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A Long Short-Term Memory Network for Vessel
Reconstruction Based on Laser Doppler
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Abstract— Hemorrhage is one risk of percutaneous interven-
tion in the brain that can be life-threatening. Steerable needles
can avoid blood vessels thanks to their ability to follow curvilinear
paths, although knowledge of vessel pose is required. To achieve
this, we present the deployment of laser Doppler flowmetry (LDF)
sensors as an in-situ vessel detection method for steerable
needles. Since the perfusion value from an LDF system does not
provide positional information directly, we propose the use of a
machine learning technique based on a Long Short-term Mem-
ory (LSTM) network to perform vessel reconstruction online.
Firstly, the LSTM is used to predict the diameter and position of
an approaching vessel based on successive measurements of a sin-
gle LDF probe. Secondly, a “no-go” area is predicted based on the
measurement from four LDF probes embedded within a steerable
needle, which accounts for the full vessel pose. The network was
trained using simulation data and tested on experimental data,
with 75% diameter prediction accuracy and 0.27 mm positional
Root Mean Square (RMS) Error for the single probe network,
and 77% vessel volume overlap for the 4-probe setup.

Index Terms— Laser Doppler flowmetry, vessel reconstruction,
percutaneous intervention, steerable needle, machine learning,
long short-term memory (LSTM).

I. INTRODUCTION

PERCUTANEOUS intervention procedures are particularly
favourable in minimally invasive neurosurgery, due to the

delicate and complex nature of the nervous system and the
need to leave surrounding healthy neural tissue unharmed [1].
These are routinely performed for biopsies [2], deep brain
stimulation (DBS) [3], and direct drug infusion to the brain,
such as in convection-enhanced delivery (CED) [4]. During
any one of these procedures, the needle must avoid blood
vessels, since puncturing one can pose a life-threatening
complication. Before surgery, the surgeon thus chooses a
vessel-free insertion path based on pre-operative imaging data.
However, this form of pre-operative planning cannot eliminate
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the risk of bleeding due to the existence of intra-operative
brain shift and the limited imaging resolution [5], [6]. During
DBS implantation, for instance, hemorrhage can occur in up
to 5% of cases [7].

To prevent bleeding related to vessel puncture, real-time,
light-based imaging modalities embedded within the tip of a
surgical needle have been proposed. These imaging modal-
ities use optical fibres to deliver the laser/light to, and
collect reflect light from the tissue. The use of optical
fibres allows the probe to be small, such that it can be
included within a surgical needle. For instance, both for-
ward and side viewing Optical Coherence Tomography (OCT)
imaging has been used for vessel detection during nee-
dle insertion [8], [9]. Additionally, a simplified version of
OCT, called Coherence-Gated Doppler (CGD), has also been
implemented, which however does not provide quantitative
information about the vessel location [10]. During DBS
implantation, Wårdell et al. [11] proposed the use of Laser
Doppler Flowmetry (LDF) as a vessel detection sensor. Side
viewing probes are mainly used for vessel detection during
biopsy procedures. These include interstitial optical tomogra-
phy and remission spectroscopy [12], [13].

The aforementioned systems were embedded in rigid nee-
dles. Since the insertion path of a rigid needle is limited to a
straight path, if a vessel is detected along the insertion path,
the procedure must be interrupted. This limitation is driving
the development of a flexible needle that can be steered to
follow a curvilinear path. One such steerable needle design is
the Programmable Bevel-Tip Needle (PBN), which is specif-
ically designed to access deep lesions inside the brain [14].
PBNs offer a multi-segment design (Fig. 1a), which is inspired
by the egg laying channel of parasitic wasps. Each PBN
segment has an interlocking mechanism that links it to adjacent
segments, while allowing for axial sliding. During needle
insertion, the axial offset between segments creates a bend-
ing moment at the needle tip, which can be controlled and
adjusted dynamically during the insertion process. By varying
the offset, the bending radius and insertion direction can be
controlled, enabling the needle to be steered [15]. Using a
steerable needle, the procedure can continue even if a vessel
is detected, as a new insertion path to the target can be
generated ‘on the fly’, without the need for a full needle
retraction. For this to be possible, however, information about
vessel pose (position and orientation) is required to provide
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Fig. 1. a) Left: the 4 mm PBN with all of the segments aligned; middle: the PBN with offset introduced into the needle; right: the cross section of the
PBN, which has a diameter of 4 mm and four, 0.6 mm outer diameter working channels. b) Axial distance dax and off-axis distance d from the tip of the
LDF probe to a vessel with a diameter ∅.

the necessary knowledge to plan and execute a subsequent
avoidance strategy.

In [16], we performed a feasibility study by embedding
a forward-looking sensor within two of the PBN segments.
Each sensor was located parallel but offset to the central
needle axis (see Fig. 1a). A commercial LDF system was
chosen, with a few millimetres off-axis detection range. The
LDF sensor detects a vessel by measuring the Doppler shift
effect in the light refracted by moving blood cells flowing
within it. Since a perfusion value corresponds to many vessel
positions, in [16], successive measurements combined with
a look-up table (measured under controlled conditions with
varying parameters) of the inverse perfusion value were used to
estimate the axial (dax) and off-axis (d) distance from the tip of
the Doppler probe to a vessel (Fig. 1b). However, this method
only works for a given pair of tissue and vessel properties (e.g.
a 0.6 mm vessel diameter with 5 mm/s flow rate).

In three-dimensional space, many vessel poses can have the
same pair of off-axis and axial distances from a given Doppler
probe. In [16], we used the measurements of two LDF probes
to reduce the possibility of vessel pose ambiguity. The off-axis
distance was used to generate a detection circle for each probe.
Using tangent lines between two detection circles (one for
each probe), vessel poses were reduced to four. Subsequently,
in [17], we investigated the use of four LDF sensors to
improve vessel pose prediction. Relative measurements from
four probes were exploited to classify a “no-go” region in
front of the needle. Relative measurements were exploited
to normalize the results so that the classification could be
performed for any set of tissue optical properties. However,
there are several limitations in the algorithm presented in [17].
It cannot be used to predict vessel diameter or the axial
distance dax from the vessel to the Doppler probe, and it is
assumed that the vessel lies on a plane perpendicular to the
insertion axis. These represent important shortcomings, which
we address in this work.

Under real conditions, neither the vessel nor the tissue
properties are known beforehand. Hence, in this article, a Long
Short-Term Memory (LSTM) network is employed to infer
information about vessel pose based on successive LDF probe
measurements, where no prior knowledge of the scene is
required. The perfusion values recorded while the needle is
inserted into the tissue are considered as sequential data to feed
the network, and full needle pose is estimated by exploiting

the mutual information available within the time sequence.
Since a relative offset between segments is required to steer the
PBN, it is not possible to ascertain which of the segments tips
will detect a vessel first. Consequently, laser Doppler probes
were embedded in each of the needle segments such that,
as a vessel approaches any one segment, its presence can be
detected and an estimate of vessel position and diameter can
be made [17]. Once detected, all PBN segments are aligned
and measurements from all laser Doppler probes are exploited
to predict the full vessel pose.

This article consists of two main sections. Firstly, Section II
investigates the ability of the LSTM network to predict diam-
eter, axial distance, and off-axis distance of a vessel based on
successive measurements from a single LDF probe. Secondly,
Section III discusses the development of the LSTM network
to directly predict the “no-go” area inferred from successive
measurements from four LDF probes embedded within a
prototype PBN. The results are then discussed in Section IV,
with conclusions and a summary in Section V.

II. SINGLE PROBE VESSEL DETECTION

A. Materials and Methods

LSTMs require a large number of training data sets, which
would be impractical to acquire experimentally, as in [17].
Therefore, a Monte-Carlo simulation was performed to model
measurements from an LDF system [18], [19]. The detec-
tion fibre was modelled using a ring detector (see Fig. 2)
[20]. In each run, the simulation was stopped if there were
100,000 photons detected in the detector. The detail of the
method to compute the perfusion value from the simulation
is explained in [20]. The simulations were compared to the
characterization results for a 0.6 mm diameter vessel phantom
with 20 mm/s flow velocity, acquired with the phantom set-up
described in [17].

The simulation was then extended to model the perfusion
value for 0.3, 0.6, and 0.9 mm diameter vessels, with reduced
scattering coefficient (μ′

s) equal to 0.55, 0.75, and 0.95 mm−1.
The flow velocities were arbitrarily set at 10, 15, and 20 mm/s,
which are values in the range of biological blood flow in
smaller vessels. For each set of optical properties, the perfu-
sion values were simulated at off-axis positions ranging from
0 to 2 mm in 0.2 mm increments and at axial positions ranging
between 0.75 mm and 4.05 mm, in 0.3 mm increments.
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Fig. 2. Schematic diagram of the detector that was used in the simulation.

For each vessel diameter, the maximum and the minimum
simulated perfusion value at a certain vessel position from
the probe tip were recorded. These maximum and minimum
data were subsequently used in the form of a look-up table.
To generate training data sets, the perfusion value for a certain
vessel diameter at a given position was generated based on a
random number uniformly distributed between the maximum
and the minimum perfusion value at that point. The uniformly
distributed perfusion value assumption means that the prob-
abilities for μ′

s and the vessel flow velocity were uniform.
Gaussian noise with zero mean was subsequently added to
the generated perfusion value to simulate the shape of a real
signal. The standard deviation used for the Gaussian noise was
obtained from the characterization results in [17]. A perfusion
value between simulated positions was approximated using a
two-dimensional interpolation.

LSTM networks use the previous state at time t −1 with the
current data point as an input for the network [21]. Therefore,
it can capture the long-term dependencies hidden within
sequential data. In this section, the LSTM network was used to
predict the probability of vessel parameters V (∅, dax, d) based
on perfusion measurements Per f1, Per f2, Per f3, . . . , Per ft .
Mathematically, this is equivalent to computing:

P(V (∅, dax, d) | Per f1, Per f2, . . . , Per ft ) (1)

To obtain a value for the probability in equation 1, the mea-
surement range of the sensors was discretized with 0.1 mm
resolution for three vessel diameters (0.3, 0.6, and 0.9 mm).
One set of parameters in the discretized element (∅, dax, d)
represents an output class of the network. The problem then
becomes that of a multi-class classification. The mean per-
fusion value in the absence of a vessel was 28 AU, with a
standard deviation of 8 AU. The perfusion limit for a detected
vessel was then set at 55 AU (the mean perfusion value in the
absence of a vessel plus three times its standard deviation).
Using this perfusion limit, there were 659 classes where the
vessel was inside the detection range of the probe. By adding
the no-detection class (ND), the total number of classes was
660. Fig. 3 shows a comparison of the probe detection range
for each vessel diameter.

The hyper-parameters of the LSTM network were chosen
manually: the number of layers was empirically set to 2, with
100 cells in each layer [22]. To prevent over-fitting, a drop-out
with a value of 0.5 was used [23]. At the output layer, softmax

Fig. 3. Detection area of the laser probe for each vessel diameter. Left:
0.3 mm diameter vessel, middle: 0.6 mm diameter vessel, right: 0.9 mm
diameter vessel.

was used to predict the probability of each class, so that:

Pi = ezi

K∑
j=1

e(z j )

(2)

where Pi is the probability of class i , zi is the output value of
class i , and K is the total number of classes. Vessel parameters
(∅, dax, d) were chosen based on the class with the highest
probability. The network was trained by minimizing the cross
entropy between the prediction output and the output of the
training data set.

The training data set consisted of 30,000 sequences, with
30 positions in each series. 3,000 sequences were generated for
validation, and another 3,000 were generated for testing. Since
the minimum radius of curvature for the PBN prototype was
experimentally measured to be 70 mm and the maximum dax

that can be detected by the sensor is only ≈ 2 mm, the insertion
was modelled as a straight line (i.e. with no change in
d between successive positions). This is because the error
introduced (≈ 0.03 mm) by this approximation falls below
the resolution used to discretize the sensor detection range
(≈ 0.1 mm). In the insertion simulation, at first a class was
chosen randomly. The chosen class was then located randomly
at one out of thirty possible positions between 0 and 8.7 mm
away from the needle tip. At this location, the position of
the vessel was modified by addition of a uniformly distributed
random value between -0.05 - 0.05 mm (equal to the resolution
of the class) in both dax and d . The probe was moved forward
with 0.3 mm increments if dax ≥ ∅

2 + 0.3 mm. At the first
instance where dax < ∅

2 +0.3 mm the probe was either: moved
forwards, backwards, or stopped, until the 30th position was
reached, at which point the simulation was terminated.

Since the movement direction of the probe is used as an
additional training parameter, the input of the network was set
to be: [

Per ft F�]�
(3)

where Per ft is the perfusion at time t , and F� is a 3 ×
1 vector that defines the movement direction of the probe, with

F =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1 0 0

]
, if the probe is moving backwards[

0 1 0
]
, if the probe is stopping[

0 0 1
]
, if the probe is moving forwards

(4)
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Fig. 4. a) Comparison of the axial normalized perfusion value between experiments (dash-dot line) and simulation (dash-line) at 0 mm off-axis position.
b) Comparison of the off-axis normalized perfusion value between experiments (dash-dot line) and simulation (dash-line) at three axial distances: 0.75 mm,
1.35 mm, and 1.95 mm. c) The error-bar shows the maximum and minimum perfusion values for each vessel diameter at 0.75 mm axial distance, with varying
tissue optical properties and flow velocity rates.

The generated training data set has an imbalance distribu-
tion. To train the network, a cost matrix to penalize the loss
from a class with a higher number of samples (i.e. a higher
frequency of occurrence) was used [24]. The misclassification
cost of class i (C[i, i ]) was thus defined as:

C[i, i ] =
(

1

ni

)γ

(5)

where ni is the number of samples in class i , and γ ∈ [0, 1]
is a trade-off parameter.

The performance of the network was evaluated using a
confusion matrix. The confusion matrix classifies the predic-
tion into four categories: true positive (tp), true negative (tn),
false positive ( f p), and false negative ( fn). Since the dataset
is highly imbalanced, the following evaluation metrics were
used to evaluate the ability of the network to correctly detect
the presence of a vessel inside the detection range of the
sensor [24]:

Precision =
∑

tp∑
(tp + tn)

(6)

Recall =
∑

tp∑
(tp + fn)

(7)

F1 = 2 · Precision · Recall

Precision + Recall
(8)

The confusion matrix was then used to investigate the network
performance in predicting each vessel diameter using the test
data set generated in simulation. It was also used to obtain the
optimum γ value by training the network for 1,000 epochs
while the value of γ was set to a number between 0 and 1,
in 0.1 increments. We found that the optimum γ was 0.4.
Finally, the network was used to predict the vessel parameters
for real insertion experiments, where successive measurements
from the insertion experiments in [17] were used to evaluate
the performance of the trained network. The network was
programmed in Python using the TensorFlow LSTM library.

B. Results

Fig. 4a and 4b show a comparison between the simu-
lated and measured perfusion values. To ease comparison,
all perfusion values were normalized against the perfusion

TABLE I

CONFUSION MATRIX OF THE PREDICTION USING TEST DATA SET

GENERATED FROM SIMULATION. ND: NO-DETECTION

value at 0.75 mm axial and 0.00 mm off-axis distance. The
simulation shows good agreement with the experiments. The
main focus of vessel detection in a steerable needle system is
to obtain information about its pose and diameter. Therefore,
the extended simulation results were used to show the possible
range of perfusion values given a vessel diameter and position,
with variable tissue optical properties and flow velocity rates.
Fig. 4c shows these perfusion ranges for each vessel diameter
at 0.75 mm axial distance.

Using γ = 0.4 value, the performance of the network was
evaluated using the test data set, which gave precision = 0.956,
recall = 0.959, and F1 = 0.957. The second evaluation was
performed to investigate the ability of the network to predict
the correct diameter of the vessel. Table I shows the confusion
matrix of this prediction. For the correctly predicted diameter,
the root-mean-square errors (RMSE) of the position prediction
were 0.14, 0.19, and 0.27 mm for 0.3, 0.6, and 0.9 mm
vessel diameters, respectively. There were several cases where
a vessel was predicted in the no-detection area state. Further
analysis shows that it was in the area close to the maximum
detection range of the sensor.

Finally, the network performance was evaluated using real
data from insertion experiments. The insertions were per-
formed and recorded at seven positions starting from 2.55 mm
down to 0.75 mm axial distance, with 0.3 mm increments.
In total, there were 160 sequences (1120 samples). The exper-
iments were only performed for a 0.6 mm diameter vessel,
with a 20 mm/s flow velocity. Fig. 5a shows an example
of successive perfusion values from the insertion experiment
of a vessel with a 0.67 mm off-axis distance. Fig. 5 shows
the prediction probability of vessel parameters (diameter and
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Fig. 5. a) An example of insertion experiments with off-axis distance at 0.67 mm, which was used to evaluate the performance of the trained network.
b) The prediction probability at instances A-G for three vessel diameters: 0.3 mm (top), 0.6 mm (middle), and 0.9 mm (bottom). The total probability of the
three rows in each column, added to the probability of no-detection, is equal to 1. At the end of the insertion the actual position of the vessel was at 0.67 mm
off-axis distance and 0.75 mm axial distance.

TABLE II

CONFUSION MATRIX OF THE PREDICTION USING DATA FROM

INSERTION EXPERIMENTS, ND: NO-DETECTION

positions) at points A, B, C, D, E, F, and G. The first row
of each column in Fig. 5 corresponds to the probability of a
vessel with a diameter of 0.3 mm. The second and the third
row correspond to a vessel with a diameter of 0.6 and 0.9 mm,
respectively. The total prediction probability of the three rows
in each column, added to the no-detection state, is equal to 1.
At the end of the insertion (point G), the network correctly
predicted the vessel diameter. The axial and off-axis distance
predictions were 0.55 and 0.70 mm, respectively, where the
actual axial distance at the end of the insertion was 0.75 mm
and the actual off-axis distance was 0.67 mm.

Table II shows the confusion matrix of predictions on the
vessel diameter obtained for insertion experiments data. The
prediction in Table II has higher false negative and false
positive rates compared to the predictions in Table I. Similar
to simulation results, false negative predictions were found
for the experimental data points in the area close to the
maximum detection range of the sensor. Nonetheless, for the
correctly predicted diameter, the position prediction RMSE
was 0.18 mm, which is similar to the RMSE of simulation
predictions (RMSE = 0.19 mm).

III. VESSEL DETECTION WITH

MULTIPLE PROBES

In section II, an LSTM was used to predict the vessel
position and diameter from successive measurements of a
single probe, but the vessel’s full pose in three-dimensional
space remained unknown. This is because many different
vessel poses can result in the same pair of off-axis and axial
distances. To remove this ambiguity, in this section, the LSTM
network was modified to incorporate measurements from four
forward-looking laser Doppler sensors.

A. Materials and Methods

The network has the same architecture as the LSTM
network described in section II-A: a two-layer LSTM with
100 LSTM cells in each layer. However, the input and the
output were altered. Instead of using one perfusion value with
a directional vector as an input, four perfusion values from four
probes were simultaneously fetched and fed to the network.
The input was presented in this form:[

Per f1t Per f2t Per f3t Per f4t F�]�
(9)

where Per f1t , Per f2t , Per f3t , Per f4t are the perfusion
values for probe 1, 2, 3, 4 at time t , respectively. F� is
a 3 × 1 vector that defines the movement direction of the
probes, as described in 4.

Instead of specifying the vessel diameter and pose, in this
section the network was used to predict the “no-go” area
directly. To do this, firstly, the detection area of the sensors
was defined (Fig. 6). As can be seen, both the needle coor-
dinate system (xn, yn, zn) and the probe coordinate system
(x p, yp, z p) are located at the tip of the needle. The probe
coordinate system is placed at an angle of −14.8◦ with respect
to the needle coordinate system. The red-dash line in Fig. 6
shows the off-axis detection area of the sensors. At a dax

distance from the probe, the off-axis detection area is a square
with rounded corners. The radius of the rounded corner is
equal to the maximum off-axis detection range of the sensor
(detax) at that axial distance, where the side of the square
(drax) has a length of:

drax = 2(dpn + detax) (10)

where dpn is the distance from the probe to the yp-axis.
The position of each of the 4 probes (in the probe coordi-
nate system) is listed in Table III. With the maximum axial
detection range of the probes set at 2.4 mm, the detection
volume was discretized into voxels, with the size of each voxel
equal to 0.3×0.3×0.3 mm. Using this voxel size, there were
1,805 voxels inside the detection range of the sensors, where
each voxel was used to represent a label (class). The network
was then used to predict whether a voxel is safe (it is not
occupied by a vessel) or it is not safe (it is occupied by a
vessel). The voxel value is set to 0 if it is safe, or 1 otherwise.



11372 IEEE SENSORS JOURNAL, VOL. 19, NO. 23, DECEMBER 1, 2019

Fig. 6. The red-dash line represents the detection range of the probe in the
xp yp -plane. There are two coordinate systems shown, the needle coordinate
system (xn , yn , zn ) and probe coordinate system (xp , yp , z p). P1: probe 1;
P2: probe 2; P3: probe 3; P4: probe 4; dpn : distance from the probe to the
yp -axis; detax : maximum off-axis detection range at a certain axial distance;
drax : detection range for the four probes.

TABLE III

POSITION OF LASER DOPPLER PROBES IN

THE PROBE COORDINATE SYSTEM

Since the vessel can occupy several voxels at once,
the problem becomes that of a multi-label classification,
where several labels (classes) can have a value of 1. To solve
the multi-label classification problem, binary relevance is used
instead. Binary relevance decomposes multi-label learning
into an independent binary learning problem for q number
of classes [25]. The probability of each class was computed
using logistic regression:

σ(zi )i = 1

1 + e−zi
(11)

where σ(zi )i is the probability value of class i . The class
prediction was defined by:

hi =
{

0, if σ(zi )i < 0.5

1, if σ(zi )i ≥ 0.5
(12)

where hi is the prediction for class i .
The training data set consisted of 18,000 sequences, with

30 positions in each sequence. 9,000 sequences were generated
for validation, and another 9,000 for testing. To generate
successive measurements for training, validation, and test data
sets, the vessel was assumed to be straight within the detection
range of the sensor. The vessel coordinate system (xv, yv , zv

in Fig. 7) was used to define the orientation of the vessel,
where the vessel always passes through the origin (i.e. xv = 0,
yv = 0, zv = 0). As can be seen in Fig. 7, the vessel has an
angle of φ with respect to the zv axis and the projection of the
vessel in the xv yv -plane has an angle of θ . The orientation of
the vessel was defined using these two angles. In the insertion
simulation, the value of φ was randomised between 60◦ and
120◦ in 5◦ increments, while the value of θ was randomised
between 0◦ and 175◦ in 5◦ increments. The vessel coordinates
were then located in the global coordinate system (x, y, z).

Fig. 7. Three-dimensional representation of a vessel (red line). The vessel
was defined in the vessel coordinate system (xv , yv , zv ), with an angle of φ
with respect to the zv -axis. The projection of the vessel onto the xv yv -plane
has an angle of θ . Probe n (Pn ) is represented as a green line in the figure.
During insertion, the probe coordinate system was moved along the z-axis.

The value of the vessel coordinate in the z direction (i.e.
depth) was chosen randomly to be one out of thirty possible
ones (z = 0 to z = −8.7 mm in 0.3 mm decrements). For
θ �= 90◦, the location of the vessel coordinate in the x
direction was set to 0, while the location in the y direction
was chosen randomly between -2 and 2 mm, in 0.2 mm
increments. For θ = 90◦, the y position was set at 0 while the
x position was randomised between -2 and 2 mm in 0.2 mm
increments. At the beginning of the insertion, the probe
coordinate system (x p, yp, z p in Fig. 7) was located at the
origin of the global coordinate system (x = 0, y = 0, z = 0).
The probe (green line in Fig. 7) was located at a fixed
position in the probe coordinate system. The probe coordinate
system was then moved forward in 0.3 mm increments. If the
z position of the probe coordinate system was less than the
z position of the vessel coordinate system, one out of three
options was chosen for the next step until the 29th step was
reached: move backwards, stop or move forwards. The value
of class i was set to 1 if the distance from the voxel in
the global coordinate system to the vessel was less than the
vessel diameter. The axial distance (dax) and off-axis distance
(d) from the probe to the vessel were calculated using the
simple line-to-line distance [26].

In the multi-label classification, the imbalance in the dataset
was evaluated in each class using [27]:

Im Ri = max(| D+
i |, | D−

i |)
min(| D+

i |, | D−
i |) (13)

where Im Ri is the imbalance ratio of class i , | D+
i | is the

total number of relevant values (the value of the class is 1) of
class i , and | D−

i | is the total number of irrelevant values (the
value of the class is 0) of class i in the training data sets. The
average imbalance ratio (Im R) is:

Im R = 1

q

q∑
i=1

Im Ri (14)

where q is the total number of classes. Usually the number
of relevant values in the data sets is less than the number of
irrelevant values. During training, the cost of misclassification
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Fig. 8. a) An example of simulated perfusion values for a vessel located at x = 0, y = 0.8, z = −1.8 mm, with θ = 120◦ and φ = 75◦. b) Projection of
the actual (red-circles) and predicted (blue-squares) vessel area inside the detection area of the sensors on the xp yp- (top) and on the xp z p- (bottom) planes,
with corresponding perfusion values (Points A1 - E1).

of relevant values (C) was increased by:

C = (Im R)γm (15)

where, as described in section II-A, γm ∈ [0, 1] is a trade-off
parameter. Using the same method as in Section II-A, we then
chose γm = 0.4.

As in the previous section, the trained network was evalu-
ated using precision, recall, the F1-score, and Hamming loss.
The Hamming loss evaluates the fraction of misclassified
prediction-label pairs [28]. Since Hamming loss is a loss
function, the lower the hamming loss, the better the network
performance. Since the detection area in Fig. 6 was based
on the maximum detection area for a 0.9 mm diameter
vessel, the evaluation was only conducted if there was enough
information from the perfusion value to define the “no-go”
area of the vessel (i.e. the perfusion value from at least one of
the four probes was not in the no-detection state). The trained
network was then used to predict the “no-go” area for real
insertion experiments. In the experiments, a vessel phantom
0.6 mm in diameter and a flow velocity of 20 mm/s, was
used. In the needle coordinate system, the vessel is at φ = 90◦
and θ = 0◦. Vessel orientation was then transformed into the
probe coordinate system. Details for the experiments are those
previously described in [17].

B. Results

In the test data set generated from simulation, the network
perfomed as follows: precision = 0.43, recall = 0.78,
F1-score = 0.56, Hamming loss = 0.035. Fig. 8 shows an
example of the network’s ability to predict the presence and
pose of a vessel that was not in a plane perpendicular to
the needle insertion axis. The vessel coordinate system was
located at x = 0, y = 0.8, z = −1.8 mm. The orientation of
the vessel was set at θ = 120◦ and φ = 75◦. The successive
perfusion values (A1 to E1 in Fig. 8a) were generated using
simulation by moving the probe coordinate system from
z = 0 to z = −1.5 in 0.3 mm decrements. The blue area
in Fig. 8b shows voxels that were predicted to be occupied by
the vessel. The red circles in Fig. 8b represent actual voxels
occupied by the vessel. To ease comparison, the voxels were
projected in the x p yp-plane (Fig. 8b top) and x pz p-plane

(Fig. 8b bottom). Starting from Point C1, the network
predicted the vessel orientation and position correctly.

The network was then used to predict the “no-go” area
based on data from real insertion experiments. In total, there
were 40 insertion experiments with each experiment consisting
of seven sequences (total number of samples = 280). Fig. 5a
shows the the perfusion values for the four probes while the
probes were advancing toward the vessel at seven example
positions (A0 - G0). The vessel was located at z = −2.25,
x = 0, y = −0.2 mm. Again, the red circles represent voxels
where the vessel was located, while the blue squares highlight
voxels predicted to contain the vessel. At the start (Point A0),
the vessel was inside the detection volume of the sensor;
however, the network did not predict this. As explained in
section III-A, the reason for the missed detection relates to the
fact that the detection volume of the sensor was defined with
the maximum detection range for a 0.9 mm vessel. At Point
A0, the vessel location was still out of the the detection range
of the probes for a 0.6 mm diameter vessel. Prediction of
the vessel pose, however, is shown to improve with each
successive measurement, where, at the end of the insertion
(Point G0), the entire vessel volume is correctly predicted.
The prediction evaluation metrics for the experiments were
found to be: precision = 0.21, recall = 0.54, F1-score = 0.30,
and Hamming loss = 0.078. It should be noted that, if the
evaluation metrics were performed only at Point G0, the recall
value would increase to 0.77, which means a 77% prediction
accuracy full vessel volume estimation at Point G0.

IV. DISCUSSION

In section II, an LSTM network was used to predict a vessel
diameter and position based on successive measurements from
a single probe. The confusion matrix in Table I shows that,
in addition to false negatives, there was vessel diameter
misclassification as well. The diameter misclassification was
predominantly between two classes with a small diameter
difference. The misclassification of vessels with a diameter
of 0.6 mm into a 0.9 mm diameter vessel, however, was higher
compared to misclassification into a 0.3 mm diameter vessel.
The reason for this may be because of the probe’s detection
range for a 0.6 mm diameter vessel being closer to the probe’s
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Fig. 9. a) Example perfusion values from the insertion experiments. The measurements were taken while the needle was located at z = 0 to z = −1.8 mm,
in 0.3 mm decrements; b) Projection of the actual (red-circles) and predicted (blue-squares) vessel area inside the detection area of the sensors on the
xp yp - (top) and on the xpz p - (bottom) planes, with corresponding perfusion values (Points A0 - G0).

detection range for a vessel which is 0.9 mm in diameter
(Fig. 3). It should be noted that, here, all vessel diameters
were assumed to have the same range of flow velocity rates
(10 - 20 mm/s). In future work, the flow velocity range for
each vessel diameter could be assigned a different set of values
[29] that should be easier for the network to discriminate
between.

Even though it is possible to incorporate the prediction
achieved with a single probe into the algorithms presented
in [16], [17], the assumption that the vessel is in a plane
perpendicular to the needle insertion axis might limit its
applicability. Therefore, in Section III, another LSTM network
was trained to predict the vessel pose directly. As can be seen
in Fig. 9, the prediction improves as the needle approaches the
vessel. This means that, in order to obtain more information
about the vessel pose, the insertion may need to continue
once a vessel is first detected. Since the prediction area
provides information about the position of the vessel in the z p

direction when the vessel is first detected (Point B0 in Fig. 9),
the maximum insertion length that is required to acquire more
vessel information can be determined, as to avoid inadvertent
vessel damage.

Here, a binary relevance method was used for multi-label
learning of an LSTM network, which shows good prediction
results. However, binary relevance lacks any label correlation
[25]. To incorporate label correlation, another network archi-
tecture that performs better with spatial and temporal data,
such as convolutional LSTM network, might be used [30].

The goal of vessel detection in a steerable needle system is
to generate a “no-go” area in front of the needle, which can be
used to plan and execute an escape procedure. In section III,
the “no-go” area was defined while all of the segments were
aligned. Since the PBN is steered by introducing an offset
between segments, if the leading segment/s detects a vessel,
all of the probes need to be aligned to predict the “no-go” area
appropriately. The detection method in Section III, however,
can still be executed by storing the position information so that
the perfusion measurements from each probe can be sorted
according to position, thus avoiding this additional step.

The results from section II and III show that the
network can predict information about the vessel even though
the optical properties of the tissue differ within a range
(μ′

s : 0.75±0.2 mm−1). If the optical properties vary sig-
nificantly, for example when at the interface between grey
matter and white matter, the network may be unable to identify
a generalization. However, since the tissue greyness can be
observed using a laser Doppler system based on the intensity
of the detected light [11], light intensity could be added as
a further network input to differentiate between white and
grey matter. Also, the total light intensity could be used to
detect the presence of a blood vessel [12], [13]. With this
additional input, we believe that the prediction accuracy could
be improved.

Even though the networks were trained using simulation
data, the results show that these can be used to predict
experimental measurements correctly. Use of the simulation
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data sped up the training process for different probes and
needle properties (e.g. LDF with a different wavelength,
different needle sizes, different probe configurations, etc.).
Consequently, real insertion experiments could be performed
in the evaluation stage only, resulting in significant time and
effort gains. In principle, it would be possible to incorporate
the experimental data in the training step to improve prediction
accuracy, albeit the size of any experimental dataset will never
be as large as the simulation data, which may cause bias.
We could however use the former to fine-tune the network
through a transfer learning algorithm [31], which will be part
of our future works.

In this article, the vessel was assumed to be static. Pre-
viously, a high-resolution material tracking set-up based on
Particle Image Velocimetry (PIV) was used to investigate tool-
tissue interactions [32]. By combining this method with a ves-
sel embedded within the sample, the movement of the vessel
during insertion could be predicted. This movement prediction
could then be applied in the simulation so that the LSTM net-
work would take into account the effect of vessel movement.

V. CONCLUSION

In this article, LSTM networks have been used to predict
the vessel diameter and position based on successive Laser
Doppler Flowmetry measurements from a single probe and to
predict the full vessel pose based on simultaneous measure-
ments from four probes embedded in a prototype PBN. The
single probe LSTM network is essential to detect the presence
of a vessel while an offset is introduced between segments to
steer, as it will work regardless of which segment approaches
the vessel first. In this configuration, the network could classify
the vessel diameter for unknown vessel and tissue properties
with an accuracy of 75%. For the correctly predicted diameter,
the position could then be accurately predicted with sub-
millimetre accuracy (0.27 mm). Once a vessel is detected, all
segments are aligned and all probe measurements are used to
estimate the complete pose of an approaching vessel, to avoid
collision and plan an eventual avoidance strategy. In these
experiments, the network could predict the pose of the vessel
after a few successive measurements were acquired, with an
average 77% final overlap between actual and predicted vessel
volumes. In doing so, the no-go volume detected in front of
the needle captures the full information about the vessel’s
pose and diameter, showing a significant improvement over
the algorithms developed in previous works [16], [17].
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