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Background: The timed 25-foot walk (T25FW) is widely used as a clinic performance

measure, but has yet to be directly validated against gait speed in the home environment.

Objectives: To develop an accurate method for remote assessment of walking speed

and to test how predictive the clinic T25FW is for real-life walking.

Methods: An AX3-Axivity tri-axial accelerometer was positioned on 32MS patients

(Expanded Disability Status Scale [EDSS] 0–6) in the clinic, who subsequently wore it

at home for up to 7 days. Gait speed was calculated from these data using both a model

developed with healthy volunteers and individually personalized models generated from

a machine learning algorithm.

Results: The healthy volunteer model predicted gait speed poorly for more disabled

people with MS. However, the accuracy of individually personalized models was high

regardless of disability (R-value = 0.98, p-value = 1.85 × 10−22). With the latter, we

confirmed that the clinic T25FW is strongly predictive of the maximum sustained gait

speed in the home environment (R-value = 0.89, p-value = 4.34 × 10−8).

Conclusion: Remote gait monitoring with individually personalized models is accurate

for patients with MS. Using these models, we have directly validated the clinical

meaningfulness (i.e., predictiveness) of the clinic T25FW for the first time.

Keywords: multiple sclerosis, real world data, biomarkers, gait, actigraphy, remote sensing technology

INTRODUCTION

Tools for the sensitive assessment of disability and its progression in patients with multiple sclerosis
(MS) are needed (1). A major challenge has been to define measures that meaningfully reflect the
concept of interest and are sensitive to change over time for the full range of disability. The most
commonly acceptedmeasure to quantify the disability inMS is the Expanded Disability Status Scale
(EDSS) (2). However, the EDSS shows variable sensitivity to change with level of disability.

Walking speed has been used as an additional, objective outcome measure of performance
related to disability (3–5). Walking difficulties are strongly correlated with progression of MS (6, 7)
and reduced quality of life (5, 8, 9). At present, walking speed is evaluated only in the context of
short test walks in the clinic standardized as the Timed 25-Foot Walk (T25FW) or the Six-Minute
Walk (6MW) (10). Even though these tests are believed to be reliable measures, the extent to which
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the walking speed measured during performance tests in the
clinic correlates with unconstrained walking behavior at home
is unknown. Determining this is fundamental to appreciating
the meaningfulness for the patient of gait speed measures in the
clinic and they are subject to potential interpretative concerns.
For example, clinic measures are typically sparsely acquired (a
single, short time period in the day during an assessment visit) in
an atypical environment. They also may be subject to time-of-day
influences such as fatigue (5, 11–13).

Mobile actigraphy is promising as a reproducible, quantitative
approach to remote assessment of walking speed for people
with MS (5, 14, 15). Many recent studies have utilized single
or multiple actigraphy devices worn on the wrist or waist
to collect gait-related data (4, 16–19). Walking speeds can
be estimated from actigraphic data using models that relate
features derived from the timing of successive accelerations of the
accelerometer(s) attached to the body and individual steps (16).
Actigraphy can be used readily to assess movement in the home
environment over extended periods.

However, there are three major limitations to existing
approaches. Firstly, some of them have used the gait data from
wrist-worn devices. Movement at the wrist is influenced by
factors other than gait. This can lead to high walking speed
estimation errors (20, 21). Greater accuracy can be achieved by
attaching a device close to the center of mass of the body in order
to reduce influences of limb movements unrelated to walking.
In controlled environments, a waist-worn position outperforms
the wrist-worn position in accuracy of counting the number
of steps (20, 21). Secondly, most of the approaches described
thus far have used actigraphic data from a limited number of
MS or healthy-control subjects, along with a limited amount
of associated demographic information (e.g., weight, height and
step length) to build generic healthy volunteermodels for walking
speed estimation. However, because gait biomechanics change
with body habitus and disability and can have a large influence on
acceleration patterns across a step, the accuracy of generic models
can vary substantially between individuals (7, 22). Approaches
developed using models applicable to healthy volunteers fail
particularly when estimating the walking speed in patients with
greater levels of disability (16).

Here we describe an automated, machine learning approach
for individualized actigraphy model calibration that allows
accurate, personalized walking speed estimation for patients
with MS. We use software based on this personalized model to
measure walking speed remotely in the home environment. We
demonstrate that gait speed can bemeasured accurately, remotely
and for extended periods across a wide range of disability. With
these data, we performed the first direct validation of speeds
from the standard clinical T25FW relative to patients’ maximum
sustained walking speeds in their home environments.

METHODS

Participants
We recruited participants from the MS clinics of Imperial
College Healthcare Trust (ICHT) between 1 April 2015 and
31 March 2017 (Table 1) (RN). The participants provided

TABLE 1 | Patient demographic data and mean baseline times (n = 8 trials) for

the Timed 25 Foot Walk (T25FW, in seconds) and gait speeds calculated from

these (meters/second).

Patient EDSS Age T25FW (s) Gait speed 25 FW (m/s)

1 2 40–45 5.0 1.5

2 2 30–35 6.9 1.1

3 5.5 40–45 10.1 0.8

4 1 30–35 6.0 1.3

5 5 45–50 10.2 0.8

6 2.5 30–35 6.2 1.2

7 3 35–40 6.7 1.1

8 2.5 35–40 7.5 1.0

9 3 50–55 7.9 1.0

10 2 40–45 5.3 1.5

11 6 45–50 9.8 0.8

12 1 40–45 9.0 0.9

13 2 25–30 5.6 1.4

14 1.5 30–35 8.7 0.9

15 4 45–50 6.7 1.1

16 3.5 50–55 7.3 1.0

17 4 30–35 7.5 1.0

18 6 50–55 8.4 0.9

19 2 30–35 6.1 1.3

20 1 45–50 4.8 1.6

21 2.5 35–40 6.0 1.3

22 1.5 30–35 6.8 1.1

23 6 45–50 14.1 0.6

24 6 40–45 9.7 0.8

25 6 45–50 18.3 0.4

26 6 55–60 10.5 0.7

27 1 25–30 4.4 1.7

28 5.5 30–35 9.3 0.8

29 5.5 35–40 7.1 1.1

30 1.5 25–30 7.5 1.0

31 1 25–30 5.7 1.3

32 1 45–50 5.5 1.4

Ages expressed to nearest 5 years to preserve anonymity.

demographic information and then underwent a screening
evaluation for generating an EDSS score. Criteria for inclusion
were clinically-supported diagnosis of MS, an EDSS score of
0.0–6.0 at the screening evaluation and an ability to understand
and follow the study instructions. During periods in which
actigraphy data was acquired, a device was attached in a
paraspinal position on the lower-back using surgical tape.
The clinical study protocol was approved by the London
Bromley National Research Ethics Committee (14/LO/0292). All
participants provided written informed consent before beginning
the study.

Briefly, the study design included three stages for the
participants. For the first two stages, an actigraphy device was
positioned on the lower back of each particiant with surgical
tape before timed 25 foot walk (T25W) testing and supervised
6min free walking in an open hospital clinic corridor (GD, AG).
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For the third stage (which volunteers could consent to or not),
the volunteers then were asked to continue wearing the device
for up to 7 days as they want about their usual daily activities
in their home (“real world” environments) (AS, AG). Timed
data was accumulated in each device for the entire period. The
devices then were returned to the clinic directly by each volunteer
or through the post. Data was downloaded from each device
onto a server (AS). The analysis plan involved first testing of
the relationship between measured gait speed and that predicted
from analysis of actigraphy data using a model optimized for
healthy volunteers (AS). A personalized gait model then was
developed for each subject, trained using data acquired in the
clinic, and tested using clinic gait data not used for the model
development. Finally, the personalized model was applied to
analysis of data acquired from the “real world” data and the
maximum sustained “real world” gait speed determined in these
data was compared with the T25W data acquired in the clinic.
This was an exploratory study intended to estimate and compare
measures and was not formally powered.

Actigraphy Devices
An AX3-Axivity tri-axial accelerometer protected with
silicone backing was used in this study. An internal battery
provides power for up to 14 days of use. The accelerometer
measures acceleration forces from three dimensions in units of
gravitational force (g-force, approximately 9.81 m/s2).

AX3-GUI software (https://github.com/digitalinteraction/
openmovement/wiki/AX3-GUI) provided by Axivity was used
to configure and download raw acceleration data from the
accelerometer. This software was also used to convert raw
acceleration data into comma-separated-value (CSV) files. Each
row in the CSV files consists of the timestamp and the g-forces
from vertical, horizontal and forward directions (referenced
to the Earth’s gravitational field). These CSV files were used to
calibrate the subject-specific model for walking speed estimation,
which will be discussed in the next section.

Data Collection
Each volunteer was asked to complete two phases of data
collection in the clinic: one for model calibration and another
for model validation in the clinic. Some subjects agreed to a
third phase of data collection by wearing the Axivity device
as they went about usual “real world” activities of daily life in
their home environments. Acceleration data from the calibration
phase were used to build subject-specific models for walking
speed estimation. The data from the validation phase—in which
gait speeds were both directly measured in the clinic and
estimated using the personalized models—were used to evaluate
the performance of the personalized model relative to the earlier
approach. The data from the home monitoring were used to
test how well the clinic timed 25-foot walking speed predicted
maximum sustained walking speeds of the MS volunteers in the
home environment.

During the data collection in the clinic, a researcher walked
alongside the volunteer to record the time and distance walked
(meters) using a measuring wheel. The speed of each walk was
calculated as distance (meters)/time (seconds). At the conclusion

of each participant’s involvement with the study, they were asked
to provide feedback about the comfort and tolerability of the
device.

During the calibration phase, volunteers repeated a Timed 25-
Foot Walk (T25FW) 8 times (Table 1), as well as a 2-Minute
TimedWalk (2MIN) 2 times (Supplementary Table 1). A separate
supervised walk was performed following these to provide data
for validation of the model. Some subjects agreed to wear the
device at home for up to 7 days (including during sleeping, if
tolerated).

Subject-Specific Gait Calibration
For each subject, the data collected during the calibration phase
were used to build a subject-specific model for walking speed
estimation. There were four main steps taken with the raw
actigraphy data for development of this model: (i) preprocessing;
(ii) extraction of data related to individual steps taken; (iii)
identification and measures of specific features associated with
individual steps; and (iv) calibration of the model.

The pre-processing step transformed the raw acceleration data
acquired on the Axivity device into a format that could be used
for feature extraction. The first stage involved segmenting the
time-series of acceleration data acquired into individual periods
of walking. This walking data was then tilt-adjusted (23) to
account for the arbitrary tilt of the accelerometer relative to the
Earth’s gravitational field. Next, a low-pass filter (fourth-order,
zero-lag Butterworth filter at 20Hz) was applied to remove noise
and higher frequency artifacts not related to gait.

In the second stage of the calibration, this pre-processed data
from continuous periods of walking was further segmented into
that describing individual steps based on detection of the peak
of forward acceleration preceding a change of the sign from
positive to negative acceleration marking contact of the foot with
the ground at the start of the step (24) (Supplementary Figure
1). Twenty-nine characteristic features were then measured
automatically for each step (16) (Supplementary Table 2).

With the full set of features generated from the calibration
walking tests performed by each subject in the clinic, Support
Vector Regression (SVR) (25) was used to build a personalized
model to calculate gait speed from the actigraphy data (see
Supplementary Methods).

A generic model using similar data acquired from healthy
volunteers was developed in the same way except that step
features aggregated from a group of healthy volunteers were used
to develop the model rather than using only data from a single
individual.

Data Analyses
The relative accuracy of models was compared from mean
differences between the gait speeds measured directly by the
investigator and those estimated by the models. To test for
systematic bias in the estimation errors with walking speed or
disability (EDSS), we used Bland-Altman plots (26) of estimation
errors relative to either the directly measured walking speed or
EDSS. We tested for relationships between EDSS and gait speed
using Pearson’s R coefficient (27).
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To explore differences in step characteristics between healthy
volunteers and patients with MS in an effort to better understand
differences in performance of generic healthy volunteer and
personalized models, we used Principal Components Analysis
(PCA) (28). For this exploratory analysis, we extracted step
features from walking data of both patients with multiple
sclerosis and from previously acquired healthy volunteer data
during T25FW and applied PCA to compute the first and second
principle components, which were then compared graphically
between the groups.

Twenty two of the participants with MS wore the Axivity
devices at home. Accelerometry data was acquired continuously
during periods that the device was worn. From these data,
periods of sustained (>25 feet) walking during daytime hours
were identified from the full actigraphy time series data for each
subject and the gait speeds were calculated using personalized
gait models. Both the maximum sustained walking speed over
the full period of remote observation and the mean of gait
speeds measured during periods of sustained walking were
calculated. The relationship of the maximum sustained walking
speed in the home environment to the mean gait walking speed
measured during T25FW in the clinic was tested using Pearson’s
R coefficient (27).

Patient Reports of Device Comfort
Each subject was asked at the end of their participation in the
study if they found wearing the device comfortable (yes or no
responses). Narrative feedback concerning any sources of any
discomfort or other concerns was solicited.

RESULTS

Patient Personalized Models for Walking
Speed Improve Accuracy Relative to a
Generic Model
There were 32MS volunteers (15 men and 17 women; mean
age, 39.9 ± 8.6 years; median EDSS score, 2.5, range 1.0-6.0)
recruited into the study. All 32MS volunteers used an actigraphy
device in the clinic and 22 volunteers (11 men and11 women,
age: 39.8 ± 8.9 years) agreed to wear a device for up to 7 days
in their home environments. The six volunteers with the greatest
disability (EDSS, 6.0) used single-point walking aid devices (stick
or crutch). Data from all of the patients were compared to
previously collected data from seven healthy volunteers whose
data was used to calibrate a healthy population gait model (see
Supplementary Methods).

Most prior approaches (and those most commonly used with
commercial devices) have applied generic models for estimation
of gait speeds from actigraphy. We tested whether a patient
personalized gait model could more accurately estimate gait
speed than a generic model based on gait characteristics of
healthy volunteers. To do this, we estimated walking speed for the
MS patients based on actigraphy measures using either a model
derived from gait characteristics of the healthy subjects (generic
model) or one developed individually for each of the patients

based on the direct observations in the clinic (personalized
model).

We found that the generic healthy volunteer model (R-
value = 0.85, p-value = 4.74 × 10−10) (Figure 1A) had a
poorer accuracy for measure of walking speed in the clinic and
showed greater variance than did the personalized model (R-
value = 0.98, p-value = 1.85 × 10−22) (Figure 1B). Errors
in estimation of walking speed using the generic model were
almost 4-fold greater in the group with highest relative to the
lowest disability (Table 2). Bland-Altman plots of differences
between the measured and estimated walking speeds highlight
a bias toward overestimation with those walking more slowly
(Figure 2A) and an overestimate of speed for those with higher
disability using the generic model (Figure 2B). The magnitude

FIGURE 1 | Comparison of correlations between directly measured walking

speeds for the full group of patients and either that estimated from actigraphy

data using a generic population (A) or personalized models (B).
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TABLE 2 | Comparison between the walking estimation performance of a model developed using data from healthy volunteers (Healthy Volunteer Model) and of a

personalized model based on subject-specific gait calibration (Personalized Model).

Group Measured (m/s) Healthy volunteer model (m/s) Personalized model (m/s)

Estimated Error Estimated Error

Overall (n = 32) 1.05 (0.35) 1.09 (0.21) 0.03 (0.20) 1.04 (0.33) −0.01 (0.07)

Low (n = 20) 1.25 (0.19) 1.17 (0.18) −0.08 (0.12) 1.22 (0.20) −0.03 (0.08)

Moderate (n = 6) 0.91 (0.32) 1.06 (0.19) 0.16 (0.20) 0.90 (0.27) −0.01 (0.06)

High (n = 6) 0.55 (0.15) 0.83 (0.09) 0.28 (0.12) 0.57 (0.12) 0.02 (0.05)

The values in the table are mean (± SD). Low, Moderate, and High refers to the MS volunteers with EDSS scores of 1.0–3.5, 4.0–5.5, and 6.0, respectively. Measured refers to the walking

speed manually measured by the researcher during the data collection; Estimated values are the walking speeds calculated from actigraphy data using the models. Error expresses the

differences between the directly measured and estimated speeds.

FIGURE 2 | Bland-Altman plots of the variation in error in walking speed estimation from actigraphy relative to the directly measured walking speed as a function of

the walking speed for the generic population (A) or personalized (C) models. The white-filled, gray-filled circles, and black-filled circles denote MS subjects from low

(EDSS = 1.0–3.5), moderate (EDSS = 4.0–5.5) and high (EDSS = 6.0) disability subgroups. Greater estimate error is evident for patients with higher disability with the

generic population model. Similar plots of the estimation error in walking speed estimation for patients of different EDSS scores are shown for the generic population

(B) and the personalized (D) models, directly illustrating the increase in estimation error for the former in patients with higher disability.
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FIGURE 3 | Scatter plots of the first and second PCA components of step features during the T25FW for participants with different disability levels. Principal

components for the healthy subjects and MS volunteers with low disability (EDSS 1.0–3.5) were similar and distinct from those for MS volunteers with highest disability.

of errors is large in some instances: the mean error is more
than 50% of the mean gait speed for those patients with highest
disability. By contrast, personalized models estimated walking
speeds with high accuracy across the full range of walking speed
(Figure 2C) and disability (Figure 2D) in our study population
(Table 2).

To explain the relative failure of the generic healthy volunteer
model, we tested for differences in step features between
the patients and the healthy volunteers using PCA. Principal
components for the low disability and healthy volunteer groups
overlapped and were distinct from those for the higher disability
group, consistent with differences in step patterns between
participants in the highest disability group and both healthy
volunteers and less disabled patients with multiple sclerosis
(Figure 3).

Home Monitoring Shows a Strong
Correlation Between Walking in the Home
Environment and the Clinic-Based
Assessment
We then used personalized models to estimate the maximum
sustained walking speeds in the home environment from the
actigraphy measures acquired as the patients went about
their usual daily activities in their home environments
(Table 3). Maximum sustained walking speeds over a single
day are illustrated for Subject 1 in the Supplementary Material
(Supplementary Figure 2). We compared maximum sustained
gait speeds measured in the home with the T25FW speeds
measured in the clinic for each subject to test how well the
clinic measure predicts home performance. There was a strong
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TABLE 3 | Individual Timed 25 Foot Walk speeds directly measured in the clinic

(Clinic T25FW Speed, meters/sec) and the maximum (Max home gait speed) and

mean of highest (Mean home gait speed) sustained gait speeds estimated

remotely in the home environment.

Patient Clinic T25FW speed

(m/s)

Max home gait speed*

(m/s)

Mean home gait

speed* (m/s)

1 1.5 1.43 1.30

9 1.0 1.11 0.96

10 1.4 1.49 1.32

12 1.0 0.86 0.84

13 1.4 1.38 1.27

14 1.0 0.83 0.81

15 1.1 0.99 0.88

17 1.0 0.99 0.95

18 0.9 0.88 0.81

19 1.3 1.16 1.07

21 1.3 1.24 1.17

22 1.1 1.17 1.07

23 0.5 0.55 0.55

24 0.8 0.66 0.61

25 0.4 0.38 0.38

26 0.7 0.78 0.77

27 1.7 1.57 1.30

28 0.8 0.78 0.71

29 1.1 1.26 1.16

30 1.0 1.42 1.20

31 1.3 1.33 1.26

32 1.4 1.44 1.25

Good agreement was found between the clinic and home remote measures (see section

Results).

*Sustained for≥7.62m (25 ft) with the mean values assessed over all such walks identified

in the recorded observation periods.

correlation between maximum sustained walking speeds at
home and the T25FW walking speed measured in the clinic
(R-value = 0.89, p-value = 4.34 × 10−8) (Figure 4). We
did not find evidence for a bias in the accuracy of the clinic
T25FW prediction of the maximum sustained home walking
speed with either gait speed or disability (Supplementary
Figure 3).

The Actigraphy Device Is Well Tolerated for
Longer Term Monitoring in Home
Environments
29/32 participants reported that they felt comfortable while
wearing the device for extended periods in both the clinic and
home environments. This feedback suggested that device could
be worn on the lower back continuously without concern bymost
subjects for at least a week. Three participants felt uncomfortable
wearing the device. One participant reported that the device
pressed uncomfortably on the back when sitting on a chair.
Another experienced an uncomfortable subjective sensation of
“warmth.” The third participant was unable to reposition the
device without assistance when at home.

FIGURE 4 | Correlation between maximum sustained walking speed in the

home environment and T25FW speed measured in the clinic. The white-filled,

gray-filled circles, and black-filled circles denote MS subjects from low (EDSS

= 1.0–3.5), moderate (EDSS = 4.0–5.5) and high (EDSS = 6.0) disability

subgroups. These results suggest good agreement across the range of

disability.

DISCUSSION

Unlike most prior analyses of actigraphy data, we have focused
on deriving absolute measures of gait speed, as opposed to,
e.g., measures of numbers of steps taken. We did this because
gait speed—and not numbers of steps—is used as a clinical
performance measure to assess disability and responses to
treatment for people with MS. We have addressed a limitation
of previous approaches using population-based models that
precludes accurate measures from patients with higher disability.
Here we used machine learning to individually calibrate gait
models for each patient. We then showed that these personalized
models can estimate walking speed accurately from a single
tri-axial accelerometer worn in the lower back. Using data
from periods of sustained walking while the patients were in
their home environment (estimated as 25 feet or greater), we
confirmed for the first time that the T25FW measured in the
clinic is an accurate index of “real life” maximum sustained
walking speed. This provides a first direct validation of the
clinical meaningfulness of the T25FWused routinely in the clinic.

There have been several previous studies using mobile
actigraphy devices to estimate walking parameters in home
environment. These have used commercially available actigraphy
systems, such as the Actibelt, Fitbit, and Apple iPhone (4, 21).
The devices have been worn in different positions on the body,
with agreement that wearing them near the center of gravity near
the body mid-line may provide most accurate measures (20, 21).
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Most of these approaches are distinguished from what we report
here by estimating walking speed based on generic population
models, which assume that all subjects (i.e., healthy subjects
and patients) have similar step and gait characteristics. Here we
highlighted that previous approaches cannot provide accurate
walking speed estimation for patients with MS over the full range
of EDSS because patients with greater disability show differences
in step characteristics. Our approach differs from these efforts in
that we have used machine learning to generate a personalized
model for each subject by utilizing individual actigraphic data
collected during short calibration walks at the clinic.We also used
free walking data for both calibration and validation of themodel,
instead of treadmill walking, which has been used previously (19).

We placed the Axivity AX-3 device in the lower back, near the
body center of mass. This was generally well-tolerated. A recent
study using a single, population based model for estimating
walking speed on a treadmill for both healthy volunteers and
patients with MS directly tested different combinations of the
number of actigraphy devices and their arrangements on subjects’
body to determine the most informative way of collecting
actigraphy data for the estimation of walking speed (19). They
confirmed that a single device attached near the midline of body
above the pelvis (sacrum or waist) gave the best results.

We acknowledge several limitations of our study. Although
there was very good agreement between the clinic and home
walking speed measures overall, the four MS volunteers in
the lowest disability group (EDSS 1) had higher gait speeds
measured in the clinic during T2FW than was estimated as the
mean sustained walking speeds at home, although the relative
difference is low (6.4% mean standardized difference). We can
only speculate why this may have arisen, e.g., Future work could
investigate factors influencing the predictive accuracy of clinical
walking performance measures.We also did not attempt to assess
the sensitivity of the remote monitoring gait speed estimates to
changes over time or the relationship to activities of daily living.

We believe that, in addition to regular updates of walking
actigraphy data on patients, their personalized gait models
likely will need periodic re-calibration, as gait characteristics
will change with changes in disability (Supplementary Figure
2). Future work should assess the relative sensitivity of both
walking speed and step characteristics to changes over time
across a range of disability. Future work also could explore
relationships between these walking speed measures and self-
report questionnaires on activities of daily living (29) to better
understand the clinical meaningfulness of changes in step
characteristics and gait speeds. These results could be related
directly to effects of treatments. A final limitation of our study
lies in the singular focus on the accuracy of walking speed
estimates. Additional, potentially clinically meaningful measures

also could be extracted from these and similar data. For example,
frequencies of periods of activity can be assessed and correlates
of night time sleep can be extracted. These topics all could be
addressed in future work.

In summary, we have demonstrated that individualized
modeling and calibration can accurately estimate walking speed
remotely independent of disability level in patients with MS.
We showed the feasibility and tolerability of wearing the

accelerometer on the lower-back position for acquisition of
the most informative data over several days of home gait
monitoring. Using these methods, we provided a novel validation
of the T25FW test by demonstrating its strong correlation
with the maximum sustained free walking speed in the home
environment. Future work needs to explore whether continuous
home monitoring of gait speed provides a better index of
treatment responses than does the sparsely sampled clinic
measures or a more sensitive measure of disability progression
over time.
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