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ABSTRACT
Inversion and PDE-constrained optimization problems often rely
on solving the adjoint problem to calculate the gradient of the objec-
tive function. This requires storing large amounts of intermediate
data, setting a limit to the largest problem that might be solved with
a given amount of memory available. Checkpointing is an approach
that can reduce the amount of memory required by redoing parts
of the computation instead of storing intermediate results. The
Revolve checkpointing algorithm offers an optimal schedule that
trades computational cost for smaller memory footprints. Integrat-
ing Revolve into a modern python HPC code and combining it with
code generation is not straightforward. We present an API that
makes checkpointing accessible from a DSL-based code generation
environment along with some initial performance figures with a
focus on seismic applications.
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1 INTRODUCTION
Seismic inversion is a computationally intensive technique that
uses data from seismic wave propagation experiments to estimate
physical parameters of the earth’s subsurface. A seismic inversion
problem based on a wave equation can be viewed as an optimiza-
tion problem and numerically solved using a gradient-based op-
timization [16]. Since the gradient is usually calculated using the
adjoint-state method, the method requires that the forward and
adjoint field are known for each time step of the simulation [9]. We
discuss this in section 2.

Previous work on similar inverse problems led to the Revolve
algorithm [4] and the associated C++ tool which provides an opti-
mal schedule at which to store checkpoints, i.e. states from which
the forward simulation can be restored. A study of optimal check-
pointing for seismic inversion was done in [14] but this was not
accompanied by a high-level abstraction that made integration
of other software easier with Revolve. The algorithm is further
discussed in section 3.

The Revolve tool and algorithm, however, only provide the sched-
ule to be used for checkpointing. Although this eases some of the
complexity of the application code using the algorithm, the glue
code required to manage the forward and adjoint runs is still quite
complex. This acts as a deterrent to the more widespread use of the
algorithm in the community.

In this paper, we describe how the Revolve algorithm can be
combined with code generation to make checkpointing much more
accessible. The software that can enable this is described in section
4. Although we use particular examples from seismic imaging, the
abstraction and software proposed here are quite general in nature
and can be used in any problem that requires checkpointing in
combination with a variety of computational methods.

In section 5 we provide some initial performance figures on
which we judged the correctness and performance of the imple-
mentation.

2 SEISMIC IMAGING AND DEVITO
Seismic imaging techniques exploit the principle that a travel-
ing wave carries information about the physical properties of the
medium it travels through. While different techniques focus on
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Figure 1: Graphical demonstration of a seismic experiment
that produces the data used as input in a seismic imaging
workflow (Source: Open University [1])

different kinds of information and objectives, we focus here on
reverse-time migration (RTM, [3, 15]), an imaging method that re-
lies on a good estimate of the velocity model to obtain an image
of the reflectors in the subsurface. The algorithm relies on a data-
fitting procedure where synthetic data dsyn is computed with the
current estimate of the physical model via a wave-equation solve
and compared to the field measured data dobs . An example of a
field data recording is illustrated in Figure 1. This problem is a least-
square minimization. We introduce here the formulation of the
problem solved and justify the implementation of optimal check-
pointing. We previously introduced Devito [7], a finite-difference
domain specific language (DSL) for time-dependent PDE solvers.
Devito provides symbolic abstractions to define the forward and
adjoint wavefields. We will not go through its implementation here
but concentrate on the computation of the image of the subsurface.

Seismic imaging, in our case reverse-time migration (RTM), pro-
vides an image of the subsurface reflectors from field recorded data
and a cinematically correct smooth background velocity model. In
practice, the recording is repeated with different source/receivers
pair (called experiments) over the same physical region. An esti-
mate of the physical parameters m is obtained from the recorded
data with different methods such as full-waveform inversion (FWI,
iterative RTM for low frequencies). Once m is estimated, RTM pro-
vides an image of the subsurface to be interpreted. As just stated,
RTM is a single gradient of the FWI objective that can be written
as [6, 9, 16]:

minimize
m

Φs (m) = 1
2
dsyn − dobs

2
2 (1)

The square slowness model m is a physical property of the
medium through which the wave is propagating. The gradient
of the objective function Φs (m)with respect to the square slowness
m is given by:

∇Φs (m) =
nt∑
t=1

u[t]vt t [t] = JT δd (2)

where δd = dsyn − dobs is the data residual, J is the Jacobian of
the forward operator, u is the forward wavefield and vt t is the
second-order time derivative of the adjoint wavefield.

It can be seen that the evaluation of the gradient first requires the
simulation of the forward and adjoint wavefields. This is achieved
by modeling the wave equation using a discretization, usually finite
difference. Various forms of the wave equation exist, e.g. acoustic
isotropic, anisotropic - VTI/TTI and elastic. Each of thesemodels the
physics to different levels, with corresponding levels of complexity.
Here, we focus on the acoustic equation although the analysis
applies to all the forms of the equation mentioned.

In the discrete form, the acoustic wave equation from [7] can be
written as the following linear system:

A(m)u = PTs q (3)

where A is the discretized wave-equation and Ps is the source-
restriction operator. The wavefield u is then given by:

u = A−1(m)PTs q (4)

Although equation 4 can provide the value of u for the entire do-
main at every time step, explicitly formulating the entire matrix u is
prohibitively expensive in terms of computer memory required and
is avoided wherever possible. When doing forward-only simula-
tions, of interest is the value of u at certain predetermined locations
in the simulated domain that we call receivers. We record the pro-
gression of u at these locations through time. This is represented
mathematically by applying the restriction operator Pr at the re-
quired receiver locations. The result of applying Pr to u, which we
call the simulated data, is given by:

dsyn = PrA−1(m)PTs q (5)

We can now rewrite the objective function from equation 1 as:

minimize
m

Φs (m) = 1
2

PrA−1(m)PTs q − dobs
2
2

(6)

In equation 2 we can define the Jacobian of the forward operator
as:

J =
dPrA−1(m)PTs

dm
(7)

While the u term in this equation can be calculated from equation 4,
the v term can be calculated from its adjoint equation given as:

AT (m)v = PTr δd. (8)

2.1 Implementation
As the forward wavefield is obtained as a time-marching procedure
forward in time, the adjoint wavefield is then obtained similarly
with a backward in time time-marching procedure. The procedure
to derive an image with RTM can be summarized as:

(1) Compute the synthetic data dsyn with a forward solve with
equation (5).

(2) Compute the adjoint wavefield from the data residual with
equation (8).

(3) Compute the gradient as the correlation of the forward and
adjoint wavefield with equation (2).

For the first step, we know from [8] that equation 4 can be
modeled in Devito using the Operator defined in figure 2
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def forward(model, m, eta, src, rec, order=2):
# Create the wavefield function
u = TimeData(name='u', shape=model.shape,

time_order=2, space_order=order)

# Derive stencil from symbolic equation
eqn = m * u.dt2 - u.laplace + eta * u.dt
stencil = solve(eqn, u.forward)[0]
update_u = [Eq(u.forward, stencil)]

# Add source injection and receiver interpolation
src_term = src.inject(field=u, expr=src * dt**2

/ m)
rec_term = rec.interpolate(expr=u)

# Create operator with source and receiver terms
return Operator(update_u + src_term + rec_term,

subs={s: dt, h: model.spacing})

Figure 2: Devito code required for a forward operator

The Operator thus created can be used to model a forward
where the src_term contains the source to be injected into the
field and rec_termwill be extracting the receiver information from
the simulation.

Clearly, the third step requires the intermediate data from both
the previous steps. Storing both the forward and adjoint wavefields
in memory would be naive since two complete wavefields need to
be stored. The first obvious optimization is to merge steps 2 and 3
as a single pass where step 3, the gradient calculation, can use the
output from step 2 (the adjoint wavefield) as it is calculated, hence
saving the need for storing the adjoint wavefield in memory. The
Operator for the combined steps 2 and 3 can be created in Devito
using the code given in figure 3.

This still leaves the requirement of having the result of step 1
available. The most efficient, from a computational point of view,
would be to store the full history of the forward wavefield during
the first step. However, for realistically sized models, it would re-
quire TeraBytes of direct access memory. One solution would be
to store the field on disk but would lead to slow access memory
usage making it inefficient. This memory limit leads to checkpoint-
ing, storing only a subset of the time history, then recomputing it
during the adjoint propagation. Revolve provides an optimal sched-
ule for checkpointing to store for a given model size, number of
time steps and available memory. The next section discusses how
checkpointing is implemented.

3 REVOLVE

As we have seen, the usage of adjoint methods allows the computa-
tion of gradient information within a time that is only a very small
multiple of the time needed to evaluate the underlying function
itself. However, for nonlinear processes like the one we saw in the
previous section, the memory requirement to compute the adjoint
information is in principle proportional to the operation count of

def gradient(model, m, eta, src, rec, order=2):
# Create the adjoint wavefield function
v = TimeData(name='v', shape=model.shape,

time_order=2, space_order=order)

gradient_update = Eq(grad, grad - u.dt2 * v)

# The adjoint equation
eqn = m * v.dt2 - v.laplace - eta * v.dt
stencil = solve(eqn, v.backward)[0]
eqn = Eq(v.backward, stencil)

# Add expression for receiver injection
ti = v.indices[0]
receivers = rec.inject(field=v, expr=rec * dt *

dt / m)

return Operator([eqn] + [gradient_update] +
receivers, subs={s:dt, h:
model.get_spacing()}, time_axis=Backward)

Figure 3: Devito code required for an operator that calculates
the adjoint and gradient in a single pass

the underlying function, see, e.g., [5, Sec. 4.6]. In Chap. 12 of the
same book, several checkpointing alternatives to reduce this high
memory complexity are discussed. Checkpointing strategies use a
small number of memory units (checkpoints) to store the system
state at distinct times. Subsequently, the recomputation of informa-
tion that is needed for the adjoint computation but not available is
performed using these checkpoints in an appropriate way. Several
checkpointing techniques have been developed, all of which seek
an acceptable compromise between memory requirement and run-
time increase. Here, the obvious question is where to place these
checkpoints during the forward integration to minimize the overall
amount of required recomputations.

To develop corresponding optimal checkpointing strategies, one
has to take into account the specific setting of the application. A
fixed number of time steps to perform and a constant computational
cost of all time steps to calculate is the simplest situation. It was
shown in [4] that, for this case, a checkpointing scheme based on
binomial coefficients yields, for a given number of checkpoints,
the minimal number of time steps to be recomputed. An obvious
extension of this approach would be to include flexibility with re-
spect to the computational cost of the time steps. For example, if
one uses an implicit time stepping method based on the solution of
a nonlinear system, the number of iterations needed to solve the
nonlinear system may vary from time step to time step, yielding
non-uniform time step costs. In this situation, it is no longer possi-
ble to derive an optimal checkpointing strategy beforehand. Some
heuristics were developed to tackle this situation [11]. However,
extensive testing showed that, even in the case of nonuniform step
costs, binomial checkpointing is quite competitive. Another very
important extension is the coverage of adaptive time stepping. In
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r=new Revolve(steps,snaps)
do

whatodo = r->revolve()
switch(whatodo)

case advance: for r->oldcapo < i <= r->capo
forward(x,u)

case firsturn: eval_J(x,u)
init(bu,bx)
adjoint(bx,bu,x,u)

case youturn: adjoint(bx,bu,x,u)
case takeshot: store(x,xstore, r->check)
case restore: restore(x,xstore, r->check)

while(whatodo <> terminate)

Figure 4: revolve algorithm with calls to the application in-
terface

this case, the number of time steps to be performed is not known be-
forehand. Therefore, so-called online checkpointing strategies were
developed, see, e.g., [13, 18]. Finally, one has to take into account
where the checkpoints are stored. Checkpoints stored in memory
can be lost on failure. For the sake of resilience or because future
supercomputers may be memory constrained, checkpoints may
have to necessarily be stored to disk. Therefore, the access time
to read or write a checkpoint is not negligible in contrast to the
assumption frequently made for the development of checkpointing
approaches. There are a few contributions to extend the available
checkpointing techniques to a hierarchical checkpointing, see, e.g.,
[2, 10, 12].

The software revolve implements binomial checkpointing, online
checkpointing as described in [13], and hierarchical, also called
multi-stage, checkpointing derived in [12]. For this purpose, it
provides a data structure r to steer the checkpointing process and
the storage of all information required for the several checkpointing
strategies.

To illustrate the principle structure of an adjoint computation
using checkpointing, Fig. 4 illustrates the kernel of revolve used
for the binomial checkpointing. The two remaining checkpointing
strategies are implemented in a similar fashion only taking the
additional extensions into account. The forward integration as well
as the corresponding adjoint computation is performed within a
do-while-loop of the structure in Fig. 4, where steps and snaps
denote the number nt of time steps of the forward simulation and
the number c of checkpoints available for the adjoint computation,
respectively.

Hence, the routine revolve determines the next action to be
performed which must by supported by the application being dif-
ferentiated. These actions are

• advance: Here, the user is supposed to perform a part of
the forward integration based on the routine forward(x,u),
where x represents the state of the system and u the control.
The variable r–>oldcapo contains the current number of the
state of the forward integration. That is, before starting the
for-loop x holds the state at time tr–>oldcapo. The variable

r–>oldcapo determines the targeted number of the state of
the forward integration. Therefore, r–>capo − r–>oldcapo
time steps have to be perform to propagate the state x from
the time tr–>oldcapo to the time tr–>capo

• firstrun: This action signals the start of the adjoint compu-
tation. Therefore, first the target function is evaluated. Then,
the user has the possibility to initialize the adjoint variable
bu and bx. Subsequently, the first adjoint step is performed.

• youturn: The next adjoint step has to be performed.
• takeshot: Here, the user is supposed to store the current
state x in the checkpoint with the number r–>check. The
array of checkpoints is here denoted by xstore but the spe-
cific organisation of the checkpoints is completely up to
the user. During the adjoint computation r–>check selects
the checkpoint number appropriately such that all states
needed for the adjoint computation are available. Once the
adjoint computation has started, states that were stored in
the checkpoints are also overwritten to reuse memory.

• restore: The content of the checkpoint with the number
r–>check has to be copied into the state x to recompute the
forward integration starting from this state.

It is important to note that this checkpointing approach is com-
pletely independent from themethod that is actually used to provide
the adjoint information. As can be seen, once an adjoint compu-
tation is available the implementation can incorporate binomial
checkpointing to reduce the memory requirement.

We also have to stress that revolve provides a so-called serial
checkpointing which means that only one forward time step or
one adjoint step is performed at each stage of the adjoint computa-
tion. Nevertheless, the computation of the forward time step and/or
the adjoint step may be performed heavily in parallel, i.e., may be
evaluated on a large scale computer system. This is in contrast to
so-called parallel checkpointing techniques where several forward
time steps might be performed in parallel even in conjunction with
one adjoint step. Corresponding optimal parallel checkpointing
schedules were developed in [17]. However, so far no implementa-
tion to steer such a parallel checkpointing process is available.

The revolve software also includes an adjust procedure that com-
putes, for a given number of time steps, the number of checkpoints
such that the increase in spatial complexity equals approximately
the increase in temporal complexity. Using the computed number
as the number of checkpoints minimises cost when assuming that
the user pays computational resources per node and per time, e.g.
the cost is proportional to the available memory and the runtime
of the computation.

4 ABSTRACTIONS FOR CHECKPOINTING
In this section, we will discuss the package pyRevolve , which has
been developed during the course of this work to encapsulate Re-
volve checkpointing in a user-friendly, high level python library.
This library is available online, along with its source 1. We will first
provide details of its implementation in Section 4.1. Afterwards, we
will discuss the interplay of pyRevolve with the C++ checkpoint-
ing implementation that was previously discussed in Section 3.
Finally, we will discuss the usage of pyRevolve in an application in
1https://github.com/opesci/pyrevolve
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Section 4.2 to RTM, as described in section 2, implemented in the
Devito domain specific language.

Although section 4.2 discusses the special case of devito, the
interface of the pyRevolve library was designed to allow an easy
integration into other python codes as well.

4.1 API, pyRevolve side
The pyRevolve interface was designed as part of providing check-
pointing to users of Devito with an accessible API. The design had
the following goals:

• Making checkpointing available to users of Devito without
forcing them to get involved in implementation details like
loops, callbacks, data storage mechanisms. The user should
choose whether to use checkpointing in one place, but not
be forced to do anything beyond this.

• All knowledge of checkpointing, different strategies (on-
line/offline checkpointing, multistage) shall be contained
within one module of the python framework, while still ben-
efiting all operations in the code.

• The checkpointing itself should be contained in a separate
library that allows others to use it easily, even if they are not
interested in using Devito. This matured into pyRevolve .

• Since the data movement requires intricate knowledge of
the data structures used and their organization in memory,
this is handled by the application code.

To achieve these goals, pyRevolve was designed for the following
overall workflow, which will be explained in more detail in the fol-
lowing sections. The term application here refers to the application
using pyRevolve as a library (in this case Devito). To begin with, the
application creates objects with an apply method to perform the
actual forward and reverse computations, which are both instances
of a concrete implementation of the abstract base classOperator.
The application also creates an instance of a concrete implemen-
tation of the abstract base class Checkpoint that can deep-copy all
time-dependent working data that the operators require into a spec-
ified memory location. Next, the application instantiates pyRevolve
’s Revolver object and passes the forward and reverse operators,
and the checkpoint object. When required, the application starts
the Revolver’s forward sweep, which will complete the forward
computation and store checkpoints as necessary. After the forward
sweep completes, the application can finalize any computation
that is based on the forward data, such as evaluation of objective
functions, or store the final result as necessary. This may be accom-
panied/followed by the initialization of the adjoint data structures.
After this, the application calls the Revolver’s reverse sweep. This
will compute the adjoint, possibly by performing partial forward
sweeps and loading checkpoint data.

The pyRevolve package contains crevolve, which is a thin C
wrapper around a previously published C++ implementation2. The
C++ files in this package are slightly modified for compatibility
with Python, but the original is available from the link in the foot-
note. The crevolve wrapper around the C++ library is taken from
libadjoint3.

2http://www2.math.uni-paderborn.de/index.php?id=12067&L=1
3https://bitbucket.org/dolfin-adjoint/libadjoint

Revolve

CRevolve

pyRevolve

Devito

Original C++Original C++

C wrapperC wrapper

Python wrapperPython wrapper

ApplicationApplication

Figure 5: Packages overview. Devito and an example ap-
plication that uses checkpointing are the subject of Sec-
tion 2. Revolve has been described in Section 3. The pack-
ages pyRevolve and cRevolve and how they are used to create
a high-level abstraction of checkpointing are explained in
Section 4.

One key design aspect is that pyRevolve is not responsible for
performing the data copies, and therefore does not need to know
about the properties or structure of the data that needs to be stored.
For this purpose, pyRevolve provides the Checkpoint abstract base
class that has a size attribute, and a load(ptr) and save(ptr)
method. The user must provide a concrete implementation of such
an object. The size attribute must contain the size of a single
checkpoint in memory, this information is used by pyRevolve to
allocate the correct amount of memory. The save method must
deep-copy all working data to the memory region starting at the
provided pointer, and the load method must restore the working
data from the memory region starting at the pointer ptr, either
by performing a deep-copy, or by pointing the computation to the
existing data inside the checkpoint storage.

The pyRevolve library provides to the user the class Revolver
that must be instantiated with the following arguments:

• Checkpoint object: This has to be an implementation of
the abstract base class Checkpoint.

• Forward operator:An object that provides a function apply()
as specified in Section 4.2 that performs the forward compu-
tation.

• Reverse operator: Similarly, an object that provides a func-
tion apply() that performs the reverse computation.

• Number of checkpoints: This is optional, and specifies the
number of checkpoints that can be stored in memory. If it
is not given, a default value is computed using the adjust
method explained in Section 3.
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≪enum≫
Action

advance
takeshot
restore
firstrun
youturn
error

Crevolve

+ capo : uint
+ oldcapo : uint
+ check : uint

+revolve() : Action

Figure 6: Crevolve classes.

1

1

Checkpoint

# size : int

# save(ptr : pointer) : void
# load(ptr: pointer) : void

Storage

- data : numpy_array

+ init(n_ckp : int, size_ckp : int)
+ get_item(i : uint) : pointer

Revolver

- op_forward : Operator
- op_reverse : Operator
- store : Storage
- cr : CRevolve :: Checkpointer
- ckp : Checkpoint

+ init(ckp, op_forward, op_reverse, n_ckp, n_time)
+ apply_forward() : void
+ apply_reverse() : void

Operator

# apply() : void

Figure 7: pyRevolve classes. The abstract classes Checkpoint
and Operator are implemented by the client application

• Number of time steps: This is also optional. If it is not
given, an online checkpointing algorithm is used.

Based on either the given or computed number of checkpoints,
the constructor instantiates a storage object that allocates the neces-
sary amount of memory (number of checkpoints × checkpointsize),
and makes that memory accessible to the Revolver.

# Example time-varying field that needs checkpointing
u = TimeData(...)
# Some expression that generates the values for u
fw = Operator(...)
# Some expression that uses the values of u
rev = Operator(...)
cp = DevitoCheckpoint([u])
revolver = Revolver(cp, fw, rev, nt)
# Forward sweep that will pause to take checkpoints
revolver.apply_forward()
# Could perform some additional steps here
# Reverse sweep that uses the checkpoints
revolver.apply_reverse()

Figure 8: Devito code to utilize checkpointing based on pyRe-
volve

4.2 API, Application side
To introduce checkpointing using the pyRevolve library, an appli-
cation must implement a particular interface. We use devito here
as an example application, however, everything discussed here is
fairly general and any application may implement checkpointing
using pyRevolve using the approach discussed in this section.

To begin with, a concrete implementation of pyRevolve ’s abstract
base class Checkpoint, called DevitoCheckpoint was created. This
class has three methods:

• save(ptr): Save the contents of the working memory into
the location ptr.

• restore(ptr): Restore a previously stored checkpoint from
location ptr into working memory.

• size: Report the amount of memory required by a single
checkpoint. This is used to decide the total amount of mem-
ory to be allocated and to calculate offsets.

Alongwith this, we set up two Operator, one a ForwardOperator
to carry out the forward computation and a GradientOperator
that computes the image, as explained in section 2. These can be
used to initialize a Revolver object as shown in figure 8.

On initialization of the Revolver, object, the DevitoCheckpoint
object is queried for the size of one checkpoint and pyRevolve al-
locates n_checkpoints*checkpoint.size bytes of memory for
the storage of checkpoints. Calling revolver.apply_forward()
carries out a forward run but broken down into chunks as specified
by the checkpointing schedule provided by Revolve, each chunk
being executed by calling fwd.apply() with arguments t_start
and t_end corresponding to the timesteps to run the simulation for.
Between these chunks, cp.save() is automatically called to save
the state to a checkpoint.

On calling revolver.apply_reverse(), the Revolver calls
rev.apply() with the relevant t_start/t_end arguments for the
sections where the result from the forward pass is available in a
checkpoint. This will be loaded by a call to cp.load. For others,
it will automatically call fwd.apply() to recompute and store in
memory the results from a part of the forward operator so the
reverse operator can be applied for that part.
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DevitoCheckpoint

+ size : int

+ save(ptr : pointer) : void
+ load(ptr: pointer) : void

ForwardOperator

- data

+ apply() : void

ReverseOperator

- data

+ apply() : void

Figure 9: Devito operators, and the implementation of a
Checkpoint class.

Following this work, users of Devito can easily add optimal
checkpointing to their adjoint computations by following the steps
described above.

5 EXPERIMENT
There are two possible ways of testing the numerical accuracy of
an implementation - solving a problem whose solution has certain
known mathematical properties and verifying these properties nu-
merically, and comparing the results to a reference solution. Here
we do both - we use the gradient test as described in [7] and also
verify that the numerical results match those from a reference imple-
mentation. The test uses the Taylor property of the gradient to test
whether the calculated gradient follows the expected convergence
for small perturbations. The test can be written mathematically as:

ϵ0 =Φs (m0 + hdm) − Φs (mt)
ϵ1 =Φs (m0 + hdm) − Φs (m0) − h⟨∇Φs (m0), dm⟩. (9)

where Φs is defined in equation 1. This test is carried out for
a certain m, which we call here m0. This is the smoothed version
of a two layer model mt i.e. the true model has two horizontal
sections, each with a different value of squared slowness. Figure ??
shows the true velocity model mt. The measured data required by
the objective function is modeled on the true two-layer model and
dm = m0 −mt. The constant h then varies between 10−1 and 10−4
to verify that ϵ0 = O(h) is a first order error and ϵ1 = O(h2) is
a second order error. The code used for this test can be found in
the repository for devito 4. The tests were carried out on a Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2.60GHz (Haswell) with 128GB RAM.

We used a grid with 230 × 230 × 230 points. With the simulation
running for 1615 timesteps, this required about 80 GB to store
the full forward wavefield in memory. The first run was made
with the regular gradient example that stores the entire forward
wavefield in memory. This was then repeated with checkpointing,
with varying number of checkpoints. It was verified that the results

4https://github.com/opesci/devito

Figure 10: Velocity model used for gradient test

Figure 11: Timings for gradient test for different amounts of
peak memory consumption

from all versions matched each other exactly and also passed the
gradient test mentioned previously. The peak memory usage was
tracked for each such run, as well as the total time to solution. The
memory consumption was measured using the memory_profiler
python module and the time to solution by using the time python
command before and after the function to be profiled. To eliminate
variation in the results, the timings are the minimum value from
three runs.

As can be seen in figure 11, the reduction in runtime as more
memory is available is not in line with the theoretical predictions
from Griewank and Walther [4]. This is expected because the the-
oretical numbers do not take into account the cost of deep copies
(implemented here using numpy) as well as the cost of repeatedly
calling a C function from python vs doing the repetition inside the
C function. Since the adjoint computation (as well as the associated
forward computation) is carried out one time-step at a time, this
significantly reduces the amount of work available inside a single
Operator call. This might cause inefficiencies in load-balancing
across cores using OpenMP. This effect is seen most clearly when
comparing the reference implementation that stores the forward
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field in a contiguous block of memory with the checkpointed imple-
mentation that stores a checkpoint at every time step. In this case,
although the memory consumption of the two implementations is
the same, the checkpointed implementation runs slower because
of the overheads previously mentioned.

6 CONCLUSIONS
Through this work, we have shown that with high-level abstrac-
tions it is possible to greatly simplify the complexity of client code.
We have also verified the correctness of our implementation using
mathematical tests. This already enables the users of Devito to
utilize Revolve based checkpointing in their applications to solve
much bigger problems than previously possible. However, through
the experiment in section 5, we have seen that the overhead in-
troduced by checkpointing is non-trivial. For this reason, there is
much more work to be done to implement more features that widen
the applicability of pyRevolve .

7 FUTUREWORK
This work carried out so far was a proof of concept of integration
with Revolve using high level abstractions and, as such, is still a
work-in-progress in terms of use for practical applications. Themost
important limitation in the current implementation is that it imple-
ments “serial checkpointing”, i.e. during the reverse computation,
only one timestep can be advanced at a time and this severely limits
the parallelizability of this code. The high-level interface would
need to be extended to be able to manage parallelization strategies.
Another important feature that might be required in pyRevolve be-
fore it is adopted in the community is multi-stage checkpointing.
Here, some checkpoints may be transparently swapped to disk,
further increasing the amount of memory available to applications
without any change in the application code. For problems imple-
mented with adaptive time-stepping, the number of time-steps is
not known a-priori and that would require pyRevolve to implement
online checkpointing, something that even Devito would require
in future versions.
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