
Dataflow acceleration of Smith-Waterman with
Traceback for high throughput Next Generation

Sequencing
K.Koliogeorgi?, N.Voss†, S.Fytraki†, S.Xydis?, G.Gaydadjiev†, D.Soudris?

?Microprocessors and Digital Systems Laboratory, ECE , NTUA, Greece,†Maxeler Technologies, UK
?{konstantina, sxydis, dsoudris}@microlab.ntua.gr,†{nvoss, sfytraki, georgi}@maxeler.com

Abstract—Smith-Waterman algorithm is widely adopted by
most popular DNA sequence aligners. The inherent algorithm
computational intensity and the vast amount of NGS input data
it operates on, create a bottleneck in genomic analysis flows for
short-read alignment. FPGA architectures have been extensively
leveraged to alleviate the problem, each one adopting a different
approach. In existing solutions, effective co-design of the NGS
short-read alignment still remains an open issue, mainly due to
narrow view on real integration aspects, such as system wide
communication and accelerator call overheads. In this paper, we
propose a dataflow architecture for Smith-Waterman Matrix-fill
and Traceback alignment stages, to perform short-read alignment
on NGS data. The architectural decision of moving both stages on
chip extinguishes the communication overhead, and coupled with
radical software restructuring, allows for efficient integration into
widely-used Bowtie2 aligner. This approach delivers ×18 speedup
over the respective Bowtie2 standalone components, while our co-
designed Bowtie2 demonstrates a 35% boost in performance.

Index Terms—Next Generation Sequencing, Reconfigurable
Acceleration, Dataflow Computing, Bowtie2, Smith Waterman,
Traceback

I. INTRODUCTION

The development of next-generation sequencing (NGS)
technologies has dramatically changed the landscape of human
genetics research [1]. Advances in the field of DNA and
RNA sequencing have led to effective genome mapping and
have paved the way to personalized genomic medicine [2].
NGS platforms have now the capacity to generate billions of
short fragments of DNA in a matter of hours. These small
pieces of DNA, called reads, are the input to various types of
genomic analysis such as variant calling [3] and differential
gene expression [4]. The first step in any genomic analysis
pipeline however is short read alignment, which entails finding
a specific location on the reference human genome where a
short read is best mapped. The vast amount of sequencing
data and the excessive time requirements for this step to
execute, have put considerable strain on the computing systems
used for genome analysis. Since the throughput of NGS
technologies does not cease its exponential growth [5], there is
an ever-present need for identifying bottlenecks and proposing
accelerated solutions for popular aligner tools.

Several aligners [6], [7] have been developed that rely on a
seed-and-extend model for aligning the short reads. According
to this model, in the seeding step, each short read is further
fragmented in short pieces, called seeds, that align exactly
on the reference genome. In the seed-extension step each

This work has been partially funded by EU Horizon 2020 program under
grant agreement No 825061 EVOLVE (https://www.evolve-h2020.eu/)

seed is extended so that the whole short read aligns with
the reference, allowing mismatches. Most of the state-of-
the-art aligners implement variations of the Smith-Waterman
[8] string matching algorithm to perform the seed-extension
step. Smith-Waterman is a dynamic programming algorithm
that operates in two stages; the matrix-fill stage fills a two-
dimensional similarity matrix with score values. Starting at a
predefined matrix cell, the traceback stage traverses the matrix
backwards until it constructs a valid alignment path.

A profiling based on a 10 million short-read input dataset
of length 100bp, that was collected as part of EU healthcare
project AEGLE [9], indicates that Smith-Waterman dominates
the execution time of Bowtie2 aligner [6] by a percentage of
60%. However, the histogram in Fig.1 showcases that this time
is actually shared among independent Smith-Waterman tasks
distributed across all reads. Each read alignment can invoke
from one up to 270 Smith-Waterman matrix-fill tasks, each one
followed by a traceback task. All individual matrix-fill tasks
add up to the 56% of total execution time and traceback 4%.
An initial naive approach would target this stage to employ
hardware acceleration and tackle the alignment bottleneck. A
straightforward integration of an accelerated matrix-fill phase
of Smith-Waterman though [10], [11], [12] would introduce
a huge overhead, due to both the immense amount of the
accelerator calls and the transferring of the matrices to the
CPU for the traceback stage. In fact, taking into account the
time overhead provisioned by each call to the accelerator and
the accelerator-CPU transfer time for each matrix, the overall
execution time of the aligner can actually be increased. A
challenge as such has also been noted by [13] regarding JVM-
FPGA communication overhead.

Most existing works either propose standalone matrix-fill
Smith-Waterman acceleration ignoring the traceback stage
[10]–[12] and thus the communication overhead in a real
system, or provide an end-to-end hardware implementation of
both seed and extend phases [14], [15]. The latter architec-
tural decision introduces immense memory requirements, to
support storing the human genome on chip. Moreover, such
systems constitute new tools that introduce a learning curve for
biologists and come at the expense of safe-to-use results and
advanced visualization analyses provided by well-known and
defacto sequencing frameworks such as Bowtie2 [6], BWA [7].
There are only a few software/hardware co-design acceleration
works for short-read alignment [16], [17]. Therefore, effective
co-design of the NGS short-read alignment still remains an
open issue, mainly due to narrow view on real integration

0
10
20
30
40
50
60

1 5 8 10 15 20 30 40 50 100 200

%
 o

f
re

ad
s

number of calls

83%

Fig. 1: Distribution of Matrix-Fill Function Calls Across Reads
in Bowtie2.

provided by existing solutions. Co-design of NGS alignment
exposes several challenges that can be only highlighted by
holistically and carefully profiling a sequencer and modeling
the behavior of a co-designed version.

In this paper, we design, implement and explore a novel high
performance reconfigurable accelerator for Smith-Waterman
matrix-fill and traceback stages, that enables integration into
a real system. The contribution of this paper can be briefly
summarized as follows: (i) through profiling and modeling
Bowtie2 we identify the communication overhead that a
traditional co-design approach introduces, and propose an
architecture that alleviates this problem by moving more
computation on chip and restructuring the software code to
minimize accelerator calls. (ii) we provide a dataflow im-
plementation of matrix-fill and traceback components, that
operate in a complete pipelined manner and can process
an unbound number of streaming short reads to cope with
the exponential growth in NGS data (iii) we exploit the
inherent data dependencies within a single alignment task
and we leverage task-level parallelism through an interleaving
execution pattern that maximizes the throughput via high
utilization of the underline FPGA resources. Experimental
results show that the standalone accelerator is ×18 faster than
Bowtie2 SIMD implementation. (iv) we present a Bowtie2
code restructuring that implements an aggregation-batching
strategy, arranges data in an interleaved pattern and feeds the
dataflow accelerator in high-throughput streaming fashion. To
the best of our knowledge, this is the first work that integrates
a hardware accelerator into the original Bowtie2 rather than
building an equivalent aligner from scratch. An integration
of the accelerator with the restructured Bowtie2 source code
manages to deliver 35% performance gain.

The remainder of the paper is organized as follows. A short
literature review on accelerating Smith-Waterman in SectionII
precedes the theoretical background of Smith-Waterman (Sec-
tion III) and the architecture description in Section IV. Section
V provides preliminary results and insights on integrating the
accelerator with Bowtie2. Section VI provides a performance
evaluation of the architecture and integration. Lastly, Section
VII concludes the paper.

II. RELATED WORK

A very extended survey, that can also serve as a guide
of available implementations for genetic sequence alignment
based on Smith-Waterman can be found in [18]. Most Smith-
Waterman accelerators [19], [10], [11], [12] implement the first
phase of computing the similarity matrix based on a wavefront
approach. Their architecture consists of a pipeline of PEs
that forms a systolic array and is mapped to the computation

of a matrix anti-diagonal per time step. The authors in [12]
provide a very detailed architecture as such, that implements
a multistage-PE design, and optimize each stage in terms of
resources utilization and delay. Similarly in [20], the authors
propose a reconfigurable accelerator that implements a mod-
ified equation to improve mapping efficiency of a single PE,
and a special floor plan to cut down the interface components
routing delay. In this paper, we aim to extend these designs by
implementing the complete Smith-Waterman algorithm along
with the Traceback procedure. In our final high-throughput real
system, on-chip traceback diminishes matrix transfer overhead
cost and thus enables efficient integration, without adding extra
latency thanks to the pipelined scheduling of consecutive tasks.

There are only a few works of accelerated sequence align-
ment based on Smith-Waterman with Traceback. The authors
in [21] propose a space efficient, global sequence alignment
architecture that accelerates both the forward scan and trace-
back for variable reference lengths. The traceback procedure is
implemented in software and the host initiates a full traceback
by request. The authors in [22] similarly employ a pipeline
of PEs to calculate the similarity matrix and traceback. In
order to address memory issues that arise when saving the
similarity matrix for traceback, they propose to identify the
read-database alignments with the highest maximum match
score and recalculate the matrices for traceback in software.
Although these works provide the traceback functionality
under certain circumstances, they are not designed to cope
with a high throughput input rate of short reads generated
by an NGS platform. In this work, we attempt to provide
an accelerator that continuously accepts new short-reads for
alignment and complies with the trends set by latest NGS
platforms and state-of-the-art sequencers. Recently, Darwin
[23] has proposed an end-to-end hardware acceleration for
3rd generation sequencing, implementing accelerators for both
seed extract and extend phases and highlighting the importance
of including the traceback step on chip so as not to undermine
the benefits of hardware acceleration. However our two solu-
tions are not directly comparable, since 3rd generation [24]
sequencing highly differs algorithmically.

III. THEORETICAL BACKGROUND

A. Smith-Waterman Algorithm
Smith-Waterman [8] (SmW) is a dynamic programming

algorithm for performing local sequence alignment and de-
termining similar regions between two nucleic sequences. The
algorithm mainly consists of two phases: (i) filling a similarity
matrix and (ii) tracing back the similarity matrix to find the
optimal alignment between the two sequences. Let Q, |Q| = n
be the read sequence that aligns against reference sequence
S, |S| = m. Q and S constitute a read-reference pair and
alignment task. SmW performs alignment by filling similarity
matrix H according to Eq.1. In this equation, q and r stand
for gap extend and gap open penalties respectively, while sc
stands for the substitution matrix that assigns each pair of
bases a score for match or mismatch.

Ei,j = max{Ei−1,j , Hi−1,j − q} − r

Fi,j = max{Fi,j−1, Hi,j−1 − q} − r

Hi,j = max{Hi−1,j−1 + sc[Q[i], S[j]], Ei,j , Fi,j , 0}
(1)

C G C T A

0 0 0 0 0 0

C 0 0 0 0 0 0

A 0 1 0 2 1 0

G 0 0 0

C 0

C G C T A

0 0 0 0 0 0

C 0 0 1 0 1 0

A 0 0 1 0 2 1

G 0 0 0

C 0

C G C T A

0 0 0 0 0 0

C 0 2 1 2 1 0

A 0 2 1 3 2 1

G 0 1 1 2 5

C 0

C G C T A

0 0 0 0 0 0

C 0 2 1 2 1 0

C 0 2 1 3 2 1

T 0 1 1 2 5 4

A 0 0 0 1 4 7

E matrix

F matrix

H matrix

H final matrix

Reference

Q
u

e
ry

Alignment
C G C T A
C - C T A

Linear Gap Penalty Schema

𝑚𝑎𝑡𝑐ℎ = 2

𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = −1

𝑔𝑎𝑝 = −1

up

left

upleft

1
st

ro
w

𝑛

𝑚

anti-diagonal

nth antidiagonal

(a) (b)

Fig. 2: Matrix Fill Dependencies and Traceback example for
simplified Smith-Waterman with linear gap penalty scheme.

SmW then identifies the highest score in H matrix. Starting
at this position, a traceback function traverses the matrices
backwards until it reaches a zero-score element and thus
acquires the optimal alignment path.

IV. DATAFLOW SMITH-WATERMAN & TRACEBACK
ENGINE

The proposed implementation of SmW is based on the
algorithmic version utilized by Bowtie2. Bowtie2 implements
a variation of SW, that applies a heuristic in order to overcome
data dependencies and boost performance through SSE2 in-
structions. We deliver a pure SmW implementation but adhere
to the scoring scheme, alphabet {A, C, G, T, N} and initializa-
tion conditions utilized in Bowtie2. The proposed architecture
includes two dataflow modules, each one implementing a
phase of SmW, the Matrix-Fill and Traceback components.

A. Matrix Fill
Matrix-fill kernel receives as input the read-reference pairs

to be aligned and calculates the matrices H , F , E and the
starting point of the traceback procedure. A control input
stream indicates the beginning of each new read-reference pair.
The substitution matrix that defines the match and mismatch
penalties is implemented as a Read-Only Memory on chip.
The Traceback kernel needs to traverse the data generated by
Matrix-Fill in reverse order, starting from the aforementioned
position. For that reason, the matrices are stored on on-chip
memory for subsequent use from Traceback.

Fig.2 illustrates an alignment example utilizing a simplified
linear gap penalty scheme. Fig.2(a) presents an intermediate
snapshot of the calculations whereas Fig.2(b) the final results.
Each cell in the matrix H requires the values from the up
cells of matrices E,F,H (indicated by blue boxes), the left
cells of E,F,H (green boxes) and the upleft cell (red box)
of H . Therefore all elements in a single anti-diagonal can be
computed in parallel and are dependent only on values from
the previous two anti-diagonals. The proposed architecture
exploits this property to extract parallelism and thus fills
H ,F ,E matrices per anti-diagonal in n + m -1 steps.

The architecture is built on an array of PEs, equal to the
length of the read sequence. Each PE holds a single base
character of the read sequence, and is in charge of computing
its respective row in the H matrix. The PEs operate in parallel
and compute an antidiagonal of the original matrix per time
step. Due to this anti-diagonal scheduling of computations,

0

1 1

2 1 3

2 1 2 1

2 1 3 6 4

1 2 2 1 4 3 2 1

1 0 2 1 0 0 0 2

0 2 1 0 0 0 2 2

2 1 3 6 4

1 2 2 1 4 3 2 1

1 0 2 1 0 0 0 2

0 2 1 0 0 0 2 2

0 0 1 4 7

1 1 2 5 4

2 1 3 2 1

2 1 2 1 0

0

2

2

0

1

5

1 7

4

4

Trace
b

ack

Current Matrix-Fill Previous Matrix-Fill

double buffering

0

1 1

2 1 3

2 1 2 1

0

1 1

2 1 3

2 1 2 1

0

2

2

0

0

2

2

0

1

5

1

1

5

1
4

4

4

4 77

up, left elements:
current checks

upleft element:
next check

not yet
computed

past
checks

𝑃𝐸0

𝑃𝐸1

𝑃𝐸2

𝑃𝐸3

reference
stream

𝑛 + 𝑚 − 1

𝑛

1st row

nth antidiagonal

Fig. 3: Flow of data from Matrix Fill to Traceback phase.

the score matrices are filled in a skewed pattern as depicted
in Fig.3, in the matrix inside the grey frame. A single
column-vector of this matrix corresponds to one antidiagonal
of the original matrix layout of Fig.2(b). Fig.3 illustrates
an instance of this skewed memory during computation. At
this timestamp, n antidiagonals are already computed and
the n + 1th antidiagonal is currently being evaluated. The
antidiagonals/columns on the right side of the n+ 1th are not
yet computed. The reference sequence is streamed through
the array of PEs one base at a time. Within m steps all
reference bases stream through one PE and a row of the
similarity matrix is computed. For example, Fig.3 highlights
with green indications the computation of the 1st row of H
matrix of Fig.2(b) during the mth time step. Similarly, the nth

antidiagonal of H matrix Fig.2(b) is calculated at nth time step.
When all input streams pass through all PEs (after n+m− 1
steps), all values of similarity matrices are computed. The last
PE, that generates the values for the last row, runs additional
logic to locate the cell with the maximum score in the final
row. This operation is completely overlapped with the matrices
computation and thus does not add extra clock cycles.

B. Traceback
Traceback module reconstructs the alignment path by

traversing the H matrix in reverse order, as depicted in
Fig.2(b). Matrix fill streams the position of the maximum
score to the Traceback module and buffers out skewed E,F,H
matrices in reverse order. Fig.3 demonstrates how Traceback
receives one column, and thus an anti-diagonal, of each
skewed matrix per time step. At this time instance, Traceback
has already resolved the first two backwards steps of Fig.2(b)
and evaluates if the next step is in the n + 1th antidiagonal
that is currently streamed in. The alignment path computation
begins when the anti-diagonal containing the starting point
arrives. Depending on the next backwards step, the next cell
could either be the up, left neighbor of any of H ,F ,E
matrices, or the upleft element of matrix H . In this exampple,
Traceback expects the upleft cell of the current cell and
thus has to wait for the next anti-diagonal to arrive. As the
traceback progresses, it computes the alignment score, the
number of gaps or substitutions and the starting and ending
point of the alignment. These values are streamed to the host
along with a list of the edits, that include the type of any
encountered mismatches, their position on the read reference
and the different base encountered.

C. Architecture Optimizations
1) Interleaving Data Scheme: The computation of a cell

value from each PE requires a chain of multiplexers ac-
cording to Eq.1, and thus introduces a latency L between
the computation of consecutive anti-diagonals. To avoid idle

 . . .

PE0

PE1

PEn

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0 2 1 4 7

1 2 1 1 2 5 4 1

1 2 1 3 2 1 0 2

2 1 2 1 0 0 2 2

0

1

3

1

0

1

3

1

Traceb
ack

0

1

3

1

L interleaved
rd-ref
pairs

reference

read

R
O

M
substitution

 matrix

double
buffering

READenableWRITEenable

 interleaved
output

Fig. 4: Architecture of Dataflow Engines on Chip.

clock cycles, the bases of subsequent input read-reference
pairs are interleaved in a round robin manner. Fig.5 illustrates
the interleaving scheme for L read sequences of L read-
reference pairs. The same reordering applies for the reference
sequences. This way, L anti-diagonals are computed per L
clock cycles instead of just one per L cycles. Each one of
the L anti-diagonals corresponds to a similarity matrix of
a different read-reference pair. The interleaving also affects
the layout of the skewed matrices. Fig.5 demonstrates that
between two consecutive anti-diagonals of a single matrix,
L − 1 anti-diagonals from different matrices but of the same
order intervene. Note that the skewed layout is preserved.

2) Double Buffering Technique: All values in matrices
E,F,H are needed before Traceback starts execution. There-
fore, Traceback module has to wait for Matrix-Fill module
to complete writing the matrices. Similarly, Matrix-Fill has to
wait for Traceback to read the values from the matrices before
aligning the next batch of L read-reference pairs and writing
over the data. To avoid halting Matrix-Fill’s operation while
streaming data to Traceback, the double buffering technique
is employed. Matrix-Fill and Traceback write and read data,
respectively, alternating between two on-chip memories. A
”swap” enable signal is controlled by the Matrix-Fill module
and decides which data to stream to Traceback. In Fig.3, while
Matrix-Fill fills the matrices for the current read-reference
pair, the matrices of the previous pair are streamed in a
last in- first out fashion to Traceback. Therefore, the two
modules are carefully synced and orchestrated to operate
in a pipelined manner and continuously align any number
of incoming read-reference pairs, organized in batches of L
interleaved pairs. The above description is pictured in the
overall on-chip architecture in Fig.4.

V. ACCELERATOR INTEGRATION WITH BOWTIE2 ALIGNER

A. Bowtie2 Alignment Algorithm

Bowtie2 [6] is based on the seed-and-extend model for
aligning short reads. In the seed phase, each read is fragmented
into smaller sequences called seeds, and then each seed is
aligned against the human genome in an ungapped fashion,
creating a set of candidate positions for full-alignment of
the initial read. A pre-built BWT-based index of the ref-
erence genome is utilized to efficiently search through the
immense human genome for seed matches. In the seed extend
phase, each seed is extended into full alignment by per-
forming SIMD-accelerated dynamic programming, i.e. Smith-

.

. . .

n

1st 2nd L-th. . .

L
L*n

. . .

(n+m-1)*L

n
(#

P
Es

)

L

n+m-1

. . .

Fig. 5: Interleaving of L read sequences. Interleaving of input
streams causes a skewed memory pattern for storing score
matrices in BRAM.

TABLE I: Adverse effects of Matrix-Fill Integration.

Matrix Fill Single Task
Hardware (sec) Software (sec)

Integrated Computation only Bowtie2
pre-process 0.000292

HW run 0.042973
write-back 0.007764

Total 0.051029 0.00004 0.000549

Waterman. Once the matrices are filled in, Bowtie2 traverses
the final row and locates the cell with the maximum score,
that is also greater that a predefined threshold, and initiates a
traceback procedure.

During the traceback, a list of edit operations are stored
when mismatches (gaps,substitutions) occur. Along with in-
formation about the position of the alignment, an alignment
result is formed. This is repeated for a different number of
seeds per each short read, until all valid alignments are found
or an upper limit of tries is reached. All the found alignment
results are then sorted based on the alignment score and the
best alignment is reported on the output in SAM format [25].
Note that a single read alignment is in fact a chain of seed-
extend alignments and neither the order nor the number of
examined seeds can be known a priori.

B. Proposed Co-designed Bowtie2
1) Straightforward Integration Implications: Bowtie2 re-

peats the above algorithm for all reads in an input FASTQ
format file [26]. Each read is first fragmented into seeds and
mapped to exact matches in the genome utilizing the FM-
index. The seeds are prioritized in descending order based on
their probability to deliver an exact alignment upon extension.
A designated function then iterates over the prioritized seeds
and initiates Matrix-Fill tasks followed by Traceback, until the
read alignment is resolved. This algorithmic structure spawns
an unbound number of alignment tasks per read, each one
depending on the previous seed-extension alignment task.

A decision to integrate a Matrix-Fill accelerator into
Bowtie2 introduces two major types of overhead, as shown
in Table I. The first one is attributed to the transfer cost of
writing the matrices required by Traceback back to the CPU.
The second one is due to the accelerator invoking cost. For
a single matrix fill task these overheads translate to ×100
slowdown, despite the speedup acquired from the pure matrix-
fill computation.

2) Alleviating Communications and Transfer Overhead:
In order to eliminate these overheads, we make two critical

TABLE II: Architecture Utilization for Varying Read-
Reference Lengths. Interleaving factor equals to 32 in all cases.

Configuration Utilization
Read Length Reference Length BRAM18 DSP Logic

50 110 11.90% 0.10% 9.7%
100 160 25.25% 0.10% 15.33%
150 210 43.03% 0.10% 20.97%
200 260 61.30% 0.10% 26.66%

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

Sm
W

 . . .

1st

2nd . . .

Lth

Reads

PCIe

Data gathering
phase

in
te

rl
ea

vi
n

g

 . . .

PE0

PE1

PEn

Tr
ac

eb
ac

k

HW Execution
phase

PCIe

1st

2nd

 . . .

Lth

Alignments
C-CTACC

ACGT--CG

ACGTGCC

Data distribution
phase

L-interleaved pairs

chain of seed-extend alignments

Fig. 6: Restructured Bowtie2 Three-phase Algorithm. For
simplicity, only a single batch of L reads is illustrated.

architectural decisions. The first one involves moving the
Traceback computation to the HW and targets alleviating the
transfer cost of matrices. The second one employs major
software restructuring to constraint the number of acceleration
calls and thus avoid the calling overhead.

The proposed code restructuring splits the above iterative
algorithm in three separate phases; a data-gathering phase, a
hardware execution phase and lastly a data-distribution phase.
In the first phase, we iterate over the input reads and perform
seed extraction and prioritization. During this search phase,
we formulate the input streams of the accelerator. Each seed
location produces a pair of read-reference sequences to align.
In order to seamlessly invoke the accelerator and exploit all the
parallelism it provides, the construction of the input streams
is compliant with the data interleaving technique explained in
Section IV. Thus, for every L read-reference pairs, the read
and reference sequences are interleaved as shown in Fig.5.
Note that each of L pairs, corresponds to a seed-extension
task of a different read.

Once the input to the accelerator is constructed, the accel-
erator is invoked for the execution phase, that includes the
matrix-fill and traceback modules running on hardware. Dur-
ing the data-distribution phase, a loop iterates over the output
streams to assess the result of the alignments and distribute
the data to data structures read by I/O Bowtie2 functions. For
each seed alignment pair, the list of edit operations is traversed
in order to construct a valid alignment result and insert it
in a list of all alignments for the given read. A subsequent
function, checks the data structure that holds the alignments
per read in order to report to the output the alignment in
SAM format. Compliance between the accelerator output and
the structures traversed for buffering the output is critical for
seamless integration.

C. Architecture Adaptiveness

Each phase in the three-phase restructured Bowtie2, runs
for a predefined number of reads N before passing the results

to the next phase. Data generated during the gathering phase
are required in the data-distribution phase for output reporting.
Therefore, the number of reads N for which the three stages
execute directly defines the amount of data stored. The three-
stage algorithm is executed iteratively in batches of N until
the input reads are exhausted. The accelerators can receive
high throughput input streams of any length, thus N also
defines the total number of acceleration calls. The proposed
architecture allows for the value of N to be configured at
run-time. Depending on the size of the input dataset and the
memory specifications of the platform, there is an optimal N
for which the total accelerator call overhead is minimized. A
small optimization study for our utilized platform is presented
in Section VI.

There is also an inherent irregularity among alignment
of different reads in Bowtie2, as an aligner driver function
decides on the order and number of seed-extension alignments
examined within each single read alignment. The proposed
architecture takes into account this variability and allows for
the number of seeds examined per read to be configured
depending on the input dataset requirements. The quality of
the input reads defines the required number of examined seeds
per read so that the alignment accuracy is preserved.

Fig.6 illustrates the three-phase restructured Bowtie2, for
N = L for simplicity. In fact, the input to one iteration of the
three stages is of size N = factor ∗ L. The three-phases are
repeated for any number of batches of N . Fig.6 also depicts the
interleaving schema across different reads and the constraint
on seed-extension alignments per read examined.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The kernels were implemented using the dataflow com-
puting model developed by Maxeler Technologies, targeting
Maxeler’s MAX5C DFE (dataflow engine) [27] with Xilinx
VU9P Ultrascale FPGAs. The DFE consists of a large capacity
arithmetic chip, x8 PCIe Gen 2 connectivity and it has 38 MB
of on-chip SRAM fast memory. MaxCompiler version 2018.1
and Vivado 2017.4 were used to synthesize the design and the
achieved frequency is 200MHz. Table II includes parameters
values and utilization results of the resulted architecture. As
shown, the proposed accelerator has been carefully designed
and implemented delivering very low FPGA resources con-
sumption, thus either allowing its potential deployment to
smaller FPGA devices, or enabling more aggressive data paral-
lel implementations through multiple accelerator instantiations
in a single MAX5C FPGA device. Without loss of generality,
in the rest of the section, we perform all the experimental
evaluation of the proposed design considering the case of a
single accelerator intantiation for configuration no.2.

The read-reference pairs for alignment were acquired by real
patient data generated for the purposes of AEGLE EU funded
project [9] considering the Chronic Lymphotic Leukemia case.

B. Architecture Evaluation

The proposed design is evaluated in terms of performance,
scalability and accuracy.

Input buffer size sensitivity: The two modules receive high
throughput input streams of any length. The only limitation
is that the buffer size containing the read-reference pairs is a

0

500

1000

1500
Ex

e
cu

ti
o

n
 t

im
e

in

se
c

number of reads to align

MatrixFill+Traceback Bowtie2
MatrixFill Bowtie2
Traceback Bowtie2
MatrixFill+Traceback FPGA

Fig. 7: Alignment and Traceback Latency for different imple-
mentations.

multiple of interleaving factor L. An exploration is performed
to identify the optimal range of values for N , that defines
the amount of intermediate data stored and the buffer size of
the input streams sent to the accelerator. For that purpose, 30
million reads are aligned in total, but each time the accelerator
is invoked a different number of times depending on the buffer
size. The results are presented in Fig.8.

Fig.8 indicates that for too small buffer size the execution
severely slows down and can be worse that the software
execution utilized by Bowtie2. On the other hand, a large
buffer size does not seem to influence the performance for
length greater than 64K reads. Thus, depending on the input
dataset size, there is a value for N for which the acceleration
call overhead is negligible.

Accuracy sustainability: Biomedical applications introduce
strict accuracy constraints. In order to ensure the correctness
of our design, we performed validation of all components
and intermediate results. Given a read-reference candidate
pair to align, our design is guaranteed to deliver exactly
the same results as Bowtie2. We have only loosened the
constraints regarding the number of seed extensions examined
when aligning a read. After extensive profiling performed on
a 60-million-read realistic dataset from CLL malignancies, we
found that i) 83% of the reads are aligned within examination
of the first 8 seed-extension candidate pairs, ii) another 16%
requires checking 9 to 35 pairs and iii) only a mere 1%
examines up to 270 (Fig.1).

However, the candidate seed read-reference pairs are not
randomly examined. Bowtie2 ranks them so that the more
unique ones, i.e. occur less frequent, are tried first. As a result,
there is very high probability that the read-reference candidate
that delivers the valid alignment is among the highly ranked
ones. Furthermore, if an alignment has not been found within
the first tries, it is less probable that this read aligns at all.

Based on these facts, the proposed solution manages to
achieve very high accuracies when examining 8 candidates
per read: 0.72% instead of 0.69% of the total reads fail to
align, 69.66% instead of 69.55% align exactly once and finally
29.62% as opposed to 29.76% align more than once.

Performance sustainability over increased datasets: Fig.7
depicts the execution latency for different implementations of
Matrix Fill with Traceback for variable input dataset size.
The total execution latency of Bowtie2 Smith-Waterman is
computed by adding the partial times of executing the matrix
fill and traceback. Although, the traceback does not greatly
affect the latency, in the proposed design it is completely
pipelined with the matrix computation. The importance of
implementing Traceback on hardware is not the execution time

0

1000

2000

3000

4000

Ex
ec

u
ti

o
n

 t
im

e
 in

 s
e

c

buffer size (reads)

FPGA SW

Bowtie2 SIMD SW

Fig. 8: Impact of input buffer size on accelerator-call overhead
and thus execution latency.

0

5

10

15

20

Sp
ee

d
u

p
 n

o
rm

al
iz

ed

Number of Reads

SW only

MAX5C DFE

Fig. 9: Speedup of Proposed Accelerator over Bowtie2 SIMD
Smith-Waterman.

savings but avoiding data transfer overhead.
The execution latency of the accelerator is compared with

the latency of the highly optimized SIMD Bowtie2 imple-
mentation, run on an Intel Xeon E5-2658A, 2.20GHz. The
speedup values in Fig.9 are achieved by our proposed design
synthesized at 200MHz. For small datasets, the accelerator is
actually slower that the highly optimized Bowtie2 implemen-
tation. In this case the computation time on the FPGA is too
short and the transferring of input and output data dominates
and worsens the performance. For larger datasets though the
speedup reaches ×18.

C. Evaluating integration efficiency

In order to evaluate the accelerator’s efficiency under real-
istic integration, the restructured Bowtie2 with the integrated
accelerator is executed for 60 million reads (16GB). The
software version runs for 8978 seconds while the accelerated
one for 5827, thus delivering 35% performance gain. Despite
the moderate performance enhancement, a straightforward
integration of the matrix-fill accelerator without the traceback
and the restructuring, would invoke the kernel at least 60
million times. Without taking into account the transfer time of
the matrices, but only the call overhead (measured 0.5ms in the
specific architecture), the total overhead sums up to 3000000
seconds, which is more that the initial execution time.

VII. CONCLUSIONS

In this paper, we design a novel high performance re-
configurable accelerator for Smith-Waterman matrix fill and
traceback, integrated in Bowtie2 aligner for short-read align-
ment of NGS data. The implementation of Traceback on
hardware diminishes data transfer overhead in the codesigned
architecture. Bowtie2 source code restructuring accommodates
data aggregation through an interleaving scheme for maximum
fpga resources utilization and therefore minimizes the number
of accelerator calls. Experimental results show that the acceler-
ator is ×18 faster than Bowtie2 SIMD implementation and the
codesigned Bowtie2 aligner exhibits 35% performance gain.

REFERENCES

[1] S. T. Park and J. Kim, “Trends in next-generation sequencing and a new
era for whole genome sequencing,” International neurourology journal,
vol. 20, no. Suppl 2, p. S76, 2016.

[2] S. J. Bielinski, J. E. Olson, J. Pathak, R. M. Weinshilboum, L. Wang,
K. J. Lyke, E. Ryu, P. V. Targonski, M. D. Van Norstrand, M. A.
Hathcock et al., “Preemptive genotyping for personalized medicine:
design of the right drug, right dose, right timeusing genomic data to
individualize treatment protocol,” in Mayo Clinic Proceedings, vol. 89,
no. 1. Elsevier, 2014, pp. 25–33.

[3] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire,
C. Hartl, A. A. Philippakis, G. Del Angel, M. A. Rivas, M. Hanna
et al., “A framework for variation discovery and genotyping using next-
generation dna sequencing data,” Nature genetics, vol. 43, no. 5, p. 491,
2011.

[4] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edger: a bioconduc-
tor package for differential expression analysis of digital gene expression
data,” Bioinformatics, vol. 26, no. 1, pp. 139–140, 2010.

[5] B. Schmidt and A. Hildebrandt, “Next-generation sequencing: big data
meets high performance computing,” Drug discovery today, vol. 22,
no. 4, pp. 712–717, 2017.

[6] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with
bowtie 2,” Nature methods, vol. 9, no. 4, p. 357, 2012.

[7] H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with bwa-mem,” arXiv preprint arXiv:1303.3997, 2013.

[8] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[9] http://www.aegle uhealth.eu/en/, “Aegle: An analytics framework for
integrated and personalized healthcare services in europe.”

[10] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, P. Athanas, and
A. Dickerman, “A run-time reconfigurable system for gene-sequence
searching,” in VLSI Design, 2003. Proceedings. 16th International
Conference on. IEEE, 2003, pp. 561–566.

[11] M. Gok and C. Yilmaz, “Efficient cell designs for systolic smith-
waterman implementations,” in Field Programmable Logic and Appli-
cations, 2006. FPL’06. International Conference on. IEEE, 2006, pp.
1–4.

[12] P. Zhang, G. Tan, and G. R. Gao, “Implementation of the smith-
waterman algorithm on a reconfigurable supercomputing platform,” in
Proceedings of the 1st international workshop on High-performance
reconfigurable computing technology and applications: held in conjunc-
tion with SC07. ACM, 2007, pp. 39–48.

[13] Y.-T. Chen, J. Cong, Z. Fang, J. Lei, and P. Wei, “When apache
spark meets fpgas: a case study for next-generation dna sequencing
acceleration,” in The 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), 2016.

[14] J. Arram, K. H. Tsoi, W. Luk, and P. Jiang, “Reconfigurable acceleration
of short read mapping,” in 2013 IEEE 21st Annual International Sym-
posium on Field-Programmable Custom Computing Machines. IEEE,
2013, pp. 210–217.

[15] ——, “Hardware acceleration of genetic sequence alignment,” in Inter-
national Symposium on Applied Reconfigurable Computing. Springer,
2013, pp. 13–24.

[16] W. Tang, W. Wang, B. Duan, C. Zhang, G. Tan, P. Zhang, and N. Sun,
“Accelerating millions of short reads mapping on a heterogeneous
architecture with fpga accelerator,” in Field-Programmable Custom
Computing Machines (FCCM), 2012 IEEE 20th Annual International
Symposium on. IEEE, 2012, pp. 184–187.

[17] E. J. Houtgast, V.-M. Sima, K. Bertels, and Z. Al-Ars, “An fpga-
based systolic array to accelerate the bwa-mem genomic mapping
algorithm,” in Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS), 2015 International Conference on. IEEE,
2015, pp. 221–227.

[18] H.-C. Ng, S. Liu, and W. Luk, “Reconfigurable acceleration of genetic
sequence alignment: A survey of two decades of efforts,” in Field
Programmable Logic and Applications (FPL), 2017 27th International
Conference on. IEEE, 2017, pp. 1–8.

[19] S. A. Guccione and E. Keller, “Gene matching using jbits,” in Inter-
national Conference on Field Programmable Logic and Applications.
Springer, 2002, pp. 1168–1171.

[20] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun, “A reconfigurable accel-
erator for smith–waterman algorithm,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 54, no. 12, pp. 1077–1081, 2007.

[21] S. Lloyd and Q. O. Snell, “Hardware accelerated sequence alignment
with traceback,” International Journal of Reconfigurable Computing,
vol. 2009, p. 9, 2009.

[22] K. Benkrid, Y. Liu, and A. Benkrid, “A highly parameterized and effi-
cient fpga-based skeleton for pairwise biological sequence alignment,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 17, no. 4, pp. 561–570, 2009.

[23] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000 x acceleration on long read assembly,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
ACM, 2018, pp. 199–213.

[24] E. E. Schadt, S. Turner, and A. Kasarskis, “A window into third-
generation sequencing,” Human molecular genetics, vol. 19, no. R2,
pp. R227–R240, 2010.

[25] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, and R. Durbin, “The sequence alignment/map
format and samtools,” Bioinformatics, vol. 25, no. 16, pp. 2078–2079,
2009.

[26] ——, “The sequence alignment/map format and samtools,” Bioinformat-
ics, vol. 25, no. 16, pp. 2078–2079, 2009.

[27] O. Pell, O. Mencer, K. H. Tsoi, and W. Luk, “Maximum performance
computing with dataflow engines,” in High-performance computing
using FPGAs. Springer, 2013, pp. 747–774.

