[[CP]] Completely positive divisibility does not mean Markovianity

Simon Milz,'»* M. S. Kim,??2 Felix A. Pollock,! and Kavan Modi!

1School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
2QOLS, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
3Korea Institute for Advanced Study, 02455, Seoul, Korea
(Dated: May 21, 2019)

In the classical domain, it is well-known that divisibility does not imply that a stochastic process is
Markovian. However, for quantum processes, divisibility is often considered to be synonymous with
Markovianity. We show that completely positive (CP) divisible quantum processes can still involve
non-Markovian temporal correlations, that we then fully classify using the recently developed process
tensor formalism, which generalizes the theory of stochastic processes to the quantum domain.

No system is fully isolated from its surroundings.
This is especially true for quantum processes, where
along with the surrounding environment, the act of
observation can also disturb the system [1]. The field
of open system dynamics attempts to develop methods
that describe the dynamics of systems, quantum and
classical, away from isolation [2]. These tools become
crucial in analyzing a whole host of problems, from
strong coupling thermodynamics [3] to error correction
in quantum technologies [4]. An important consideration
for describing open dynamics is the size and length
of memory that the surroundings possess about the
system’s past [5, 6]. In general the future states of
the system depend non-trivially on its own past, leading
to complex joint measurement statistics in time [7, 8].
A process where the environment has no memory is
called Markovian, and the complexity of describing such
dynamics scales only as the Hilbert space dimension of
the system [9], while the complexity of a non-Markovian
process can scale exponentially in the number of times
considered [10, 11].

The notion of Markovianity plays an important role
in fields ranging far beyond the physical sciences.
This is both for the fact that many processes in
nature appear to be approximated sufficiently well
by memoryless dynamics, and the computational and
simulation intricacy that arises once memory effects are
taken into account [2, 12]. As experimental control
over complex quantum systems becomes increasingly
sophisticated, the ability to directly determine whether
a Markovian description is applicable is becoming ever
more important [13-17]. Consequently, in recent years,
a large body of work dedicated to the description and
characterization of memory effects in quantum systems
has arisen [18-21]. However, strictly testing for the
presence of memory effects is an intractable task in
general [10], and a zoo of non-Markovianity witnesses
for quantum processes has emerged in the past two
decades [22-36], also see [21] for a recent review.

The concept that underpins all of these witnesses
is completely positive (CP) divisibility, a frequently
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used proxy for Markovianity.  While experimentally
accessible [37-40], the lack of a clear, quantifiable
link between CP divisibility and Markovianity casts
the former’s implications for potential memory effects,
and the interpretation of all the memory witnesses
derived thereof, into doubt. In this Letter, we first
demonstrate that, a priori, there are inequivalent
experimental definitions of CP divisibility. After clearing
up these ambiguities and laying out the connection
between these different notions, we close the fundamental
gap in the understanding of CP divisibility and
comprehensively derive its quantitative relationship to
Markovianity. [[ In this Letter, we demonstrate
a priori, completely positive (CP) divisibility,
the concept underpinning the majority of these
witnesses, is ambiguously defined when it comes
to experimental implementation. After clearing
up these ambiguities, we show the quantitative
relationship between Markovianity and CP
divisibility.]] While their [[inequivalence]] difference
has been pointed out before, e.g., see Ref. [9, 41], our
results yield both a quantifiable delineation between
them, as well as a comprehensive characterization of
the temporal correlations CP divisibility is sensitive to.
This, in turn, provides a meaningful way forward for
experimentalists looking to definitively characterize noise
in their devices by means of witnesses based on CP
divisibility. To motivate the relation of Markovianity and
divisibility we first briefly review them in the context of
classical processes.

Markovianity and divisibility— Mathematically, a
classical process is called Markovian if the current state
conditionally only depends on the last one, and not the
whole history:

]P)(ZL’n, tn|1’nfl, tnfl;' .20, tO) :]P)(xna tn‘xnfla tnfl)~ (1)

A generalization of this condition to quantum theory has
recently been achieved [9].

Importantly, Markovianity is a logical requirement
of conditional independence of a system’s future and
its past. As such, it is a statement about multi-time
correlations. From Eq. (1) it is clear that determining
if a process is Markovian requires an exponentially
large set of conditions to be satisfied. A simpler
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criterion that follows from Markovianity, but is not
sufficient to define it, is divisibility. This requires the
conditional probabilities, for any three times t > s >
r, to factorize according to the Chapman-Kolmogorov
equation:  P(z,t|z,r) = > P(x,tly,s)P(y,s|z,r) for
all states x,y,z, where each P is a probability
distribution. For quantum processes, the natural
generalization of a conditional probability distribution
(with a single argument) is a completely positive
map, i.e., one which preserves the positivity of even
correlated density operators on which it acts, and
the Chapman-Kolmogorov equation generalizes to the
condition for CP divisibility [42]:

Definition 1 (CP divisibility). A quantum dynamical
process of a system on an interval [0,T] is CP divisible
if (i) the dynamical map from r to t acting on the system
of interest can be broken up at s such that

(I)t:r:(bt:soq)s:r \ TZtZSZ’I"Z(L (2)

and (i1) each map ., is completely positive.

Intuitively, the connection between this definition
and Markovianity is that CP-maps describe dynamics
without initial system-environment correlations [2], and
the composition rule in Eq. (2) suggests that the
dynamics between intermediate times are independent
of the past. Together, these properties could be taken to
imply the absence memory effects. While mathematically
well-defined [43], a priori, the operational meaning of
the family of maps {®;s} is not clear. That is, in
an experimental setting, what exact quantum process
tomography procedure [44] is required to determine
whether a process is CP-divisible?

There are (at least) two non-equivalent ways to address
this question. [[, each physically justified in its
own right.]] In what follows, we first motivate and
define the two types of CP divisibility and show their
non-equivalence. We then give a full characterization
of the non-Markovian temporal correlations that may
hide in a divisible process, thus providing a clear
connection and delineation between Markovianity and
CP divisibility. Throughout this Letter, we will only
consider systems with finite Hilbert-space dimension d.

CP divisibility by inversion.— Consider an
experimental setup where one is allowed to prepare
any desired state at the initial time, i.e., » = 0 and
perform measurements on the system at any later time
s.  Within these experimental constraints, using the
standard method of quantum process tomography, one
can construct a family of maps Ao := {Aso} that
describe the dynamics from time » = 0 to time s, see
Fig. 1(a). Under the assumption that all the maps of this
family are invertible, we obtain the following definition,
which is the one that [[is most frequently used in
experimental settings]] most frequently appears in the
literature [22, 45, 46]:

Definition 2 (iCP divisibility). A process is CP
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(a) Constructing As:o (b) Constructing A¢:s
Figure 1. Circuits for checking iCP and oCP
divisibility. (a) To construct the maps Aso and Apo we
may set r = 0 and measure the system at s or ¢ respectively.
(b) To construct Ay, the system is discarded at s— and a
fresh state is fed in at s;. The dotted line encapsulates the
three-time process tensor Ti.s:r.

divisible by inversion (iCP-divisible) if for any two maps
As.0,Ai.o € Ao with T >t > s> 0 the map

Dy, = At:O © As_é (3)
is completely positive.

Here, we have chosen a convention where experimen-
tally accessible maps are denoted by A. Notably, if all
elements of \g are invertible then each ®;., constructed
according to Eq. (3) is well-defined, and can be obtained
computationally Ag.

Operational divisibility.— While iCP divisibility
is well-defined and can be checked experimentally, it
leaves the operational meaning of the inferred maps ®;.4
open [47]; particularly, [[this map does]] these maps do
not necessarily relate to anything that could actually be
measured at intermediate times. Additionally, due [[its]]
to their non-operational definition, it is not possible to
straightforwardly characterize the memory effects that
iCP divisibility is blind to. It is therefore desirable to
provide a more operationally motivated definition of CP
divisibility based on experimentally reconstructed maps
alone.

To this end, let us consider a scenario where an
experimenter has the ability to manipulate the system
at any time s € [0, 7], which we split infinitesimally into
s— and s as shown in Fig. 1(b). At time s_ the system
is discarded and, at s, replaced with a fresh one in state
ps. Subsequently, the experimenter measures the system
at time t. With this procedure they can experimentally
reconstruct maps A := {A;s} as

Ais[ps]) = tre [Up.s (ps @ ns)] (4)

where 75 is the reduced state of the environment at time
s and Up.s(xs) = Ups x5 Utts = x4 is the unitary system-
environment map. We can thus define oCP divisibility:

Definition 3 (oCP divisibility). A process is opera-
tionally CP-divisible (oCP-divisible), if for any T >t >
s>r>0

At:r = At:s © As:r (5)



holds, where the maps above belong to set A and are
defined in Eq. (4).

Importantly, complete positivity of the respective
maps is guaranteed by construction, as system-
environment correlations are discarded for the recon-
struction procedure of A¢.;. Formally, Eq. (5) is the same
as Eq. (2), but with the important distinction that here
each map has a clear operational meaning.

Still, there is a level of ambiguity in the procedure
for constructing the intermediate maps Ay.s. In
principle, they could depend on preparations at any
previous time 7r; such a dependence would imply
non-Markovianity [48]. In order for oCP divisibility
to be well-defined, Def. 3 implicitly requires that the
intermediate maps are independent of any earlier state
preparations.  Specifically, if there are at least two
different states p, and p,, such that the corresponding
maps Ay and A differ, then oCP divisibility is not
uniquely defined. Independence of the map A, from
earlier preparations is a non-signalling condition [49-51],
as we show formally in the Supplemental Material.

Importantly, this non-signalling requirement is a
conditional one; for oCP-divisible dynamics, it is
necessary that there is no signalling from r to ¢ given that
the system state was discarded at s_. An equivalent way
to think about this condition is the following: consider an
experiment where one part of a pure entangled state p,s
is fed into the process at time r. At time s_ the system
is discarded and a fresh state prepared at s;, and the
experimenter looks for correlation in the resulting state
per at time t. If py # py ® pv then we have conditional
signalling from r to ¢.

This requirement of conditional non-signalling is
reminiscent of the concept of no information back-flow
attributed to CP-divisible processes [23]. Here, however,
in contrast to the increase of trace distance between
trajectories, signalling is a genuine multi-time statement.

Conditional non-signalling is, for example, satisfied if,
between time steps, the system interacts only once with a
part of the environment that is discarded afterwards, or
if the environment state is constant in time. However,
while conditional non-signalling is necessary for oCP
divisibility, it is not sufficient, as we show in the
Supplemental Material (see also [52]). While both
notions of CP divisibility [[that we introduced]]
are well-defined, they differ in their experimental
reconstruction, and the meaning of the maps that they
comprise[[are made up of]]. Now, before further
discussing their relationship to Markovianity[[ relation
between Markovianity and divisibility]], we show
that they [[indeed]] do not coincide. [[Before we
further discuss the relation between Markovianity
and divisibility, we first show that the two
notions of CP divisibility introduced above do not
coincide.]]

oCP divisibility # iCP divisibility.— Despite
their superficial resemblance, the relationship between
iCP- and oCP-divisible dynamics is a priori unclear.
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Figure 2. Divisibility and Markovianity. (a) The system
interacts with one part of the correlated environment state
leading to a non-Markovian oCP-divisible process. (b) The
hierarchy of sets of processes with varying degrees of temporal
correlations.

First, note that iCP divisibility is only defined if all
elements of the set A\g are invertible. This limitation does
not apply to oCP divisibility, where any map belonging
to the set A can be non-invertible. Focussing on the
invertible case, we find that oCP divisibility implies iCP
divisibility by direct application of Eq. (5).

To see that the converse does not hold, we construct an
iCP-divisible dynamics that is conditionally signalling,
and thus not oCP-divisible. Consider the two circuits in
Fig. 1, where both the system and the environment are
qubits, and let the initial environment state be maximally
mixed, i.e., 7, = 12/2. The system-environment
dynamics is given by the partial swap Us, =
exp(—iwSu) = cos(wu)ly — isin(wu)S, where S|ij) =
|73), and v := s —r. We show in the Supplemental
Material that the resulting dynamics on the system is
iCP-divisible for wt < 5. On the other hand, if we
discard the state of the system at s_ and insert a fresh
state at s, we will find that the corresponding state at
t will depend on p, due to the partial swap. In other
words we have signalling, and therefore the process is
not oCP-divisible.

Operationally CP-divisible dynamics form a strict
subset of iCP-divisible ones, see Fig. 2(b). While
the operational requirement is harder to check
experimentally, it has a threefold advantage: first the
involved maps have a clear-cut operational meaning, and
the property of oCP divisibility ties in effortlessly with
frameworks tailored for the discussion of non-Markovian
quantum processes.  Second, the definition of oCP
divisibility does not rely on the invertibility of As.o and
thus has wider applicability. Lastly, oCP divisibility
breaks down for a larger class of memory effects than iCP
divisibility, and consequently outperforms it as a witness
of non-Markovianity.

CP divisibility # Markovianity.— Even though
oCP divisibility is a stricter requirement than iCP
divisibility, it does not enforce Markovianity; for
clarity, we will show this by means of a discrete time
example. For an ante litteram continuous example
of non-Markovian oCP-divisible dynamics, see [41,



53]. We take inspiration from collision models [54-57]
with correlated environment states [58, 59]: Let the
environment at » = 0 be in a correlated bipartite state
that is uncorrelated with the system. The dynamics
Uy.. between any two (of a set of three) times is such
that the system only interacts with one part of the
environment (denoted by x) that is discarded afterwards,
see Fig. 2(a). This scenario satisfies the necessary
non-signalling condition. Now, if we choose the unitaries
Uy, to be the swap operator S, between the system and
part x of the environment, then we have A;.s = Ay.s0As.,
and the dynamics is oCP-divisible.

However, the process is non-Markovian; suppose the
experimenter, instead of discarding it, stores the system
state at time s_, and inserts a fresh state at s;. The
dynamics is allowed to continue to ¢t and that state too
is stored. The joint state ps; will be correlated even
though the states inserted into the process, at times r and
s+, were independent. In particular, for the above case
the resulting overall state ps; is exactly the correlated
initial state of the environment. The experimenter could
thus detect memory effects between different times from
observing the system only, even though the dynamics is
oCP-divisible [60].

An oCP-divisible process can be seen as one that is
Markovian on average. Specifically, consider a multi-time
process where an experimenter measures the system at
each time, before independently preparing it in a new
state; what oCP divisibility implies is that, if all past
measurement outcomes are forgotten or averaged over
— which is equivalent to discarding the system state
before repreparation — then the future statistics only
depend on the current preparation. A quantum Markov
process, in contrast, requires that the future statistics
only depend on the current preparation for any sequence
of measurement outcomes [9, 11, 61-63]. We now fully
characterize the temporal correlations that can persist
in oCP-divisible dynamics, thus providing a quantifiable
connection between the Markovianity — the absence of
memory effects — and CP divisibility — the concept
underlying the majority of memory witnesses employed
in the literature.

Correlations in divisible processes.— The four
classes of processes illustrated in Fig. 2(b) also have
analogues in the classical domain. A classical stochastic
process is described by a joint distribution

P(.Z‘n7tn;...;l‘o,t0), (6)
over the state of the system at different times, satisfying
the Kolmogorov conditions [64, 65]. To check if a
given process is Markovian necessitates checking all
conditional probabilities given in Eq. (1), which requires
the full distribution of Eq. (6). However, to infer the
divisibility of a process, by inversion or operationally,
requires only the bipartite marginal distributions of
Eq. (6): {P(ws’t&x()vto)}?:l and {P(xmts’xrvtr)}?>r:0
respectively. Thus we have the same hierarchy as in

Fig. 2(b) for temporal correlations in classical processes.

The quantum generalization of Eq. (6) is a multipartite
positive operator Ty, .1.0, called the process tensor [10,
11, 66, 67] which satisfies generalized Kolmogorov
conditions [41, 68]. Analogous to the classical case,
the process tensor captures all temporal correlations in
quantum processes, including across multiple time steps,
in our case three. The probability of observing a sequence
of events {x,,xs,x;}, can be computed by contracting
the process tensor T;.s., with generalized measurement
operators M,

P(xtv Ts, xr|«7t7 js7 jr) :tr[(Mxt ®M:v5 ®MCDT)TttS:’I"]' (7)

The last equation is simply a generalization of the
Born rule to processes in time [69], where J denotes
an instrument [70], which is a collection of conditional
transformations (CP maps) {M,. } that update the
system after a particular event is observed; these
generalize the concept of positive operator valued
measure (POVM). By convention, and without loss of
generality, each element of Eq. (7) is expressed in terms
of Choi state [71, 72].

Mathematically, the process tensor T := T;.,., is an
operator on Hilbert spaces H,@Hs_Q@Hs, @H;. For both
processes in Fig. 1, the process tensor is exactly the same;
it is the object within the dotted lines. The difference
between the two panels lies entirely in the instrument
at s. The instrument at r is a preparation with one
deterministic element M, = p,, and the instrument
at ¢t is a measurement {M,, = II,,}, where the latter
are POVM elements. The instrument at s for Fig. 1(a)
deterministically implements the identity channel, which
has Choi state M,, = ¢ , where pf, := ij l77) (kK|
and sy = s_s;. The instrument at s for Fig. 1(b)
also has a single element: M,, = 1 ® ps, where 1
denotes the trace at s_ followed by preparation of ps.
For completeness we review the details of the process
tensor formalism in the Supplemental Material and only
include important details here.

Using Eq. (7) and the details of the instruments, we
recover the maps in Eq. (5) from the process tensor. Let
L., denote the Choi state of A,.,. For an oCP-divisible
process, we can show that L;, = trsi(c,ojiT)7 while
Ly = trg 4[T]/d and Ly, = trs_[T]/d. With this, we
can rephrase oCP divisibility as

try(pf, T) = % trs, [trm (e, trert(T)} . ®)
A detailed derivation of above statements is given in the
Supplemental Material.

On the other hand, the process tensor formalism leads
to an unambiguous quantum Markov condition [9, 11, 61,
63]. A quantum process is said to be Markov iff the Choi
state of the corresponding process tensor has the form
TMarkov. — [, ® L,.,.; any deviation from this product
form implies detectable non-Markovian correlations.
Since Eq. (8) does not force T to be of Markov form,



oCP-divisible processes are not necessarily memoryless.
Specifically, representing T' = Lt.s ® L. + Xtsr, Where
the matrix x contains all tripartite non-Markovian
correlations and satisfies trs_,[xtsr] = tl"t5+[thr] =0,
we see that Eq. (8) implies tTSi((P;;thr) = 0, which
provides a full classification of non-Markovian temporal
correlations that can be present despite the dynamics
being oCP-divisible.

Conclusions.— In this Letter, we have provided an
operationally motivated definition of CP divisibility that
is stricter than the frequently used one relying on the
invertibility of As.g. We showed that oCP divisibility
is closely connected to non-signalling conditions and
implies the absence of information flow from the
environment to the system. [[Additionally, we have
demonstrated that the sets of oCP-divisible
and Markovian dynamics do not coincide.]]
Additionally, [[Nevertheless,]] we have shown that
oCP divisibility can be interpreted as Markovianity on
average, yet oCP divisible processes can still display
non-trivial memory effects.  Finally, by employing
the process tensor formalism, we have fully classified
the non-Markovian temporal correlations to which the
criterion of CP divisibility is blind.

To build near-term quantum technologies will

require effective methods for detecting and addressing
non-Markovian noise [73]. We have shed light on
divisibility from an operational point of view, which helps
us to identify the classes of temporal correlations that
may evade regularly used checks for non-Markovianity.
However, there are trade-offs between uncovering
temporal correlations and the requisite number of
experiments that must be performed. Our results enable
experimentalists to make informed decisions about
investing resources in classifying the non-Markovian noise
at hand.
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