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Abstract: Reducing the dimensionality of a fault detection and identification problem is often a
necessity, and variable selection is a practical way to do it. Methods based on mutual information
have been successful in that regard, but their applicability to industrial processes is limited by
characteristics of the process variables such as their variability across fault occurrences. The
paper introduces a new estimation strategy of mutual information criteria using alarm series to
improve the robustness of the variable selection. The minimal-redundancy-maximal-relevance
criterion on alarm series is suggested as new reference criterion, and the results are validated
on a multiphase flow facility.
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1. INTRODUCTION

Monitoring of industrial processes involves a large number
of measured process variables often described as data rich
but information poor (Ming and Zhao, 2017). Variable
selection and feature extraction are the two main ap-
proaches to reduce the dimensionality of the fault detec-
tion and identification problem. Variable selection consists
in identifying and selecting informative and discrimina-
tive variables. Feature extraction consists in applying a
transformation to the original variables to highlight char-
acteristics or reduce the dimension. Historically, variable
selection methods have not received the same attention as
feature extraction methods in the process fault detection
and diagnosis literature (Ming and Zhao, 2017) although
Ghosh et al. (2014) demonstrated that both approaches
are complementary. Nevertheless, the recent review of
Peres and Fogliatto (2018) highlights a growing interest
in variable selection in the community.

A popular strategy for variable selection consists in com-
bining filter criteria to preselect sets of variables with an
optimization problem, where the set of variables lead-
ing to the best performance of the fault detection and
identification algorithm is retained. Verron et al. (2008)
combine a multivariate extension of the mutual informa-
tion criterion with discriminant analysis for fault identi-
fication. Ardakani et al. (2016) extend the analysis and
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benchmark multiple combinations of relevance criterion
(e.g. maximum-relevance) and redundancy criterion (e.g.
minimum-redundancy) with different classifiers on the
Tennessee Eastman process. Other criteria aiming at high-
lighting variables with abnormal variations have been sug-
gested: Zhao and Gao (2017) identify the nonsteady faulty
variables that are disturbed significantly using a stability
factor, and Tong and Palazoglu (2016) use an index de-
scribing the degree of abnormal variation for each variable.
Alternative approaches include genetic algorithms (Ghosh
et al., 2014) or selection of the variables that correspond
to the root causes of the faults (Shu et al., 2016).

The method designed by Verron et al. (2008) has become
a benchmark in the literature. However, the analytical
formulations of the univariate and multivariate mutual
information of Verron et al. (2008) assume that the faults
are stationary, that the process variables follow a Gaussian
distribution and that the process variables conditioned to
the faults follow Gaussian distributions. This is generally
not the case in industrial systems. For this reason, data-
driven estimation of mutual information is more appropri-
ate.

Another challenge of industrial fault detection and iden-
tification is the variability of process variables from one
fault occurrence to another as highlighted by Lucke et al.
(2018), due for example to noise, external disturbances or
different operating points. The number of fault occurrences
available for training is limited, so the algorithms must be
robust to cope with distorted patterns. This phenomenon
also has an impact on variable selection, because variables
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with variations directly related to the faults must be sep-
arated from variables with less relevant variations.

This paper proposes a new estimation strategy for the
criteria based on mutual information using a discretized
version of the process variables (the alarm series) instead
of the original process variables. The discretization cuts
the impact of variations within a certain range around the
normal operating point (defined based on the noise level)
on the variable selection. The faults are then detected and
identified using variables with large variations compared
to the noise level, and the effect of noise and external dis-
turbances in the classification is reduced. In addition, the
estimation of the joint probability distribution functions in
the mutual information is easier on discretized quantities
which makes the method more scalable, as highlighted by
Yu et al. (2015) and Su et al. (2017) for the estimation
of transfer entropy for root cause analysis. An exten-
sion of the mutual information criterion, the minimal-
redundancy-maximal-relevance (mRMR) criterion (Peng
et al., 2005), is proposed to take into account redundancy
in the variable selection.

Section 2 defines the alarm series, the mutual information
criterion and the mRMR criterion as well as the estimation
strategies. Section 3 compares the performance of the
two variable selection criteria when applied to process
variables and when applied to alarm series, on an industrial
case study where variables are not Gaussian and contain
variability across fault occurrences. Section 4 explains why
the variable selection performs better on the alarm series
and Section 5 provides concluding remarks.

2. VARIABLE SELECTION BASED ON MUTUAL
INFORMATION OF ALARM SERIES

2.1 Alarm series

In this paper, an alarm series is a discretized version of
the process variable based on statistical process control
rules. The alarm series are generated using the standard
deviation σ of the process variables during normal op-
eration, which gives an indication of the noise level in
normal operation. An alarm series X̃(t) is generated from

a process variable X(t) according to Eq. 1, where k̃ is a
positive integer tuned according to the expected variability
in the noise level. In addition, alarm chattering is removed
using delay timers.

X̃(t) =



−1, if X(t) ≤ −k̃σ

0, if −k̃σ < X(t) < k̃σ

1, if X(t) ≥ k̃σ

(1)

2.2 Fault detection and identification

Fault detection consists in determining whether a fault
happened and fault identification consists in identifying
the type of fault that occurred. Fault detection and iden-
tification is usually done using one (or several) model(s) on
the process variables Xi. As summarized by Russell et al.
(2000), it is common practice to consider the plant profiles
at different times t as the inputs of the model. The plant
profile Z(t) at sampling time t is defined as the vector

[X1(t)X2(t) .. XN (t)] where the Xi(t) are the values taken
by the process variables Xi at time t.

One strategy to build the model is supervised learning,
where a statistical model is trained considering the values
of the plant-profiles Z(t) at different sampling times t
and their corresponding class label C(t) which relates to
a specific type of fault or to normal operation. In this
paper, a single classification model addressing both the
fault detection and the fault identification is used. The
model is trained on a set of plant profiles covering the
trajectory of one occurrence of each type of fault, as well as
on a set of plant profiles corresponding to normal operation
data.

Variable selection has an impact on the performance of
the fault detection and identification model as it consists
in determining the best variables Xi to be included in
the plant profile Z. Variable selection based on mutual
information is a popular strategy in the fault detection and
diagnosis literature since it provides simple and systematic
criteria, independent from the choice of the classification
model.

2.3 Variable selection based on mutual information

The mutual information I(x; y) between two random vari-
ables x and y is a quantity measuring the mutual depen-
dence of the two variables (Shannon and Weaver, 1949)
that can be computed as:

I(x; y) =

∫∫
P (x, y) log

P (x, y)

P (x)P (y)
dxdy (2)

where P (x, y) is the joint probability distribution function
of x and y, and P (x) and P (y) are the marginal probability
distribution functions of x and y respectively.

When at least one of the random variables is continuous,
the joint probabilities can be estimated using estimators
based on binning, kernel density or nearest neighbours.
The nearest neighbours estimator compares well to the
two other approaches as it provides a data efficient and
adaptive estimator (Kraskov et al., 2011). For this reason,
the nearest neighbours estimator is used in the present
work to estimate mutual information on process variables.
When both random variables are discrete, the estimation
can be done as a discrete sum.

In the context of classification, the purpose of variable
selection based on mutual information is to find a set S of
m variables Xi that have the largest dependency on the
class C. The max-dependency criterion is defined as:

max d(S,C), d = I({Xi, i = 1, ...,m};C) (3)

Since the joint probability distribution functions are dif-
ficult to estimate in practice for lack of samples, the
max-dependency criterion is approximated using simpli-
fied criteria such as the mutual information criterion or
the mRMR criterion.
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2.4 Mutual information criterion

The simplest criterion is the univariate mutual information
I(Xi;C) between a variableXi and the class C. The higher
the value of I(Xi;C) is, the more relevant Xi is considered
for the classification. It can be expressed as:

I(Xi;C) =

∫∫
P (xi, c) log

P (xi, c)

P (xi)P (c)
dxidc (4)

where xi and c represent all the possible values that Xi

and C can take. The probability distribution functions are
computed using the extension of the nearest neighbours
estimator between a continuous and a discrete variable
derived by Ross (2014).

The mutual information criterion based on alarm series
I(X̃i;C) is proposed as an alternative in this paper and
can be computed as a discrete sum:

I(X̃i;C) =
∑
x̃i,c

P (x̃i, c) log
P (x̃i, c)

P (x̃i)P (c)
(5)

2.5 Minimal-redundancy-maximal-relevance criterion

The mRMR criterion (Peng et al., 2005) takes into account
both the relevance of the variables and their redundancy,
although still in a pairwise manner. The max-relevance
criterion is an approximation of the dependency criterion
in Eq. 3 formulated as:

max D(S,C), D =
1

|S|
∑
Xi∈S

I(Xi;C) (6)

The min-redundancy criterion is defined as:

min R(S), R =
1

|S|2
∑

Xi,Xj∈S

I(Xi;Xj) (7)

Both are combined as the mRMR criterion:

max Φ(D,R), Φ = D −R (8)

As in Section 2.4, I(Xi;C) is computed using the extension
of the nearest neighbours estimator between a continuous
and a discrete variable. I(Xi;Xj) is computed using the
nearest neighbours estimator.

In practice, an incremental search is done using Eq. 9.
Assuming we know the set of m − 1 variables Sm−1,
the mth variable is selected from the remaining variables
ΩX − Sm−1 as:

max
Xj∈ΩX−Sm−1

[
I(Xj ;C)− 1

m−1

∑
Xi∈Sm−1

I(Xj ;Xi)

]
(9)

The mRMR criterion based on alarm series is proposed as
an alternative:

max D̃(S̃, C), D̃ =
1

|S̃|

∑

X̃i∈S̃

I(X̃i;C) (10)

min R̃(S̃), R̃ =
1

|S̃|2
∑

X̃i,X̃j∈S̃

I(X̃i; X̃j) (11)

max Φ̃(D̃, R̃), Φ̃ = D̃ − R̃ (12)

In this case, both I(X̃i;C) and I(X̃i; X̃j) are computed as
discrete sums. The incremental search becomes:

max
X̃j∈ΩX̃−S̃m−1

[
I(X̃j ;C)− 1

m−1

∑

X̃i∈S̃m−1

I(X̃j ; X̃i)

]
(13)

2.6 Design of experiment

The objective of the paper is to demonstrate that the
variable ranking obtained using the mutual information
criterion (respectively its extension the mRMR criterion)
on the alarm series is more appropriate than the ranking
obtained using the same criterion on the original process
variables.

The variable ranking is done on a training dataset con-
taining the plant profiles of one occurrence of each fault
and plant profiles corresponding to normal operation. Four
variable rankings are computed:

• Variable ranking using mutual information criterion
on process variables.

• Variable ranking using mRMR criterion on process
variables.

• Variable ranking using mutual information criterion
on alarm series.

• Variable ranking using mRMR criterion on alarm
series.

For each variable ranking, each set of variable Sn (n =
1 .. N with N the total number of variables) where Sn =
{XN1 , .. , XNn} corresponds to the n best ranked vari-
ables is assessed. The accuracy of the classification model
based on the plant profiles Z(t) = [XN1(t) .. XNn(t)] is
computed on the same training dataset using a five-fold
cross-validation strategy.

The classification model chosen for the experiment is a k
Nearest Neighbours classifier (Fix and Hodges, 1951). In
contrast to discriminant analysis suggested by Verron et al.
(2008), kNN does not assume Gaussianity of the variables,
which does not hold in this paper.

Finally, the robustness of each variable ranking is eval-
uated on a test dataset containing another occurrence
of each fault and new normal operation data. For each
variable ranking obtained on the training dataset, the clas-
sification accuracy for each variable set Sn is computed,
training the model on the training dataset and testing it
on the test dataset.

3. INDUSTRIAL CASE STUDY

3.1 Description of the industrial case study

The case study is a multiphase flow facility located at
the Process System Engineering laboratory of Cranfield
University described by Stief et al. (2018). Water and air
are mixed at the entrance of the horizontal section and
then separated. A process diagram is shown in Figure 1.

The system is operated at two different points and normal
operation data is gathered for each operating point. Op-
erating point A corresponds to an air flow rate of 120 sm3
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2.4 Mutual information criterion

The simplest criterion is the univariate mutual information
I(Xi;C) between a variableXi and the class C. The higher
the value of I(Xi;C) is, the more relevant Xi is considered
for the classification. It can be expressed as:

I(Xi;C) =

∫∫
P (xi, c) log

P (xi, c)

P (xi)P (c)
dxidc (4)

where xi and c represent all the possible values that Xi

and C can take. The probability distribution functions are
computed using the extension of the nearest neighbours
estimator between a continuous and a discrete variable
derived by Ross (2014).

The mutual information criterion based on alarm series
I(X̃i;C) is proposed as an alternative in this paper and
can be computed as a discrete sum:

I(X̃i;C) =
∑
x̃i,c

P (x̃i, c) log
P (x̃i, c)

P (x̃i)P (c)
(5)

2.5 Minimal-redundancy-maximal-relevance criterion

The mRMR criterion (Peng et al., 2005) takes into account
both the relevance of the variables and their redundancy,
although still in a pairwise manner. The max-relevance
criterion is an approximation of the dependency criterion
in Eq. 3 formulated as:

max D(S,C), D =
1

|S|
∑
Xi∈S

I(Xi;C) (6)

The min-redundancy criterion is defined as:

min R(S), R =
1

|S|2
∑

Xi,Xj∈S

I(Xi;Xj) (7)

Both are combined as the mRMR criterion:

max Φ(D,R), Φ = D −R (8)

As in Section 2.4, I(Xi;C) is computed using the extension
of the nearest neighbours estimator between a continuous
and a discrete variable. I(Xi;Xj) is computed using the
nearest neighbours estimator.

In practice, an incremental search is done using Eq. 9.
Assuming we know the set of m − 1 variables Sm−1,
the mth variable is selected from the remaining variables
ΩX − Sm−1 as:

max
Xj∈ΩX−Sm−1

[
I(Xj ;C)− 1

m−1

∑
Xi∈Sm−1

I(Xj ;Xi)

]
(9)

The mRMR criterion based on alarm series is proposed as
an alternative:

max D̃(S̃, C), D̃ =
1

|S̃|

∑

X̃i∈S̃

I(X̃i;C) (10)

min R̃(S̃), R̃ =
1

|S̃|2
∑

X̃i,X̃j∈S̃

I(X̃i; X̃j) (11)

max Φ̃(D̃, R̃), Φ̃ = D̃ − R̃ (12)

In this case, both I(X̃i;C) and I(X̃i; X̃j) are computed as
discrete sums. The incremental search becomes:

max
X̃j∈ΩX̃−S̃m−1

[
I(X̃j ;C)− 1

m−1

∑

X̃i∈S̃m−1

I(X̃j ; X̃i)

]
(13)

2.6 Design of experiment

The objective of the paper is to demonstrate that the
variable ranking obtained using the mutual information
criterion (respectively its extension the mRMR criterion)
on the alarm series is more appropriate than the ranking
obtained using the same criterion on the original process
variables.

The variable ranking is done on a training dataset con-
taining the plant profiles of one occurrence of each fault
and plant profiles corresponding to normal operation. Four
variable rankings are computed:

• Variable ranking using mutual information criterion
on process variables.

• Variable ranking using mRMR criterion on process
variables.

• Variable ranking using mutual information criterion
on alarm series.

• Variable ranking using mRMR criterion on alarm
series.

For each variable ranking, each set of variable Sn (n =
1 .. N with N the total number of variables) where Sn =
{XN1 , .. , XNn} corresponds to the n best ranked vari-
ables is assessed. The accuracy of the classification model
based on the plant profiles Z(t) = [XN1(t) .. XNn(t)] is
computed on the same training dataset using a five-fold
cross-validation strategy.

The classification model chosen for the experiment is a k
Nearest Neighbours classifier (Fix and Hodges, 1951). In
contrast to discriminant analysis suggested by Verron et al.
(2008), kNN does not assume Gaussianity of the variables,
which does not hold in this paper.

Finally, the robustness of each variable ranking is eval-
uated on a test dataset containing another occurrence
of each fault and new normal operation data. For each
variable ranking obtained on the training dataset, the clas-
sification accuracy for each variable set Sn is computed,
training the model on the training dataset and testing it
on the test dataset.

3. INDUSTRIAL CASE STUDY

3.1 Description of the industrial case study

The case study is a multiphase flow facility located at
the Process System Engineering laboratory of Cranfield
University described by Stief et al. (2018). Water and air
are mixed at the entrance of the horizontal section and
then separated. A process diagram is shown in Figure 1.

The system is operated at two different points and normal
operation data is gathered for each operating point. Op-
erating point A corresponds to an air flow rate of 120 sm3
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Fig. 1. Process diagram of the multiphase flow facility from
Stief et al. (2018) 1

Fig. 2. Distribution plots of the mean-centered variables
in operation point A.

h−1 and a water flow rate of 0.1 kg s−1. Operating point B
corresponds to an air flow rate of 150 sm3 h−1 and a water
flow rate of 0.5 kg s−1. Three types of fault are introduced
successively at each operating point:

• Air leakage: valve V10 is gradually opened so that the
air is partially leaked out to the atmosphere.

• Air blockage: valve V11 is gradually closed to simulate
a developing blockage in the input airline.

• Diverted flow: bypass valve U39 is gradually opened
so that the mixed flow is partially led straight to
the riser and partially led into the horizontal pipeline
before joining the riser.

The data are separated into four classes: normal operation
data and the three faulty episodes (blockage, leakage and
diverted flow).

1 c©2018 International Federation of Automatic Control. Repro-
duced with permission from the original publication in IFAC-
PapersOnline, 51/18.

Table 1. Process variables.

Sensor tag Process variable

FT305/OUT Inlet air flow rate (AFR) 1
FT302/OUT Inlet air flow rate (AFR) 2
PT312/OUT Air delivery pressure
PT417/OUT Pressure in the mixing zone
PT408/OUT Pressure at the riser top
PT403/OUT Pressure in the top separator
FT404/OUT Top separator output air flow rate
FT406/OUT Top separator output water flow rate
PT501/OUT Pressure in the 3-phase separator

PIC501/PID1/OUT Air outlet valve 3-phase separator
LI502/OUT Water-oil 3- level phase separator
LI503/OUT Water coalescer level

LVC502-SR/PID1/OUT Water coalescer outlet valve
LI101/OUT Water tank Level

FIC302/PID1/OUT Inlet AFR controller 1 valve opening
FIC302/PID1/PV Inlet AFR controller 1 process value
FIC301/PID1/PV Inlet AFR controller 2 process value

The analysis focusses on the 17 process variables (list
available in Table 1) with a standard deviation greater
than a given threshold to eliminate variables that do not
move at all in the available dataset. The variables are
mean-centered to cope with the two operating points, the
alarm series for operating point A are generated using the
standard deviation of the normal operation data in point
A, and the alarm series for operating point B are generated
using the standard deviation of the normal operation data
in point B. The noise level in the system has a high
variability, therefore k̃ is set to 10.

3.2 Variable selection

Variable selection and training of the classification algo-
rithm are done on the data of one operating point, and
tested on the data of the other operating point. Two
scenarios are presented:

• Scenario AB: train on point A and test on point B.
• Scenario BA: train on point B and test on point A.

Figure 2 represents the distribution plots of the variables
for the operating point A. Most variables have a skewed
distribution which reflects the incipient development of the
faults. The analytical computation of mutual information
proposed by Verron et al. (2008) assumes that the variables
X follow a Gaussian distribution and that X conditioned
to C = c for all the classes c follow Gaussian distributions.
These assumptions are not valid here, since some X do not
follow Gaussian distributions and neither do the X that
are conditioned to faults.

4. DISCUSSION

Figure 3 and Figure 4 summarize the accuracy scores of
the classification with mutual information and mRMR
variable ranking respectively for scenario AB and BA. The
figures highlight the importance of variable selection for
the fault detection and identification. The accuracy scores
on the training data and on the test data increase as the
number of variables selected gets higher, until a certain
number of variables. The least informative variables bring
noise that is actually deteriorating the performance of the
model.

2019 IFAC DYCOPS
Florianópolis - SC, Brazil, April 23-26, 2019

676

Fig. 3. Accuracy scores on training and test data for scenario AB using mutual information variable ranking (left) and
mRMR variable ranking (right) applied to process variables and alarm series.

The robustness of the variable ranking can be assessed by
comparing the training and test accuracy curves in Figures
3 and 4 for each case, in particular for the most informative
variables. While the training and test curves follow similar
shapes with the variable rankings on alarm series (both
with mutual information and mRMR), the training and
test curves with the variable rankings on process variables
show different behaviours. Variables that improve the
accuracy in the training case do not improve it in the test
case and vice versa. The variables selected as the most
informative in the training case do not help discriminating
the faults during another occurrence. The variations in
those variables are not the most representative of the
faults.

A specific example is the most informative variable accord-
ing to mutual information and mRMR on process variables
in scenario AB (cf. Figure 3). Classification based on this
variable (PT408/OUT) presents an accuracy of 71.2% on
the training data but only of 28.0% on the test data. The
good accuracy score on the training data corresponds to
overfitting, as the variations of this variable are not repre-

sentative of the faults. Figure 5 shows the most informative
variable obtained when using respectively mutual informa-
tion on process variables (i.e. PT408/OUT) and mutual
information on alarm series (i.e. PIC501/PID1/OUT) in
scenario AB. It can be noticed that PT408/OUT dis-
plays small variations that can be described as secondary
variations compared to e.g. PIC501/PID1/OUT. Those
variations are actually triggered by the fault, but only after
it has propagated to the whole system: PT408/OUT is the
pressure at the riser top, so when the pressure drops in
the system (e.g. due to the leakage fault), PT312/OUT
and PT417/OUT also drops, which eventually affects
PT408/OUT. In addition, the alarm series corresponding
to PT408/OUT does not activate in any of the faulty
scenarios during the training occurrence (cf. Figure 5).
For this reason, PT408/OUT is not considered informative
when applying mutual information on the alarm series,
which ranks the air outlet valve opening setpoint of the
3-phase separator PIC501/PID1/OUT as the most infor-
mative variable to discriminate the three faults.

Fig. 4. Accuracy scores on training and test data for scenario BA using mutual information variable ranking (left) and
mRMR variable ranking (right) applied to process variables and alarm series.
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Fig. 3. Accuracy scores on training and test data for scenario AB using mutual information variable ranking (left) and
mRMR variable ranking (right) applied to process variables and alarm series.

The robustness of the variable ranking can be assessed by
comparing the training and test accuracy curves in Figures
3 and 4 for each case, in particular for the most informative
variables. While the training and test curves follow similar
shapes with the variable rankings on alarm series (both
with mutual information and mRMR), the training and
test curves with the variable rankings on process variables
show different behaviours. Variables that improve the
accuracy in the training case do not improve it in the test
case and vice versa. The variables selected as the most
informative in the training case do not help discriminating
the faults during another occurrence. The variations in
those variables are not the most representative of the
faults.

A specific example is the most informative variable accord-
ing to mutual information and mRMR on process variables
in scenario AB (cf. Figure 3). Classification based on this
variable (PT408/OUT) presents an accuracy of 71.2% on
the training data but only of 28.0% on the test data. The
good accuracy score on the training data corresponds to
overfitting, as the variations of this variable are not repre-

sentative of the faults. Figure 5 shows the most informative
variable obtained when using respectively mutual informa-
tion on process variables (i.e. PT408/OUT) and mutual
information on alarm series (i.e. PIC501/PID1/OUT) in
scenario AB. It can be noticed that PT408/OUT dis-
plays small variations that can be described as secondary
variations compared to e.g. PIC501/PID1/OUT. Those
variations are actually triggered by the fault, but only after
it has propagated to the whole system: PT408/OUT is the
pressure at the riser top, so when the pressure drops in
the system (e.g. due to the leakage fault), PT312/OUT
and PT417/OUT also drops, which eventually affects
PT408/OUT. In addition, the alarm series corresponding
to PT408/OUT does not activate in any of the faulty
scenarios during the training occurrence (cf. Figure 5).
For this reason, PT408/OUT is not considered informative
when applying mutual information on the alarm series,
which ranks the air outlet valve opening setpoint of the
3-phase separator PIC501/PID1/OUT as the most infor-
mative variable to discriminate the three faults.

Fig. 4. Accuracy scores on training and test data for scenario BA using mutual information variable ranking (left) and
mRMR variable ranking (right) applied to process variables and alarm series.
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Fig. 5. Highest ranked variable using mutual information on process variables (left) and on alarm series (right) for
scenario AB. Both the process variable and the corresponding alarm series are displayed for each variable and for
each faulty episode: blockage (black), leakage (green) and diverted flow (magenta). The dotted lines indicate the
alarm thresholds as defined in Eq. 1.

Therefore, the estimation of the relevance of the variables
with regard to the class is more robust on alarm series than
on process variables, and so is the redundancy estimation.
The gap in classification accuracy between curves with
variable selection on variables (in blue) and variable selec-
tion on alarm series (in red) gets larger when taking into
account the redundancy criterion (mRMR), as pictured in
the right plots of Figure 3 and Figure 4.

5. CONCLUSION

Variable selection techniques based on mutual information
provide a scalable means to identify the relevant variables
for fault detection and identification. This paper argues
that variables with small variations are affected by noise
and external disturbances, and thus do not represent
the best variables for classifying faults. A discretization
procedure is proposed to cut off small variations in the
variables, so that the mutual information criteria focus on
large variations. The estimation strategy based on alarm
series improves the robustness of the variable selection
in addition to facilitating the computation of the joint
probability distribution functions.
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