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ABSTRACT  19 

Tannins have been demonstrated to have antioxidant and various health benefit properties. The 20 

aim of this study was to determine the effect of an ethanol extract (TRE) of a commercial oenological 21 

tannin (Quercus robur toasted oak wood, Tan’Activ R®) on female gamete using an in vitro model of 22 

pig oocyte maturation (IVM) and examining nuclear maturation, cytoplasmic maturation, 23 

intracellular GSH and ROS levels and cumulus cell steroidogenesis. 24 

To this aim, during IVM performed in medium either supplemented (IVM A) or not supplemented 25 

(IVM B) with cysteine and ß-mercaptoethanol, TRE was added at different concentrations (0, 1, 5, 26 

10, 20 µg/ml).  27 

The addition of TRE at all the concentration tested to either IVM A or IVM B, did not influence oocyte 28 

nuclear maturation. When IVM was performed in IVM A, no effect was induced on cytoplasmic 29 

maturation by TRE at the concentration of 1, 5 and 10 µg/ml, while TRE 20 µg/ml significantly 30 

reduced the penetration rate after IVF (p<0.05) and the blastocyst rate after parthenogenetic 31 

activation (p<0.01). Oocyte maturation in IVM B, compared to IVM A group, decreased GSH 32 

(p<0.001) and increased ROS (p<0.01) intracellular levels and in turn impaired oocyte cytoplasmic 33 

maturation reducing the ability to sustain male pronuclear formation after IVM (p<0.001) and the 34 

developmental competence after parthenogenetic activation (p<0.001). TRE supplementation to 35 

IVM B significantly reduced ROS production (5, 10, 20 µg/ml TRE) to levels similar to IVM A group, 36 

and increased GSH levels (10, 20 µg/ml TRE) compared to IVM B (p<0.05) without reaching those of 37 

IVM A group. TRE supplementation to IVM B at the concentrations of 1, 5 and 10 µg/ml significantly 38 

improved (p<0.001) oocyte cytoplasmic maturation enhancing the ability to sustain male pronuclear 39 

formation without reaching, however, IVM A group levels.  40 
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TRE addition at all the concentration tested to  both IVM A and IVM B, did not induce any effect on 41 

E2 and P4 secretion by cumulus cells suggesting that the biological effect of the ethanol extract is 42 

not exerted thought a modulation of cumulus cell steroidogenesis. 43 

In conclusion, TRE, thanks to its antioxidant activity, was partially able to reduce the negative effect 44 

of the absence of cysteine and ß-mercaptoethanol in IVM B, while TRE at high concentration in IVM 45 

A was detrimental for oocyte cytoplasmic maturation underlying the importance of maintaining a 46 

balanced redox environment during oocyte maturation. 47 

 48 
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 52 

1. INTRODUCTION 53 

Tannins are a broad class of bioactive compounds that are present not only in red wine but also in 54 

tea, cocoa, chocolates, coffee, herbal preparations, grapes and fruits like blackberries and 55 

cranberries. 56 

Wine aging process in oak barrels, due to soluble polyphenols diffusion into the wine, plays a crucial 57 

role not only in improving organoleptic properties, such as color, flavor and aroma but also in 58 

acquiring health protective properties [1].  59 

Many studies reported beneficial effects of tannins and their extracts in somatic cells, in fact tannins 60 

proved to have various health protective activities, especially antioxidant, anticarcinogenic, 61 

cardioprotective, antiinflammatory [2-5]. Nevertheless, there is limited information regarding the 62 

effects of tannins and its extracts on reproduction.  63 

Recently, extracts of commercial oenological tannins from Quercus robur [6] and Castanea sativa 64 

[7] have been evaluated for their hypoglycemic and antioxidant activities. The  ethanol extract (TRE) 65 

of Quercus robur toasted oak wood (Tan’Activ R®) and its fractions have been demonstrated to exert 66 

a powerful biological effect on male gametes finely modulating sperm capacitation and in turn 67 

sperm fertilizing ability [8]. However, no information is available on the biological effect of TRE on 68 

the female gamete counterpart. 69 

The objective of this study was to examine the possible biological effect of TRE on female gamete 70 

using an “in vitro” model of pig oocyte maturation (IVM) performed in medium either supplemented 71 

or not with cysteine and  ß-mercaptoethanol, both of these molecules known to improve pig oocyte 72 

maturation inducing a reduction of ROS levels and an increase in GSH content of the oocyte [9-13].  73 

To that purpose, at the end of the maturation period we evaluated nuclear and cytoplasmic 74 

maturation of oocytes, steroidogenic activity of cumulus cells, intracellular levels of glutathione 75 
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(GSH) and ROS of oocytes, as well as blastocyst formation after parthenogenetic activation of IVM 76 

ooctyes. 77 

 78 

2. MATERIALS AND METHODS 79 

Unless otherwise specified, all the reagents were purchased from Sigma-Aldrich (Milan, Italy). 80 

The ethanol extract of the commercial Tan’Activ R® (TRE) was obtained as previously reported (QR2E 81 

extract) [6]. 82 

 83 

2.1. In vitro maturation of porcine oocytes (IVM) 84 

Porcine cumulus–oocyte complexes (COCs) were aspirated using a 18 gauge needle attached to a 85 

10 mL disposable syringe from 4 to 6 mm follicles of ovaries collected at a local abattoir and 86 

transported to the laboratory within 1 h. Under a stereomicroscope, intact COCs were selected and 87 

transferred into a petri dish (35 mm, Nunclon,Denmark) prefilled with 2 mL of modified PBS 88 

supplemented with 0.4% BSA.  89 

The maturation media used were: NCSU 37 [14] supplemented with 1mM glutamine, 5.0 µg/mL 90 

insulin, 10 ng/mL epidermal growth factor (EGF), 10% porcine follicular fluid, 0.57 mM cysteine  and 91 

50 µM ß-mercaptoethanol (IVM A) and the same medium (IVM A) without cysteine and ß-92 

mercaptoethanol supplementation (IVM B). 93 

After three washes in IVM A or IVM B, groups of 45-50 COCs were transferred to a Nunc 4-well 94 

multidish containing 500 µL the same maturation medium per well and cultured at 39 °C in a 95 

humidified atmosphere of 5% CO2 in air. For the first 22 h of in vitro maturation the medium was 96 

supplemented with 1.0 mM db-cAMP, 10 IU/mL eCG (Folligon, Intervet, Boxmeer, The Netherlands) 97 

and 10 IU/mL hCG (Corulon, Intervet). For the last 22 h COCs were transferred to fresh maturation 98 
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medium (IVM A or IVM B). At the end of the maturation period the oocytes were denuded by gentle 99 

repeated pipetting. 100 

 101 

2.2. Evaluation of  nuclear maturation 102 

At the end of the maturation period oocytes were mounted on microscope slides, fixed in acetic 103 

acid/ ethanol (1:3) for 24 h and stained with lacmoid. The oocytes were observed under a phase 104 

contrast microscope in order to evaluate the meiotic stage achieved and those with a nuclear 105 

morphology corresponding to MII were considered mature. 106 

 107 

 2.3. Evaluation of cytoplasmic maturation 108 

At the end of the maturation period cytoplasmic maturation was assessed by evaluating:  109 

a) the ability of oocytes to decondense sperm head and sustain male pronucleus formation after in 110 

vitro fertilization.  111 

Frozen boar semen was purchased from a commercial company (Inseme S.P.A., Modena, Italy). 112 

Straws were thawed in a water-bath at 37°C under agitation for 30 s and immediately diluted, at the 113 

same temperature, in Beltsville Thawing Solution (BTS) at a dilution rate 1:3. 114 

After 1 h semen was washed twice with BTS and finally resuspended with Brackett & Oliphant’s 115 

medium [15] supplemented with 12% fetal calf serum (Gibco, Invitrogen, Italy) and 0.7 mg/ml 116 

caffeine (IVF medium). 45–50 in vitro matured oocytes freed from cumulus cells were transferred 117 

to 500 µl IVF medium containing 1x106 sperm/ml. After 1 h of coculture, oocytes were transferred 118 

to fresh IVF medium previously equilibrated under 5% CO2 in air and cultured until fixation, as above 119 

described, 18-19 h post-insemination.   120 

Oocytes were considered penetrated when containing two polar bodies, one female pronucleus and 121 

one or more sperm heads and/or male pronuclei with their corresponding sperm tails. Oocytes were 122 
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considered cytoplasmically mature when at least one decondensed sperm head or male pronucleus 123 

could be identified [13]. Degenerated and immature oocytes were not counted. Parameters 124 

evaluated were:  125 

- penetration rate (number of oocytes penetrated/total inseminated),  126 

- monospermy rate (number of oocytes containing only one sperm head - male 127 

pronucleus/total penetrated)  128 

- percentage of penetrated  oocytes with one female pronucleus and at least one 129 

decondesend sperm head 130 

- percentage of penetrated  oocytes with one female and at least one male pronucleus  131 

 132 

b) the developmental competence of parthenotes after 7 days of in vitro culture 133 

At the end of maturation period oocytes were denuded as described above, washed three times in 134 

IVF medium and then parthenogenetically activated according to the method described by Boquest 135 

et al. [16] slightly modified [17]. Briefly, the oocytes were transferred to IVF medium containing 5 136 

µM ionomycin for 5 min, then washed twice and incubated in NCSU-23 [14] containing 2 mM 6-137 

dimethylaminopurine (6-DMAP) for 3 h at 39°C. Presumptive parthenotes were washed twice in 138 

NCSU-23 and cultured in groups of 45–50 in 500 ml of the same medium. On Day 5 postactivation, 139 

250 µl of the medium were replaced with fresh pre-equilibrated NCSU-23 containing 20% (v/v) FCS 140 

to reach a final FCS concentration of 10% (v/v). At Day 7 postactivation, percent of blastocysts and 141 

number of blastocyst nuclei were determined by fixing  and staining parthenotes  as above described 142 

for oocytes. Embryos with at least 20 blastomeres and a clearly visible blastocoel were considered 143 

as blastocysts. 144 

 145 

2.4. Evaluation of cumulus cell steroidogenesis 146 
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IVM media of both the first and the second day of culture were collected, centrifuged at 900xg for 147 

5 min and the supernatants were stored at -20 °C until assayed for progesterone (P4) and estradiol-148 

17β (E2) by validated radioimmunoassays [18]. At the end of the maturation period, cumulus cells 149 

were counted using a Thoma’s hemocytometer, after being freed from matured oocytes by gentle 150 

repeated pipetting. For P4, intra and interassay coefficients of variation were 7.8% and 10.1%, 151 

respectively; assay sensitivity was 3,3 pg/tube. Intra and interassay coefficients of variation for E2 152 

were 4% and 12%, respectively; assay sensitivity was 1.1 pg/tube. Steroid concentrations are 153 

expressed as ng/106 cells. 154 

 155 

2.5. Evaluation of intracellular ROS and GSH levels 156 

Intracellular GSH and ROS levels of oocytes at the end of maturation period were determined using 157 

4‑chloromethyl‑6.8‑difluoro‑7‑hydroxycoumarin (CellTracker Blue; CMF2HC; Invitrogen, Italy) or 158 

2',7'‑dichlorodihydrofluorescein diacetate (H2DCFDA; Invitrogen, Italy), respectively. From each 159 

treatment group, oocytes were incubated in the dark for 30 min at 39 °C in PBS/0.1% (wt/vol) PVA 160 

supplemented with 10 μM H2DCFDA or 10 μM CellTracker Blue. Following incubation, the oocytes 161 

were washed in PBS/0.1% (wt/vol) PVA, placed into 10‑μl droplets, and fluorescence was evaluated 162 

under a Nikon Eclipse E 600 epifluorescence microscope (Nikon Europe BV, Badhoeverdop, The 163 

Netherlands). The fluorescence images were analysed with Image J software (public domain). 164 

Relative oocyte fluorescence was measured by normalizing the oocyte fluorescence with the 165 

background and with each oocyte area.  166 

 167 

2.6 Experimental design 168 
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To  examine the biological effect of the  addition of an ethanol extract (TRE) of a commercial 169 

oenological tannin (Tan’Activ R®) during in vitro maturation of pig oocytes, different concentrations 170 

of TRE (0, 1, 5, 10, 20 µg/ml) were added to in vitro maturation medium supplemented (IVM A) or 171 

non-supplemented (IVM B) with  cysteine and ß-mercaptoethanol. 172 

A total of 2729 oocytes were fixed at the end of the maturation period to evaluate their nuclear 173 

maturation [seven replicates; oocytes examined in each replicate for each experimental group: 174 

median (interquartile range, IQR) = 40 (10)]. 175 

In order to examine TRE effect on cytoplasmic maturation, at the end of the maturation period a 176 

total of 2613 oocytes were inseminated to evaluate their ability to decondense sperm head and 177 

sustain male pronucleus formation [seven replicates; oocytes examined in each replicate for each 178 

experimental group: median (IQR) = 38 (9)]; moreover a total 3102 oocytes  were 179 

parthenogenetically activated to evaluate their developmental competence [seven replicates; 180 

oocytes examined in each replicate for each experimental group: median (IQR) = 47 (5)].   181 

IVM media from the different experimental groups (seven replicates) were collected the first and 182 

the second day of culture and assayed for steroid production (P4 and E2) by cumulus cells. 183 

The effect of TRE on intracellular levels of GSH and ROS was investigated in three independent 184 

experiment with 15-20 oocytes each time for each experimental group (GSH samples, n= 570 185 

oocytes; ROS samples, n= 601 oocytes). 186 

 187 

2.7. Statistical analyses 188 

Statistical analyses were performed using R (version 3.4.0)[19]. Values are expressed as 189 

mean ± standard deviation (SD) and level of significance was at p < 0.05 unless otherwise specified. 190 
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Data on nuclear maturation, IVF trials, blastocyst formation and cumulus cell steroidogenesis were 191 

analysed using a general linear model with binomial distribution and a Tukey post-hoc test was 192 

subsequently run to determine differences between treatments.  193 

Data on blastomere number were analysed using a Poisson distribution and a Tukey post-hoc test 194 

was subsequently run to determine differences between treatments.  195 

Data on GSH and ROS intracellular levels, after being tested for normality and homogeneity of 196 

variances through Shapiro-Wilk test, were analysed using Non-parametric Kruskal-Wallis Test and 197 

Wilcoxon test  was subsequently used to assess differences between treatments. 198 

  199 

3. RESULTS 200 

3.1. Effect of TRE on nuclear maturation 201 

When COCs were cultured in IVM A or IVM B in presence of increasing concentrations of TRE (0, 1, 202 

5, 10, 20 µg/ml), no significant variations in the proportion of oocytes completing nuclear 203 

maturation showing a MII nuclear morphology  were recorded (Fig. 1). 204 

 205 

3.2. Effect of TRE on cytoplasmic maturation 206 

a) Effect of TRE on the ability of oocytes to decondense sperm head and sustain male pronucleus 207 

formation after in vitro fertilization.  208 

After in vitro fertilization, when oocytes were matured in IVM A, TRE at the concentrations of 1 209 

µg/ml induced a slight not significant increase in penetration rate compared to control. 210 

Concentrations of 5 and 10 µg/ml significantly (p<0.01) decreased the percentage of penetrated 211 

oocytes compared to TRE 1 µg/ml, while 20 µg/ml showed a significantly lower penetration rate 212 

compared to both IVM A (p<0.05) and TRE 1 µg/ml (p<0.01). No significant change in the other 213 
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fertilization parameters assessed (monospermy rate, ability of oocytes to decondense sperm head 214 

and sustain male pronucleus formation) were observed (Fig. 2A).  215 

Oocytes maturation in IVM B did not influence penetration rate and monospermy rate compared to 216 

IVM A, moreover the addition of TRE at all the concentration tested (1, 5, 10, 20 µg/ml) did not 217 

induce any significant change in these parameters (Fig. 2B, left panel). 218 

However, oocytes matured in IVM B, as compared to IVM A group, showed a  dramatic decrease 219 

(p<0.001) in the percentage of penetrated oocytes with at least one male pronucleus while the 220 

percentage of penetrated  oocytes with at least one decondesend sperm head was significantly 221 

increased  (Fig. 2 B, right panel). The percentage of the oocyte considered cytoplasmically mature 222 

significantly dropped (p<0.001) in IVM B as compared to IVM A group. 223 

TRE addition to IVM B  at the concentrations of 1, 5, and 10 µg/ml induced a significant increase  of 224 

the percentage of penetrated oocytes with male pronucleus compared to IVM B (p<0.001 for TRE 5 225 

µg/ml and p<0.01 for TRE 1 and 10 µg/ml) remaining, however, significantly lower (p<0.001) 226 

compared to IVM A. The addition of TRE to IVM B did not increase the percentage of oocytes with 227 

decondensed sperm head/s. As a consequence,  TRE addition to IVM B at the concentrations of 1, 228 

5, and 10 µg/ml significantly (p<0.001) improved the percentage of cytoplasmically mature oocytes 229 

compared to IVM B without reaching, however, the level of oocyte matured in IVM A (Fig. 2B, right 230 

panel). 231 

 232 

b) Effect of TRE on the developmental competence of parthenotes after 7 days of in vitro culture. 233 

TRE addition to IVM A during oocyte maturation period did not modify, after parthenogenic 234 

activation, the percentage of oocytes that developed to blastocyst stage and the mean blastomere 235 

number per blastocyst except for a reduction in blastocyst rate observed in TRE  20 group (p<0.01) 236 

(Fig.3, left panel). 237 
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Oocytes matured in IVM B, regardless of TRE supplementation, showed a significant lower (p<0.001) 238 

blastocyst formation rate as compared to IVM A group. The mean blastomere number per blastocyst 239 

was significantly lower in IVM B group compared to IVM A group (p<0.05). However TRE at the 240 

concentration of 5 and 10 µg/ml increased the blastomere number reaching values similar to IVM A 241 

group (Fig.3, right panel) 242 

 243 

3.3. Effect of TRE on cumulus cell steroidogenesis  244 

Basal steroid production by cumulus cells after 22 and 44 h of culture is shown in Fig. 4.  245 

E2 and P4 outputs when COCs were cultured in IVM A were 14.1 ± 3.0 and 14.1 ± 5.2 ng/106 cells, 246 

121.0 ± 7.6 and 1252.8 ± 349.7 ng/106 cells after 22 and 44 h, respectively. E2 and P4 outputs when 247 

COCs were cultured in IVM B were 13.1 ± 5.0 and 12.7 ± 5.2 ng/106 cells, 118.8 ± 40.5 and 1154.3 ± 248 

509.8 ng/106 cells after 22 and 44 h, respectively. No differences were recorded in E2 and P4 249 

production between IVM A and IVM B. 250 

None of the TRE concentrations tested induced any effect on both E2 and P4 production, both on 251 

the first and the second day of culture compared to control group. 252 

 253 

3.4. Effect of TRE on ROS and GSH levels 254 

The levels of ROS were not statistically influenced by the addition of TRE when oocytes were 255 

matured in IVM A (Fig. 5A). Oocytes matured in IVM B showed significantly higher (p<0.01) 256 

intracellular ROS levels compared to IVM A group. TRE addition to IVM B at the concentrations of 5, 257 

10 and 20 µg/ml induced a significant reduction of intracellular ROS levels to values similar to IVM 258 

A group (Fig. 5B). 259 

The addition of TRE to IVM A did not induce any statistical modification of intracellular GSH levels 260 

(Fig. 6A). Oocytes matured in IVM B, as compared to IVM A group, showed a significant decrease 261 
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(p<0.001) in the intracellular GSH levels. TRE addition to IVM B at the concentrations of 5 and 10 262 

µg/ml induced a significant increase of intracellular GSH levels without reaching those of IVM A 263 

group (Fig. 6B). 264 

 265 

4. DISCUSSION 266 

The aim of the present study was to examine the possible biological effect on female gamete of an 267 

ethanol extract of a commercial oenological tannin (Quercus robur toasted oak wood, Tan’Activ 268 

R®)(TRE) with antioxidant properties [6], using an in vitro model of pig oocyte maturation evaluating 269 

nuclear and cytoplasmic maturation, intracellular levels of ROS and GSH and cumulus cell 270 

steroidogenesis. 271 

The process of oocyte maturation requires a rigorous supply of energy in the form of adenosine 272 

triphosphate. The ATP generation by the mitochondrial electron transport chain during the 273 

maturation process results in the production of ROS. Increased levels of ROS beyond the 274 

physiological range which may lead to oxidative stress, can result in deterioration of oocyte quality 275 

[20]. In vivo oocytes are protected from the harmful effects of ROS by anti-oxidant enzymes which 276 

are present in the follicular fluid [21]. However, during in vitro maturation, besides the endogenous 277 

ROS production and the lack of physiological defense mechanisms present in the follicular fluid, 278 

multiple exogenous factors can act as potential sources of ROS (i.e. exposure to visible light, pH and 279 

temperature, oxygen concentration, handling of gamete).  280 

In order to evaluate the activity of antioxidant molecules during IVM, several studies have induced 281 

an oxidative stress by H2O2 supplementation or adding to the culture medium exogenous ROS 282 

generating systems such as hypoxanthine-xanthine oxidase system [12,13,23]. In this study, instead 283 

of exogenoulsy inducing oxidative stress , we evaluated the effect of TRE supplementation during 284 
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porcine IVM performed either in presence (IVM A) or in absence (IVM B) of cysteine and β-285 

mercaptoethanol, molecules often added to pig IVM media as have been demonstrated to induce a 286 

reduction of ROS levels and an increase in GSH content of porcine oocyte, improving the cytoplasmic 287 

maturation of this gamete [9-13]. 288 

As a first step of this study, we investigated the biological effect of the ethanol extract TRE on 289 

nuclear maturation of pig oocytes. All the TRE concentration tested (1, 5, 10, 20 µg/ml), in both IVM 290 

A and IVM B media, did not modify the percentage of oocytes reaching MII stage. Other studies have 291 

reported similar findings after antioxidant addition during pig IVM [23-25]. It has to be stressed that 292 

the addition of cysteine and β-mercaptoethanol to the culture medium (IVM A) did not modify 293 

meiotic progression compared to IVM B, where these molecules were absent. The lack of effect of 294 

cysteine and β-mercaptoethanol on pig oocyte nuclear maturation was previously reported [11,26] 295 

even in presence of ROS production systems (xanthine + xanthine oxidase) [13]. All together, these 296 

results seems to suggest that the meiotic progression is not strongly influenced by oxidative stress.  297 

However when a very high concentration of TRE (500 µg/ml) was added to IVM A, a significant 298 

reduction in the percentage of oocytes reaching MII stage was observed (data not shown). This 299 

result agrees well with those of other authors who recorded that the polar body extrusion rate was 300 

negatively influenced in presence of high concentration of taxifolin or quercetin (50 μg/ml), plant-301 

derived flavonoids with antioxidant properties [23,27]. These results suggest the possibility of 302 

inducing, by excessive antioxidants supplementation, a dangerous condition called “antioxidant 303 

paradox” leading to “reductive stress” [28,29] that in turn may impair nuclear maturation. In fact, 304 

controlled and physiological ROS amounts seem to be required for meiotic resumption and nuclear 305 

maturation of oocytes [30-32].  306 
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The ability of oocytes to decondense sperm head and sustain male pronucleus formation after in 307 

vitro fertilization and the developmental competence of parthenotes after 7 days of in vitro culture 308 

were used as parameters of proper cytoplasmic maturation.  309 

When oocytes matured in presence of cystein and β-mercaptoethanol (IVM A) were fertilized in 310 

vitro, TRE 20 was detrimental to penetration rate possibly due to a surplus of  antioxidant molecules 311 

at the cellular level with the creation of an environment that was too reduced; in fact oocytes 312 

matured in IVM A showed a tendency, although not significant, to a decrease of ROS levels with 313 

increasing concentration of TRE. The adverse effect of TRE addition at high concentration (20 µg/mL) 314 

during maturation in IVM A was also evident after partenogenetic activation leading to a significant 315 

reduction of blastocyst rate. These results suggest a possible toxic effect of excessive amount of 316 

antioxidants and confirm the need of a proper balance between pro and antioxidant during oocyte 317 

in vitro maturation [30]. 318 

In vitro maturation of pig oocyte in absence of cysteine and β-mercaptoethanol (IVM B) did not 319 

affect the penetration rate. However maturation in IVM B halved the percentage of cytoplasmically 320 

mature oocytes, significantly reducing the percentage of oocytes able to sustain male pronuclear 321 

formation compared to IVM A group; this decrease is likely a consequence of the reduction of 322 

intracellular GSH levels and the increase of ROS, which was recorded in this study, confirming the 323 

findings obtained by other authors [9-13]. Adequate oocyte GSH levels are in fact needed in order 324 

to reduce sperm nuclear disulfide bonds that represent the first step in the induction of sperm 325 

nuclear decondensation and hence male pronucleus formation after in vitro fertilization [33]. 326 

Interestigly, while no significant differences on penetration rate were recorded, the addition of TRE 327 

at the concentrations of 1, 5, and 10 µg/ml to IVM B medium improved oocyte cytoplasmic 328 

maturation promoting male pronuclear formation. The percentages of cytoplasmically mature 329 
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oocytes, however, did not reach those of IVM A group and this result could be due to the absence 330 

in IVM B of β-mercaptoethanol and, in particular, of cystein, a required substrate for GSH syntesis 331 

in maturing pig oocytes [33]. In fact, while TRE addition at the concentration of 5, 10, 20 µg/ml to 332 

IVM B reduced intracellular ROS levels to values comparable to those found in IVM A group, TRE 5 333 

and 10 supported a level of GSH synthesis significantly higher compared to IVM B without reaching, 334 

however,  that of oocytes matured in presence of cystein and β-mercaptoethanol (IVM A). The 335 

improvement of GSH levels observed in TRE 5 and TRE 10 groups matured in IVM B was probably 336 

still insufficient to fully support the subsequent embryonic development after parthenogenetic 337 

activation as the blastocyst rate did not differ compared to IVM B group  and was significantly lower 338 

comparted to IVM A group. However when in vitro maturation was performed in IVM B in presence 339 

of 5 and 10 µg/ml TRE, a significant increase of blastomere number per blastocyst up to that of IVM 340 

A group was observed suggesting a certain beneficial effect of the extract. 341 

Irrespective of IVM medium used and TRE treatments, P4 production dramatically increased during 342 

the second half of culture, likely due to cumulus cell differentiation/luteinization [34]. In our model, 343 

TRE at all the concentration tested did not induce any effect on E2 and P4 secretion by cumulus cells 344 

after 22 and 44 hours of culture suggesting that the biological effect of the ethanol extract is not 345 

exerted thought a modulation of cumulus cell steroidogenesis. 346 

To our knowledge, the results of this study represent the first evaluation of biological activities of 347 

an ethanol extract of an oenological commercial oak-derived tannin on female gametes. TRE exerted 348 

a beneficial biological effect during oocyte maturation performed in absence of cysteine and β-349 

mercaptoethanol (IVM B) reducing intracellular ROS levels, increasing GSH levels and in turn 350 

improving cytoplasmic maturation, particularly in term of oocyte ability to promote male pronucleus 351 

formation. No positive effect of TRE supplementation was observed when maturation was 352 

performed in medium IVM A in which the presence cysteine and β-mercaptoethanol, probably 353 
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saturating oocyte’s antioxidant requirement, may have masked TRE activity. TRE addition at high 354 

concentration to IVM A, and therefore an excessive antioxidant capacity, seems even detrimental 355 

for oocyte cytoplasmic maturation underlying the importance of maintaining a balanced redox 356 

environment during oocyte maturation.  357 
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 474 

 475 

Fig. 1. Effect of TRE addition to either IVM A or IVM B on nuclear maturation. Data represent the 476 

mean ± SD of seven replicates repeated in different experiments [oocytes examined in each 477 

replicate for each experimental group: median (interquartile range, IQR) = 40 (10)]. 478 
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 485 

 486 

Fig. 2. Effect of TRE addition, at concentrations of 1, 5, 10, 20 µg/ml, to IVM A (panel A) or IVM B 487 

(panel B) on fertilization rate and monospermy rate (left panels) and on the ability of oocytes to 488 

decondense sperm head and sustain male pronucleus formation after in vitro fertilization (right 489 

panels). 490 

Data represent the mean ± SD of seven replicates repeated in different experiments [oocytes 491 

examined in each replicate for each experimental group: median (IQR) = 38 (9)]. Different letters on 492 

the same bar type represent significant difference for p < 0.05 between treatments. 493 
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 495 

 496 

 497 

 498 

Fig. 3. Effect of TRE addition, at concentrations of 1, 5, 10, 20 µg/ml to IVM A (left panel) or IVM B 499 

(right panel) on blastocyst rate and blastomere number per blastocyst after parthenogenic 500 

activation. 501 

Data represent the mean ± SD of seven replicates repeated in different experiments [oocytes 502 

examined in each replicate for each experimental group: median (IQR) = 47 (5)]. Different letters on 503 

the same bar type represent significant difference for P < 0.05 between treatments. 504 
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 511 

Fig. 4. E2 and P4 production by cumulus cells after 22 and 44 h of in vitro maturation of oocytes in 512 

IVM A (panel A) or IVM B (panel B) in absence or in presence of TRE at concentrations of 1, 5, 10, 20 513 

µg/ml. Data represent the mean ± SD of seven replicates repeated in different experiments. 514 
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 519 

Fig. 5. Box plots for intracellular ROS levels of oocytes matured in either IVM A (panel A) or IVM B 520 

(panel B) supplemented with  1, 5, 10, 20 µg/ml  of TRE. Oocytes were dyed with H2DCFDA. Central 521 

line represent median; boxes represent 25-75 percentile; whiskers represent minimum and 522 

maximum; dots represent outliers. Different letters within same graph represent significant 523 

difference for P < 0.05 between treatments. The experiment was replicated 3 times with 15-20 524 

oocytes each time. 525 

Panel C: Representative epifluorescent microphotographic images of in vitro matured porcine 526 

oocytes from the different experimental groups stained with H2DCFDA to detect intracellular ROS 527 

levels. 528 
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 534 

Fig. 6. Box plots for intracellular GSH levels of oocytes matured in either IVM A (panel A) or IVM B 535 

(panel B) supplemented with  1, 5, 10, 20 µg/ml  of TRE. Oocytes were dyed with CellTracker Blue. 536 

Central line represent median; boxes represent 25-75 percentile; whiskers represent minimum and 537 

maximum; dots represent outliers. Different letters within same graph represent significant 538 

difference for P < 0.05 between treatments. The experiment was replicated 3 times with 15-20 539 

oocytes each time. 540 

Panel C: Representative epifluorescent microphotographic images of in vitro matured porcine 541 

oocytes from the different experimental groups stained CellTracker Blue to detect intracellular GSH 542 

levels. 543 
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