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 28 

Abstract  29 

Coordinated and synchronous virological surveillance for zoonotic viruses in both human 30 

clinical cases and animal reservoirs provides an opportunity to identify interspecies virus 31 

movement. Rotavirus is an important cause of viral gastroenteritis in humans and animals. We 32 

have documented the rotavirus diversity within co-located humans and animals sampled from the 33 

Mekong delta region of Vietnam using a primer-independent, agnostic, deep sequencing approach. 34 

A total of 296 stool samples (146 from diarrhoeal human patients and 150 from pigs living in the 35 

same geographical region) were directly sequenced, generating the genomic sequences of 60 36 

human rotaviruses (all group A) and 31 porcine rotaviruses (13 group A, 7 group B, 6 group C and 37 

5 group H). Phylogenetic analyses showed the co-circulation of multiple distinct rotavirus group A 38 

(RVA) genotypes/strains, many of which were divergent from the strain components of licensed 39 

RVA vaccines, as well as considerable virus diversity in pigs including full genomes of rotaviruses 40 

in groups B, C and H, none of which have been previously reported in Vietnam. Furthermore the 41 

detection of an atypical RVA genotype constellation (G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1) in a 42 

human patient and a pig from the same region provides some evidence for a  zoonotic event. 43 

 44 

INTRODUCTION  45 

Rotavirus (RV) infections are the leading cause of acute gastroenteritis globally, with a 46 

disproportionally greater morbidity and mortality in developing countries of Asia and sub-Saharan 47 

Africa (1, 2). RV can infect humans and different animal species and is considered, in part, a 48 

zoonotic disease in humans (3). Rotavirus zoonotic infections and transmissions, have been 49 

shown with animal strains moving into humans via direct contact with animals or exposure to 50 

environmental contamination (4–6), and present a challenge to infection control and management. 51 

RV is a non-enveloped double-stranded RNA virus forming the single genus Rotavirus in the 52 

Reoviridae family, with a 18.5 kb genome of 11 segments encoding six structural (VP1-4, VP6 and 53 

VP7) and five or six non-structural proteins (NSP1-NSP5/6) (3, 7). RVs are classified into eight 54 
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established groups (A –	
   H) and a new tentative group (I) based on the genetic and antigenic 55 

differences of VP6, with viruses of group A, B, C and H known to infect both humans and other 56 

animals (8, 9).  57 

Within each rotavirus group, strains are distinguished and classified into G and P 58 

genotypes based on VP7 surface glycoprotein and VP4 spike protein, respectively (3). For 59 

rotavirus group A (RVA), at least 27 G and 37 P types have been detected in human and animals, 60 

with typical combinations of G-types (G1-G4, G9, G12) and P-types (P[4], P[6], P[8]) found in 61 

human infections globally, and different combinations of G- and P-types (G3-G5, G9, G11, P[6], 62 

P[7], P[13]) commonly found in pigs (6, 10–13). With considerable more sequence data available 63 

for RVA as compared to non-RVA strains, a genotype classification system based on 11 genomic 64 

segments is recommended for RVA, providing genomic insights into genotype constellations of 65 

both common and novel human and animal RVA strains (14). In this RVA genotyping system, Gx-66 

P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx represents the genotypes of VP7-VP4-VP6-VP1-VP2-VP3-67 

NSP1-NSP2-NSP3-NSP4-NSP5 segments, with the most prevalent human strains belonging to 68 

constellations of Wa-like (I1-R1-C1-M1-A1-N1-T1-E1-H1, commonly associated with G1P[8], 69 

G3P[8], G4P[8], G9P[8], G12P[8]) and DS-1-like (I2-R2-C2-M2-A2-N2-T2-E2-H2, commonly 70 

combined with G2P[4]) (14, 15). Using this system, a common origin has been proposed between 71 

the human Wa-like and porcine strains (16). Such an elegant whole genome genotyping system 72 

has not yet been established for non-RVA groups. 73 

Determining the sequence of the 18.5kb segmented genome for rotaviruses by standard 74 

methods can be biased and cumbersome, requiring an initial PCR step to identify and select 75 

primers specific for the RV genogroup and/or strain, with the 11-segment genome providing an 76 

additional complication for primer design. Such primer-based sequencing strategies can be further 77 

complicated by reassortment possibilities not predicted by the initial PCR typing, leading to 78 

sequencing failure of atypical and un-typeable RV strains whose frequency can vary by location, 79 

season and environment (10, 17–21). Next-generation sequencing has been recently employed for 80 

whole-genome sequencing of RVA with initial 11 PCR amplifications (22–24); however, a single 81 
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robust platform for whole-genome deep sequencing of multiple rotavirus genogroups without prior 82 

genotype information would be useful. Routine identification of circulating RVA can be performed 83 

using commercial enzyme immunoassay kits (based on inner capsid protein VP6) and RT-PCR 84 

diagnostic and genotyping assays (based on outer capsid proteins VP4 and VP7) (3, 25). In 85 

addtion, specific, rapid and cost-effective assays are lacking for the detection of less common 86 

rotaviruses such as viruses in group B, C and H (RVB, RVC, RVH), hindering our understanding of 87 

molecular epidemiology of these viruses and challenging efforts of genomic sequencing, 88 

particularly in resource-limited countries (3, 25).  89 

The rotavirus vaccines (Rotarix and RotaTeq) have been available since 2006 (26, 27), and 90 

offer a variable degree of protective immunity against human RVA infections. Reduced RVA 91 

vaccine efficacy has been observed in resource-limited countries in comparison to developed 92 

countries (28–31). The mechanism responsible for reduced vaccine efficacy in these settings is 93 

unclear, but may in part be due to local circulation of genetically and antigenically divergent RVA or 94 

zoonotic strains in developing countries (10). Similar to other segmented viruses (32), genetic 95 

reassortment has been observed in RVs yielding significant genetic diversity, including a number 96 

of cross-species reassortants (3, 4, 25). Hence, assessment of all 11 genome segments through 97 

full virus genome sequencing is essential for monitoring the overall RV genomic diversity, complex 98 

evolutionary dynamics and the emergence of novel and zoonotic reassortants that may 99 

compromise vaccine protection (11, 14, 15).  100 

Vietnam is a low to middle income country located in Southeast Asia and is considered one 101 

of the global hot spots of emerging infectious diseases (33). Diarrhoea is the fourth most common 102 

cause of mortality in children <5 years of age, accounting for 12% of deaths in this age group in 103 

2013 (34). Among all diarrhoeal pathogens, RVA is responsible for 44% - 67.4% of all childhood 104 

diarrhoea cases requiring hospitalisation (35–48). Contrary to the clinical and public health 105 

importance, vaccination against RVA is currently not part of the Extended Program on 106 

Immunisation for Vietnamese infants. Additionally, diagnosis for rotaviruses in diarrhoeal cases in 107 

humans and animals is not routinely performed and systematically genomic surveillance of 108 
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circulating human and animal rotaviruses is limited. This leads to relatively little data on the overall 109 

rotavirus prevalence and diversity in human and animal populations and their contribution to 110 

human infections and their potential to compromise RVA vaccine protection. Given the tropical 111 

climate of Vietnam prone to flooding, the  frequent close human-animals living proximity and high 112 

prevalence of infectious diseases, we hypothesized that rotavirus zoonosis may occur in the region  113 

but is under-investigated and under-characterised. There is no report on the overall prevalence of 114 

other RVs (non-RVA) in both humans and animals in this region. To address this knowledge gap, 115 

we used focused sampling within human healthcare and animal farming populations, combined 116 

with high-throughput primer-independent direct genome sequencing from clinical materials (49) to 117 

document rotavirus diversity and transmission within and between humans and animals in a region 118 

of Vietnam.  119 

 120 

MATERIALS AND METHODS  121 

Study setting and design. Human and porcine faecal samples were collected from Dong Thap, a 122 

peri-urban province located in the south of Vietnam in the Mekong Delta region (see map, 123 

Supplementary Figure S1). The human subjects were diarrhoeal patients (N = 146) admitted to 124 

Dong Thap Provincial Hospital in the period from October 2012 to January 2014; a stool specimen 125 

was collected from each individual within 24 hours of hospital admission to avoid confounding by 126 

nosocomial infections. A total of 150 porcine faecal samples were randomly selected from a 127 

collection of porcine stool samples from pig farm baseline surveillance samples collected across 128 

the same province from January 2012 to April 2013. For 4 pigs in farms where no faecal 129 

specimens were obtained, a boot swab was collected (pig ID 12087_38, 14152_6, 14150_53 and 130 

14250_12). All collected faecal samples were stored in aliquots at -800C until further processing. 131 

Ethical approval for the study was obtained from the Oxford Tropical Research Ethics Committee 132 

(OxTREC Approval No. 15-12) (Oxford, United Kingdom), the institutional ethical review board of 133 

Dong Thap Provincial Hospital (DTPH) and the Sub-Department of Animal Health Dong Thap 134 

province (Dong Thap, Vietnam).  135 

 136 
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Mapping of the patient residential and pig farm addresses. The residential district centroid was 137 

recorded for enrolled human patients to maintain participant anonymity, while the exact 138 

geographical location was recorded for the pig farms using an eTrex Legend GPS device (Garmin, 139 

United Kingdom). The decimal degrees of latitude and longitude were entered in a confidential 140 

database and kept separate from patient metadata so that patient identities could not be revealed 141 

based on the residence locations. These addresses were then validated in Google Earth Pro 142 

(https://www.google.com/earth/) and finally visualised in QGIS v2.2.0 (http://www.qgis.org/en/site/) 143 

overlaid with province-specific geographic data. 144 

 145 

Sample preparation and nucleic acid extraction. Total nucleic acid extraction was performed as 146 

previously described (49–51). Briefly, 110 μL of a 50% stool suspension in PBS was centrifuged for 147 

10 minutes at 10,000 X g. Non-encapsidated DNA in the samples was degraded by addition of 20 148 

U TURBO DNase (Ambion). Virion-protected nucleic acid was subsequently extracted using the 149 

Boom method (52). Reverse transcription was performed using non-ribosomal random hexamers 150 

(53) that avoid transcription of rRNA, and second strand DNA synthesis was performed using 5U 151 

of Klenow fragment 3’-5’ exo- (New England Biolabs). Final purification of extracted nucleic acids 152 

was performed with phenol/chloroform and ethanol precipitation. 153 

 154 

Library preparation and sequencing. Standard Illumina libraries were prepared for each sample. 155 

In short, nucleic acids in each sample were sheared to 400-500 nt in length, each sample's nucleic 156 

acid was separately indexed and samples were multiplexed at either 7 samples per MiSeq run or 157 

96 samples per HiSeq 2500 run, generating 2-3 million 149 nt (MiSeq) or 250 nt (HiSeq) paired-158 

end reads per sample.  159 

 160 

De novo assembly and identification of viral genomes. Raw sequencing reads were filtered to 161 

remove low quality reads (Phred score >35) and trimmed to remove residual sequencing adapters 162 

using QUASR (54). The reads were assembled into contigs using de novo assembly with SPAdes 163 
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(55) combined with sSpace (56). RV-encoding contigs and other mammalian virus contigs were 164 

identified with a modified SLIM algorithm (49) combined with ublast (57). Coverage was 165 

determined for all contigs harvested to filter any process contamination sequences in each run, 166 

followed by additional filtering for minimum contig size cutoff (300 nt). Partial but overlapping 167 

contigs were joined into full-length sequences using Sequencher (Gene Codes Corporation, USA), 168 

and any ambiguities were resolved by consulting the original short reads. Final quality control of 169 

genomes included a comparison of the sequences, open reading frames (ORFs) and the encoded 170 

proteins with reference sequences retrieved from GenBank. 171 

 172 

Genotyping and phylogenetic reconstruction. Assembled RVA sequences were genotyped 173 

using the online genotyping tool, RotaC v2.0 (http://rotac.regatools.be) (58), according to the 174 

guidelines for precise RVA classification using all 11 genomic segments (11). The resulting RVA, 175 

RVB, RVC and RVH sequences were combined with additional full-length or nearly full-length 176 

sequences from previous Vietnamese studies (if available) and global representatives retrieved 177 

from GenBank. The complete genomes from the vaccine components of the monovalent vaccine 178 

Rotarix (59) and the pentavalent vaccine RotaTeq (60) were retrieved from GenBank for 179 

phylogenetic reconstructions of all 11 RVA segments. Sequences were aligned using MUSCLE 180 

v3.8.31 (61) and manually checked in AliView (62); aligned sequences were trimmed to complete 181 

ORFs for subsequent analyses. Evolutionary model testing was implemented in IQ-TREE v3.10 182 

(63) using the Akaike Information Criterion (AIC) to determine the best-fit models of nucleotide 183 

substitution for all genomic segments. Maximum likelihood (ML) phylogenetic trees were then 184 

inferred in IQ-TREE v3.10 with 500 bootstrap replicates under the best-fit model of evolution 185 

according to AIC (Supplementary Table 1 summarised the models determined for all segments). 186 

Resulting trees were visualised and edited using FigTree v1.4.2 187 

(http://tree.bio.ed.ac.uk/software/figtree/). Genetic distances (p-uncorrected) were estimated using 188 

Geneious v9.0.4 (Biomatters Ltd).  189 

 190 
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Bayesian analysis for RVA NSP3 genotype T7. Available RVA sequences of T7 type (NSP3 191 

segment) retrieved from GenBank and new sequences obtained in this study were aligned using 192 

MUSCLE v3.8.31 (61), manually checked in AliView (62), and trimmed to complete ORF. A 193 

maximum likelihood phylogenetic tree was constructed under the GTR+Γ4 model of substitution in 194 

IQ-TREE v3.10 (63). The molecular clock model was assessed in Path-O-Gen v1.4 195 

(http://tree.bio.ed.ac.uk/software/pathogen/), assessing the linear regression between root-to-tip 196 

divergence and the date of sampling (year; as data on day and month were not available for 197 

GenBank sequences). A Bayesian Markov chain Monte Carlo (MCMC) approach was then 198 

performed in BEAST v1.8.0 (64) with three independent chains, using relaxed lognormal molecular 199 

clock under HKY85+Γ4 substitution model with a Bayesian SkyGid population process for 100 200 

million generations chain with sampling performed every 10,000 runs. These triplicate runs were 201 

then combined using LogCombiner v1.8.0 (available within the BEAST package) with a removal of 202 

10% burn-in, and analysed in Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/) to ensure all 203 

parameters had converged with effective sample size (ESS) values >200 and to estimate the mean 204 

evolutionary rates across branches. Maximum clade credibility trees were annotated using 205 

TreeAnnotator v1.8.0 (BEAST) and visualised in FigTree v1.4.2.  206 

 207 

Bayesian analysis for RVH VP6 gene. A maximum likelihood phylogenetic tree was inferred for 208 

all available RVH VP6 sequences retrieved from GenBank (N=39) and from this study (N=5) under 209 

the GTR+Γ4 model of substitution in IQ-TREE (63). A time-scaled phylogeny was inferred for 210 

sequences within the porcine lineage. Highly similar sequences were removed before running 211 

Bayesian analyses (strains BR59, BR60, BR61, BR62, BR63, NC7_64_3, OK5_68_10). The 212 

molecular clock model was assessed in Path-O-Gen, and a Bayesian MCMC approach was then 213 

performed on the final set of sequences in BEAST (64), employing a relaxed lognormal molecular 214 

clock under HKY8+Γ4 substitution model with a non-parametric Guassian Markov Random Fields 215 

(GMRF) Bayesian Skyride population with tip dates defined as year, month, day of strain 216 

collection. Analyses were run in triplicate for 50 million generations with sampling performed every 217 
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5,000 generations. Triplicate runs were combined using LogCombiner with a removal of 10% burn-218 

in, followed by analyses in Tracer, TreeAnnotator and FigTree as outlined in the aforementioned 219 

section.  220 

 221 

GenBank accession numbers. All sequences generated in this study were deposited into 222 

GenBank under accession numbers KX362367 – KX363442. Illumina raw read sets are available 223 

at the European Nucleotide Archive under submission ERR471259 - ERR477293, ERR689707 - 224 

ERR767572, ERR775471 - ERR780002, ERR780013 - ERR780019, ERR956666, ERR956667, 225 

ERR962074, ERR1300950 - ERR1301100.	
  226 

 227 

RESULTS  228 

Overall diversity of rotaviruses in human and pigs 229 

 Sequencing of human enteric samples from acute diarrhoeal patients admitted to Dong 230 

Thap Provincial Hospital from 2012-2014 yielded 60 de novo assembled RVA genome sequences 231 

from 146 samples (41.1%). No other RV genogroups were found in these human stool samples 232 

(Table 1). The same methods applied to 150 porcine faecal samples collected within the same 233 

geographic region (Supplementary Figure 1) identified 31 rotaviruses from 4 different RV groups 234 

(A, B, C and H) in a total of 150 samples (20.7%). These de novo assembled sequences included 235 

13 RVA (41.9%), 7 RVB (22.6%), 6 RVC (19.4%) and 5 RVH (16.1%) (Table 1). The length of 236 

each assembled sequence was determined and expressed as percentage length coverage (length 237 

of assembled sequence divided by expected full length of that segment) for the corresponding 238 

segment (Figure 1). In samples where 2 distinct contigs were assembled for a segment (e.g. mixed 239 

infections), only the longer assembled contig was reported in the heatmap of segment coverage for 240 

the purpose of clarity (Figure 1). The overall length coverage in human RVA sequences was higher 241 

than porcine RVA, RVB, RVC and RVH, possibly be due to differential viral load or sample quality.  242 

 243 

Human and porcine RVA genotype constellations  244 

The genotype constellations were determined for all RVA strains according to established 245 
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guidelines from the Rotavirus Classification Working Group (11, 58). Among the human RVA, the 246 

two most common constellations were G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 (N = 33; Wa-like 247 

constellation) and G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 (N = 12; DS-1-like constellation) (Figure 248 

2). Reassorted RVA strains between Wa-like and DS-1-like constellations were found in 4 human 249 

diarrhoeal patients, including G1-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 (N = 3) and G2-P[8]-I2-R2-250 

C2-M2-A2-N2-T2-E2-H2 (N = 1). Interestingly, the genotype constellation G4-P[6]-I1-R1-C1-M1-251 

A8-N1-T7-E1-H1 was found in 1 human and 1 pig sample. The closely related genotype 252 

constellation G4-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1, which differs only by the NSP3 segment, 253 

predominated among the porcine RVA mono-infections (N = 6) (Figure 2). Among all porcine RVA 254 

strains, the internal core gene cassette of R1-C1-M1-A8-N1-T1-E1-H1 (representing genotype of 255 

VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5) was relatively conserved, with the exception of 256 

co-circulation of T1 and T7 genotypes in the NSP3 segment. The genotypes of capsid proteins 257 

(VP7-VP4-VP6) were more diverse in pigs, including G4-P[6]-I1 (6 strains combined with NSP3 T1 258 

and 1 strain with NSP3 T7), G5-P[13]-I5 (N = 2), G9-P[23]-I5 (N = 1) and G11-P[23]-I5 (N = 1). 259 

Mixed infections were identified in 9 samples, 7 in humans and 2 in pigs (Figure 2), with 260 

mixed infection being defined as the detection of two assembled but genetically distinct contigs in 261 

at least one segment with sufficient contig coverage to exclude potential process contamination 262 

among samples in the same run. The two homologous contig segments identified in mixed 263 

infections can have different or the same genotype; for example a mixed infection reported in an 264 

individual pig (sample ID 12070_4) contained 2 homologous VP7 segments, NSP1, NSP2, NSP3, 265 

NSP4 and NSP5 bearing the constellation of G1/G4-P[8]-I1-R1-C1-M1-A1/A8-N1/N1-T1/T1-E1/E1-266 

H1/H1 (Figure 2 and Supplementary Figure S2). Another porcine sample was found with a mixture 267 

of G9/G11-P[13]/P[23]-I5/I5-R1/R1-C1-M1-A8/A8-N1/N1-T1/T1-E1/E1-H1 (sample ID 14150_53); 268 

however, it is important to note that this particular sample was a boot swab of faecal material in a 269 

cage-type pigsty, thus there is the possibility that the sample represents mixed environmental virus 270 

from more than one pig. Mixed human RVA infections typically contained genotype 1 and 2 (Wa-271 

like and DS-1 like, respectively) viruses. 272 

 273 
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Phylogenetic diversity of local human and porcine RVA  274 

 Phylogenetic trees were inferred for each RVA segment (Figure 3A-B and Supplementary 275 

Figure S3A-B) from assembled sequences in this study along with full-length sequences from 276 

previous studies in Vietnam, reference sequences in GenBank and sequences from the RVA 277 

vaccine formulations (RotaRix and RotaTeq). The local sequences clustered primarily by genotype 278 

as expected (Figure 3A-B and Supplementary Figure S3A-B); for example, VP7 G1 sequences in 279 

this study clustered with other G1 sequences from other regions and our G2 sequences clustered 280 

with other G2 (Figure 3A). Sequences within the G4 genotype fell into 2 sub-lineages, with the 281 

human strain (16020_7) and porcine strains from this study clustering into one common sub-282 

lineage (Figure 3A). The mixed infection in the pig (12070_4) described above comprised 2 distinct 283 

contigs for the VP7 segment (belonging to the G1 and G4 genotypes), with the G1 sequence 284 

clustering within the human G1 lineage and the G4 sequence falling into a lineage with other G4 285 

porcine sequences from this study (Figure 3A). Similar observations were seen in the phylogenetic 286 

tree for VP4 sequences (Figure 3B) and other gene segments (Supplementary Figure S3A-B). It is 287 

also noteworthy that sequences from the vaccine strains (Rotarix and RotaTeq) were relatively 288 

distinct from the Vietnamese RVA sequences reported here, particularly for genotypes G5, G9, 289 

G11, P[6], P[13], P[23] of the two neutralizing antigens, VP7 and VP4 (Figure 3A-B). Comparison 290 

of the amino acid sequences of VP7 and VP4 of the local strains to the Rotarix and RotaTeq 291 

vaccine sequences indicated a number of amino acid differences observed across the length of the 292 

proteins and particularly in the antigenic epitopes of VP7 and VP4 (Supplementary Figure S7). 293 

Taken together, multiple RVA genotypes co-circulate in human and pigs in this location; many of 294 

these genotypes are genetically dissimilar to currently used vaccine components.   295 

 296 

Putative zoonotic infection of human with a porcine-human RVA virus 297 

An atypical RVA genotype constellation of G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1 was 298 

found in both a human patient (16020_7) and a weaning pig (14250_9), whose geographical 299 

distance (between the residence and the farm) were approximately 35km apart (Figure 4A-B). The 300 

genotype constellation of the core gene cassette (R1-C1-M1-A8-N1-T7-E1-H1) was also identified 301 
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in 4 pig samples collected from 2 other farms (Figure 4A); the farms that raised these pigs are also 302 

about 35km away from the residential location of the 16020_7 case (Figure 4B). RVA strains with 303 

the aforementioned genome constellation have been identified in paediatric diarrhoeal patients in 304 

paediatric diarrhoeal patients in Hungary (65), Argentina (66), Paraguay (67), and Nicaragua (68), 305 

and were similarly thought to be of zoonotic origin (porcine-like). Given the diversity of geographic 306 

locations of reported zoonotic cases over a 15-year period, it is difficult to determine if this strain is 307 

sustained as a rare variant in human-to-human infections or has undergone multiple cross-species 308 

jumps from a porcine reservoir or an intermediate host.  309 

Phylogenetically, all 11 segments of the human 16020_7 and porcine 14250_9 viruses 310 

belonged to lineages comprising porcine and/or porcine-origin human sequences (Figure 3A-B and 311 

Supplementary Figure S3A-B). Genetic distance suggested that the strain 16020_7 was most 312 

similar to porcine strains: TM-a (for VP1; 96% nt similarity), CMP45 (NSP3; 93%), and porcine-313 

origin human strain 30378 (NSP2; 99%) (Figure 5). The remaining segments were most similar to 314 

porcine RVA strains obtained from this study, including the porcine 14150_53 (NSP1; 98.7% and 315 

NSP4; 99.1%) and 14225_44 (VP2; 99.2% and NSP5; 99.1%) strains. The capsid proteins of 316 

16020_7 were most similar to the VP7 sequences of porcine samples 12129_48, 12129_49 and 317 

12070_4 (G4 type; 97.2%), to the VP4 of pig 14226_39 (98.7%) and VP6 of pig 14226_42 (99.5%) 318 

(Figure 5). The porcine sample 14250_9, despite possessing the same genotype constellation as 319 

16020_7, shared the highest nucleotide homology in only 2 internal genes, VP3 (97.5%) and NSP5 320 

(99.1%), to the corresponding segments of strain 16020_7. Compared to the RVA vaccine Rotarix, 321 

16020_7 was relatively dissimilar, sharing as low as 75.1% and 75.6% nt similarity for the VP4 and 322 

VP7 segments, respectively (Figure 5).  323 

In this unusual genotype constellation reported, the NSP3 T7 type is a rare genotype that 324 

was first identified in a cow in Great Britain in 1973 (69), then in a bovine-like human strain (70), 325 

and later in pigs (71), porcine-bovine human reassortant (72) and porcine-like human strains (65–326 

68, 73) in various geographical locations. The inferred evolutionary rate of RVA NSP3 sequences 327 

bearing T7 genotype was 1.3261 x 10-3 substitutions per site per year (95% highest posterior 328 
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density (HPD): 8.624 x 10-4	
  –	
  1.793 x 10-3), which is slightly lower than the estimated evolutionary 329 

rates for RVA VP7 capsid gene of 1.66 x 10-3 and 1.87 x 10-3 substitutions/site/year for G12 and 330 

G9 genotypes, respectively (74). The time-stamped MCC tree also indicate an inter-connection 331 

among different host species indicating several host jump events particularly between pig and 332 

human hosts, suggesting that viral zoonotic chatter may occur more frequently than hitherto 333 

reported (Figure 4C).  334 

 335 

Rotavirus group H (RVH), group B (RVB) and C (RVC)   336 

RVH was identified in five Vietnamese pigs (3.33%; 5/150) at several time points and 337 

locations with no temporal or geographical associations (Figure 6), suggesting that these infections 338 

were sporadic and not linked to a single local outbreak. Furthermore, phylogenetic trees were 339 

inferred for all RVH segments to investigate the genetic diversity, comparing the RVH strains 340 

identified in this study with RVH sequences retrieved from GenBank (Figure 6 and Supplementary 341 

Figure S6). In general, RVH sequences typically clustered according to the host species, i.e. all 342 

porcine RVH sequences belonged to a lineage that is separated from human or cow RVH 343 

lineages. Within the porcine clade of the VP6 gene (Figure 6), sequences fell into two lineages: 344 

one lineage comprising sequences from USA and Japan, and the other lineage of Brazilian and 345 

Vietnamese sequences. The evolutionary rate was estimated to be 5.195 x 10-3 substitutions per 346 

site per year for sequences in the porcine lineage of RVH VP6 (95% HPD: 1.865 x 10-3 –	
  8.976 x 347 

10-3). 348 

 RVB was found in 7 pigs (4.67%; 7/150) and RVC was identified in 6 pigs (4%; 6/150). 349 

Phylogenetic trees of all segments of RVB and RVC showed that the local porcine sequences 350 

belonged to lineages comprising porcine sequences from other geographical locations for RVB 351 

(Figure 7 and Supplementary Figure S4) and RVC (Figure 7 and Supplementary Figure S5). In 352 

both RVB and RVC groups, the porcine lineages were relatively distant from lineages comprising 353 

of human sequences (Figure 7 and Supplementary Figure S4 and S5).  354 

 355 

DISCUSSION  356 
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This study represents the first unbiased genome-wide surveillance, targeting 357 

simultaneously multiple groups of rotaviruses infecting humans and animals in the same 358 

geographical location. Prior to this study, there were only 3 subgenomic RVC sequences (<300nt) 359 

and 9 complete or nearly complete RVA genomes reported from Vietnam in GenBank with no data 360 

on RVB and RVH. Data from the current study document genomic sequences from 60 human RVA 361 

and 31 porcine RV (group A, B, C and H), providing the largest available collection of genome 362 

sequences from human and pigs from a single location in general and from Vietnam in particular. 363 

This is also the first report and the first genome characterisation of RVB, RVC and RVH from 364 

Vietnamese pigs. 365 

 Among the RVA, we identified a human (sample 16020_7) and a porcine sample (sample 366 

14250_9) with atypical RVA genotype constellation G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1, 367 

detected for the first time in Vietnam and in Asia. This variant may have originated from a direct 368 

zoonotic transmission or from reassortment event(s) involving porcine and porcine-origin human 369 

strains. The human RVA strain (16020_7) was identified in a sample from a 54 year-old patient, 370 

admitted to the hospital due to acute diarrhoea. Rotavirus was the sole enteric pathogen identified 371 

from the stool sample and no other common viral and bacterial diarrhoeal pathogens were found 372 

by diagnostic testing (39, 75) for norovirus, astrovirus, sapovirus, adenovirus F and aichi virus, 373 

Shigella spp., Salmonella spp. and Campylobacter spp. (data not shown). Although adults can be 374 

infected with RVA, such infections in immuno-competent individuals are typically asymptomatic, 375 

self-limiting or cause mild disease (76). The rotavirus infection in this particular case required 376 

hospitalisation suggesting a moderate-severe end of the clinical spectrum of diarrhoeal disease. 377 

Although further studies are required to determine their significance and relevance in human and 378 

animal diseases, it is tempting to suggest that this atypical strain may be the cause of the 379 

moderate-severe diarrhoeal disease. The close proximity between humans and pigs and common 380 

use of river water (Mekong Delta River, Figure 4B) for daily activities and farming might present an 381 

enhanced risk of transmitting water-borne infectious pathogens, in this case providing a plausible 382 

zoonotic route of atypical rotavirus transmission.  383 
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Compared to RVA, human and animal infections with RVB, RVC and RVH are not well 384 

understood and the detection rates for these groups of viruses are relatively low (77). This is 385 

probably because the majority of rotavirus investigations have been focused on RVA given its 386 

clinical and public health relevance and the large genetic distance among these groups of 387 

rotaviruses as compared to RVA, which would likely be missed by commonly used diagnostic 388 

assays. Recently, there have been increasing numbers of reports on rotavirus groups B, C and H 389 

in animals (78–86) and humans (87–89), which possibly reflect improved molecular methods to 390 

detect these viruses rather than an actual increase in their prevalence. In Vietnam, the frequencies 391 

and relative role in human and animal disease of RVB, RVC and RVH viruses are not yet known. 392 

Although no human RVB, RVC and RVH were found in this study, the zoonotic potential of these 393 

rotaviruses groups cannot be ignored. 394 

Our documentation of local RV genetic diversity and the potential of RV for zoonosis are 395 

highly relevant for the introduction of RVA vaccines into the region. The VP7 surface glycoprotein 396 

and VP4 spike protein are considered to be major antigenic targets for the protective host immune 397 

responses induced by RVA vaccines (73, 90, 91). Importantly, several amino acid changes were 398 

observed in defined antigenic sites of VP7 and VP4 proteins encoded by the local Vietnamese 399 

strains compared to available vaccines. Although a genetic comparison alone cannot predict if 400 

circulating Vietnamese viruses will be recognized and blocked or if the changes will allow infection 401 

in vaccinated subjects, the number of differences in antigenic regions suggests a compromised 402 

protective function of the vaccines in Vietnamese children. These data should be considered in 403 

light of the clinical observations of reduced vaccine efficacy (28–30). Future vaccine efforts may 404 

benefit from this increased knowledge of rotavirus diversity provided by this work. 405 

Our study does have limitations. Firstly, the sample size of 146 human and 150 porcine 406 

samples is relatively small. Despite this size, we were able to identify a potential zoonotic infection. 407 

This provides a baseline frequency for zoonotic infections and suggest that this may be occurring 408 

at a higher rate than previously considered. Secondly, the disease status of the sampled pigs was 409 

not well defined and there was no follow-up beyond the sampling time point so the clinical 410 
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spectrum of diarrhoeal disease (eg. mild, moderate or severe) in the pigs is unknown. However, 411 

the primary objective of this study was characterization of rotavirus pathogenesis or causation of 412 

the diarrhoeal disease. The presence of rotavirus material at sufficiently high titres to allow full 413 

genome sequencing is consistent with these animals being a common source of the virus for 414 

movement to other species. Our findings indicate that porcine faecal material is a source of novel 415 

and possibly zoonotic viruses.  416 

It is likely that with the ubiquity and falling costs of sequencing, the unbiased virus 417 

sequencing described here will become an important component of infectious disease surveillance 418 

and rapid responses to outbreaks (92). The ideal sampling rate, sample numbers and geographical 419 

relationship between humans and animals for genetic surveillance are still being defined but the 420 

current work provides a good starting point for future efforts. Even within the relatively modest 421 

sample set of 296 human and animal enteric samples, a considerable RV genetic diversity was 422 

observed including a potential zoonosis. The integration of targeted sampling, sequencing and 423 

phylogeography or phylogenetics in different places in the world, perhaps informed by other risk 424 

mapping (33, 93) has the ability to inform surveillance and to monitor zoonotic pathogens in human 425 

and animals. 426 
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 444 

Tables and Figures 445 

Table 1. Number of samples tested and number of samples yielded up to full or nearly full RV 446 

genomic sequences.  447 

Host	
   RVA	
   RVB	
   RVC	
   RVH	
   Total samples tested 	
  

Human	
   60 
(41.1%)	
   0	
   0	
   0	
   146	
  

Pig	
   13 
(8.7%)	
  

7 
(4.7%)	
  

6 
(4%)	
  

5 
(3.3%)	
   150	
  

Host indicates human or pig host from which the faecal samples were collected. Percentages of 448 

full or nearly full RV genomes were given in brackets. RVA: rotavirus genogroup A; RVB: group B; 449 

group C; RVH: group H.  450 

  451 
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Figures and Legends 452 

Figure 1 453 

 454 

Figure 1. Heat map of rotavirus sequence length coverage by segment detected in all 455 

samples. The sequence length coverage for each segment of all assembled rotaviruses by deep 456 

sequencing was calculated and expressed as [(length of assembled contig in nt)/(full-length of that 457 

segment in nt)]x100. Colour code for %genome coverage is indicated in figure key ranging from 458 

low (pale orange) to high (dark red). The value of 0 indicates that contig sequence for that segment 459 

was not identified or did not pass the stringent quality control criteria including % reads mapped 460 

and contig length (see Materials and Methods). All RVA sequences detected in human samples 461 

Porcine samples

Human samples
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were shown in the first panel, with each column representing a sample and each row showing 462 

each RV segment. Similarly, porcine rotavirus samples were shown, each panel representing RVA, 463 

RVB, RVC and RVH sequences with the segment names given vertically and sample IDs 464 

horizontally.  465 

Figure 2 466 

 467 

Genotype constellation  Host count
VP7 VP4 VP6 VP1 VP2 VP3 NSP1 NSP2 NSP3 NSP4 NSP5 Human Pig

G1 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1 33 0

G2 P[4] I2 R2 C2 M2 A2 N2 T2 E2 H2 12 0

G3 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1 2 0

G4 P[6] I1 R1 C1 M1 A8 N1 T7 E1 H1 1 1

G4 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1 0 6

G5 P[13] I5 R1 C1 M1 A8 N1 T7 E1 H1 0 1

G11 P[13] I5 R1 C1 M1 A8 N1 T7 E1 H1 0 1

G9 P[23] I5 R1 C1 M1 A8 N1 T1 E1 H1 0 1

G5 P[13] I5 R1 C1 M1 A8 N1 T7 x H1 0 1

G1 P[8] I2 R2 C2 M2 A2 N2 T2 E2 H2 3 0

G2 P[8] I2 R2 C2 M2 A2 N2 T2 E2 H2 1 0

G1 P[8] x R1 C1 M1 A1 N1 T1 E1 H1 1 0

G1/G2 P[8]/P[4] I1/I2 R1 C1/C2 M1/M2 A1/A2 N1/N2 T1/T2 E1/E2 H1/H2 H
1 1 0

G1/G2 P[8]/P[4] I1/I2 R1/R2 C1 M1/M2 A1/A2 N1/N2 T1/T2 E1/E2 H1 1 0

G1/G2 P[8]/P[4] I1/I2 R1/R2 C1/C2 M1/M2 A1/A2 N1/N2 T1/T2 E2 H2 1 0

G1/G2 P[8]/P[4] I1/I2 R1/R2 C1/C2 M1/M2 A1/A2 N1/N2 T1/T2 E1/E2 H1 1 0

G1/G2 P[8]/P[4] I1/I2 R1/R2 C1/C2 M1/M2 A1/A2 N1/N2 T1/T2 E1/E2 H1/H2 1 0

G1/G2 P[8]/P[4] I1/I2 R2 C1/C2 M2 A1/A2 N1/N2 T1/T2 E1/E2 H1/H2 1 0

G1 P[8] I1 R1 C1 M1 A1 N1/N1 T1 E1 H1 1 0

G1/G4 P[8] I1 R1 C1 M1 A1/A8 N1/N1 T1/T1 E1/E1 H1/H1 0 1

G9/G11 P[13]/P[23] I5/I5 R1/R1 C1 M1 A8/A8 N1/N1 T1/T7 E1/E1 H1 0 1

 Wa-like genotype (G1/G3/G4/G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1)  G5

 DS-1-like genotype (G2/G8-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2)  G11

 G4-P[6]  I5

 A8-T7  P[13]

 G9-P[23] x  Sequence not determined

M
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o-
in
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io
n
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Figure 2. Genotype constellations of assembled RVA genomes.  468 

The genotypes of all assembled sequences were determined according to the guidelines of 469 

Rotavirus Classification Working Group, representing the genotype of VP7-VP4-VP6-VP1-VP2-470 

VP3-NSP1-NSP2-NSP3-NSP4-NSP5. For mono-infection, each row represents one genotype 471 

constellation with the colour block used to illustrate different genotype patterns, such as common 472 

human types of Wa-like (orange) and DS-1-like (purple), and other less common genotypes shown 473 

in other colour blocks as indicated. The number of each of the genotype constellation identified in 474 

samples from human and pigs were given in the column Host count for Human and Pigs, 475 

respectively. For mixed infection where 2 distinct contigs were assembled for at least one 476 

segment, the genotypes of both contigs were given and indicated the host where strains were 477 

identified.  478 

Figure 3 479 

 480 

Figure 3. Maximum-likelihood phylogenetic trees inferred from the assembled nucleotide 481 

sequences for RVA VP7 and VP4 genes. (A) Maximum-likelihood tree of VP7 gene showed 482 

genetic relationships between sequences from this study and additional sequences of 483 

corresponding segments from GenBank. Branches and strain names were coloured according to 484 
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genotype and host, respectively. Tree is mid-point rooted for the purpose of clarity and bootstrap 485 

values of ≥75% are shown for major nodes only. All horizontal branch lengths are drawn to the 486 

scale of nucleotide substitutions per site. (B) Maximum-likelihood tree of VP4 gene showed genetic 487 

relationships between sequences from this study and additional sequences of corresponding 488 

segments from GenBank. The pattern of tree visualisation is consistent with VP7 tree, see 489 

description of Figure 3A for more information. 490 

Figure 4 491 

 492 

 493 

Figure 4. The analysis of RVA zoonotic strain G4P[6]T7 in the study.  494 

(A) The genotype constellation of the case in investigation 16020_7 and other porcine RVA strains 495 

with the NSP3 T7 genotype. Details on dates of collection and age of host are given. The colour 496 

coded in the host column is consistent for colour illustration of corresponding case in the map 497 

(panel B) in this figure. (B) The geographical location of the human case’s residency and pig farms 498 

that raised the pigs infected with RVA NSP3 T7 strains overlaid on the total sampling area (as 499 

shown in Supplementary Figure S1). The colouring of the human case and pig farms is consistent 500 
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B

A
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with colour code presented in the column “Host” in panel of this figure. The red star indicates the 501 

Dong Thap Provincial Hospital where diarrhoeal patients were admitted. The map scale bar is 502 

shown in the units of geometric km. See Supplementary Figure S1 for more information. (C) The 503 

time-resolved phylogenetic tree of RVA NSP3 T7 genotype sequences comparing local versus 504 

global sequences. Reference sequences were retrieved from GenBank (N=69, excluded the 505 

duplicate sequence for TM-a strain (JX290174) and BP1901 (KF835960) which is 15 aa shorter 506 

than the complete ORF). Strains were coloured according to the host species from which the strain 507 

was identified. Sequences identified from this study were highlighted in blue (human case 508 

16020_7) or in yellow (porcine sequences). The first T7 sequence identified (in a cow in 1973) was 509 

indicated in purple. Posterior probabilities of internal nodes with values ≥0.75 are shown and the 510 

scale axis indicates time in year of strain identification. 511 

  512 
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Figure 5 513 

 514 

Figure 5. Genotype constellations of RVA 16020_7 compared with representative human 515 

and animal RVA of known genotypes. 516 

Segments are bold in red and shaded in green to indicate the segments with highest nucleotide 517 

sequence similarities to that of strain 16020_7. The strain was coloured according the host from 518 

which strain was identified, blue indicates human host, pink for pigs and green for vaccine 519 

Strain ID Country VP7 VP4 VP6 VP1 VP2 VP3 NSP1 NSP2 NSP3 NSP4 NSP5

16020_7 VNM G4 P[6] I1 R1 C1 M1 A8 N1 T7 E1 H1

14250_9 VNM G4 P[6] I1 R1 C1 M1 A8 N1 T7 E1 H1

96.9% 92.5% 97.3% 85.4% 97.9% 97.5% 81.6% 97.5% 87.5% 96.5% 99.1%

14150_53 VNM G11/G9 P[13]/P[23] I5/I5 R1/R1 C1 M1 A8/A8 N1N1 T1/T7 E1/E1 H1

75.7%/72% 68.2%/72.2% 83.1%/83.5% 87.3%/85.7% 97.2% 86.5% 98.7%/81.9% 86.5%/93.4% 83.1%/91.6% 97.4%/99.1% 94.4%

14150_54 VNM G11 P[13] I5 R1 C1 M1 A8 N1 T7 E1 H1

72.0% 68.4% 83.2% 85.6% 97.3% 86.4% 98.1% 86.4% 91.6% 97.5% 95.3%

14225_45 VNM G5 P[13] I5 R1 C1 M1 A8 N1 T7 E1 H1

73.8% 67.7% 82.5% 85.6% 98.8% 98.3% 95.7% 97.1% 92.1% 88.7% 98.6%

14225_46 VNM G5 P[13] I5 R1 C1 M1 A8 N1 T7 X H1

73.9% 67.6% 82.3% 85.5% 98.7% 96.0% 95.7% 94.7% 91.9% X 98.4%

14225_44 VNM G4 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1

96.7% 98.3% 99.4% 87.3% 99.2% 86.6% 79.2% 93.8% 83.3% 90.9% 99.1%

14226_42 VNM G4 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1

96.7% 97.9% 99.5% 87.3% 99.1% 86.2% 82.1% 95.5% 83.3% 90.9% 99.1%

14226_39 VNM G4 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1

97.1% 98.7% 83.5% 85.8% 90.0% 87.1% 82.5% 95.5% 82.5% 90.1% 98.1%

14249_23 VNM G4 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1

97.0% 92.4% 98.1% 87.7% 86.7% 86.5% 95.9% 96.3% 82.3% 96.6% 96.0%

12070_4 VNM G4/G1 P[8] I1 R1 C1 M1 A1/A8 N1/N1 T1/T1 E1/E1 H1/H1

97.2%/75.6% 75.4% 99.0% 92.5% 87.5% 87.6% 76.9%/80.9% 97.7%/87.6% 84%/82.6% 91.4%/90.3% 98.3%/94%

12129_48 VNM G4 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1

97.2% 91.3% 98.1% 86.8% 86.6% 86.1% 95.9% 96.6% 83.1% 95.6% 96.1%

12129_49 VNM G4 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1

97.2% 92.4% 98.1% 66.6% 82.0% 86.4% 95.9% 96.5% 83.1% 96.3% 95.9%

30378§ VNM G26 P[19] I5 R1 C1 M1 A8 N1 T1 E1 H1

74.8% 76.2% 83.4% 87.3% 94.1% 96.9% 82.2% 98.6% 83.8% 96.4% 98.8%

OL§ NCA G4 P[6] I1 R1 C1 M1 A8 N1 T7 E1 H1

86.0% 86.2% 89.8% 86.1% 87.0% 85.3% 82.4% 92.7% 91.6% 88.0% 95.7%

E931§ CHN G4 P[6] I1 R1 C1 M1 A8 N1 T1 E1 H1

97.1% 92.7% 97.7% 94.6% 91.0% 85.1% 82.2% 93.1% 84.1% 96.8% 95.4%

R946§ CHN G3 P[6] I1 R1 C1 M1 A1 N1 T1 E1 H1

73.8% 94.5% 96.5% 95.4% 90.8% 84.8% 78.0% 88.9% 84.2% 92.8% 94.7%

CMP45/08 THA G9 P[23] I5 R1 C1 M1 A8 N1 T7 E1 H1

75.5% 71.2% 83.1% 86.9% 92.5% 88.1% 92.4% 93.5% 93.1% 89.1% 93.3%

TM-a CHN G9 P[23] I5 R1 C1 M1 A8 N1 T7 E1 H1

75.5% 71.1% 82.9% 95.9% 90.5% 86.6% 80.0% 89.0% 88.2% 91.8% 94.9%

Wa USA G1 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1

74.8% 75.4% 92.9% 88.8% 88.1% 90.3% 76.5% 88.0% 83.1% 93.9% 93.3%

Rotarix USA G1 P[8] I1 R1 C1 M1 A1 N1 T1 E1 H1

75.6% 75.1% 92.5% 88.6% 88.1% 90.2% 76.2% 88.1% 83.1% 93.3% 92.8%
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component. All porcine samples from this study were shaded in light blue and the human case of 520 

interest (16020_7) was shaded in grey. §Human strains were previously shown to have porcine 521 

origin. Country of isolation abbreviation, VNM: Vietnam; NCA: Nicaragua; CHN: China; THA: 522 

Thailand; USA: United States of America.  523 

Figure 6 524 

 525 

Figure 6. The analysis of RVH VP6 gene segment. 526 

(A) Maximum-likelihood phylogenetic tree of RVH VP6 sequences. The RVH VP6 sequences in 527 

this study (N=5) were compared with available full-length RVH VP6 sequences retrieved from 528 

GenBank (N=39). Tree is mid-point rooted for the purpose of clarity and only bootstrap values of 529 

≥75% are shown. All horizontal branch lengths are drawn to the scale of nucleotide substitutions 530 

per site in the tree. Strains were colour coded according to the host associated with the strain, the 531 
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country where the strains were identified and the year of strain detection. (B) The geographical 532 

locations of pig farms that raised the pigs infected with RVH identified in this study. The farms were 533 

illustrated as red triangles with strain ID given, overlaid on the overall sampling area as shown in 534 

Supplementary Figure S1. The red star indicates the Dong Thap Provincial Hospital. The map 535 

scale bar is shown in the units of geometric km. Refer to Supplementary Figure S1 for more 536 

information on the background and provincial features colouring. (C) Time-resolved phylogenetic 537 

tree of porcine RVH VP6 sequences comparing local versus global sequences. Strains were 538 

coloured by the country where strains were identified. Porcine sequences identified from this study 539 

were highlighted in red, with strain ID given to link with geographical locations on map in panel C of 540 

this figure. Strains from Brazil were coloured in dark blue; orange indicates the Japanese porcine 541 

strain, and light green refers to the porcine strain from the US. Posterior probabilities of internal 542 

nodes with values ≥0.75 are shown and the scale axis indicates time in year of strain identification.  543 

  544 
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Figure 7 545 
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Figure 7. Maximum-likelihood phylogenetic trees inferred from the assembled nucleotide 547 

sequences for VP6 gene of RVB and RVC. Maximum-likelihood trees of RVB and RVC VP6 548 

segments showed genetic relationships between assembled sequences from this study and full-549 

length reference sequences of corresponding segments retrieved from GenBank. Trees are mid-550 

point rooted for the purpose of clarity and only bootstrap values of ≥75% are shown. Scale bars 551 

are in the unit of nucleotide substitutions per site. Strains were coloured according to the host 552 

species that the sequences were identified from. 553 

 554 
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