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Abstract. The predictive performance of point forecasts for a statistical
functional, such as the mean, a quantile, or a certain risk measure, is com-
monly assessed in terms of scoring (or loss) functions. A scoring function
should be (strictly) consistent for the functional of interest, that is, the ex-
pected score should be minimised by the correctly specified functional value.
A functional is elicitable if it possesses a strictly consistent scoring function.
In quantitative risk management, the elicitability of a risk measure is closely
related to comparative backtesting procedures. As such, it has gained consid-
erable interest in the debate about which risk measure to choose in practice.
While this discussion has mainly focused on the dichotomy between Value at
Risk (VaR)—a quantile—and Expected Shortfall (ES)—a tail expectation,
this paper is concerned with Range Value at Risk (RVaR). RVaR can be
regarded as an interpolation of VaR and ES, which constitutes a tradeoff
between the sensitivity of the latter and the robustness of the former. Re-
calling that RVaR is not elicitable, we show that a triplet of RVaR with two
VaR components at different levels is elicitable. We characterise the class of
strictly consistent scoring functions. Moreover, additional properties of these
scoring functions are examined, including the diagnostic tool of Murphy di-
agrams. The results are illustrated with a simulation study, and we put our
approach in perspective with respect to the classical approach of trimmed
least squares in robust regression.
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1 Introduction

1.1 Mean vs. median in classical statistics

The two most prominent measures for the location of a distribution are the mean and the
median. Both of them have a clear and accessible interpretation. While they coincide for
symmetric distributions, they can considerably differ for asymmetric ones. From an esti-
mation point of view the difference between the two measures are even more pronounced:
The population mean is sensitive with respect to the underlying distribution, and—for
symmetric distributions—it is a more efficient location-estimator than the median for
light-tailed distributions (Koenker and Basset, 1978). On the other hand, the median is
esteemed for its robustness against outliers, and—again for symmetric distributions—it
turns out to be a more efficient location-estimator than the mean for heavy-tailed dis-
tributions (ibidem). Indeed, one can show that the maximum likelihood estimator for
location coincides with the sample mean if the underlying distribution is normal whereas
it amounts to the sample median in case of a Laplace distribution (Keynes, 1911). More-
over, the median of a distribution always exists while the existence of the mean requires
a benign tail behaviour of the distribution.

The field of robust statistics was started off by the seminal contributions of Tukey
(1960) and Huber (1964). Hampel (1971) was the first to formalise the notion of robust-
ness and to link it to a continuity property of the estimator. Besides this qualitative
definition of robustness, Hampel also introduced the breakdown point of an estimator
as a quantitative measure of robustness. In finite samples (Donoho and Huber, 1983),
it roughly amounts to the proportion of data that can be changed without corrupt-
ing the estimator. As a consequence, the median is robust with a breakdown point of
1/2, whereas the mean achieves a breakdown point of 0 rendering it non-robust. Since
the early days of robust statistics, the field has developed an incredibly rich strand of
literature. For a thorough introduction we refer the reader to the excellent textbook
Huber and Ronchetti (2009).

It is well known that both the mean and the median can be expressed as M -estimators
using the squared loss or the absolute loss, respectively. The most prominent compromise
between the mean and the median in form of an M -estimator is given by the famous
Huber loss (Huber, 1964, p. 79). Historically older alternatives of such a compromise are
the α-trimmed mean and the α-Winsorized mean, belonging to the class of L-estimates.
On a population level, the α-trimmed mean, α ∈ (0, 1/2), is the average of all β-quantiles
for β ∈ [α, 1−α] (see Section 2 for precise definitions). In a finite sample, it amounts to
removing the smallest and the largest α-fraction of all observations and then computing
the mean with the remaining (1− 2α)-fraction of observations. The α-Winsorized mean
instead calculates the mean over all observations, with the smallest (largest) α-fraction
set to be the empirical α-quantile ((1−α)-quantile). As such, the α-trimmed mean and
the α-Winsorized mean constitute two natural interpolations between the mean (α = 0)
and the median (α = 1/2). They are robust, with a breakdown point of α (Hampel,
1971).
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1.2 Expected Shortfall vs. Value at Risk in risk management

In the field of quantitative risk management, the last one or two decades have seen a lively
debate about which monetary risk measure (Artzner et al., 1999) be best in (regulatory)
practice. The debate mainly focused on the dichotomy between Value at Risk (VaRα) on
the one hand and Expected Shortfall (ESα) on the other hand at some level α ∈ (0, 1) (see
Section 2 for definitions). Interestingly, and in line with the debate in classical statistics,
this encompasses a joust between a quantile (VaRα) and a tail expectation (ESα). We
refer the reader to Embrechts et al. (2014) and Emmer et al. (2015) for comprehensive
academic discussions and to Bank for International Settlements (2014) for a regulatory
perspective in banking.

Cont et al. (2010) considered the issue of statistical robustness of risk measure esti-
mates in the sense of Hampel (1971). They showed that a risk measure cannot be both
robust in the latter sense and coherent in the sense of Artzner et al. (1999). As a com-
promise, they propose the risk measure ‘Range Value at Risk’ (RVaRα,β), which is akin
to an asymmetric version of the trimmed mean: One takes the average of all quantiles
between two extreme levels 0 ≤ α ≤ β ≤ 1, rather than between two symmetric levels
where β = 1−α (see Section 2 for definitions). Setting α = β ∈ (0, 1) renders VaRβ and
α = 0 < β < 1 leads to ESβ. The arguments provided in Huber and Ronchetti (2009,
p. 59) imply that RVaRα,β has a breakdown point of min{α, 1− β}, which means it is a
robust—and hence, not coherent—risk measure, unless it degenerates to RVaR0,β = ESβ
(or if 0 ≤ α < β = 1). Moreover, RVaR belongs to the wide class of distortion
risk measures (Kusuoka, 2001). For further contributions to robustness in the con-
text of risk measures, we refer the reader to Krätschmer et al. (2012, 2014), Kou et al.
(2013), Embrechts et al. (2015) and Zähle (2016). Since the influential article Cont et al.
(2010), RVaR has gained increasing attention in the risk management literature—see
Embrechts et al. (2018a,b) for extensive studies—as well as in econometrics (Barendse,
2017) where RVaR sometimes has the alternative denomination Interquantile Expecta-
tion.

1.3 Elicitability

The property of a statistical functional to have an M -estimator on the population level
has become known as elicitability (Osband, 1985; Lambert et al., 2008; Gneiting, 2011).
More specifically, we say that a functional T is elicitable if there is a scoring function
S(x, y) such that T (F ) = argminx

∫
S(x, y) dF (y). Vice versa, a scoring function is

called strictly consistent for T if its expectation is uniquely minimised in x at T (F ). Ex-
amples for elicitable functionals are given by the mean with S(x, y) = (x− y)2 and the
median with S(x, y) = |x − y| and their asymmetric versions, expectiles and quantiles.
From a game theoretic point of view, strict consistency of a scoring function amounts
to incentive compatibility, rewarding truthful and honest forecasts. Besides its impor-
tance for M -estimation and regression, e.g. quantile regression (Koenker and Basset,
1978; Koenker, 2005) or expectile regression (Newey and Powell, 1987), the notions of
elicitability and strict consistency are crucial for forecast evaluation (Engelberg et al.,
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2009; Murphy and Daan, 1985). If forecasts take the form of probability distributions or
densities, one often uses the term scoring rule rather than scoring function and propriety
rather than consistency (Gneiting and Raftery, 2007).

Osband (1985) showed that convex level sets (CxLS) of a functional are necessary for
its elicitability. This shows that variance is generally not elicitable, and also Expected
Shortfall fails to have the CxLS-property (Weber, 2006; Gneiting, 2011). Steinwart et al.
(2014) showed that for continuous one-dimensional functionals, the CxLS-property is
basically also sufficient for elicitability; cf. Lambert (2013), Bellini and Bignozzi (2015),
Delbaen et al. (2016), as well as Heinrich (2014) for the role of the continuity assumption.
The revelation principle (Osband, 1985; Gneiting, 2011) asserts that any bijection of an
elicitable functional is elicitable. This implies that the pair (mean, variance)—being a
bijection of the first two moments—is elicitable despite the variance fails to be elicitable.
Similarly, Fissler and Ziegel (2016) showed that the pair (VaRα,ESα) is elicitable with
the structural difference that the revelation principle is not applicable in this instance.
This gave rise to the finding that the minimal expected score and its minimiser are
jointly elicitable; see Frongillo and Kash (2015) and Brehmer (2017).

In the context of quantitative finance and particularly in the debate about which risk
measure is best in practice, elicitability has gained considerable attention (Emmer et al.,
2015; Ziegel, 2016; Davis, 2016). Especially, the role of elicitability for backtesting
purposes has been highly debated (Gneiting, 2011; Acerbi and Székely, 2014, 2017;
Fissler et al., 2016; Nolde and Ziegel, 2017).

1.4 Elicitability of Range Value at Risk

Very recently, Wang and Wei (2018) showed that RVaRα,β, 0 < α < β < 1, similarly to
ESα, fails to have the CxLS property, which rules out its elicitability (see Proposition
3.1). In contrast, they observe that the identity

RVaRα,β =
(
β ESβ −αESα

)
/(β − α), 0 < α < β < 1, (1.1)

and the CxLS property of the pair (VaRα,ESα) implies the CxLS property of the
triplet (VaRα,VaRβ,RVaRα,β) (Wang and Wei, 2018, Example 7), leading to the ques-
tion whether this triplet is elicitable or not. Invoking the elicitability of (VaRα,ESα), the
identity at (1.1) and the revelation principle establishes the elicitability of the quadru-
ples (VaRα,VaRβ,ESα,RVaRα,β) and (VaRα,VaRβ ,ESβ ,RVaRα,β). This approach has
already been used in the context of regression in Barendse (2017).

A fortiori, we show that the triplet (VaRα,VaRβ,RVaRα,β) is elicitable (Theorem
3.4) under weak regularity conditions. Besides the obvious advantage that this re-
duces the elicitation complexity (Lambert et al., 2008; Frongillo and Kash, 2015) or
elicitation order (Fissler and Ziegel, 2016), it is particularly superior since RVaRα,β(F ),
0 < α < β < 1, exists for any distribution F , while ESα(F ) and ESβ(F ) only exist if
the (left) tail of the distribution F is integrable. Since RVaR is used often for robust-
ness purposes, safeguarding against outliers and heavy-tailedness, the latter advantage
becomes particularly important.
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We would like to point out the structural difference between the elicitability result
of (VaRα,VaRβ,RVaRα,β) provided in this paper and the one concerning (VaRα,ESα)
in Fissler and Ziegel (2016) as well as the more general results of Frongillo and Kash
(2015) and Brehmer (2017). While ESα corresponds to the negative of a minimum of an
expected score which is strictly consistent for VaRα, it turns out that RVaRα,β can be
represented as the difference of minima of strictly consistent scoring functions for VaRα

and VaRβ , respectively (Lemma 3.3). As a consequence, the class of strictly consistent
scoring functions for the triplet (VaRα,VaRβ,RVaRα,β) turns out to be less flexible than
the one for (VaRα,ESα); see Remark 3.9 for details. One particular implication is that
there are essentially no strictly consistent scoring functions for (VaRα,VaRβ,RVaRα,β)
which are also translation invariant or positively homogeneous; see Section 4.

The paper is organised as follows. In Section 2, we introduce the relevant notation and
definitions concerning RVaR, scoring functions and elicitability. The main results estab-
lishing the elicitability of the triplet (VaRα,VaRβ,RVaRα,β) (Theorems 3.4 and 3.7) and
related findings are presented in Section 3. Section 4 shows that there are basically no
strictly consistent scoring functions for (VaRα,VaRβ,RVaRα,β) which are positively ho-
mogeneous or translation invariant. In Section 5, we establish a mixture representation
of the strictly consistent scoring functions in the spirit of Ehm et al. (2016). This result
allows to compare forecasts simultaneously with respect to all consistent scoring func-
tions in terms of Murphy diagrams. We demonstrate the applicability of our results and
compare the discrimination ability of different scoring functions in a simulation study
presented in Section 6. The paper finishes in Section 7 with a discussion of our results in
the context of M -estimation and compares them to other suggestions in the statistical
literature, in variants of a trimmed least squares procedure (Koenker and Basset, 1978;
Ruppert and Carroll, 1980; Rousseeuw, 1984). A list of assumptions similar to the ones
used in Fissler and Ziegel (2016) can be found in the Appendix.

2 Notation and Definitions

2.1 Definition of Range Value at Risk

We would like to recall that there are different sign conventions in the literature about
risk measures. In this paper we use the following convention: If a random variable
Y models the losses and gains, then positive values of Y represent gains and negative
values of Y losses. Since we consider law-invariant risk measures only, thus defining risk
measures directly as functionals of the distribution of Y , corresponding comments apply.
Moreover, if ρ is a risk measure, we assume that ρ(Y ) ∈ R corresponds to the maximal
amount of money one can withdraw such that the position Y − ρ(Y ) is still acceptable.
Hence, negative values of ρ correspond to risky positions.

Definition 2.1 (Value at Risk). Let F be a probability distribution function on R. For
any α ∈ (0, 1) we define the Value at Risk of F at level α via

VaRa(F ) = inf{x ∈ R |α ≤ F (x)} ∈ R .
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Moreover, we use the common convention that VaR0(F ) ∈ R∪{−∞} corresponds to the
infimum of the support of F and that VaR1(F ) ∈ R ∪ {∞} is defined as the supremum
of the support of F .

Definition 2.2 (Range Value at Risk). Let F be a probability distribution function on
R. For 0 ≤ α ≤ β ≤ 1 we define the Range Value at Risk of F at levels α, β via

RVaRα,β(F ) =





1

β − α

∫ β

α
VaRγ(F ) dγ, if α < β,

VaRα(F ), if α = β.

Note that our parametrisation of RVaRα,β differs from the one in Embrechts et al.
(2018b). One can verify that RVaRα,β(F ) ∈ R if 0 < α ≤ β < 1. For β ∈ (0, 1),

RVaR0,β(F ) ∈ R∪{−∞} and it is finite if and only if
∫ 0
−∞ |y|dF (y) < ∞. Similarly, for

α ∈ (0, 1) it holds that RVaRα,1(F ) ∈ R∪{∞} and it is finite if and only if
∫∞
0 |y|dF (y) <

∞. RVaR0,1(F ) exists only if
∫ 0
−∞ |y|dF (y) < ∞ or

∫∞
0 |y|dF (y) < ∞. If F has a finite

first moment, then RVaR0,1(F ) =
∫
y dF (y) coincides with the first moment of F .

One can generalise this identity for 0 ≤ α < β ≤ 1 and obtains the alternative
representation

RVaRα,β(F ) =
1

β − α

(∫

(VaRα(F ),VaRβ(F )]
y dF (y)

+ VaRα(F )
(
F (VaRα(F )) − α

)
−VaRβ(F )

(
F (VaRβ(F ))− β

)
)
,

where we used the usual convention that F (−∞) = 0, F (∞) = 1 and 0·∞ = 0·(−∞) = 0.
If F is continuous at its α- and β-quantiles in the sense that F (VaRα(F )) = α and
F (VaRβ(F )) = β then the correction terms in (2.2) vanish and one has that

RVaRα,β(F ) =
1

β − α

∫

(VaRα(F ),VaRβ(F )]
y dF (y)

=
1

β − α
EF [Y 1{VaRα(F ) < Y ≤ VaRβ(F )}],

which justifies an alternative name for RVaR, namely Interquantile Expectation.

Definition 2.3 (Expected Shortfall). Let F be a probability distribution function on
R. For any α ∈ (0, 1) we define the Expected Shortfall of F at level α via

ESα(F ) = RVaR0,α(F ) ∈ R ∪ {−∞}.

Let 0 < α < β < 1 and ESα(F ),ESβ(F ) ∈ R. Then one obtains the identity

RVaRα,β(F ) =
(
β ESβ(F )− αESα(F )

)
/(β − α). (2.1)
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If F has a finite left tail (
∫ 0
−∞ |y|dF (y) < ∞) then one could use the right hand side

of (2.1) as a definition of RVaRα,β(F ). However, in line with our discussion in the
introduction, RVaRα,β(F ) always exists and is finite for 0 < α < β < 1 even if the right
hand side of (2.1) is not defined.

Interestingly, Theorem 2 in Embrechts et al. (2018b) establishes that RVaR can be
written as inf-convolution of VaR and ES at appropriate levels. Note that this would
rather amount to a sup-convolution in our context due to different sign conventions.

For α ∈ (0, 1/2), RVaRα,1−α corresponds to the α-trimmed mean and has a close
connection to the α-Winsorized mean Wα (Huber and Ronchetti, 2009, pp. 57–59) via

Wα(F ) := (1− 2α)RVaRα,1−α(F ) + αVaRα(F ) + αVaR1−α(F ), α ∈ (0, 1/2). (2.2)

It is easy to verify that for any distribution function F and 0 < α < β < 1 one obtains
the inequality

VaRα(F ) ≤ RVaRα,β(F ) ≤ VaRβ(F ). (2.3)

2.2 Elicitability and scoring functions

We essentially follow the notation used in Fissler and Ziegel (2016), which follows the
decision-theoretic framework used in Gneiting (2011). Let F be a generic class of
probability distribution functions on R. An action domain A is a subset A ⊆ R

k for
k ≥ 1. Whenever we consider a functional T : F → A, we tacitly assume that T (F )
is well-defined for all F ∈ F and is an element of A. T (F) corresponds to the image
{T (F ) ∈ A |F ∈ F}. For any subset M ⊆ R

k we denote with int(M) the largest open
subset of M . Moreover, conv(M) denotes the convex hull of the set M .

We say that a function a : R → R is F-integrable if it is measurable and
∫
|a(y)|dF (y) <

∞ for all F ∈ F . Similarly, a function g : A × R → R is called F-integrable if
g(x, ·) : R → R is F-integrable for all x ∈ A. If g is F-integrable, we define the map

ḡ : A×F → R, ḡ(x, F ) :=

∫
g(x, y) dF (y).

If g : A × R → R is sufficiently smooth in its first argument, we denote the mth partial
derivative of g(·, y) with ∂mg(·, y).

Definition 2.4 (Consistency and elicitability). A scoring function is an F-integrable
map S : A×R → R. It is called F-consistent for a functional T : F → A if S̄(T (F ), F ) ≤
S̄(x, F ) for all x ∈ A and for all F ∈ F . It is strictly F-consistent for T if it is consistent
and if S̄(T (F ), F ) = S̄(x, F ) implies that x = T (F ) for all x ∈ A and for all F ∈ F .
Wherever it is convenient, we assume that S(x, ·) is locally bounded for all x ∈ A. A
functional T : F → A is elicitable if it possesses a strictly F-consistent scoring function.

Definition 2.5 (Equivalence). Two scoring function S, S̃ : A× R → R are called equiv-
alent if there is some F-integrable function a : R → R and some λ > 0 such that
S̃(x, y) = λS(x, y) + a(y) for all (x, y) ∈ A× R.
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It is immediate that the above relation is indeed an equivalence relation. Moreover,
if S and S̃ are equivalent, then S is (strictly) F-consistent for some functional T if and
only if S̃ is (strictly) F-consistent for T .

Closely related to the concept of elicitability is the notion of identifiability.

Definition 2.6 (Identification functions and identifiability). An F-integrable map V : A×
R → R

k, where A ⊆ R
k, is an identification function for a functional T : F → A if

V̄ (T (F ), F ) = 0 for all F ∈ F . It is a strict F-identification function for T if it is an
identification function and if V̄ (x, F ) = 0 implies that x = T (F ) for all x ∈ A and for all
F ∈ F . Wherever it is convenient, we assume that V is locally bounded jointly in both
arguments. A functional T : F → A is identifiable if it possesses a strict F-identification
function.

Note that in contrast to Gneiting (2011) we assume that the functional T maps to A

rather than to the power set of A.

For the sake of completeness, we list some assumptions used in Section 3 which were
originally introduced in Fissler and Ziegel (2016) in the Appendix.

3 Elicitability and identifiability results

3.1 RVaR is not elicitable

It is well known that the mean-functional is elicitable with respect to the class F of
probability distributions with finite mean. Value-at-Risk at level α is elicitable relative
to the class F of probability distributions with unique α-quantiles.1 Gneiting (2011)
showed that expected shortfall (ES) fails to have convex level sets which implies that ES
is not elicitable. On the other hand, Fissler and Ziegel (2016) provide a positive result
showing that the pair (VaRα,ESα) is elicitable. The following proposition treats the
case of RVaRα,β for 0 < α < β < 1.

Proposition 3.1. Let 0 < α < β < 1. If F contains all measures with finite support,
the following assertions hold.

(i) (VaRβ,RVaRα,β) : F → R
2 does not have convex level sets.

(ii) (VaRα,RVaRα,β) : F → R
2 does not have convex level sets.

(iii) RVaRα,β : F → R does not have convex level sets.

Proof. We start with (i). Let a < b < c < d where a < 2/3b + c < b and where
c 6= 0. Define the two measures F1 = αδa + 1

2(β − α)(δb + δc) + (1 − β)δd and F2 =
1
4(α+3β)δ(2/3b+d)+

1
4(β−α)δc+(1−β)δd. Then VaRβ(F1) = VaRβ(F2) = VaRβ(

1
2 (F1+

F2)) = c, and RVaRα,β(F1) = RVaRα,β(F2) =
1
2 (b+ c). On the other hand, one obtains

RVaRα,β(
1
2 (F1 + F2)) =

1
2b +

2
3c, which shows (i). Assertion (ii) follows with a similar

argument, whereas (iii) is a direct corollary of (i) or (ii).

1That is, if {x ∈ R | limt↑x F (t) ≤ α ≤ F (x)} = {VaRα(F )} for all F ∈ F .
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We would like to remark that Wang and Wei (2018, Example 7) provide an alternative
proof that RVaRα,β does not have convex level sets for 0 < α < β < 1. Moreover, their
Theorem 2 gives an alternative way of establishing assertions (i) and (ii) in Proposition
3.1.

Corollary 3.2. Let 0 < α < β < 1. If F contains all measures with finite support, the
following assertions hold.

(i) (VaRβ,RVaRα,β) : F → R
2 is not elicitable.

(ii) (VaRα,RVaRα,β) : F → R
2 is not elicitable.

(iii) RVaRα,β : F → R is not elicitable.

Proof. This is a direct consequence of Proposition 3.1 and Theorem 6 in Gneiting (2011).

With similar arguments one can show the assertions of Proposition 3.1 (and Corollary
3.2) if F contains all measures with compact support that are continuous with respect
to the Lebesgue measure. With a continuity argument, one can extend this result to the
class F containing mixtures of normal distributions.

3.2 RVaR is jointly elicitable with the corresponding quantiles

For any α ∈ (0, 1), we define Sα : R×R → R, Sα(x, y) = (1{y ≤ x} − α)x− 1{y ≤ x}y.
Note that Sα is F-consistent for VaRα if

∫ x
−∞ |y|dF (y) < ∞ for all F ∈ F and all

x ∈ R. Moreover, it is strictly F-consistent for VaRα if all distributions in F have
unique α-quantiles.

Now let 0 < α < β < 1 and consider the function V : R3 × R → R
3 defined as

V (x1, x2, x3, y) =




1{y ≤ x1} − α
1{y ≤ x2} − β

x3 +
1

β−α

(
Sβ(x2, y)− Sα(x1, y)

)


 (3.1)

Using the notation V = (V1, V2, V3)
⊤, the important observation is that for any distri-

bution F
V̄3(VaRα(F ),VaRβ(F ), x3, F ) = x3 − RVaRα,β(F ). (3.2)

This observation implies an identifiability result for the triplet (VaRα,VaRβ,RVaRα,β)
whose proof is simple and omitted.

Lemma 3.3. Let 0 < α < β < 1. If F is a class of probability distributions such that
F (VaRα(F )) = α and F (VaRβ(F )) = β for all F ∈ F , then the function V at (3.1) is
an F-identification function for the triplet T = (VaRα,VaRβ,RVaRα,β). If moreover the
α- and β-quantiles are unique for all elements of F , then V is a strict F-identification
function for T .

Invoking the inequality at (2.3) the maximal sensible action domain for the triplet
(VaRα,VaRβ,RVaRα,β) is A0 := {(x1, x2, x3) ∈ R

3 |x1 ≤ x3 ≤ x2}.
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Theorem 3.4. Let F be a class of distributions on R, 0 < α < β < 1, and T =
(VaRα,VaRβ,RVaRα,β) : F → A = {(x1, x2, x3) ∈ R

3 |C1 < x1 ≤ x3 ≤ x2 < C2} where
−∞ ≤ C1 < C2 ≤ ∞. Let S : A× R → R be a scoring function of the form

S(x1, x2, x3, y) =
(
1{y ≤ x1} − α

)
g1(x1)− 1{y ≤ x1}g1(y) (3.3)

+
(
1{y ≤ x2} − β

)
g2(x2)− 1{y ≤ x2}g2(y)

+ φ′(x3)
(
x3 +

1

β − α

(
Sβ(x2, y)− Sα(x1, y)

))
− φ(x3) + a(y),

where a : R → R is F-integrable, gr : (C1, C2) → R, r ∈ {1, 2}, such that the functions
1(−∞,xr]gr are F-integrable for all xr ∈ (C1, C2), and φ : (C1, C2) → R is convex with
subgradient φ′ : (C1, C2) → R. If for all x3 ∈ (C1, C2) the functions

G1,x3
: (C1, C2) → R, x1 7→ g1(x1)− x1φ

′(x3)/(β − α), (3.4)

G2,x3
: (C1, C2) → R, x2 7→ g2(x2) + x2φ

′(x3)/(β − α) (3.5)

are increasing, then S is F-consistent for T . If moreover φ is strictly convex, the func-
tions at (3.4) and (3.5) are strictly increasing, and any distribution in F has unique α-
and β-quantiles, then S is strictly F-consistent for T .

Proof. To simplify the notation in the proof, we shall occasionally evaluate the score on
(C1, C2)

3 rather than on A. Let (x1, x2, x3) ∈ A, F ∈ F and (t1, t2, t3) := T (F ). Then,
since G1,x3

is increasing, (C1, C2) × R ∋ (x′1, y) 7→ S(x′1, x2, x3, y) is F-consistent for
VaRα and it is strictly F-consistent if G1,x3

is strictly increasing and if the distributions
in F have unique α-quantiles. Similar comments apply to the map (C1, C2) × R ∋
(x′2, y) 7→ S(t1, x

′
2, x3, y). Hence,

0 ≤ S̄(x1, x2, x3, F )− S̄(t1, x2, x3, F ) + S̄(t1, x2, x3, F )− S̄(t1, t2, x3, F )

= S̄(x1, x2, x3, F )− S̄(t1, t2, x3, F )

with a strict inequality under the conditions for strict consistency and if (x1, x2) 6=
(t1, t2). Finally,

S̄(t1, t2, x3, F )− S̄(t1, t2, t3, F ) = φ′(x3)(x3 − t3)− φ(x3) + φ(t3) ≥ 0, (3.6)

since φ is convex. If φ is strictly convex and if x3 6= t3, then the inequality in (3.6) is
strict.

Remark 3.5. (i) If C1, C2 ∈ R, then Theorem 3.4 holds also for the action domain
A = {(x1, x2, x3) ∈ R

3 |C1 ≤ x1 ≤ x3 ≤ x2 ≤ C2}.
(ii) Even though the maximal sensible action domain for T = (VaRα,VaRβ,RVaRα,β)

is A0 := {(x1, x2, x3) ∈ R
3 |x1 ≤ x3 ≤ x2}, the proof of Theorem 3.4 shows that

the scoring function given at (3.3) is even strictly F-consistent on the Cartesian
product A′

1×A
′
2×A

′
3 where A

′
r := {xr ∈ R | ∃(z1, z2, z3) ∈ A, zr = xr}, r ∈ {1, 2, 3},

is the projection of A to the rth component. This enables the evaluation of forecasts
ignoring the crucial inequality at (2.3).
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(iii) If the scoring S is of the form at (3.3) such that φ is strictly convex and the functions
G1 and G2 are strictly increasing, but some distributions F ∈ F fail to have unique
α- or β-quantiles, then S also fails to be strictly F-consistent. However, it is still
strictly F-consistent in the RVaR-component. That is, for F ∈ F

argmin
x∈A0

S̄(x, F ) = qα(F )× qβ(F )× {RVaRα,β(F )},

where qγ(F ) := {y ∈ R | limt↑y F (t) ≤ γ ≤ F (y)} is the full set-valued γ-quantile.

Making use of the relation at (2.2) and the revelation principle (Osband, 1985; Gneiting,
2011; Fissler, 2017), Theorem 3.4 establishes that the triplet (VaRα,VaR1−α,Wα) is elic-
itable where Wα is the α-Winsorized mean. Moreover, it gives a rich class of strictly
consistent scoring function for this triplet. The following proposition is useful to con-
struct examples; see Section 6.

Proposition 3.6. Let 0 < α < β < 1 and −∞ ≤ C1 < C2 ≤ ∞. Let S be a scoring
function of the form (3.3) with a (strictly) convex function φ, and functions g1, g2
satisfying the conditions (3.4) and (3.5).

(i) The subgradient φ′ of φ is necessarily bounded.

(ii) S is equivalent to a scoring function S̃ of the form (3.3) with a (strictly) convex
function φ̃ such that φ̃′ is bounded with − infx∈(C1,C2) φ̃

′(x) = supx∈(C1,C2) φ̃
′(x) =

β −α, and strictly increasing functions g̃1, g̃2 such that their one-sided derivatives
are bounded below by one.

Proof. (i) The proof is similar to the one of Corollary 5.5 in Fissler and Ziegel (2016).
Take some x1, x

′
1 ∈ A

′
1 with x1 < x′1. Then, for any x3 ∈ A

′
3 one obtains φ

′(x3)/(β−
α) ≤ (g1(x1) − g1(x

′
1))/(x1 − x′1) < ∞. One obtains that supx3∈A′

3

φ′(x3) < ∞.
With similar arguments one can show that infx3∈A′

3
φ′(x3) > −∞.

(ii) For any c ∈ R, if we replace φ with φ̂ : x 7→ φ(x) + cx, g1 with ĝ1 : x 7→ g1(x) +
cx/(β−α), and g2 with ĝ2 : x 7→ g2(x)+cx/(β−α) in the formula (3.3) for S, then
S does not change and φ̂ is (strictly) convex if and only if φ is (strictly) convex.
Furthermore, conditions (3.4) and (3.5) hold for φ, g1, g2 if and only if they hold for
φ̂, ĝ1 and ĝ2. By part (i) of the proposition φ′ is bounded. Therefore, we can assume
without loss of generality that − infx∈(C1,C2) φ

′(x) = supx∈(C1,C2) φ
′(x) = c0. By

scaling of the scoring function S, we obtain an equivalent scoring function where
we can assume that c0 = β − α.

Let x, x′ ∈ (C1, C2) such that x < x′. Condition (3.4) implies that

g1(x
′)− g1(x)

x′ − x
≥ 1

β − α
sup

x3∈(C1,C2)
φ′(x3) = 1.

In particular, g1 is strictly increasing, and therefore, one-sided derivatives exist
everywhere and by the above inequality they are bounded below by one. The
argument for g2 works analogously.
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Using Osband’s principle (Fissler and Ziegel, 2016, Theorem 3.2), one can also es-
tablish a necessary condition for strict consistency of scoring functions for the triplet
T = (VaRα,VaRβ,RVaRα,β). For any x3 ∈ A

′
3 and m ∈ {1, 2}, let A

′
m,x3

:= {xm ∈
R | ∃(z1, z2, z3) ∈ A, zm = xm, z3 = x3}.

Theorem 3.7. Let F be a class of continuously differentiable distributions on R and
0 < α < β < 1. Assume that all distributions in F have unique α- and β-quantiles.
Let T = (VaRα,VaRβ,RVaRα,β) : F → A ⊆ A0. Then, V defined at (3.1) is a strict F-
identification function for T which satisfies Assumption (V3). If Assumptions (V1), and
(F1) hold and (V1, V2)

⊤ satisfies Assumption (V4), then any strictly F-consistent scoring
function S : A × R → R for T that satisfies assumptions (VS1) and (S2) is necessarily
of the form given at (3.3) almost everywhere, where the functions Gr,x3

: A′
r,x3

→ R,
r ∈ {1, 2}, x3 ∈ A

′
3, at (3.4) and (3.5) are strictly increasing and φ : A′

3 → R is strictly
convex.

Proof. The first assertion of the theorem follows from the identity at (3.2) and Assump-
tion (V3) is satisfied since all F ∈ F are assumed to be continuously differentiable.

Let F ∈ F with derivative f and let x ∈ int(A). Then one obtains

V̄3(x, F ) = x3 +
1

β − α

(
x2(F (x2)− β)− x1(F (x1)− α) −

∫ x2

x1

yf(y) dy

)

The partial derivatives of V are given by

∂mV̄1(x, F ) =





f(x1), m = 1

0, m = 2

0, m = 3,

∂mV̄2(x, F ) =





0, m = 1

f(x2), m = 2

0, m = 3,

∂mV̄3(x, F ) =





−(F (x1)− α)/(β − α), m = 1

(F (x2)− β)/(β − α), m = 2

1, m = 3.

An adaptation of Osband’s Principle (Fissler and Ziegel, 2016, Theorem 3.2) yields the
existence of continuously differentiable functions hlm : int(A) → R, l,m ∈ {1, 2, 3}, such
that for m ∈ {1, 2, 3}

∂mS̄(x, F ) =
3∑

i=1

hmi(x)V̄i(x, F ).

Since we assume that S̄(·, F ) is twice continuously differentiable for any F ∈ F , the
second order partial derivatives need to commute. Let t = T (F ). Then ∂1∂2S̄(t, F ) =
∂2∂1S̄(t, F ) is equivalent to

h21(t)f(t1) = h12(t)f(t2).
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This needs to hold for all F ∈ F . The variation in the densities implied by Assumption
(V4) in combination with the surjectivity of T yield that h12 = h21 = 0 on int(A).
Similarly, evaluating ∂1∂3S̄(x, F ) = ∂3∂1S̄(x, F ) and ∂2∂3S̄(x, F ) = ∂3∂2S̄(x, F ) at x =
t = T (F ) yields

h13(t) = h31(t)f(t1), h23(t) = h32(t)f(t2) .

Using again Assumption (V4) as well as the surjectivity of T , this implies that

h13 = h31 = h23 = h32 = 0 .

So we are left with characterising hmm for m ∈ {1, 2, 3}. Note that Assumption (V1)
implies that for any x = (x1, x2, x3) ∈ int(A) there are two distributions F1, F2 ∈ F such
that (F1(x1)− α,F1(x2)− β)⊤ and (F2(x1)− α,F2(x2)− β)⊤ are linearly independent.
Then, the requirement that

∂1∂2S̄(x, F ) = ∂1h22(x)(F (x2)− β) = ∂2h11(x)(F (x1)− α) = ∂2∂1S̄(x, F )

for all x ∈ int(A) and for all F ∈ F implies that ∂1h22 = ∂2h11 = 0.
Starting with ∂1∂3S̄(x, F ) = ∂3∂1S̄(x, F ), implies that

∂1h33V̄3(x, F ) =
(
∂3h11(x) + h33(x)/(β − α)

)
V̄1(x, F ).

Again, Assumption (V1) implies that there are F1, F2 ∈ F such that
(
V̄1(x, F1), V̄3(x, F1)

)⊤

and
(
V̄1(x, F2), V̄3(x, F2)

)⊤
are linearly independent. Hence, we obtain that ∂1h33 = 0

and ∂3h11 = −h33/(β−α). With the same argumentation and starting from ∂2∂3S̄(x, F ) =
∂3∂2S̄(x, F ) one can show that ∂2h33 = 0 and ∂3h22 = h33/(β − α). That means
there exist functions c1 : {(x1, x3) ∈ R

2 | ∃(z1, z2, z3) ∈ int(A), x1 = z1, x3 = z3} → R,
c2 : {(x2, x3) ∈ R

2 | ∃(z1, z2, z3) ∈ int(A), x2 = z2, x3 = z3} → R and c3 : int(A)′3 → R

and some z ∈ int(A)′3 such that for any x = (x1, x2, x3) ∈ int(A)

h33(x) = c3(x3),

h11(x) = c1(x1, x3) = − 1

β − α

∫ x3

z
c3(z) dz + b1(x1),

h22(x) = c2(x2, x3) =
1

β − α

∫ x3

z
c3(z) dz + b2(x2),

where br : int(A)′r → R, r ∈ {1, 2}. Due to the fact that any component of T is mixture-
continuous2 and since F is convex and T surjective, the projection int(A)′3 is an open
interval. Hence, [min(z, x3),max(z, x3)] ⊂ int(A)′3. Due to Assumptions (V3) and (S2),
Theorem 3.2 in Fissler and Ziegel (2016) implies that c1, c2, c3 are locally Lipschitz con-
tinuous. The above calculations imply that the Hessian of the expected score, ∇2S̄(x, F ),
at its minimiser x = t = T (F ) takes the form

∇2S̄(t, F ) =



c1(t1, t3)f(t1) 0 0

0 c2(t2, t3)f(t2) 0
0 0 c3(t3)


 .

2For convex F a functional T : F → R
k is called mixture-continuous if for any F,G ∈ F the map

[0, 1] ∋ λ 7→ T ((1− λ)F + λG) is continuous.
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Since t is a minimiser of the expected score, the Hessian must be positive semi-definite.
Invoking the surjectivity of T once again, this shows that c1, c2, c3 ≥ 0. More to the
point, invoking the continuous differentiability of the expected score and the fact that
S is strictly F-consistent for T one obtains that for any F ∈ F with t = T (F ) and for
any v ∈ R

3, v 6= 0, there exists an ε > 0 such that

d

ds
S̄(t+ sv, F )





< 0, ∀s ∈ (−ε, 0)

= 0, s = 0

> 0, ∀s ∈ (0, ε).

(3.7)

For v = e3 = (0, 0, 1)⊤, (3.7) means that for any F ∈ F with t = T (F ) there is an ε > 0
such that

d

ds
S̄(t+ se3, F ) = c3(t3 + s)s





< 0, ∀s ∈ (−ε, 0)

= 0, s = 0

> 0, ∀s ∈ (0, ε).

That means c3(t3 + s) > 0 for all s ∈ (−ε, ε) \ {0}. Using the surjectivity of T and
invoking a compactness argument, c3 attains a 0 only finitely many times on any compact
interval. Recall that int(A)′3 is an open interval. Hence, it can be approximated by
an increasing sequence of compact intervals. Therefore, c−1

3 ({0}) is at most countable
and therefore a Lebesgue null set. With similar arguments one can show that for any
x3 ∈ int(A)′3, the sets {x1 ∈ R | ∃(z1, z2, z3) ∈ int(A), x1 = z1, x3 = z3, c1(x1, x3) = 0}
and {x2 ∈ [x3,∞) | ∃(z1, z2, z3) ∈ int(A), x2 = z2, x3 = z3, c2(x2, x3) = 0} are at most
countable and therefore also Lebesgue null sets.

Finally, using Proposition 1.1 in Fissler and Ziegel (2019a) one obtains that S is almost
everywhere of the form (3.3). Moreover, it holds almost everywhere that φ′′ = c3 and
g′m = bm for m ∈ {1, 2}. Hence, φ is strictly convex and the functions at (3.4) and (3.5)
are strictly increasing.

Combining Theorems 3.4 and 3.7, one can show that the scoring functions given
at (3.3) are essentially the only strictly consistent scoring functions for the triplet
(VaRα,VaRβ,RVaRα,β) on the action domain A = {(x1, x2, x3) ∈ R

3 |C1 < x1 ≤ x3 ≤
x2 < C2}.

Corollary 3.8. Let the conditions of Theorem 3.7 prevail and let A = {(x1, x2, x3) ∈
R
3 |C1 < x1 ≤ x3 ≤ x2 < C2} for some −∞ ≤ C1 < C2 ≤ ∞. Then, a scoring function

S : A× R → R is strictly F-consistent for T = (VaRα,VaRβ ,RVaRα,β), 0 < α < β < 1,
if and only if it is of the form given at (3.3) and with the conditions specified around
(3.4) and (3.5). Moreover, the function φ′ : (C1, C2) → R is necessarily bounded.

Proof. For the proof it suffices to show that Gr,x3
is not only increasing on A

′
r,x3

for
any x3 ∈ A

′
3 but on A

′
r = (C1, C2), r ∈ {1, 2}. For x3 ∈ (C1, C3) = A

′
3, we have

A
′
1,x3

= (C1, x3] and A
′
2,x3

= [x3, C2). Let x3 ∈ A
′
3 and x1, x

′
1 ∈ A

′
1 with x1 < x′1. If
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x1, x
′
1 ∈ A

′
1,x3

there is nothing to show. If however x3 < x′1, then x1, x
′
1 ∈ A

′
1,x′

1

. This

means that

0 ≤ g1(x
′
1)− g1(x1)− (x′1 − x1)φ

′(x′1)/(β − α)

≤ g1(x
′
1)− g1(x1)− (x′1 − x1)φ

′(x3)/(β − α)

where the second inequality stems from the fact that φ′ is increasing. If the function
G1,x′

1
is strictly increasing, then the first inequality is strict. The argument for G2,x3

works analogously.

Similarly to Remark 3.5(i), Corollary 3.8 works also on the action domain A =
{(x1, x2, x3) ∈ R

3 |C1 ≤ x1 ≤ x3 ≤ x2 ≤ C2} if C1, C2 ∈ R. Besides the maximal
action domain A0 = {(x1, x2, x3) ∈ R

3 |x1 ≤ x3 ≤ x2} the practically most relevant
choices of action domains in Corollary 3.8 are

A
+
0 = {(x1, x2, x3) ∈ R

3 | 0 < x1 ≤ x3 ≤ x2},
A
−
0 = {(x1, x2, x3) ∈ R

3 |x1 ≤ x3 ≤ x2 < 0}.

Concrete examples for choices of the functions g1, g2, and φ for the scoring function S
at (3.3) are given and discussed in Section 6.

Remark 3.9. Note the structural difference of Theorems 3.4 and 3.7 to Frongillo and Kash
(2015, Theorem 1 and Corollary 1), Brehmer (2017, Proposition 4.14) and in particular
Fissler and Ziegel (2016, Theorem 5.2 and Corollary 5.5). Our functional of interest,
RVaRα,β with 0 < α < β < 1, is not a minimum of a scoring function, but a difference of
minima of two scoring functions. Indeed, while ESβ(F ) = − 1

β S̄β(VaRβ(F ), F ), we have
that

RVaRα,β(F ) = − 1

β − α

(
S̄β(VaRβ(F ), F ) − S̄α(VaRα(F ), F )

)
.

This structural difference is reflected in the minus sign appearing at (3.4). In partic-
ular, it means that the functions g1 and g2 cannot identically vanish if we want to
ensure strict consistency of S whereas the corresponding functions in Theorem 5.2 in
Fissler and Ziegel (2016) may well be set to zero.

4 Translation invariance and homogeneity

There are many choices for the functions g1, g2, and φ appearing in the formula for the
scoring function S at (3.3). Often, these choices can be limited by impoing secondary
desirable criteria on S. In this section we show that, unfortunately, standard criteria
such as translation invariance and homogeneity are not fruitful for RVaR.

If one is interested in scoring functions with an action domain of the form A = {x ∈
R
3 |C1 < x1 ≤ x3 ≤ x2 < C2} possessing the additional property of translation invariant

score differences, the only sensible choice is C1 = −∞, C2 = ∞, amounting to the
maximal action domain A0. Similarly, for scoring functions with positively homogeneous
score differences, the most interesting choices for action domains are A ∈ {A0,A

+
0 ,A

−
0 }.

15



Proposition 4.1 (Translation invariance). Let 0 < α < β < 1. Under the con-
ditions of Theorem 3.7 there are no strictly F-consistent scoring functions for T =
(VaRα,VaRβ,RVaRα,β) on A0 with translation invariant score differences.

Proof. Using Theorem 3.7 any strictly F-consistent scoring function for T must be of
the form at (3.3) where in particular φ is strictly convex, twice differentiable, and φ′

is bounded, invoking Proposition 3.6. Assume that S has translation invariant score
differences. That means that the function Ψ: R× A0 × A0 × R → R,

Ψ(z, x, x′, y) = S(x1 + z, x2 + z, x3 + z, y + z)− S(x′1 + z, x′2 + z, x′3 + z, y + z)

− S(x1, x2, x3, y) + S(x′1, x
′
2, x

′
3, y)

vanishes. Then, for all x ∈ A0 and for all z, y ∈ R

0 =
d

dx3
Ψ(z, x, x′, y) =

(
φ′′(x3 + z)− φ′′(x3)

)(
x3 +

1

β − α

(
Sβ(x2, y)− Sα(x1, y)

))
.

Therefore, φ′′ is constant. Since φ is convex and that means that φ′(x3) = dx3 + d′ with
d > 0. But since A

′
3 = R, φ′ is unbounded, which is a contradiction.

The proof of Proposition 4.1 closely follows the one in Proposition 4.10 in Fissler and Ziegel
(2019b). The fact that the latter assertion entails a positive result has the following back-
ground: The strictly consistent scoring function for (VaRα,ESα) in Proposition 4.10 in
Fissler and Ziegel (2019b) works only on a very restricted action domain. To guarantee
strict consistency on such an action domain, one would need a refinement of Theorem
3.4 in the spirit of Proposition 2.1 in Fissler and Ziegel (2019a). However, since such a
positive result on a quite restricted action domain is practically irrelevant, we dispense
with such a refinement and only state the relevant negative result here.

Proposition 4.2 (Homogeneity). Let 0 < α < β < 1. Under the conditions of Theorem
3.7 there are no strictly F-consistent scoring functions for T = (VaRα,VaRβ,RVaRα,β)
on A ∈ {A0,A

+
0 ,A

−
0 } with positively homogeneous score differences.

Proof. Using Theorem 3.7 any strictly F-consistent scoring function for T must be of
the form at (3.3) where in particular φ is strictly convex, twice differentiable, and φ′ is
bounded, invoking Proposition 3.6. Assume that S has positively homogeneous score
differences of some degree b ∈ R. That means that the function Ψ: (0,∞)×A×A×R →
R,

Ψ(c, x, x′, y) = S(cx, cy) − S(cx′, cy)− cbS(x, y) + cbS(x′, y)

vanishes. Therefore, for all x ∈ A and for all y ∈ R and all c > 0

0 =
d

dx3
Ψ(z, x, x′, y) =

(
c2φ′′(cx3)− cbφ′′(x3)

)(
x3 +

1

β − α

(
Sβ(x2, y)− Sα(x1, y)

))
.

(4.1)
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For the sake of brevity, we only consider the case A = A
−
0 , the other cases being similar.

Equation (4.1) implies that that φ′′(−x3) = φ′′(−1)xb−2
3 for any x3 > 0. Due to the strict

convexity of φ, we need that φ′′(−1) > 0. However, for b ≥ 1, infx3>0 φ
′(−x3) = −∞

and for b ≤ 1, supx3>0 φ
′(−x3) = ∞. Hence, φ′ cannot be bounded.

Remark 4.3. The negative result of Proposition 4.2 should be compared with the
results of Theorem C.3 in Nolde and Ziegel (2017) characterising homogeneous strictly
consistent scoring functions for the pair (VaRβ,ESβ). Since they use a different sign
convention for VaR and ES than we do in this paper, their choice of the action domain
R × (0,∞) corresponds to our choice A

−
0 . Note that when interpreting RVaRα,β as

a risk measure, negative values of RVaR are the more interesting and relevant ones.
Inspecting the proof of Proposition 4.2 and part (i) of Proposition 3.6 one makes the
following observation: For b ≥ 1, Nolde and Ziegel (2017) state an impossibility result
for their choice of action domain. In fact, the problem occurring in our context is that
φ′ is not bounded from below. In Proposition 3.6 this property is implied by the fact
that the function G2,x3

at (3.5) is increasing. And it is exactly such a condition that
is also present for strictly consistent scoring functions for the pair (VaRβ ,ESβ); see
Theorem 5.2 in Fissler and Ziegel (2016). On the other hand, the complication for b < 1
stems from the fact that φ′ is not bounded from above. This condition is related to the
monotonicity of G1,x3

at (3.4). Such a condition is not present for strictly consistent
scoring functions for the pair (VaRβ,ESβ). Correspondingly, there can be homogeneous
and strictly consistent scoring functions for b < 1 for this pair (Nolde and Ziegel, 2017)
while this is not possible for the triplet (VaRα,VaRβ,RVaRα,β).

5 Mixture representation of scoring functions

When forecasts are compared and ranked with respect to a consistent scoring functions,
one has to be aware that in the presence of non-nested information sets, model mis-
specification and/or finite samples, the ranking may depend on the chosen consistent
scoring functions (Patton, 2019). In the specific case of RVaR, this means that the fore-
cast ranking may depend on the specific choice for the functions g1, g2, and φ appearing
in Theorem 3.4. A possible remedy to this problem is to compare forecasts simulta-
neously with respect to all consistent scoring functions in terms of Murphy diagrams
as introduced by Ehm et al. (2016). Murphy diagrams are based on the fact that the
class of all consistent scoring functions can be characterized as a class of mixtures of el-
ementary scoring functions that depend on a low-dimensional parameter. The following
theorem provides such a mixture representation for the scoring functions at (3.3). Recall
that Sα(x, y) = (1{y ≤ x} − α)x− 1{y ≤ x}y.

Theorem 5.1. Let 0 < α < β < 1, A0 = {(x1, x2, x3) ∈ R
3 |x1 ≤ x3 ≤ x2}. Any

scoring function S : A0 × R → R of the form at (3.3) with a : R → R chosen such that
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S(y, y, y, y) = 0 can be written as

S(x1, x2, x3, y) =

∫
L1
v(x1, y) dH1(v) +

∫
L2
v(x2, y) dH2(v) +

∫
L3
v(x1, x2, x3, y) dH3(v),

(5.1)
where

L1
v(x1, y) = (1{y ≤ x1} − α)(1{v ≤ x1} − 1{v ≤ y})

L2
v(x2, y) = (1{y ≤ x2} − β)(1{v ≤ x2} − 1{v ≤ y})

L3
v(x1, x2, x3, y) =

1

β − α

(
1{v > x3}(Sα(x1, y) + αy) + 1{v ≤ x3}(Sβ(x2, y) + βy)

)

+ (1{v ≤ x3} − 1{v ≤ y})v,

and H1, H2 are locally finite measures on R, H3 is a finite measure on R. If H3 puts
positive mass on all open intervals, then S is strictly consistent. Conversely, for any
choice of measures H1,H2,H3 with the above restrictions, we obtain a scoring function
of the form (3.3).

Proof. An increasing function h : R → R can always be written as

h(x) =

∫
(1{v ≤ x} − 1{v ≤ z}) dH(v) + C, x ∈ R, (5.2)

for some locally finite measure H, and z ∈ R∪ {±∞}, C ∈ R. The function h is strictly
increasing if and only if H puts positive mass on all open intervals. Furthermore, the
one-sided derivatives of h are bounded below by λ > 0 if and only if H(A) ≥ λL(A) for
all Borel sets A ⊆ R.

Let φ satisfy the conditions of Proposition 3.6 (ii). Then, we can find a measure H3

as stated in the theorem such that for all x3 ∈ (C1, C2), we have

φ′(x3) =

∫
1{v ≤ x3}dH3(v) − λ(β − α) =

∫ (
1{v ≤ x3} −

1

2

)
dH3(v).

Using Fubini’s theorem, we find that for some z ∈ (C1, C2)

φ(x3)− φ(y) =

∫
(1{w ≤ x3} − 1{w ≤ z})φ′(w) − (1{w ≤ y})− 1{w ≤ z})φ′(w) dw

=

∫
(1{w ≤ x3} − 1{w ≤ y})

∫ (
1{v ≤ w} − 1

2

)
dH3(v) dw

=

∫ ∫
(1{w ≤ x3} − 1{w ≤ y})1{v ≤ w}dw dH3(v) −

∫
1

2
(x3 − y) dH3(v)

=

∫
1{v ≤ x3}(x3 − v)− 1{v ≤ y}(y − v)− 1

2
(x3 − y) dH3(v).
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Using (3.3), (5.2) and Proposition 3.6 it is straight forward to check that a scoring
function of the form (3.3) can be written as in (5.1) with L3

v replaced by

L̃3
v(x1, x2, x3, y) =

(
1{v ≤ x3} −

1

2

)(
x3 +

1

β − α
(Sβ(x2, y)− Sα(x1, y))

)

− 1

2
|x3 − v|+ 1

2
|y − v|,

locally finite measures H̃1, H̃2 instead of H1, H2 such that H̃i(A) ≥ λL(A) for i = 1, 2,
some λ > 0 and all Borel sets A ⊆ R, and a finite measure H3 with H3(R) = 2λ(β −α).
We can write H̃i = Hi + λL, i = 1, 2, for some locally finite measures Hi, i = 1, 2.
Integrating v 7→ L1

v with respect to λL, we obtain the function λ(Sα(x1, y) + αy), and
analogously for L2

v. Using that H3(R) is a finite measure with total mass 2λ(β − α)
yields the claim with

L3
v(x1, x2, x3, y) =

1

2(β − α)
(Sβ(x2, y) + βy + Sα(x1, y) + αy)

+

(
1{v ≤ x3} −

1

2

)(
x3 +

1

β − α
(Sβ(x2, y)− Sα(x1, y))

)

− 1

2
|x3 − v|+ 1

2
|y − v|,

which is equal to the formula given in the statement of the theorem. The scoring
functions L1

v and L2
v are consistent for VaR at level α and β, respectively. The scoring

function L3
v is of the form at (3.3) with g1(x) = g2(x) = x/(2β−2α) and φ(x) = |x−v|/2,

which renders it a consistent scoring function for (VaRα,VaRβ,RVaRα,β).

6 Simulations

Due to the negative results in Section 4 it is challenging to suggest concrete examples
for the choices of the functions φ, g1 and g2 in (3.3). In Table 1, we give some first
suggestions. The scoring function S4 is in the spirit of the Huber loss. It is only strictly
consistent on A = {(x1, x2, x3) ∈ R

3 | c1 < x1 ≤ x3 ≤ x2 < c2} but remains consistent
for all of A0. We illustrate the discrimination ability of the suggested scoring functions
with a slightly extended version of a simulation example of Gneiting et al. (2007) which
has also been considered in Fissler et al. (2016).

Let (µt)t=1,...,N be a sequence of independent standard normal random variables. Con-
ditional on µt, Yt is normally distributed with mean µt and variance 1, which we denote
by N (µt, 1). The first forecaster has access to µt and uses the correct conditional distri-
bution for prediction, that is, she predicts

ft = (f1,t, f2,t, f3,t) =

(
µt +Φ−1(α), µt +Φ−1(β), µt −

1

β − α

(
ϕ(Φ−1(β))− ϕ(Φ−1(α))

))

for timepoint t, where ϕ and Φ denote the density and quantile function of the standard
normal distribution, respectively. The second forecaster predicts gt = (g1,t, g2,t, g3,t),
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Scoring function φ′(x3)

S1 (β − α) tanh((β − α)x3)

S2 (β − α)(2/π) arctan((β − α)x3)

S3 (β − α)(2Φ((β − α)x3)− 1)

S4 (β − α)(−1{x3 < c1}+ 1{x3 > c2}
+1{c1 ≤ x3 ≤ c2}2(x3 − (c1 + c2)/2)/(c2 − c1))

Table 1: Examples of scoring functions. In all cases we choose g1(x1) = x1 and g2(x2) =
x2. The parameters c1, c2 ∈ R satisfy c1 < c2.

where g1,t = f1,t + εt, g2,t = f2,t + εt and g3,t = f3,t + εt with (εt)t=1,...,N is independent
normally distributed noise with mean zero and variance σ2. The third forecaster, ht =
(h1,t, h2,t, h3,t), bases his predictions on the unconditional distribution of Yt, that is
N (0, 2). Therefore,

ht =

(
√
2Φ−1(α),

√
2Φ−1(β),−

√
2

β − α

(
ϕ(Φ−1(β)) − ϕ(Φ−1(α))

)
)
.

It is clear that the first forecaster dominates the second and the third forecaster,
that is, it will be preferred under any consistent scoring function because in case of the
first and the second forecaster, the first one is ideal with respect to the information
set σ(µt, εt), whereas the second one is based on the same information set but is not
ideal. In case of the first and the third forecaster, both forecasters are ideal but the
information set of the first forecaster σ(µt) is larger than the one of the third forecaster
which is the trivial σ-algebra (Holzmann and Eulert, 2014). It will depend on the size of
the variance σ2 whether the second or the third forecaster is preferred. Figures 1 and 2
provide Murphy diagrams of all forecasters computed from a sample of size N = 100′000.
They are in line with our theoretical considerations concerning the ranking of the three
forecasts.

We compare predictive performance using Diebold-Mariano tests (Diebold and Mariano,
1995) based on the scoring functions in Table 1. We consider samples of size N = 250
and repeat our experiment 10’000 times. In the left panel of Table 2, we consider the
case that α = 1 − β = 0.1 where RVaRα,β is a trimmed mean. We report the ratio of
rejections of the null hypothesis that forecaster i outperforms forecaster j, i, j ∈ {1, 2, 3}
at significance level 0.05. Analogously, in the right panel of Table 2, we consider the
case that α, β are both close to zero, that is, α = 0.01 and β = 0.05, which is a setting
that is relevant if RVaRα,β is used as a risk measure. For the scoring function S4, we
have experimented a bit with the values c1 and c2 and report the results for the choices
that worked best in our experiments. A systematic study on how to choose these two
parameters goes beyond the scope of the present paper.

For the situation of the left panel of Table 2 concerning α = 1 − β = 0.1, we can
see that forecaster 1 (2) outperforms forecaster 3 with a power of 1 (almost 1) for all
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Figure 1: Murphy diagrams for α = 1 − β = 0.1. Plots of expected elementary scores
L1
v, L

2
v, L

3
v in terms of v for the three forecasters described in the test. For

the second forecaster, the curves correspond to σ = 0.3, 0.5, 0.8 from bottom
to top.

−6 −4 −2 0 2 4 6

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Lv
1

v

first
second
third

−6 −4 −2 0 2 4 6

0.
00

0.
01

0.
02

0.
03

0.
04

Lv
2

v

−6 −4 −2 0 2 4 6

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Lv
3

v

   
 a

lp
ha

 =
 a

lp
ha

, b
et

a 
=

 b
et

a)

Figure 2: Murphy diagrams for α = 0.01, β = 0.05. Plots of expected elementary scores
L1
v, L

2
v, L

3
v in terms of v for the three forecasters described in the test. For

the second forecaster, the curves correspond to σ = 0.3, 0.5, 0.8 from bottom
to top.
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H0 S1 S2 S3 S4

f ≺ g 0.304 0.406 0.417 0.624

g ≺ f 0 0 0 0

f ≺ h 1.000 1.000 1.000 1.000

h ≺ f 0 0 0 0

g ≺ h 0.999 0.998 0.992 0.998

h ≺ g 0 0 0 0

H0 S1 S2 S3 S4

f ≺ g 0.515 0.529 0.500 0.566

g ≺ f 0 0 0 0.003

f ≺ h 0.995 1.000 0.996 0.835

h ≺ f 0 0 0 0

g ≺ h 0.874 0.993 0.885 0.393

h ≺ g 0.001 0 0 0

Table 2: Power of Diebold-Mariano tests at significance level 0.05 for the scoring func-
tions in Table 1 in the case that α = 1 − β = 0.1 (left panel), and α = 0.01,
β = 0.05 (right panel). In the first case we chose −c1 = c2 = 12 for the scoring
function S4, and c1 = −5, c2 = 1 in the second case. The null hypothesis
f ≺ g means that ES(ft, Yt) ≤ ES(gt, Yt) for the scoring function specified in
the column label. We chose σ2 = 0.52 for the forecaster g.

scoring functions used. For a comparison of forecaster 1 and forecaster 2, the situation is
more interesting: While forecaster 1 outperforms forecaster 2 with regard to all scoring
functions considered, the power of the tests (and the associated discrimination ability of
the scoring functions) varies substantially. While S1 leads to an empirical power of 0.304
for the null hypothesis that E[S(ft, Yt)] ≤ E[S(gt, Yt)], the score S4 induces a power of
0.624 for the same null hypothesis.
The situation described in the right panel of Table 2 considering the parameter choice
α = 0.01 and β = 0.05 leads to a different situation. The tests employing S1, S2 and
S3 have a similar power. In contrast, S4 yields a considerably smaller power (0.393) for
the null E[S(ht, Yt)] ≤ E[S(gt, Yt)] than the other scores (≥ 0.874 for all cases). A more
detailed study and comparison of other scoring functions and other situations is deferred
to future work.

7 Discussion

In this section, we would like to outline how one can implement our results about the
elicitability of the triplet (VaRα,VaRβ ,RVaRα,β), 0 < α < β < 1 in a regression context.
Then we would like to contrast our ansatz to other suggestions for regression of the α-
trimmed mean (which can be generalised to RVaRα,β). The most common alternative
approaches in the literature on robust statistics are the trimmed least squares approach
and a two-step estimation procedure using the Huber skipped mean.

7.1 A joint regression framework for (VaRα,VaRβ,RVaRα,β)

Let (Xt, Yt)t∈N be a time series with the usual notation that Yt denotes some real valued
response variable and Xt is a d-dimensional vector of regressors. Let Θ ⊆ R

k be some
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parameter space and M : Rd × Θ → A0 = {x ∈ R
3 |x1 ≤ x3 ≤ x2} a parametric model.

Let T = (VaRα,VaRβ,RVaRα,β), 0 < α < b < 1, and assume that there is a unique
θ0 ∈ Θ such that

T (L(Yt|Xt)) = M(Xt, θ0) P-a.s. for all t ∈ N, (7.1)

where L(Yt|Xt) denotes the conditional distribution of Yt givenXt. That means, M(Xt, θ0)
models jointly the conditional VaRα, VaRβ and the conditional RVaRα,β. Let S be a
strictly consistent scoring function of the form (3.3) and assume the sequence (Xt, Yt)t∈N
satisfies certain mixing assumptions; see White (2001, Corollary 3.48). Then one obtains
under additional integrability conditions that, as n → ∞,

1

n

n∑

t=1

S(M(Xt, θ), Yt)−
1

n

n∑

t=1

E
[
S(M(Xt, θ), Yt)

]
→ 0 P-a.s.

It is essentially this Law of Large Numbers result which allows for consistent parameter
estimation with the empirical estimator θ̂n = argminθ∈Θ n−1

∑n
t=1 S(M(Xt, θ), Yt); see

e.g. van der Vaart (1998), Huber and Ronchetti (2009) and Nolde and Ziegel (2017) for
details.

In summary, we can see that the complication of this procedure is that one needs
to model the components VaRα, VaRβ, even if one is only interested in RVaRα,β. The
advantage is that one can substantially deviate from an i.i.d. assumption on the data gen-
erating process. One can deal with non-independent, though mixing, and non-stationary
data. The only amount of stationarity one needs is specified through (7.1).

7.2 Trimmed least squares

Most proposals for M -estimation and regression for RVaRα,β in the field of robust statis-
tics focus on the α-trimmed mean, α ∈ (0, 1/2), corresponding to RVaRα,1−α. But they
can often be extended to the general case 0 < α < β < 1 in a straightforward way.
When this is the case, we describe the procedure in this more general manner. A major-
ity of the proposals in the literature are commonly referred to as a trimmed least squares
(TLS) approach. However, strictly speaking, TLS actually subsumes different, though
closely related estimation procedures.

The first one was coined by Koenker and Basset (1978)—cf. Ruppert and Carroll
(1980)—and constitutes a two step M -estimator: In a first step, the α- and β-quantile
are determined via usual M -estimation. Then, all values below the former and above the
latter are omitted and RVaRα,β is computed with an ordinary least squares approach.
One can also express this procedure using order-statistics. Using the notation from
Subsection 7.1, an M -estimator for RVaRα,β is given by

argmin
x∈R

1

n

[nβ]∑

i=[nα]

(x− Y(i))
2.
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Here, Y(1) ≤ · · · ≤ Y(n) is the order-statistics of the sample Y1, . . . , Yn. While this
procedure seems to work for a simplistic regression model (ignoring the regressors Xt

and only modelling the intercept part), it is not clear how to use it in a more realistic
regression context, where one is actually interested in the conditional distribution of Yt

given Xt rather than the unconditional distribution of Yt. Moreover, this procedure only
seems to work in an i.i.d. setting.

A second approach is described, for example, in Rousseeuw (1984, 1985) and relies on
order-statistics of the squared residuals. It only seems to work for the α-trimmed mean.
To be more precise, and again using the notation from above, let m : Rd × Θ → R be a
one-dimensional parametric model. Again, one assumes that there is a unique correctly
specified model parameter θ0 ∈ Θ such that

RVaRα,1−α(L(Yt|Xt)) = m(Xt, θ0) P-a.s. for all t ∈ N. (7.2)

For each θ ∈ Θ, define the residual εt(θ) := Yt − m(Xt, θ) and the absolute residual
rt(θ) := |εt(θ)|. Define the order-statistics of the absolute residuals 0 ≤ r(1)(θ) ≤ · · · ≤
r(n)(θ) for a sample of size n. Then an estimator is defined via

θ̂n = argmin
θ∈Θ

1

n

[2nα]∑

i=1

r2(i)(θ).

While this procedure appears to be fairly similar to an ordinary least squares proce-
dure with the respective computational advantages, one should recall that the trimming
crucially depends on the choice of the parameter θ. That means even if the model m
is linear in the parameter θ, one generally yields a non-convex objective function with
several local minima. Interestingly, the trimming takes place only for residuals with
large modulus. If the error distribution, that is, the distribution of the residuals, is
symmetric, this procedure yields a consistent estimator for θ0 in an i.i.d. setting. If one
wants to relax the assumption on the error distribution and is interested in modelling
RVaRα,β for general 0 < α < β < 1 in (7.2), one could come up with the following
ad-hoc procedure: Consider the order-statistics of the residuals ε(1)(θ) ≤ · · · ≤ ε(n)(θ).
Then define an estimator via

θ̂n = argmin
θ∈Θ

1

n

[nβ]∑

i=[nα]

|ε(i)(θ)|2 .

This procedure takes into account the asymmetric nature of trimming when dealing
with β 6= 1 − α or β = 1 − α and an asymmetric error distribution. However, one
can see that the procedure cannot deal with the situation when the data generating
process (Xt, Yt)t∈N is not stationary. In particular, heteroscedasticity can lead to severe
problems. We would like to point out that, at the cost of additionally modelling the
α- and β-quantile, the procedure using our strictly consistent scoring functions for the
triplet (VaRα,VaRβ,RVaRα,β) described in Subsection 7.1 does not rely on the usage
of order-statistics and can in general deal with heteroscedasticity. The only degree of
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‘stationarity’ is required through (7.1). Especially stationarity is deemed a too strong
assumption in the context of financial data; see Davis (2016).

Finally, we would like to remark that there are further procedures belonging to the
field of TLS. For instance, Atkinson and Cheng (1999) propose an adaptive procedure
where the trimming parameter is data driven; see also Cerioli et al. (2018). However,
we see no apparent way how to use such procedures if one is interested in predefined
trimming parameters α and β.

7.3 Connections to Huber loss and Huber skipped mean

In his seminal paper, Huber (1964) introduced the famous Huber loss S(x, y) = ρ(x− y)
where ρ(t) = 1

2t
2 for |t| ≤ k and ρ(t) = k|t| − 1

2k
2 for |t| > k. Huber argues that the

“the corresponding [M-]estimator is related to Winsorizing” (Huber, 1964, p. 79). What
obtained significantly less attention—maybe due to the lack of convexity—is another
loss function he considers on the same page of the paper which is defined as S(x, y) =
ρ(x − y) for ρ(t) = 1

2t
2 for |t| ≤ k and ρ(t) = 1

2k
2 for |t| > k. He writes about it: “the

corresponding [M-]estimator is a trimmed mean” (ibidem).

One could define an asymmetric version of the latter loss function by using Sk1,k2(x, y) =
ρk1,k2(x− y) with

ρk1,k2(t) =





1
2k

2
1 t < k1

1
2t

2 k1 ≤ t < k2
1
2k

2
2 t ≥ k2.

The corresponding first-order condition for a minimum of the expected score S̄k1,k2(x, F )
is

0 =

∫

{k1≤x−y<k2}
x− y dF (y) =

∫

(x−k2,x−k1]
x− y dF (y)

= x
(
F (x− k1)− F (x− k2)

)
−
∫

(x−k2,x−k1]
y dF (y).

Now a suggestion similar to Rousseeuw (1984, p. 876) is to consider this loss with
k1 = VaRβ(F ) and k2 = VaRα(F ) stemming from some pre-estimate. However, one can
see that the first order-condition is generally not solved by RVaRα,β(F ). Again, if one is
interested in M -estimation for the trimmed mean or, more generally, RVaR, one should
use the scoring functions introduced at (3.3).

Appendix

We present a list of assumptions used in Section 3. For more details about their interpre-
tations and implications, please see Fissler and Ziegel (2016) were they were originally
introduced.
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Assumption (V1). Let F be a convex class of distribution functions on R and assume
that for every x ∈ int(A) there are F1, . . . , Fk+1 ∈ F such that

0 ∈ int
(
conv

({
V̄ (x, F1), . . . , V̄ (x, Fk+1)

}))
.

Note that if V : A × R → R
k is a strict F-identification function for T : F → A

which satisfies Assumption (V1), then for each x ∈ int(A) there is an F ∈ F such that
T (F ) = x.

Assumption (V3). For every F ∈ F , the function V̄ (·, F ) is continuously differen-
tiable.

Assumption (V4). Let assumption (V3) hold. For all r ∈ {1, . . . , k} and for all
t ∈ int(A) ∩ T (F) there are F1, F2 ∈ T−1({t}) such that

∂lV̄l(t, F1) = ∂lV̄l(t, F2) ∀l ∈ {1, . . . , k} \ {r}, ∂rV̄r(t, F1) 6= ∂rV̄r(t, F2).

Assumption (F1). For every y ∈ R there exists a sequence (Fn)n∈N of distributions
Fn ∈ F that converges weakly to the Dirac-measure δy such that the support of Fn is
contained in a compact set K for all n.

Assumption (VS1). Suppose that the complement of the set

C := {(x, y) ∈ A×R | V (x, ·) and S(x, ·) are continuous at the point y}

has (k + d)-dimensional Lebesgue measure zero.

Assumption (S2). For every F ∈ F , the function S̄(·, F ) is continuously differen-
tiable and the gradient is locally Lipschitz continuous. Furthermore, S̄(·, F ) is twice
continuously differentiable at t = T (F ) ∈ int(A).
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V. Krätschmer, A. Schied, and H. Zähle. Comparative and qualitative robustness for law-
invariant risk measures. Finance Stoch., 18:271–295, 2014.

S. Kusuoka. On law-invariant coherent risk measures. Adv. Math. Econ., 3:83–95, 2001.

N. Lambert. Elicitation and Evaluation of Statistical Forecasts. Preprint, 2013. URL
https://web.stanford.edu/~nlambert/papers/elicitation_july2013.pdf.

N. Lambert, D. M. Pennock, and Y. Shoham. Eliciting properties of probability distributions.
In Proceedings of the 9th ACM Conference on Electronic Commerce, pages 129–138, Chicago,
Il, USA, 2008. ACM.

A. H. Murphy and H. Daan. Forecast Evaluation. In A. H. Murphy and R. W. Katz, edi-
tors, Probability, Statistics and Decision Making in the Atmospheric Sciences, pages 379–437.
Westview Press, Boulder, Colorado, 1985.

W. K. Newey and J. L. Powell. Asymmetric Least Squares Estimation and Testing. Econometrica,
55:819–847, 1987.

N. Nolde and J. F. Ziegel. Elicitability and backtesting: Perspectives for banking regulation.
Ann. Appl. Stat., 11(4):1833–1874, 12 2017.

28

https://arxiv.org/abs/1506.07212
https://web.stanford.edu/~nlambert/papers/elicitation_july2013.pdf


K. H. Osband. Providing Incentives for Better Cost Forecasting. PhD thesis, University of
California, Berkeley, 1985.

A. J. Patton. Comparing possibly misspecified forecasts. J. Bus. Econ. Stat. (forthcoming),
2019. URL http://public.econ.duke.edu/~ap172/.

P. J. Rousseeuw. Least Median of Squares Regression. J. Amer. Statist. Assoc., 79(388):871–880,
1984.

P. J. Rousseeuw. Multivariate estimation with high breakdown point. In W. Grossmann, G. Pflug,
I. Vince, and W. Wertz, editors, Mathematical Statistics and Applications, pages 283–297.
Reidel Publishing Company, Dordrecht, 1985.

D. Ruppert and R. J. Carroll. Trimmed Least Squares Estimation in the Linear Model. J. Amer.
Statist. Assoc., 75(372):828–838, 1980.

I. Steinwart, C. Pasin, R. Williamson, and S. Zhang. Elicitation and Identification of Properties.
JMLR: Workshop and Conference Proceedings, 35:1–45, 2014.

J. W. Tukey. A survey of sampling from contaminated distributions. In I. Olkin et al., editor,
Contributions to Probability and Statistics, pages 448–485. Stanford Univ. Press, 1960.

A. W. van der Vaart. Asymptotic statistics. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 1998. ISBN 0-521-49603-9.

R. Wang and Y. Wei. Risk functionals with convex level sets. Preprint, 2018. URL
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3292661.

S. Weber. Distribution-Invariant Risk Measures, Information, and Dynamic Consistency. Math.
Finance, 16:419–441, 2006.

H. White. Asymptotic Theory for Econometricians. Academic Press, San Diego, 2001.

H. Zähle. A definition of qualitative robustness for general point estimators, and examples. J.
Multivariate Anal., 143:12 – 31, 2016.

J. F. Ziegel. Coherence and elicitability. Math. Finance, 26(4):901–918, 2016.

29

http://public.econ.duke.edu/~ap172/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3292661

	1 Introduction
	1.1 Mean vs. median in classical statistics
	1.2 Expected Shortfall vs. Value at Risk in risk management
	1.3 Elicitability
	1.4 Elicitability of Range Value at Risk

	2 Notation and Definitions
	2.1 Definition of Range Value at Risk
	2.2 Elicitability and scoring functions

	3 Elicitability and identifiability results
	3.1 RVaR is not elicitable
	3.2 RVaR is jointly elicitable with the corresponding quantiles

	4 Translation invariance and homogeneity
	5 Mixture representation of scoring functions
	6 Simulations
	7 Discussion
	7.1 A joint regression framework for (VaR, VaR, RVaR,)
	7.2 Trimmed least squares
	7.3 Connections to Huber loss and Huber skipped mean


