1 RI<φ?•2 : By Def. 6.5, λ, t �c φ?• implies that, for all u ≥ t
such that (u − t)∈I<, either λ, u �c φ?•2 or there exists r such that
t ≤ r < u and λ, r �c φ?•1 (†). In particular, since 0 ∈ I<, this is also
true for u = t. Because it does not exist a r such that t ≤ r < t,
it follows that λ, t �c φ?•2 . By the induction hypothesis of (2), we
have that there exists i such that t = τ(i). Let k ≥ i such that
(τ(k) − τ(i)) ∈ I<. We are in the conditions of applying (†) to
u = τ(k) and, hence, either λ, τ(k) �c φ?•2 or there exists r such that
τ(i) ≤ r < τ(k) and λ, r �c φ?•1 . In the first case, by the induction
hypothesis of (2), we have that λ, k �pw φ?•2 . In the second case,
by the induction hypothesis of (2) we have that there exists j such
that τ(j) = r and λ, j �pw φ?•1 . To conclude that λ, i �pw φ?•, it
remains to ensure that i ≤ j < k, which follows from the fact that
τ(i) ≤ r < τ(k).

φ• is ¬a: By Def. 6.5, λ, τ(i) �c ¬a implies that, a /∈ σ(i). By Def. 6.1,
λ, i �pw ¬a.

φ• is φ•1 ∧ φ•2: By Def. 6.5, λ, τ(i) �c φ• implies that λ, τ(i) �c φ•1 and
λ, τ(i) �c φ•2. By the induction hypothesis of (3), if follows that
λ, i �pw φ•1 and λ, i �pw φ•2. Therefore, λ, i �c φ•.

φ• is φ•1 ∨ φ•2: By Def. 6.5, either λ, τ(i) �c φ•1 or λ, τ(i) �c φ•2. By the
induction hypothesis of (3), it follows that λ, i �pw φ•1 or λ, i �pw φ•2.
Therefore, λ, i �pw φ•.

φ• is φ?•1 RI∀φ•2: By Def. 6.5, λ, τ(i) �c φ• implies that, for all u ≥ τ(i)
such that (u− τ(i))∈I∀, either λ, u �c φ•2 or there exists r such that
τ(i) ≤ r < u and λ, r �c φ?•1 (†). Let k ≥ i such that (τ(k)− τ(i)) ∈
I∀. We are in the conditions of applying (†) to u = τ(k) and, hence,
either λ, τ(k) �c φ•2 or there exists r such that τ(i) ≤ r < τ(k)
and λ, r �c φ?•1 . In the first case, by the induction hypothesis of
(3), we have that λ, k �pw φ•2. In the second case, by the induction
hypothesis of (2) we have that there exists j such that τ(j) = r and
λ, j �pw φ?•1 . To conclude that λ, i �pw φ?•, it remains to ensure that
i ≤ j < k, which follows from the fact that τ(i) ≤ r < τ(k).

φ• is φ•1UIφ?•2 : By Def. 6.5, λ, τ(i) �c φ• implies that there exists u ≥ τ(i)
such that (u − τ(i)) ∈ I, λ, u �c φ?•2 and, for all r such that τ(i) ≤
r < u, λ, r �c φ•1 (†). By the induction hypothesis of (2), there exists
k such that τ(k) = u and λ, k �pw φ?•2 . For this k we have that
(τ(k) − τ(i)) ∈ I and λ, k �pw φ?•2 . Let j be such that i ≤ j < k.
Since τ(i) ≤ τ(j) < τ(k), we are in the conditions of applying (†) to
r = τ(j) and, hence, λ, τ(j) �c φ•1. By the induction hypothesis of
(3), λ, j �pw φ•1. Hence, we can conclude that λ, i �pw φ•.

51

Proof of Corollary 6.13

If λ �c φ• then λ �pw φ•.

Proof. This result is an immediate consequence of (3) of Lemma 6.12. By
Def. 6.5, λ �c φ• iff λ, 0 �c φ•. By definition of timed trace τ(0) = 0 and,
hence, λ, 0 �pw φ•. By Def. 6.1, we then conclude λ �pw φ•.

Language of safety-MTL(R)

The language safety-MTL(R) can be defined as follows:

φ◦• ::= true | false | a | ¬a | φ◦• ∧ φ◦• | φ◦• ∨ φ◦• | φ?◦• RI< φ−•

| φ?◦• RI∀ φ�• | φ?◦• RI+ φ+• | φ−• UI φ?◦•

with

φ�• ::= true | ¬a | φ�• ∧ φ�• | φ�• ∨ φ◦• | φ◦• ∨ φ�•

φ−• ::= true | false | ¬a | φ−•∧ φ−• | φ−•∨φ−• | φ?◦• R φ−• | φ−• UI−0 φ?◦•

φ+• ::= true | false | ¬a | φ+• ∧ φ+• | φ+• ∨ φ+• | φ?◦• R φ+•

φ?◦• ::= false | a | φ?◦• ∧ φ◦• | φ◦• ∧ φ?◦• | φ?◦• ∨ φ?◦•

where I< is of the form [0, t) or [0, t] or [0,∞), I−0 is of the form (0, t) or (0, t],
I+ is of the form [t,∞) or (t,∞), I∀ is any interval, and I is any bounded
interval.

Proof of Proposition 6.16

Let λ be a timed trace over A, and δ ∈ Q>0: λ � Axδ iff λ refines a δ-timed
trace.

Proof. By definition of Axδ, λ � Axδ iff �δ (¬(true U(0,δ) ¬(∧a∈A¬a))). By the
semantics of �δ , this is equivalent to have that, for all n ∈ N, there exists j such
that τ(j) = n ·δ and λ, j � ¬(true U(0,δ) ¬(∧a∈A¬a)). The last part is equivalent
to λ, j 2 (true U(0,δ) ¬(∧a∈A¬a)). By the semantics of U , this happens iff for
all k ≥ j such that 0 < τ(k) − τ(j) < δ, λ, k � ∧a∈A¬a, or equivalently, for all
a ∈ A, a /∈ τ(k). Hence, we can conclude that λ � Axδ iff, for all n ∈ N, there
exists j such that τ(j) = n · δ and for all k ≥ j such that 0 < τ(k)− τ(j) < δ,
τ(k) = ∅.

On the other hand, if λ �ρ λ′ and λ′ = 〈σ′, τ ′〉 is a δ-timed trace, then
for all n ∈ N, τ(ρ(n)) = n · δ and σ′(n) = σ(ρ(n)) and for all k such that
ρ(n) < k < ρ(n+ 1), σ(k) = ∅.
(⇐) From what we deduced above, we can easily conclude that if λ refines a
δ-timed trace then λ � Axδ: for each n we take j = ρ(n) since for any k ≥ ρ(n),
if 0 < τ(k)− n · δ < δ then ρ(n) < k < ρ(n+ 1).

52

(⇒) If λ � Axδ then, for all n ∈ N, there exists j such that τ(j) = n · δ,
which we take as ρ(n). Consider the following δ-timed trace: λ′ = 〈σ′, τδ〉 with
σ′(i) = σ(ρ(i)). Since for all k ≥ ρ(n) such that 0 < τ(k) − n · δ < δ we have
that τ(k) = ∅, we can conclude that λ �ρ λ′.

Proof of Proposition 6.18

The sentence Axδ defines a divergent safe property.

Proof. By definition, Axδ = �δ (¬(true U(0,δ) ¬(∧a∈A¬a))). We need to prove
that Λ = {λ : λ � Axδ} is divergent safe, i.e., that for any timed trace λ, if for
all π<λ there is λ′∈Λ such that π<λ′, then λ∈Λ.

Consider a timed trace λ such that λ/∈Λ, i.e., λ 2 Axδ. In this case, there
exists n ∈ N such that either (1) for all j, τ(j) 6= n · δ or (2) exists j such that
τ(j) = n · δ and exists k ≥ j such that 0 < τ(k) − τ(j) < δ and τ(k) 6= ∅. In
case (1), since time progresses in τ , there exists k such that τ(k) > n · δ.

We consider the prefix π = 〈σk+1, τk+1〉 of λ. It is easy to conclude that,
in both cases, any timed trace λ′ that admits π as prefix also does not satisfy
Axδ.

Proof of Theorem 6.21

Let α be a ht-ARN and, for every node (resp. hyperedge) p, let Φp be a
specification of the process (resp. orchestrator) at p. Let

Φα =
⋃

p∈N∪E
ιp(Φp ∪Ax

Aγp
δp

)

where the functions ιp translate the sentences in the specification of the process
at p (resp. of the orchestrator at c) to the language Aα. We have that Λα � φ
if Φα ` φ.

Proof. Let λ ∈ Λα. We have that Λα =
⋂
p∈N∪E ιp(Λp) and, hence, for every

p ∈ N ∪E, λ ∈ ιp(Λp). This implies that, for every p ∈ N ∪E, λ|ιp ∈ Λp. Since
Φp is a specification of the process (or orchestrator) at p, λ|ιp � Φp. On the

other hand, we also have that λ|ιp � Ax
Aγp
δp

. Hence we can conclude that, for

every p ∈ N ∪ E, λ � ιp(Φp) and λ � ιp(Ax
Aγp
δp

), i.e., λ � Φα. By hypothesis
Φα ` φ and, hence, λ � φ.

53

