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Abstract—In this paper we investigate the possibility to per-
form direct positioning by retrieving information from the wave-
front curvature. Despite such an approach has been considered in
the past at microwave and acoustic frequencies using extremely
large antennas, it is of interest to investigate its potential exploita-
tion at mm-wave with practical size antennas in the context of
next 5G systems. Thus, here we first consider a dedicated model
to gather the source position information from the wavefront
curvature for different array architectures, i.e., traditional and
lens-based arrays, and successively we derive the maximum
likelihood estimator to investigate the attainable performance.
Results, obtained for different number of antennas, i.e., for
different array apertures, confirm the possibility to achieve
interesting positioning performance using a single antenna array
with limited dimensions.

Index Terms—Wavefront curvature, direct positioning, massive
array, lens array, mm-wave

I. INTRODUCTION

Next fifth generation (5G) of mobile wireless communi-
cations foresees, among all the technologies, the joint use of
millimeter-waves (mm-wave) and massive arrays to enable the
integration of arrays with a large number of antennas into
small areas. By enabling such an architecture capable to realize
near-pencil beam antennas, it becomes feasible to boost com-
munication and localization capabilities at an unprecedented
scale [1]–[3]. For example, in [4] a joint energy-detection
and massive array design has been conceived to perform
target localization and environment mapping. To further reduce
the complexity, analog and hybrid analog-digital schemes
have been investigated [5], and the attainable fundamental
localization limits using different array configurations have
been investigated [6].

Recently, it has also been studied the possibility to exploit
electromagnetic (EM) lens-based massive arrays operating at
mm-wave as a promising solution for drastically reducing the
overall system complexity [7]. In fact, by adopting a lens to
collimate the beams in precise directions, it is possible to
spatially discriminate signals in the analog domain [7]–[9].
Consequently, thanks to the lens, there is a unique relation
between the incident and the output angles of the impinging
and refracted waves, respectively. This operation allows the
reduction of the number of antennas with respect to traditional
massive arrays, and to move from discrete beamforming
architectures towards continuous-aperture-phased arrays.

Positioning approaches based on antenna arrays usually rely
on a joint angle-of-arrival (AOA) and time-of-arrival (TOA)

estimation process, the latter requiring multiple interactions
between transmitter and receiver as well as an extremely
precise system synchronization.

To overcome such a two-step based approach, a possible
direct solution is to gather the transmitter position information
from the wavefront curvature. In fact, whenever the planar
approximation becomes not valid, the position information
can be inferred from the waveform curvature without the
need of Tx-Rx synchronization. This concept is not new: in
[10], the curvature information has been exploited, with a
moving source approaching to the receiver so that, entering
in the Fresnel region, the incoming wave cannot be regarded
as plane anymore. In [11], an approach for direct wireless
positioning with narrowband signals with multi-tone signalling
and multi-arrays is described. In [12], a MUSIC-based method
is proposed to retrieve information from the wavefront curva-
ture, and an extensive analysis on the attainable fundamental
localization limits has been derived in near-field propagation
conditions [13]. A deep investigation using acoustic wave-
forms has been carried out in [14], [15].

All previous studies can be applicable to those situations
where the waveform curvature is significant with respect to
the antenna aperture in relation to the wavelength. This is true,
for example, exploiting acoustic waves or at microwave only
considering very short distances or using very large (often
not practical) antennas. With the introduction of mm-wave
technology, the possibility to perform one-shot direct posi-
tioning by exploiting the waveform curvature becomes of
large interest. In particular, thanks to the extremely small
wavelength, direct positioning is in principle possibile even
with antenna arrays with limited aperture .

In this paper we investigate the localization capability of a
mm-wave source using a single antenna array with the purpose
to understand the potentialities of the wavefront curvature
approach in next generation of mw-wave positioning systems.
A comparison accounting for a different number of antennas
in the single arrays, as well as for implementations using or
not an EM lens, is also carried out by means of a maximum
likelihood (ML) estimator.

The rest of the paper is organized as follows. Sec. II contains
insights on how to gather position information from the signal
wavefront when classical arrays are used, whereas Sec. III
reports considerations when lens arrays are exploited. Sec. IV
reports the ML estimator derivation, while in Sec. V results
are reported. Finally, conclusions are drawn in Sec. VI.



II. POSITION INFORMATION IN THE WAVEFRONT

CURVATURE

Consider a transmitting source located at position p, which
is at distance d from the reference point of the RX, indicated
with 0, and denote with θ the incident angle, formed with 0,
as indicated in Fig. 1. The extra distance traveled by the EM
wave to reach the generic coordinate z of the RX antenna
aperture (please refer to Fig. 1) is given by

a(z,p) = −d+ d

√

1 +
z2

d2
+ 2 ·

z

d
sin θ (1)

that, differently from classical antenna arrays with planar
wavefront, does not depend only on the AOA θ but also on the
distance d, i.e., on the position p. Consequently, the equivalent
complex baseband signal received in the zth position of the
antenna aperture is

s(z,p) = h(z,p)x0 (2)

where h(z,p) is given by

h(z,p) = e−j2πf0τ(z,p) (3)

with f0 being the central frequency and

τ(z,p) =
a(z,p)

c
(4)

with c being the speed of light, whereas the signal x0 takes
the form

x0 = Apl e
−jχ (5)

where Apl denotes the received signal amplitude, and χ ∼
U [0, 2π) is uniformly distributed between 0 and 2 π. Thus,
χ includes the complete uncertainty on the received signal
phase, since the transmitter and receiver are supposed to be
not not synchronized and no information can be retrieved
from the TOA of the received signal. In addition, note that,

if z ≪ d, then a(z,p) ≈ z2

2 d + z sin θ, where the second
term refers to the traditional array phase term containing AOA
information, whereas the first term includes information on the
source distance.

A. Antenna Array Model

Now we account for an array with NA antennas placed at
an inter-distance of λ/2, with λ indicating the wavelength, so
that signals are spatially sampled at Nyquist (considerations
according to the spatial position of the antennas are reported in
the following), i.e, rn = r(nλ/2). In additive white Gaussian
noise (AWGN) scenario, the RX signal at the nth antenna
element is

rn = sn(p) + wn = hn(p) · x0 + wn (6)

where wn is the receiver noise at the nth antenna, hn(p) is
the coefficient relative to the nth antenna given by

hn(p) = h(nλ/2,p) = e−j2πf0τ(nλ
2 ,p) (7)

and sn(p) = s(nλ/2,p). Thus, differently from classical
arrays where the phase contains information only on the AOA,

array length Dz
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Fig. 1. Considered scenario, where the information on the position p is
retrieved from the curvature wavefront.

here the information on p is embedded in the received signal.
In this way, by properly designing the receiver, it is possible to
directly infer the position of the transmitter avoiding a two-step
approach based on the joint TOA-AOA measurement and on a
prior synchronization phase to align the source and receiving
array clocks..

1) Inter-Antenna Spacing with Planar Wavefront: In ac-
cordance with the state-of-the-art, in order to avoid ambigu-
ities (i.e., aliasing), signals have to be spatially sampled by
respecting the Shannon theorem in the spatial domain. To
that purpose, assuming uniform spacing among antennas, we
consider the term containing information on the AOA, namely
∆zφ = zn+1 − zn, with n = 0, . . . , NA − 1, and zn being
the distance of the nth antenna from the reference point 0.
According to [16], the maximum inter-element spacing is

∆zφ ≤
λ

2
(8)

which is the classical constraint to be respected when placing
antennas in arrays.

2) Inter-Antenna Spacing with Spherical Wavefront: Con-
sider now the inter-antenna distance, namely ∆zp = zn+1 −
zn, with n = 0, . . . , NA − 1, for which the same constraint
related to the position has to be satisfied to avoid aliasing, i.e.,

2π

λ

(

1

2d
·∆z2

p
+ sin θ ·∆zp

)

≤ π . (9)

In this case the constraint is expressed as a function of the
distance from the source, and the solution of (9) is given by

∆zp ≤ d

√

(sin θ)2 +
λ

d
− d sin θ = ∆z⋆

p
. (10)

From (10), given a constrain on the minimum distance of
interest and the range of AOAs, one can determine the
maximum inter-element distanze ∆zp to avoid aliasing in the
space domain.

Note that this condition is close to the traditional one for
∆zφ. In fact, assuming for example θ = π/2 and λ

d ≪ 1,
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Fig. 2. Required inter-element distance ∆z⋆p when d = 30 m for different
θ, and comparison with the counterpart ∆zφ.

through a Taylor series expansion, (10) can be approximated

as
√

1 + λ
d ≈ 1 + λ

2 d , that yields to

∆zp ≤ d

(

1 +
λ

2d

)

− d =
λ

2
. (11)

Notably, (11) puts in evidence that the constraint on inter-
element spacing is dominated by the AOA term and not by
the distance-dependent term.

In Fig. 2, we report the required inter-element distance when
the distance d is fixed, i.e., d = 30m, but different AOA
are accounted for. In particular, it is evidenced that when
considering the joint term ∆z⋆p, the dominant contribution
constraining the antenna spacing is still the one including the
AOA information, as classically done in the array design for
incident planar wavefront.

III. LENS MODEL

We now consider the generic scenario when a lens, as the
one shown in Fig. 3, is introduced to collimate the impinging
wave in specific directions. By following the guidelines given
in [7], the array is equipped with NA antennas located on
the focal arc of the lens, lying on the xz-plane, with θn ∈
[−π/2,π/2] representing the angle of the nth generic antenna
element. Then, by defining θ̃n = sin θn, antenna elements are
deployed so that θ̃n results to be equally spaced in the interval
[−1, 1] (critical sampling), i.e.,

θ̃n =
nλ

Dz
=

n

D̃z

(12)

where D̃z = Dz/λ, with Dz being the lens length along the
z-axis. Notably, the analysis herein carried out is general and
scales according to the operational frequency. Then, according
to [7], the relation between D̃z and the required number of
antennas NA is

NA = 1 + 2⌊D̃z⌋ (13)
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Fig. 3. Top-view of the EM lens massive array architecture [9].

with ⌊·⌋ denoting the largest integer no greater than its
argument, so that (13) indicates the need of a higher number
of antennas when the dimension D̃z of the antenna increases.
Since it is θn = arcsin(n/D̃z), antenna elements are more
densely located in the center of the system.

A. Received Signal at Each Antenna

In this section we derive the signal model accounting for the
lens and the wavefront curvature. To this purpose, we extend
the approach in [7], valid for plane waves, to our case. Thus,
according to Fig. 3, we consider a 3D lens along the yz-plane.
By accounting for a source located on the xz-plane, the signal
received on the focal arc, at angle θ, can be expressed as

r(θ) =

∫ Dy/2

−Dy/2

∫ Dz/2

−Dz/2
s(y, z,p) e−jΨdzdy + w(θ) (14)

where Ψ is the dephasing term given by the lens, according to
the analysis reported in [7] for an incident planar wavefront,
and s(y, z,p) is given by

s(y, z,p) =
x0

λ
√

Dy Dz
·ej2π

a(z,p)
λ ej2π

b(y,p)
λ (15)

where in this case x0 is the input signal arriving at the lens
with AOA φ, and the normalization term 1/

√

Dy Dz is chosen
to guarantee that the overall power intercepted by the lens is
proportional to its normalized aperture A = (Dy Dz)/λ2. In
addition, note that a(z,p) is given by (1), whereas b(y,p) is

b(y,p) = −d+ d

√

1 +
y2

d2
(16)

due to the considered scenario, since the source lies on the
xz-plane depicted in Fig. 3. Notably, in our scenario the term
due to the curvature of the wavefront is now present and its
distribution at the output of the lens can be used to retrieve
the position information. Then, by indicating with z̃ = z/λ
and θ̃ = sin θ, it is possible to write

r(θ̃) =

∫ D̃z/2

−D̃z/2

∫ D̃y/2

−D̃y/2
s(ỹ, z̃,p)e−j2πz̃θ̃dỹdz̃ + w (17)



with w = w(θ̃), which gives

r(θ̃)=

x0
√

Dy Dz

∫ D̃z/2

−D̃z/2

∫ D̃y/2

−D̃y/2
ej2π[ã(z̃,p)+b̃(ỹ,p)]e−j2πz̃θ̃dỹ dz̃ +w

(18)

with

ã(z̃,p) = −
d

λ
+ d

√

1

λ2
+

z̃2

d2
+ 2

z̃

λ d
sin θ

b̃(ỹ,p) = −
d

λ
+ d

√

1

λ2
+

ỹ2

d2
. (19)

According to the antenna critical sampling previously de-
scribed, the received signal can be written at each nth antenna
placed in the focal arc as

rn = sn(p) + wn =

x0
√

DyDz

∫ D̃z/2

−D̃z/2

∫ D̃y/2

−D̃y/2
ej2π[ã(z̃,p)+b̃(ỹ,p)]e

−j2πz̃ n

D̃z dỹdz̃+wn.

(20)

Solving (20) allows to study the impact of wavefront curvature
at the receiver antennas. Note that in case the wavefront is
planar, the solution of (20) reduces the one given in [7].

In the following we derive the ML to retrieve the position
information from the incoming signal wavefront, and succes-
sively we evaluate the attainable performance

IV. MAXIMUM LIKELIHOOD

The signals received by all the antennas are collected and
post-processed together in order to estimate the distance of the
source.

For the sake of simplicity, and in order to provide a solid
benchmark for more practical estimators, we consider only the
line-of-sight (LOS) component. Here we refer to a likelihood
detector, where there is the maximization over the position p

of the transmitter allowed by the curvature of the incoming
wavefront and the unknown phase χ. The likelihood function
related to the position p and the unknown phase χ can be
written as

Λ(p) ∝
NA
∏

n=1

exp

{

−
1

2 σ2

∥

∥

∥

∥

rn − sn(p)

∥

∥

∥

∥

2
}

(21)

where σ2 = N0 W , with N0 representing the noise power
spectral density (PSD) at each antenna, and where we have
made explicit the dependence of sn(p) on the position p.
Taking the logarithm and discarding all the terms that do
not bring contribution for maximizing p, the log-likelihood
function reduces to

l(p) =
NA
∑

n=1

ℜ

{

rn · s∗n(p)

}

. (22)

Finally, the ML estimate of the distance can be expressed as

p̂ = argmax
p,χ

[l(p)] (23)

that, in accordance with the previous derivation, yields to

p̂ = argmax
p,χ

{

NA
∑

n=1

ℜ

{

rn · s∗n(p)

}

}

. (24)

When using a traditional array, sn(p) is given by (6), whereas
with a lens antenna it is expressed by the first term of (20).

V. RESULTS

We now evaluate the position estimation performance ac-
cording to the previously performed analysis. More specifi-
cally, in our scenario we account only of the LOS component.
Then, we consider a transmitter sending pulses centered at
f0=60GHz, with a bandwidth W = 4GHz and an effective
radiated isotropic power (EIRP) of 20 dBm. At the receiver,
we account for a noise figure F = 4 dB. Parameter Apl in (5)
is obtained from the link budget.

Then, we alternatively consider a lens-embedded array and
a traditional linear uniform array with different number NA of
antennas (i.e., 51, 101 and 201) and, thus, physical length
Dz (i.e., 12.5 cm, 25 cm and 5 cm). Note that arrays with
NA = 51 and NA = 101 antennas have a size suitable
for their integration in portable devices, whereas uniform
linear arrays with NA = 201 still preserve a length shorter
than 1m. Note that in case of the lens, a physical aperture
of Dy = Dz/4 along the y-axis has been accounted for.
Notably, in agreement with the analysis and comparison of the
architectures conducted in [7], this implies a higher normalized
aperture A when the lens is considered, thanks to its capacity
to collect and collimate the wavefront of the impinging wave.

Results are expressed in terms of the root mean square error
(RMSE) of the position estimate, which is evaluated as

RMSE (p̂) =

√

√

√

√

1

Nc

Nc
∑

i=1

∥p̂i − p∥2 (25)

where Nc is the number of Monte Carlo iterations consid-
ered in simulations and p̂i is the position estimate at the
ith iteration. For each cycle, a different noise realization is
generated according to σ2, and a different realization of phase
χ is drawn, which is kept the same for all the antennas. In
this way, random phase models a complete clock mismatch
between the transmitter and the receiver.

Fig. 4 reports the obtained results with and without the lens
(i.e., traditional arrays), and for different NA. We initially fixed
the AOA to 0◦ by varying only the TX-RX distance from 5m
to 30m. As expected, the larger is NA, the better is the position
estimate thanks to the increased physical length. In addition,
the use of a lens allows to improve the achievable performance,
thanks to the increased normalized aperture once NA is fixed
[7]. This effect is more pronounced for larger distances, where
the path loss increases. In fact, as an example, by using a lens
with NA = 101, the positioning error is kept at about 2m
for d = 30m. Instead, for its counterpart without the lens,
the positioning error is higher and reaches 5m at d = 30m.
Finally, it is important to remark that localization errors below
1m for d = 30m can be attained with a physical length of
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Fig. 4. RMSE as a function of the TX-RX distance d, fixed AOA = 0◦ and
different array size (i.e., different number of antennas NA).

at most 50 cm, which is still practical in real scenarios, for
example when employed in access points.

Fig. 5 reports instead results achieved for AOA = 0◦,
AOA = 30◦ and AOA = 60◦ when NA is fixed to 101.
More specifically, it is evidenced that for an AOA of 60◦

performance are substantially degraded with respect to 30◦,
where the RMSE is about 2.5m for d = 30m and when the
lens is used. Note that, for the considered link budget, position
errors of at most 2m can be guaranteed until d = 20m for an
AOA of 0◦ and 30◦ and when using a lens array.
The results herein reported denote that compact array architec-
tures with at most 201 antennas, i.e., with a diameter of less
than 50 cm, can be exploited to guarantee accurate positioning
performance exploiting only the wavefront curvature and using
only a single antenna array, without letting the transmitter and
receiver be synchronous.

VI. CONCLUSIONS

In this paper, the possibility to directly infer the transmitter
position from the impinging wavefront curvature at mm-wave
has been investigated. The analysis has been conducted for
arrays at 60GHz, equipped with and without a lens, showing
the clear advantage of using lens to reduce the number of
antenna elements or improve the performance. The outcomes
of this paper show that this solution allows source localization
using a single antenna array without transmitter and receiver
interaction and synchronization.
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