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Abstract—Recently, EM lens-embedded massive array anten-
nas have been proposed for next 5G mobile wireless communica-
tions, as the adoption of a lens allows to discriminate the AOA of
signals in the analog domain, with the possibility to preserve the
processing complexity lower with respect to traditional massive
arrays. In fact, in such a way, complex ADC chains can be
avoided and the number of required antennas can be decreased.
By exploiting these advantages, in this paper we study the
possibility to use a single EM lens massive array at mm-wave for
the AOA estimation of the received signal. In this perspective, ML
estimator and practical approaches, tailored for the considered
scenario, are derived. Results, obtained for different number
of antennas, confirm the possibility to achieve interesting AOA
estimation performance with an extremely compact architecture.

Index Terms—AOA estimation, EM lens, massive array, max-
imum likelihood

I. INTRODUCTION

The joint adoption of millimeter-waves (mm-wave) and
massive multiple-input multiple-output (MIMO) technologies
has recently shown promising possibilities for next fifth gener-
ation (5G) of mobile wireless communications. In fact, thanks
to the proposed schemes exploiting a large number of antennas
packed into a small area, data rates up to several Gbit per
second can be attained [1]. Consequently, new applications
can be enhanced from the possibility to integrate multi-
antenna systems with laser-like beams in portable devices, thus
avoiding expensive dedicated infrastructures [2] . Among all
the opportunities, the idea of personal radars has been recently
proposed, where mobile users are equipped with mm-wave
massive arrays performing beamsteering for the reconstruction
of indoor environments [3], [4].

If from one side the densification of antennas opens un-
explored ways to conceive the communication, localization
and mapping, from the other side an increased architectural
complexity is unavoidable at the receiver to allow a proper
managing of the data [5]. In fact, even if large antenna
arrays have been widely investigated to achieve significant
beamforming gains, such systems face several limitations in
their practical adoption due to the complex hardware and high
power consumption associated with the radio-frequency chains
at each antenna element. Several schemes have been already
proposed to preserve the complexity as low as possible, as
for example sub-arrays architectures or analog and hybrid
analog/digital beamforming schemes [6], but currently they are

not capable to entirely overcome the problem. To this purpose,
one option to put in practice the integration of massive arrays
even in portable devices could be the use of electromagnetic
(EM) lens-based massive arrays operating at mm-wave. In
fact, by making use of a massive array and of a lens to
collimate the beams in precise directions, it is possible to
spatially discriminate signals in the analog domain [7]–[9].
Consequently, thanks to the lens, there is a unique relation
between the incident and the output angles of the impinging
and refracted waves, respectively. This operation enhances
to reduce the number of antennas with respect to traditional
massive arrays, and to move from discrete beamforming ar-
chitectures towards continuous-aperture-phased arrays. If such
a solution has already been proposed and investigated [10],
it still needs a dedicated effort to be fully exploited for
localization [7]. In fact, despite few works have addressed
the direction finding problem [11], [12], several aspects still
have to be studied as, for example, the attainable fundamental
angle-of-arrival (AOA) estimation performance limits.

In this paper we assume the presence of a reference node
equipped with a lens-embedded massive array to detect and
localize the surrounding transmitting devices. To this purpose,
starting from a tractable signal model taken from the state-of-
the-art describing the lens filtering effect, we first derive the
maximum likelihood (ML) AOA estimator and, successively,
two schemes entailing a lower complexity. By comparing
the obtained results with those attainable with classical array
schemes, the feasibility of the herein considered EM lens
massive array scheme is shown.

The rest of the paper is organized as follows. In Sec. II we
report a description of the EM lens-embedded massive array,
whereas in Sec. III the considered signal model is detailed.
In Sec. IV, the ML approach and the two practical schemes
are derived, and the obtained results are reported in Sec. V.
Finally, conclusions are drawn in Sec. VI.

II. EM LENS-EMBEDDED MASSIVE ARRAY

A. Traditional Massive Array

Massive arrays have already been widely investigated for
communication and localization [5], [6], [13], [14], especially
in the perspective of using mm-wave massive arrays for next
5G wireless communication technologies.

Several parameters have been used to describe the character-
istics of traditional arrays. Here we consider the array response



vector which contains the phase shifting across different
antenna elements [15]. In particular, the array response can
be defined as

b = [b1, . . . , bm, . . . , bNA ] (1)

with bm = ej Ψm , where Ψm indicates the phase shift of
the mth antenna element with respect to the reference point
according to the operational frequency [15], including the
information on the AOA of the signal, and NA being the
number of antennas employed.

By exploiting dedicated receiver architectures to re-phase
the received signal at each antenna, it has been demonstrated
that very precise localization can be achieved with arrays
equipped with hundreds of elements, thanks to the possibility
to realize accurate beamsteering operations [14]. This capa-
bility comes at the prize of ad-hoc phase-shifting networks or
analog-to-digital converter (ADC) chains that entail high com-
plexity and cost for the realization of beamsteering operations.

In the following, the spatial filtering effect of the lens,
performed in analog, is described.

B. Integration of the EM Lens on Massive Arrays

An EM lens antenna array consists in general of integrating
an EM lens with an antenna array, with the intent to exploit
the lens capability to precisely collimate the signal in dif-
ferent spatial directions according to the incident angle of
the impinging wave on then lens. In this way, antennas are
spatially located so that they can gather the different AOA
of the signals [10]. Current works in the state-of-the-art have
tackled the description of the lens massive array in different,
but equivalent, ways. Generally, they consider the EM lens and
traditional massive array only separately, by approximating the
effect of the lens to that of a spatial discrete Fourier transform
filter [8]. Other works instead have studied the lens impact by
a power perspective [11], showing how it is distributed on the
antennas after the EM lens focusing effect. A detailed analysis
has been proposed in [7], where the lens and the massive
array are jointly considered and a derivation is proposed
to demonstrate the capability to collimate signals in very
precise spatial directions. More specifically, it is highlighted
that the lens spatial filtering effect can be modelled with a
“sinc” function, as it will be accounted for in the rest of this
manuscript. Furthermore, the solution in [11] accounts for a
uniform linear array, whereas in [7] the array elements are
located on the focal arc of the lens, as shown in Fig. 1. In this
paper, by following the guidelines given in [7], we consider
an array with NA antennas located on the focal arc of the lens,
on the xy-plane, as reported in Fig. 1, with θm ∈ [−π/2,π/2]
representing the angle of the mth generic antenna element.
Then, by assuming that θ̃m = sin θm, antenna elements are
equally spaced in the interval [−1, 1] so that

θ̃m =
mλ

Dy
=

m

D̃
(2)

where λ is the signal wavelength, and D̃ = Dy/λ, with Dy

being the lens length along the y-axis. Notably, the analysis
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Fig. 1. Top-view of the EM lens massive array architecture.

herein carried out is general and scales according to the
operational frequency. Then, according to [7], the relation
between D̃ and the required number of antennas NA is

NA = 1 + 2⌊D̃⌋ (3)

with ⌊·⌋ denoting the largest integer no greater than its
argument, so that (3) indicates the need of a higher number
of antennas with a larger lens dimension D̃. In addition,
according to the considered design, antenna elements are more
densely located in the center of the system.

In the following we describe the considered signal model
by showing the lens effect.

III. SIGNAL MODEL

We now consider a generic source in the environment
transmitting a signal which is collected by the EM lens-based
massive array here considered. Thus, by assuming that the
receiver is equipped with NA antennas, the signal received by
the antenna array can be expressed as

r(t) = H(t)⊗ x(t) + z(t) (4)

where x(t) denotes the transmitted signal, r(t) =
[r1(t), . . . , rm(t), . . . , rNA(t)] the vector containing the
received signal at each antenna, ⊗ indicates the convolution
operation and z(t) = [z1(t), . . . , zm(t), . . . , zNA(t)], with
zm(t) being the additive white Gaussian noise (AWGN) at
the mth antenna element. Then, according to the notation
adopted in [7], the impulse response vector comprising both
the channel and lens effect can be expressed as

H(t) = [h1(t), . . . , hm(t), . . . , hNA(t)]

=
L
∑

l=1

αl a (φl) δ(t− τl) (5)

where the generic element hm(t) represents the channel
impulse response at the mth receiving antenna. The mul-
tipath components are herein described in the following
way: L indicates the number of paths,1 αl, τl and φl de-
note the lth path amplitude, delay and AOA, respectively.

1Note that the EM lens massive array should be designed so that L ≪ NA.



The lens effect is included in the vector a that represents
the joint lens-array response at the receiver, with a(φl) =
[a1(φl), . . . , am(φl), . . . , aNA(φl)]. According to [7], the mth
element am(φl) can be written as2

am(φl) ≈
√
A sinc(m− D̃ φ̃l) (6)

where A = Dy Dz/λ2 is the normalized lens aperture and

φ̃l = sin(φl). Note that (6) shows the capability of the lens
to focus the signal in very precise spatial directions. In fact,
the power at the output of the lens is spatially distributed as a
[sinc(·)]2 and thus, according to the lens characteristics, only
very few antennas collect the received signal for specific AOA.
Then, the generic element hm(t) in (5) can be expressed as

hm(t) =
L
∑

l=1

αl am(φl) δ(t− τl) . (7)

Notably, in a general scenario, the AOA of the impinging sig-
nal is usually not aligned with the receiving antenna element,
that is

D̃φ̃l = ml + ϵl (8)

where ϵl is comprised between 0 (perfect alignment) and
0.5 (signal perfectly centered between two antennas) and
ml indicates the antenna with mlth index which collects
the greatest amount of energy. Thus, in case that the lth
received path is perfectly aligned to the mlth antenna, the
AOA estimation problem is simplified to that of picking the
index of the antenna that gathers the largest amount of energy.
On the other side, as it usually happens in real scenarios, a
misalignment is present and needs to be estimated.

To that purpose, in the following we derive the ML approach
and two more practical estimators for the direction finding, in
order to assess the attainable performance.

IV. AOA ESTIMATION WITH EM LENS MASSIVE ARRAYS

The signals received by all the antennas are collected and
post-processed together in order to estimate the AOA of the re-
ceived signal. To take benefit from the spatial filtering allowed
by the EM lens, here a ML approach and two simpler but more
practical methods are investigated. For the sake of simplicity,
we consider only the line-of-sight (LOS) component so that
the received signal, at each antenna, can be written in the form

rm(t) = sm(t) + zm(t) = α am(φ)x(t − τ) + zm(t) (9)

with α and τ indicating the path-gain and the time-of-arrival
(TOA), respectively, considered identical at each antenna, and
x(t) is the transmitted pulse centered at fc.

A. Maximum Likelihood

We first investigate the employment of a ML estimator. The
likelihood function related to the AOA φ can be written as

Λ(φ) ∝
NA
∏

m=1

exp

{

−
1

N0

∫

T

[rm(t)− sm(t)]2 dt

}

(10)

2Here, it is assumed am(φ) ∈ ℜ.

where T is the observation interval, N0 represents the overall
noise power spectral density (PSD) at each antenna. Taking the
logarithm and discarding all the terms that do not contribute
in maximizing φ, the log-likelihood function can be written as

ℓ(φ) =
NA
∑

m=1

2

N0

∫

T

rm(t) · sm(t)dt−
NA
∑

m=1

1

N0

∫

T

s2m(t)dt .

(11)

Then, by considering that the last integral in (11) returns
the energy of the signal, that is Em =

∫

T
s2m(t)dt, and by

accounting for (9) and (11), the log-likelihood function is

ℓ(φ) =
1

N0

NA
∑

m=1

{

2α am(φ)χm − Em

}

(12)

where χm =
∫

T
rm(t)x(t− τ)dt.

Finally, the ML estimate of the AOA can be expressed as

φ̂ = argmax
φ

[ℓ(φ)] (13)

that, in accordance with the previous derivation, yields to

φ̂ = argmax
φ

NA
∑

m=1

{

2αam(φ)χm − Em

}

. (14)

Thus, the AOA estimation process translates into a maximiza-
tion of a term containing the lens response am(φ).

Analogously to the case with lens, the ML can be easily
derived also for the case without lens. To that purpose, an
extensively literature concerns the comparison of the two
signal models [7], as well as the derivation of the ML for
traditional arrays [16], [17].

B. Approach 1: Energy-Based Method

Despite the ML approach represents a benchmark, it usually
entails a high complexity for its implementation. The same
holds for other schemes, such as the MUSIC or the ESPRIT,
when they are exploitable [12]. Thus, a more practical solution
is represented by the energy detector, which could be also
useful when there is a complete uncertainty on the received
waveform shape. In particular, since the relation

φ̂ = asin

(

m̂+ ϵ̂

D̃

)

(15)

holds, it is possible to estimate the AOA of the received
signal according to two steps: an initial coarse estimation m̂
of m, and a refined estimation ϵ̂ to compensate for the AOA
misalignment with respect to the m̂th antenna.

For each antenna, the received signal rm(t) is first passed
through an ideal bandpass filter, centered at fc and with
bandwdith W to eliminate the out-of-band noise. Then, energy
is evaluated as

em=

∫ T

0
[r̃m(t)]2 dt ≃

1

2W

N
∑

k=1

(r̃mk)
2

(16)

where r̃m = [r̃m1, . . . , r̃mk, . . . , r̃mN ] is the vector con-
taining the signal samples, taken at Nyquist rate,3 of the

3In a real scenario, it is more feasible to first down-convert mm-wave signals
in the base-band.



filtered version r̃m(t) of rm(t), with N = 2TW . Then, given
e = [e1, . . . , em, . . . , eNA ], it is possible to estimate m as

m̂ = argmax
m

{em} . (17)

Now define

νm̂ = max

(

eN
η

, em̂ − eN

)

(18)

with eN being the noise estimate at the output of the receiver
and η a normalization coefficient so that eN /η ≪ eN . Then,
consider

νm̂ ≃ A ·
[

sinc(m̂− D̃φ̃)
]2

(19)

where A is constant with respect to m as it contains all the
terms that do not depend on the signal spatial distribution,
and D̃φ̃ is the index related to the true AOA comprising the
misalignment ϵ. Since contiguous bins contain the information
related to the spatial distribution given by the lens through the
“sinc” function, by substituting m̂− D̃φ̃ = ϵ̂, it yields to

νm̂ ≃ A · [sinc(ϵ̂)]2

ν(m̂±1) ≃ A · [sinc(ϵ̂± 1)]2 . (20)

Notably, we have two extreme scenarios: (i) ϵ = 0 (alignment
with the m̂th antenna) and (ii) ϵ = 1/2 (complete ambiguity
between two contiguous indexes). Thus, from (20), we can
write

νm̂
ν(m̂±1)

≃
[

sinc(ϵ̂)

sinc(ϵ̂± 1)

]2

(21)

where, according to how the energy is allocated in the m̂+ 1
and m̂− 1 antenna indexes, it gives

ϵ̂ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

1+
√

ν
m̂

ν(m̂+1)

if ν(m̂+1) ≥ ν(m̂−1)

− 1

1+
√

ν
m̂

ν(m̂−1)

if ν(m̂+1) < ν(m̂−1)

(22)

Thus, by injecting (17) and (22) in (15), the AOA estimation
is performed without requiring an a-priori knowledge of the
received signal.

C. Approach 2: Combination of Contiguous Signals

A possible alternative approach, which allows to preserve
the complexity affordable, is to exploit the method suggested
in [12] where comparable performance to the MUSIC al-
gorithm has been attained. In particular, assuming that NA

signals are collected, and that each received signal is sampled
at Nyquist rate as before giving the samples rmk, it is possible
to build a received signal matrix R with size (NA ×N).
Successively, consider

{

m̂, k̂
}

= argmax
m,k

{rmk} (23)

as the collected peak amplitude, located at the m̂th antenna
and at the time index k̂. Then, we can write

κ =
rm̂k̂ − r(m̂±1)k̂

rm̂k̂ + r(m̂±1)k̂

(24)

that, according to (15), yields to write

φ̂ =

⎧

⎨

⎩

asin
[(

m̂+ 1
2 (κ−1)

D̃

)]

if r(m̂+1)k̂ ≥ r(m̂−1)k̂

asin
[(

m̂− 1
2 (κ−1)

D̃

)]

if r(m̂+1)k̂ < r(m̂−1)k̂ .
(25)

From (25) it is evidenced that, as for the Approach 1, this
method accounts for a two-step AOA estimation process which
allows to refine the coarse estimation given by m̂.

V. NUMERICAL RESULTS

We now evaluate the AOA estimation performance of the
previously described methods, by considering a source trans-
mitting a pulse with bandwidth W = 100MHz centered at
fc = 60GHz, and with only the LOS component considered,
as in the model. At the receiver, we account for a lens-
embedded massive array with different NA (i.e., 15, 25 and
35), which implies a different value of Dy according to
(3) (i.e., 3.5 cm, 6 cm and 8.5 cm, respectively) and thus
normalized aperture A. For the sake of simplicity, once Dy

is fixed by NA and fc, we set Dz = Dy.
Results are expressed in terms of the root mean square error

(RMSE) of the AOA estimate, which is evaluated as

RMSE

(

φ̂
)

=

√

√

√

√

1

Nc

Nc
∑

i=1

[

φi − φ̂i

]2
(26)

where Nc is the number of Monte Carlo iterations considered
in simulations. For each ith cycle, the AOA φi is generated
according to a uniform distribution in the interval [−70◦, 70◦]
for different signal-to-noise ratio (SNR) per antenna, here
defined as

SNRA =
Erx/T

N0 W
(27)

where N0 is the noise PSD, and Erx is the energy received
by an isotropic antenna as if it would be the receiver antenna.
This means that neither the lens effect, nor the overall array
gain, are accounted for in SNRA.

Finally, we assume for simplification that Em does not
depend on the AOA, both in the presence or not of the lens.

A. Results

Fig. 2 reports the obtained results with and without the lens
(i.e., traditional arrays), and for different NA. As expected, the
larger is NA, the better is the AOA estimate. In addition, the
use of a lens allows to improve the achievable performance
thanks to the increased array aperture. In fact, the same array
aperture with traditional massive arrays usually employs a
much larger number of antennas [7], thus entailing a higher
complexity, especially at 60GHz.

Fig. 3 shows instead the comparison of the different es-
timation methods when EM lens-embedded massive arrays
are used. Obviously, the ML allows to outperform the other
schemes but, due to its complexity, it is hardly exploitable in
real scenarios. On the other side, it represents an interesting
benchmark for analyzing the performance of the herein consid-
ered algorithms. Notably, the method indicated as Approach 2
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Fig. 2. RMSE as a function of SNRA with and without the lens.

in Sec. IV-C allows to attain interesting results with an ex-
tremely simple architecture. Furthermore, the energy-based
method (here indicated as Approach 1) permits as well to keep
the complexity affordable, but with reduced performance. As
an example, when adopting the Approach 1 and NA = 35,
sub-degree error for SNRA =−10 dB can be obtained, which is
still accurate for several applications [14]. In this perspective,
such a choice can represent a good trade-off in terms of
achievable AOA estimate, array size and complexity (i.e.,
affordable number of antennas).
Indeed, according to all the aforementioned considerations, the
exploitation of the EM lens-embedded massive arrays with
one of the two practical approaches here described, can be
a promising solution for all AOA-based localization schemes
requiring a low system complexity.

VI. CONCLUSIONS

We investigated the AOA estimation performance when a
ML approach and practical methods are used for EM lens-
embedded massive arrays. After discussing the main advan-
tages offered by the joint adoption of an EM lens and a
massive array, we derived different estimators by exploiting
an ad-hoc signal model available in the state-of-the-art. Re-
sults confirmed that extremely accurate AOA estimate can be
achieved by discriminating angles in the analog domain, and
thus by preserving the entire processing complexity lower than
classical schemes.
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