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Abstract 10 

The construction sector could provide solutions for the safe utilization of industrial by-products as 11 

construction materials, if proper characterization and control of the materials properties is undertaken. Under 12 

this consideration, fines produced from marble cutting and fines produced from concrete truck washing were 13 

investigated as fine material for use in cement mortars. Both these by-products are produced in large amounts 14 

in the form of sludge. Marble Sludge Fines (MSF) and Cement Sludge Fines (CSF) were characterized in terms 15 

of fineness, density, chemical analysis and suitability for use with cement. Mortars with variable rate (10%, 16 

20% and 30%) of cement substitution with MSF or CSF were tested and compared to a reference cement 17 

mortar in respect to their fresh and hardened properties. Packing ability and viscosity were measured in fresh 18 

mortars, while strength development, water absorption and porosity were measured in hardened mortars. The 19 

results confirm the suitability of both as filler material; although MSF performed better regarding fresh mortar 20 

properties and CSF showed better results regarding strength development. 21 

 22 

Keywords: cement mortars; marble sludge fines; cement sludge fines; industrial by-products. 23 

 24 

1. Introduction  25 

By-products from industrial processes are being produced in large amounts around the world and their 26 

handling, processing and disposal is taking up considerable effort and increasing financial and environmental 27 

cost [1,2]. It is estimated that the amount of waste generated during cutting, sawing and shaping of ornamental 28 

marble accounts for 20-25% of the total marble processed [3], resulting in huge amounts of marble waste. 29 

Marble waste is either produced as large pieces that are left over in primary cutting, which find various uses 30 

as aggregates [4,5]; or as fine material produced in wet condition from sawing and shaping, named marble 31 

powder, marble dust or marble sludge fines (MSF), which is being investigated as filler for construction 32 

applications [6–8]. Concrete production, on the other hand, is also generating large amounts of waste; 33 

depending on local practices, it is estimated that 1~9% of fresh concrete is returned to the concrete batching 34 

plant [9]. This accounts for huge amounts of waste as the annual global consumption of concrete exceeds 10 35 

billion tons [10]. The returned fresh concrete has several possible uses, including immediate recycling or use 36 

as a source for recycled concrete aggregates [11–13], however, the material adhered to the inside of the barrel 37 

is washed and stored in sedimentation tanks, as it has high alkalinity [14]. The alkaline water from the 38 

sedimentation tanks finds some use replacing fresh water in concrete production [15–17] and the remaining 39 

material, named cement waste slurry or cement sludge fines (CSF) finds little or no use. 40 

Both MSF and CSF consist of fine particles and are produced in wet condition, which makes handling 41 

and processing more difficult, since some processing is usually required prior to transportation or use [18]. 42 
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Their use as fine material, however, could provide an alternative for the construction industry, which consumes 43 

considerable amounts of filler material from natural sources [19]. Relevant literature from Corinaldesi et al. 44 

[20] reported that marble powder showed the filler effect that improves early age strength in mortars and 45 

recommended 10% as optimum cement substitution rate. Hameed et al. [21] found that marble sludge fines 46 

used as filler in self-compacting concrete decreased viscosity and improved segregation resistance, suggesting 47 

a limited use of 15% by total powder weight. Omar et al. [22] used marble powder as sand replacement in 48 

concrete and verified its filler effect, while they also reported a strength increase at 15% sand replacement rate. 49 

Aliabdo et al. [23] tested marble dust as cement or as sand replacement at various rates up to 15% wt. and 50 

confirmed its compatibility for use with cement, while they reported a decrease in cement mortar and concrete 51 

strength when MSF was used as cement replacement and an increase in concrete strength when MSF was used 52 

as sand replacement. Ulubeyli et al. [24] used the waste marble in the conventional concrete as binder or 53 

fine/coarse aggregate and it positively affected properties of hardened concrete, whereas in self-compacting 54 

concrete, the increase of waste marble replacement ratios decreased its mechanical properties. Sardinha et al. 55 

[25] studied the durability of concrete with MSF as cement replacement and reported that it generally decreased 56 

with increased MSF use, while at low replacement levels (5%) the durability reduction could be offset with 57 

the use of superplasticizers. It must be noted though, that the authors used a rather coarse MSF, with only 27.5% 58 

passing through the 125 μm sieve. Mashaly et al. [26] used MSF sized below 100 μm as cement replacement 59 

in concrete and reported an increase in water demand and also an increase in mechanical strength at 60 

replacement rates up to 20%. 61 

The research on CSF properties and utilization is clearly more limited: Zervaki et al. [27] found an 62 

improvement in compressive strength of mortars when untreated CSF was used, without any removal of its 63 

free water content. However, when it exceeded a certain concentration, it led to loss of workability. Moreover, 64 

dry de-agglomerated CSF, when used in mortars as a cement replacement at 2% ratio, caused a slight 65 

improvement in compressive strength, due to the filler effect. In higher replacement ratios a slight decrease of 66 

compressive strength was detected. Audo et al. [28] tested the incorporation of CSF plants as limestone fillers 67 

in mortars and reported a decrease in the workability of the fresh mortar and a variability in the compressive 68 

strength of the hardened mortars, between -30% and +17%, compared to the reference. Hossain et al. [29] 69 

reported that the concrete slurry waste generated from ready-mixed concrete plants is classified as a corrosive 70 

hazardous material and used the accelerated carbonation technique in order to produced hardened products. 71 

Correia et al. [30] replaced natural fine aggregates with the fresh concrete waste (FCW). The recycled new 72 

concretes were in various water/cement ratios and the results showed that the fresh concrete workability 73 

worsened with the increase in FCW content but the water absorption (5–10 wt.%), 7-day compressive strength 74 

(26–36 MPa) and 28-day compressive strength (32–44 MPa) remained within the specified ranges.  75 

Following existing literature, the present study attempts to properly introduce MSF and CSF in cement-76 

based mortars as supplementary cementitious materials. The fineness of the two by-products shows that their 77 

optimal use would be as cement-replacement fillers, provided that they are suitable for such a use. Hence, 78 

material characterization is carried out firstly, followed by testing cement mortars with cement replacement 79 

rates of up to 30%. The suitability for use as filler is investigated by a series of physical and analytical tests, 80 

including fineness determination and chemical analysis. Regarding mortars, 10%, 20%, and 30% wt. cement 81 

replacement rates were chosen for both materials, as these rates are sufficient to describe the effect of filler use 82 

with cement. Since the fresh mortar properties were expected to be affected, workability, viscosity and packing 83 

ability were determined, while the hardened properties investigated were compressive and flexural strength at 84 

various ages, water absorption and porosity. The two by-products show some similarities and the research aims 85 

also at comparing their effectiveness as fillers for cement mortar production, while pointing out any potential 86 
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advantages or disadvantages from their use. 87 

 88 

2. Materials and methods 89 

2.1 Materials characterization 90 

In this study, Portland cement CEM I 42.5 N, produced according to EN-197-1 was used as reference. 91 

The industrial by-products (MSF and CSF) were received in wet condition, both containing about 40% water. 92 

Although the two by-products could be used as received and, therefore, avoid the cost and energy for drying, 93 

it was decided at first to use them in dry condition for two reasons; Firstly, because transportation of 94 

construction materials in wet condition is usually more costly and, secondly, because the granulometry of the 95 

dried material can be controlled more easily by crushing and sieving. In order to achieve uniformity for testing, 96 

MSF and CSF were air-dried at 40°C until constant mass and then they were crushed and sieved in order to 97 

obtain fines of grain size less than 0.075 mm. The particle size distribution of all the materials used was then 98 

measured using a Malvern Mastersizer 2000 laser particle size analyzer. 99 

 100 

In order to determine the suitability of MSF and CSF for use with cement, a series of characterization 101 

tests was carried out. The chemical composition of MSF, CSF and of the reference CEM I 42.5 N cement used 102 

were determined using Atomic Absorption Spectroscopy (AAS), as total oxides of metals by digestion using a 103 

mixture of concentrated acids, AAnalyst 400, Perkin Elmer. Loss on ignition (L.I. %) was determined at 104 

1000 °C. Additionally, their water-soluble salts were determined using Ionic Chromatography, as anions of 105 

salts extracted with distilled water and then filtered, Dionex, while simultaneous Differential Thermal – 106 

Thermogravimetric Analysis (DTA-TG),  SDT 2960 TA Instruments, was used for the determination of the 107 

calcium carbonate (CaCO3) content of MSF and CSF, under a N2 atmosphere from 10 °C to 1000 °C. The 108 

apparent specific density of the fines used was determined using a Le Chatelier flask according to ASTM 109 

C188-14 [31], while their mineralogical composition was determined using a PW 1840 Philips diffractometer 110 

(XRD). Since the test materials were tested as cement replacement materials, it was decided to measure their 111 

effect on setting time and expansion of ordinary cement according to EN 196-3 [32]. For this reason, seven 112 

cement pastes of standard consistence were prepared; one using 100% CEM I 42.5 N; three 10%, 20% and 30% 113 

MSF w/w as cement replacement; and three using 10%, 20% and 30% CSF w/w as cement replacement. As 114 

the replacement of cement with alternative binders may alter water retentivity and workability, the water 115 

required for standard consistence was recorded. 116 

 117 

2.2 Design of experimental testing on mortars 118 

Test mortars were prepared in the laboratory, by using 1 part binder; 3 parts sand; and 0.5 parts water. All 119 

mortar mixtures were prepared with CEM I 42.5 N cement and natural siliceous river sand conforming to 120 

ASTM C33/C33M-13 [33]. MSF and CSF were used as cement replacement at rates of 10%, 20%, and 30%, 121 

resulting in seven different mortars, according to Table 1.  122 

 123 

Table 1. Constituents of test mortars. 124 

Constituents 

[g] 
R (Reference) M10 M20 M30 C10 C20 C30 

CEM I 42.5 450 405 360 315 405 360 315 

MSF 0 45 90 135 0 0 0 

CSF 0 0 0 0 45 90 135 
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Water 225 225 225 225 225 225 225 

Sand 1350 1350 1350 1350 1350 1350 1350 

Superplasticizer (% of 

total binder) 
0.5 0.5 0.6 0.6 0.8 1.0 1.2 

 125 

The water to binder ratio was selected to be constant at 0.50, in order to properly assess the effect of 126 

cement replacement on strength. Therefore, a polycarboxylate-based superplasticizer was used in varying rates, 127 

in order to achieve similar consistence for all fresh mixtures. The required consistence was 150 ± 10 mm 128 

diameter at the flow table test, according to EN 1015-3 [34]. The amount of superplasticizer required in order 129 

to achieve the required consistence served also as an indication of water retentivity of MSF and CSF, as well 130 

as a measure of their effect on workability. An ICAR rheometer was used in order to determine the plastic 131 

viscosity of the fresh mortars using the Bingham model [35,36].  132 

Since MSF and CSF have similar or finer particle size distribution than cement, their effect on packing 133 

of the wet mortar was investigated. The wet packing method proposed by Wong and Kwan [37] was followed, 134 

by measuring the weight of the compacted fresh mortar in a reference mould and then by calculating the solid 135 

concentration φ of the granular material according to equations (1) and (2). 136 
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in which Vc is the solid volume of the solid materials used, M and V are the mass and volume, respectively, of 139 

the wet mortar in the reference mould ρw, ρc, ρmsf, ρcsf, ρs are the densities of water, cement, MSF, CSF and sand, 140 

respectively, uw is the water ratio, equal to the water to cementitious ratio by volume, and Rc, Rmsf, Rcsf and Rs 141 

are the volumetric ratios of cement, MSF, CSF and sand, respectively. 142 

After mixing, the 40 x 40 x 160 mm specimens were cast, compacted and cured in an environmental 143 

chamber, at 20°C ± 2°C and 95% ± 5% relative humidity until testing. Compressive strength was measured at 144 

3, 7 and 28 days, while flexural strength, porosity, capillary absorption and apparent specific density were 145 

measured at 28 days. The porosity measurement was conducted according to RILEM CPC 11.3 [38], in which 146 

the specimens were submerged in the water under vacuum and capillary tests were performed according to EN 147 

1015-18 [39]. 148 

 149 

3. Results and discussion 150 

3.1 MSF and CSF properties 151 

The particle size distribution of cement, MSF, CSF and natural sand can be seen in Figure 1. The natural 152 

sand used showed a gradation of 50 to 4000 μm, while the three binders were considerably finer; MSF shows 153 

grain sizes of 0.5 to 80 μm, CSF was sized 0.5 to 400 μm, while cement ranges from 3 to 80 μm. Overall, MSF 154 

seems to be finer than cement, while CSF is of similar average fineness, but has a broader range of grain sizes. 155 

When MSF and CSF are used for cement substitution in mortars, the difference in particle size distribution is 156 

expected to have an effect on the workability and packing ability of the produced mortars. 157 

 158 
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 159 

Figure 1. Particle size distribution of the materials used. 160 

 161 

The apparent specific density CEM I 42.5 N, MSF and CSF was measured 3140 kg/m3, 2443 kg/m3 and 162 

2556 kg/m3, respectively, according to ASTM C188-14 [31], while the apparent specific density of the natural 163 

sand was measured 2636 kg/m3, according to ASTM C128-15 [40]. The chemical analysis of CEM I 42.5 N, 164 

MSF and CSF are shown in Table 2. MSF consists mostly of calcium in the form of calcite (Figure 2), which is 165 

expected, because it originates from limestone marble sawing. Its chemical composition is similar to that of 166 

limestone filler [41] and the high loss of ignition accounts for its carbonate content, which reaches 98.3% wt. (Figure 167 

4).  168 

 169 

Table 2. Chemical composition of binders (% w.t.) 170 

 171 

CSF showed a very similar chemical composition to that of MSF and the siliceous content originating from 172 

cement hydrates was probably excluded in the sieving process. Crushing and sieving of CSF and MSF was 173 

used to release more fine material from brittle agglomerates, rather than reduce the whole fraction 174 

below 75 μm, which would be more costly. As a result, the harder compounds in CSF were not crushed 175 

and were also probably retained in the 75 μm. Both alternative fine materials had low salts contents and are 176 

suitable for cement substitution in this respect. CSF originally consists mostly of hardened cement paste and fine 177 

limestone aggregates; therefore, its CaO and SiO2 contents were not expected to be reactive. The XRD diagram 178 

(Figure 3) shows that the mineralogical composition of CSF was mainly calcite. Also, an absence of C3S and 179 

traces of C2S peaks were observed. The latter may indicate full hydration of the sludge. Also, a strength 180 

development test with lime according to ASTM C593-95 [42] showed minimal strength development at 28 181 

days (<0.50 MPa), which implies that there is no significant pozzolanic activity from CSF. The high value of 182 

loss on ignition (L.I. %) can be attributed to the bonded water proportion and CO2 quantity that was emitted from 183 
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the sample. Indeed, according to the DTA-TG analysis (Figure 5), the loss of volatile compounds (green line of the 184 

diagram) accounted 29.8% for the loss of carbon dioxide, CO2, and 0.4741% (or 0.18 w.t.%) for the dihydroxylation 185 

of portlandite, Ca(OH)2. The presence of a high amount of CaCO3 (67.77 wt%.) was also verified. 186 

The results of the analytical tests imply that both MSF and CSF are fine materials without any hydraulic 187 

or pozzolanic properties. The fact that they can be easily crushed and sieved through the 75 μm implies a 188 

probable use as filler materials. Regarding handling and processing, it would be preferable to use MSF and 189 

CSF in their original wet condition in order to avoid the drying process; however, further research is required 190 

in this direction. 191 

 192 

Figure 2. XRD diagram of MSF, where C: calcite. 193 

 194 

Figure 3. XRD diagram of CSF, where C: calcite. 195 

 196 
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 199 
Figure 4. Differential thermal–thermogravimetric analysis (DTA-TGA) analysis of MSF and 200 

quantification of calcite content as a percentage by mass of sample. 201 

 202 

 203 

 204 

 205 
Figure 5. Differential thermal–thermogravimetric analysis (DTA-TGA) analysis of CSF and 206 

quantification of calcite content as a percentage by mass of sample. 207 

 208 

 209 

From the results of Table 3, it seems that cement substitution with MSF does not alter water 210 

requirement significantly, while the initial setting time increased slightly at 10% substitution, but the 211 

effect diminished at higher replacement rates. Despite an increased value for 20% replacement, which is 212 

way below the threshold value of 10 mm according to EN 196-3, MSF use also does not produce 213 

considerable expansion in the cement pastes. CSF use on the other hand, seems to increase the water 214 
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requirement for standard consistence, which explains the increased superplasticizer used in the mortars 215 

with CSF in Table 1, in order to have the same workability of fresh mortars. The initial setting time 216 

increased slightly with increased CSF use, but still way below the maximum allowed increase value of 217 

120 min according to EN 206-1 [43], while Le Chatelier soundness remained unchanged with increased 218 

CSF use. The variations in initial setting time can be explained by the different coarseness and surface 219 

hardness of the grains of MSF and CSF, in respect to the filler effect. 220 

 221 

Table 3. Effect of cement replacement with MSF or CSF on setting time and soundness of pastes. 222 

Constituents 

[% of binder] 
Reference MSF10 MSF20 MSF30 CSF10 CSF20 CSF30 

CEM I 42.5 100% 90% 80% 70% 90% 80% 70% 

MSF 0 10% 20% 30% 0 0 0 

CSF 0 0 0 0 10% 20% 30% 

Water/binder for 

standard consistence 
0.296 0.298 0.300 0.296 0.314 0.360 0.376 

Initial setting time 

[min] 
187 207 191 182 199 203 204 

Le Chatelier soundness 

[mm] 
1.2 0.9 2.7 0.4 1.0 0.5 1.1 

 223 

3.2 Results from testing mortars 224 

3.2.1 Fresh mortar properties 225 

As it can be seen from Table 1 and already commented in the previous paragraph, CSF use required an 226 

increased amount of superplasticizer in order for the mortar to reach the required workability. Regarding plastic 227 

viscosity resulting from the Bingham model and packing ability as expressed by solid concentration φ, of the 228 

fresh mortars, the results are presented in Table 4. 229 

 230 

Table 4. Viscosity and packing ability measurements in fresh test mortars. 231 

Test mortars reference M10 M20 M30 C10 C20 C30 

Plactic viscosity (Pa.s) 7.9 - 6.7 14.2 3.9 15.7 27.7 

Solid concentration φ 0.694 0.718 0.726 0.732 0.694 0.703 0.700 

 232 

 The results show that a high replacement rate of cement would render the fresh mortar more viscous, 233 

compared to the reference. Although M10 did not yield reliable result, at lower replacement rates (up to 20% 234 

for MSF and 10% for CSF) viscosity seems to decrease compared to the reference. A certain level of viscosity 235 

is required for the mortars to be easily compacted, but in other cases, a higher viscosity serves as resistance to 236 

segregation in highly flowable mortars. Although both test materials alter viscosity, MSF seems to produce 237 

mortars of lower viscosity compared to CSF. This can be attributed to the increased fineness of MSF compared 238 

to CSF. Indeed, the fineness of MSF contributes also to a higher packing, as expressed by the increase in solid 239 

concentration compared to the reference mortar, which increases proportionally to the rate of MSF use. CSF 240 

on the other hand, does not alter solid concentration significantly, owing to the similar particle size distribution 241 

to cement, as shown already in Figure 1.  242 

  243 

3.2.2 Hardened mortar properties 244 
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Regarding mortar strength development, increasing MSF use results in reducing compressive strength 245 

(Figure 6), however at 10% cement replacement rate, mortars with MSF exhibit 98.0% and 91.7% of the 246 

reference compressive strength at 7 and 28 days, respectively. The early age strength development of mortars 247 

with MSF may be attributed to the filler effect. 248 

 249 

 250 

Figure 6. Compressive strength development of cement mortars with MSF. 251 

  252 

 When CSF was used as 10% cement replacement, no reduction in strength development was observed 253 

(Figure 7). By increasing the rate of cement replacement, compressive strength decreased, but at 20% CSF use 254 

the mortars reached 93.8% and 94.5% of the reference compressive strength at 7 and 28 days, respectively. 255 

Although the filler effect also explains early strength development, CSF seems to perform better compared to 256 

MSF regarding cement hydration. This occurrence could be attributed to the considerably higher alkalinity of 257 

CSF (pH = 12.1), compared to MSF (pH = 9.7), which facilitates cement hydration. When a filler is added in 258 

a certain percentage, it influences the pH value of the binders in the pore solution. If the pH is reduced, this 259 

affects the hydration and as a result the compressive strength [44]. 260 

 261 
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Figure 7. Compressive strength development of cement mortars with CSF. 263 

 264 

 Flexural strength on the other hand, reduced in all cases, and the reduction was proportional to cement 265 

replacement (Figure 8). The flexural strength ranged from 88.3% of the reference for 10% MSF use to 67.6% 266 

of the reference for 30% CSF use. This indicates that the interfacial transition zone between the cement matrix 267 

and the aggregate, deteriorated when the industrial by-products where used and the deterioration can be 268 

attributed to the surface characteristics and water absorption of the MSF and CSF particles. Indeed, CSF, which 269 

showed increased water retentivity at the mortar production stage, showed higher decrease in flexural strength 270 

development.  271 

 272 

Figure 8. 28-day flexural strength of cement mortars with MSF or CSF. 273 

 274 

The capillary absorption and porosity results shown in Table 5 validate the above statement, since mortars 275 

with CSF show increased absorption, porosity and capillary coefficient, compared to mortars with MSF. The 276 

reference mortar shows the lowest values in these three tests, while increasing cement replacement increases 277 

absorption and porosity values proportionally. In addition, the apparent specific density of the mortars reduced 278 

with increased cement replacement, as expected, but CSF use reduced density more than MSF, despite having 279 

itself higher density compared to MSF. This also implies that CSF use resulted in more voids in the cement 280 

matrix and can be attributed to the coarser granulometry and higher water retentivity of CSF compared to MSF. 281 

 282 

Table 5. Physical properties of mortars with MSF and CSF. 283 

Constituents Reference M10 M20 M30 C10 C20 C30 

Apparent specific 

density [kg/m3] 
2152 2068 2074 2065 2056 2062 2030 

Absorption [%] 1.6 2.8 2.7 3.8 3.2 5.0 4.4 

Porosity [%] 3.5 5.9 5.5 7.8 6.6 10.3 9.0 

Capillary coefficient  

c [g/cm2 *min1/2] 
0.043 0.057 0.066 0.103 0.088 0.112 0.122 

 284 

4. Conclusions 285 

The results show that the two by-products (MSF and CSF) share considerable similarities; they have 286 
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similar chemical composition, consisting mostly of calcium carbonate; they are both largely inert; and their 287 

fineness renders their most probable use as fillers. In addition, they are both produced in wet condition and 288 

require similar processing and handling prior to use (drying, crushing, sieving). MSF and CSF, when 289 

investigated as supplementary cementitious materials by replacing cement in mortars, also showed some 290 

differences that must be taken into account. MSF was finer, had lower water retention than CSF, and therefore 291 

provided better packing ability, resulting in lower absorption and porosity of the hardened mortar; CSF on the 292 

other hand showed higher compressive strength values compared to MSF, when used as 10%, 20% or 30% wt. 293 

cement replacement, probably owing to its higher alkalinity. 294 

Based on the results, it seems that both MSF and CSF can be used as filler for cement replacement in 295 

mortars, since their intrinsic properties, including fineness, chemical composition and reactivity seem adequate 296 

for such a use, while the strength reduction obtained is reasonable. Further research is required, of course, 297 

regarding utilization in wet condition and quality control of the materials.  298 
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