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Distributed Submodular Minimization over Networks:
a Greedy Column Generation Approach

Andrea Testa1, Ivano Notarnicola1, Giuseppe Notarstefano2

Abstract— Submodular optimization is a special class of

combinatorial optimization arising in several machine learning

problems, but also in cooperative control of complex systems. In

this paper, we consider agents in an asynchronous, unreliable

and time-varying directed network that aim at cooperatively

solving submodular minimization problems in a fully dis-

tributed way. The challenge is that the (submodular) objective

set-function is only partially known by agents, that is, each one

is able to evaluate the function only for subsets including itself.

We propose a distributed algorithm based on a proper linear

programming reformulation of the combinatorial problem.

Our algorithm builds on a column generation approach in

which each agent maintains a local candidate basis and locally

generates columns with a suitable greedy inner routine. A

key interesting feature of the proposed algorithm is that the

pricing problem, which involves an exponential number of

constraints, is solved by the agents through a polynomial time

greedy algorithm. We prove that the proposed distributed

algorithm converges in finite time to an optimal solution of

the submodular minimization problem and we corroborate the

theoretical results by performing numerical computations on

instances of the s–t minimum graph cut problem.

I. INTRODUCTION

In this paper we consider a set of agents communicating
only with neighboring agents over a possibly asynchronous
and unreliable network, and aiming at solving the combina-
torial optimization problem

min
X✓V

F (X), (1)

where F is a real valued set function defined over subsets X
of a finite ground set V . We work under the assumption that
the function F exhibits the property of submodularity, that,
as we detail later, represents a diminishing return property.

Submodularity is a branch of combinatorial optimization
addressing several applications in machine learning, com-
puter vision, game theory, and control of complex sys-
tems [1]–[6]. Moreover, minimization of submodular set
functions plays a key role in combinatorial optimization since
it can be considered the discrete counterpart of convex min-
imization. Indeed, submodular problems can be efficiently
solved through combinatorial algorithms as well as continu-
ous methods involving convex (continuous) reformulations
of the original problem [7]–[10]. For these two reasons,
investigating submodular minimization over networks is of
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great interest. While significant work has addressed contin-
uous optimization over networks, the same cannot be said
regarding (submodular) combinatorial optimization.

Submodularity emerged as an important tool for several
control problems in multi-agent systems. Actuator and sensor
placement problems [11], [12], leader selection in multi-
agent systems [13] and performance optimization of compos-
ite networks [14] are addressed as constrained submodular
minimization or maximization problems. In these works,
the submodular optimization is a centralized high-level step
(solved via greedy algorithms) to obtain performance guar-
antees for the multi-agent system. Submodularity is also
related to game theory, e.g., for the analysis of the core of
convex cooperative games [5]. In [15], the authors propose
a decentralized allocation process, defined over a network
of players, for transferable utility games. They assume,
as we do, that each agent knows only the sets involving
the agent itself. In [16], a distributed, consensus based,
allocation process is proposed. Recently, seminal works have
moved in the direction of casting submodular optimization
over networks and solving the problem in a distributed
way. In [17], a submodular maximization problem with
cardinality constraints is investigated. Paper [18] handles
the design of communication structures maximizing the
worst case efficiency of the well-known greedy algorithm
for submodular maximization when applied over networks.
In [19], a submodular maximization problem, subject to
matroid constraints, is solved in a decentralized fashion by
means of a greedy algorithm and applied to multi-robot
allocation. The same set-up is investigated in [20]. In [21], a
fully distributed algorithm is proposed to minimize the sum
of local submodular functions over lattices and applied to
motion coordination.

The main contribution of this paper is as follows. We
propose and analyze a distributed optimization algorithm
to solve a submodular minimization problem over asyn-
chronous, unreliable, time-varying and directed networks.
In the considered set-up, agents are able to evaluate the
objective function only for those sets including the agent
itself. We rely on a proper linear programming reformulation
of the combinatorial problem, which involves a factorial
number of variables. Since the dimensionality of the problem
represents a significant bottleneck (also in a centralized
set-up) we resort to (a distributed version of) the well-
known column generation approach, as in [22]. Differently
form [22], in the proposed set-up each agent has to deal with
an exponential number of local constraints. Thus, generating
a column by directly solving the pricing problem would
be computationally unaffordable. By explicitly taking into



account submodularity, we design an efficient distributed
column generation algorithm, ispired by [22], where agents
are endowed with a local greedy algorithm that allows
them to efficiently implement the column generation. The
distributed algorithm works over unreliable, asynchronous,
time-varying and directed networks and is shown to converge
in finite time to an optimal set solution of the original
submodular problem.

We highlight the main differences with [21]. Rather than
considering a sum of cost functions fully computable by the
agents, we consider a set-up in which each agent knows part
of the domain, and a subset of values of the submodular
function. Moreover, we prove finite time convergence to an
optimal solution of the problem.

The paper unfolds as follows. Preliminaries about submod-
ular optimization and a motivating example are presented
in Section II. In Section III we describe the (centralized)
column generation approach to solve submodular minimiza-
tion. In Section IV we present our novel distributed algorithm
for submodular minimization and its convergence properties.
Numerical computations for the s–t minimum cut problem
are given in Section V.

Notation: 1d and 0d denote vectors in Rd with all
entries equal to 1 and 0, respectively. The `-th entry of a
vector w is denoted by (w)`. Let V be a finite, non-empty
set with cardinality |V |, also referred to as ground set. We
denote by 2V its power-set, i.e., the set of all its 2|V | subsets.
Given a set X ✓ V , we denote by 1X 2 R|V | its indicator
vector defined as (1X)` = 1 if ` 2 X , and 0 if ` 62 X . Given
w 2 R|V |, we use the notation w(X) = 1>

X
w =

P
`2X

(w)`.

II. SUBMODULAR MINIMIZATION:
MOTIVATING EXAMPLE AND PRELIMINARIES

In this section we introduce a motivating example of
submodular minimization. Then, we recall the notion of
submodular function and some properties. We also recall an
equivalent continuous problem needed in our framework.

A. Motivating Example: the Selection Problem
We introduce a motivating example of submodular min-

imization that is of interest in decision making in multi-
agent network systems. Consider a set V of teams. Each
team has several skills at different levels that can be used
in the accomplishment of a complex job. In a cooperative
environment, teams collaborate to select the best subset of
teams that maximizes the earning for the job of interest.
In a distributed scenario each team is aware only of partial
information regarding how much benefit can provide when
involved in the job. Specifically, each team i 2 V knows a
return value r(i) obtained if team i is selected for the job.
Also, aggregating teams and combining their capabilities can
result in a higher profit, while not doing it may result in a
loss. Thus, each team i knows also the value of a penalty
p(i, j) � 0, for i, j 2 V , strictly positive if i is selected but
j is not. Thus, one obtains the set function

R(X) =
P
i2X

r(i)�
P
i2V

j2V \X

p(i, j),

which can be shown to be supermodular, i.e., F (X) =
�R(X) is submodular. Thus, the goal is to solve the problem
max

X✓V
R(X). This maximization of a supermodular func-

tion can be recast into an equivalent structured submodular
minimization problem known as s–t Min Cut problem, [5].
Such problem arises in several applications in Machine
Learning, Decision Making and Signal Processing.

B. Preliminaries on Submodular Minimization
A function F : 2V ! R is said to be submodular if, for

all A ✓ V and B ✓ V the following condition holds, [8],

F (A) + F (B) � F (A [B) + F (A \B).

An alternative definition, which highlights the diminishing
marginal returns property of submodular functions, follows.
For all A,B ✓ V, A ✓ B, and for all j 2 V \B, then

F (A [ j)� F (A) � F (B [ j)� F (B).

This means that the incremental value made by a single
element when added to an input set decreases as the size
of the input set increases. Without loss of generality, we can
consider a normalized function, i.e., such that F (;) = 0.

Next, we define two polyhedra in R|V |, respectively the
submodular polyhedron and the base polyhedron, associated
to submodular functions [8]. Given a submodular set function
F : 2V ! R, the associated submodular polyhedron is

P (F ) := {x 2 R|V | | x(S)  F (S), 8S 2 2V }.

Given P (F ), the base polyhedron associated to F is

B(F ) := {x 2 P (F ) | x(V ) = F (V )}. (2)

The set B(F ) is nonempty and bounded.
These two polyhedra are characterized by an exponential

number of constraints, respectively 2|V | � 1 and 2|V |. In
Figure 1 the submodular and base polyhedra are depicted
for a submodular function F with ground set V = {1, 2}.

x2  F ({2})

x1  F ({1})

x1 + x2  F ({1, 2})

P (F )

B(F )

x1

x2

Fig. 1. Example of P (F ) (shaded gray area) and B(F ) (blue segment)
for a submodular function F with ground set V = {1, 2}.

Now, we show how a submodular function can be min-
imized by solving an equivalent continuous optimization
problem over the base polyhedron. Let F : 2V ! R,
F (;) = 0, be a submodular set function. Then as shown
in [7], problem (1) has the same optimal cost of

max
x2B(F )

|V |P
`=1

min{(x)`, 0}. (3)



III. A COLUMN GENERATION APPROACH
FOR SUBMODULAR MINIMIZATION

In this section we describe how a column generation
method, based on Dantzig-Wolfe decomposition [23], can be
applied to problem (3). Specifically, (3) is recast into a linear
program (LP) in standard form for which (exploiting the
“submodular nature”) column generation can be performed
by means of an efficient greedy maximization algorithm.

Let G 2 R|V |⇥m be a matrix whose columns are the
vertexes of B(F ) (which are at most |V |!). Since B(F ) is
bounded, then each element x 2 B(F ) can be expressed as
a convex combination of its vertexes. That is, we can write
x = G ✓ where the coefficients ✓ 2 Rm satisfy 1>

m
✓ = 1,

✓ � 0. Expressing x as the difference of two positive
vectors, namely ↵,� 2 R|V |, we can write G ✓ = ↵ � �.
Following [7], problem (3) can be recast as

min
✓,↵,�

1>
|V |�

subj. to G ✓ � ↵+ � = 0|V |

1>
m
✓ = 1

↵ � 0|V |, � � 0|V |, ✓ � 0m.

(4)

Let (✓?,↵?
,�

?) be an optimal solution of (4), and let
(u?

, v
?) be the dual solutions associated to the equality

constraints, with u
? being the one associated to G ✓�↵+� =

0|V |. Then, u? can be proven to have entries equal to 0 or
1. Specifically, u

? = 1X? is the indicator vector of some
optimal solution X

? ✓ V of (1).
Notice that, in general, the solution of (4) is not unique.

This comes from the non-uniqueness of the solution of (1).
In particular, dual solutions associated to different primal
solutions of (4) correspond to different minima of (1). This
well-known degeneracy issue shall be carefully addressed in
the distributed framework to be sure that agents agree on a
common optimal set of the original submodular problem.

A. The Reduced Problem and the Pricing Problem
The LP (4) has few constraints but a large number of

variables. Thus, it can be tackled by a column generation
approach. The first step is to solve a reduced instance of (4)

min
✓R,↵,�

1>
|V |�

subj. to GR ✓R � ↵+ � = 0|V |

1>
R
✓R = 1

↵ � 0|V |, � � 0|V |, ✓R � 0R,

(5)

where GR is a matrix with a smaller set of columns than G,
so that the problem has a smaller decision vector ✓R.

Let ez = (e✓R, e↵, e�) be an optimal solution of (5), and (eu, ev)
be the dual solutions associated to the constraints GR ✓R �
↵+� = 0|V | and 1>

R
✓R = 1, respectively. A notable property

of eu is that (eu)` = 0 if (ez)` = (e↵)k, and (eu)` = 1 if
(ez)` = (e�)k (i.e., if the `-th component of ez is associated to
a component k of e↵ or e� respectively), see [7] for details.

With the dual solution eu at reach, the next step consists
in modifying GR in order to encode additional information

about the optimal solution of the original problem. This
procedure makes use of the so-called pricing problem, [23].
Here, a new column is generated by solving the LP, [10],

x
B 2 argmax

x2B(F )
(eu)>x, (6)

and defining the new column as hGEN = [0 (xB)> 1]>.
The column generation algorithm proceeds by testing if the
new generated column hGEN allows for a cost improvement.
This happens if its reduced cost is negative, i.e., if (eu)>xB�
ev < 0. In this case, the set of columns GR is enlarged by
appending the column hGEN.

The algorithm iterates until hGEN has non-negative reduced
cost, which means that an optimal solution has been found.
Given an optimal solution, the recover of an optimal solution
of the submodular minimization problem (1) is obtained by
looking at the dual variable eu. Indeed, eu is the dual solution
of (4), and, thus, it is the indicator vector of a solution of (1).

B. Greedy Algorithm For Generating Columns
It is worth noticing that the maximization problem (6)

involves an exponential number of constraints describing the
base polyhedron B(F ). By explicitly relying on the structure
of the problem, a greedy algorithm can be used to tackle the
computational complexity of (6) allowing for a solution in a
polynomial number of evaluations of F , [7].

For a generic instance of (6) with cost vector eu 2 R|V |, the
greedy algorithm consists of two steps. First, the components
of eu are reordered, by means of a sorting algorithm, so that
index permutation {j1, . . . , j|V |} satisfies euj1 � euj2 � . . . �
euj|V | . Then, an optimal solution x

B of (6) is given by

�
x
B
�
j`
=

(
F ({j1}), if ` = 1

F ({j1 . . . j`})�F ({j1 . . . j`�1}), if 2  `  N.

It is worth noting that each vertex of B(F ) corresponds to
at least one permutation of the indexes {j1 . . . j|V |}, so that
all optimal vertexes can be found by the greedy algorithm.

Remark 3.1: The sorting of eu is typically not unique. This
translates into different vertexes of B(F ) with same optimal
cost. Our distributed algorithm takes advantage from this
non-uniqueness in the design of a local greedy algorithm
using only local information. ⇤

IV. DISTRIBUTED SET-UP AND COLUMN GENERATION
ALGORITHM FOR SUBMODULAR MINIMIZATION

We now introduce our distributed optimization algorithm
to solve a submodular minimization problem in the form (1).
Then, we show its finite-time convergence.

A. Distributed Submodular Minimization Set-up
We consider N = |V | agents in a network that aim at

cooperatively solving a submodular minimization problem in
the form (1). In our distributed set-up, we consider a scenario
in which each agent i is associated to element i of V and
knows only the value of F associated to all subsets of V

(in the power-set 2V ) containing the element i itself. Thus,
agent i ignores the information about all the other agents,



i.e., i knows F ({i}), does not know the value F ({j}) of a
neighbor j, but both i and j know F ({i, j}).

Agents can exchange information according to a time-
varying communication network modeled as a time-varying
digraph G(t) = ({1, . . . , N}, E(t)), with t 2 N being a
universal slotted time unknown to the agents. A digraph G(t)
models the communication in the sense that there is an edge
(i, j) 2 E(t) if and only if agent i is able to send information
to agent j at time t. For each node i, the set of in-neighbors
of i at time t is denoted by N in

i
(t) and is the set of j such

that there exists an edge (j, i) 2 E(t). The communication
graph satisfies the following assumption.

Assumption 4.1 (On the network connectivity): The time-
varying graph G(t) is jointly strongly connected, i.e., 8t 2 N,
the graph ({1, . . . , N},[1

⌧=t
E(⌧)) is strongly connected. ⇤

B. Local Greedy Algorithm

In this subsection we propose a variation of the greedy
algorithm discussed in Section III-B that will be used to
implement the column generation in a distributed fashion.
Specifically, since agent i is aware only of F (X) with X

containing i, it may not be able to apply the greedy algorithm
as introduced in Section III-B.

We recall that, given an input vector u 2 RN , we need
to order its components. However, agent i can apply the
greedy algorithm only if j1 = i, since otherwise would
need to evaluate F for sets not containing itself (e.g., {j1}).
Nonetheless, since the ordering {j1 . . . jN} is not unique,
we propose a priority-based sorting of the vector. That
is, agent i checks whether (u)i = max{u}, i.e.,(u)i is
the maximum entry of u. If so, it sets j1 = i so that
{j1, j2 . . . j`} = {i, j2 . . . j`}. We denote such a prioritized
sorting routine by SORT(u, i). Then, agent i computes an
optimal solution x

B of the pricing problem for a given u

only if (u)i = max{u}. In this case, it generates a new
column as hGEN = [0, (xB)>, 1]>. Otherwise, it generates an
empty column hGEN = null. This local procedure, called
Local Greedy, is summarized in the following table.

Local Greedy Local Greedy Column Generation Algorithm
Input: u, i
Obtain an order via

{j1, . . . , jN} = SORT(u, i)

IF: j1 = i; THEN:
Compute a new vertex x

B as

�
x
B
�
j`
=

(
F ({i}), if ` = 1

F ({i . . . j`})�F ({j1 . . . j`�1}), if 2  `  N

Generate a new column as hGEN = [0 (xB)> 1]>

ELSE: hGEN = null
Output hGEN

The Local Greedy is a local version of the (centralized)
greedy algorithm described in Section III-B since it uses only
local information at the node.

C. Greedy Distributed Column Generation Algorithm

In this subsection, we introduce our distributed algorithm
for submodular minimization along with its convergence
properties. Our methodology exploits the LP reformulation
described in Section III combined with a distributed column
generation approach.

Each agent i maintains a local candidate basis B
[i](t)

which is iteratively updated to eventually converge to the
optimal basis of (4). Moreover, it maintains and updates dual
variables u[i](t) and v

[i](t) associated with the constraints in
the local optimization problem. We will show that all u[i](t)
converge to a common indicator vector representing an op-
timal solution of the submodular minimization problem (1).

The algorithmic evolution is as follows. At every com-
munication round t, agent i receives from each neighbor
j 2 N in

i
(t) a matrix G

[j]
B
(t) containing those columns of

B
[j](t) that are columns of G. Notice that a basis may also

contain columns of the identity matrices associated to ↵ and
�. Then it collects all the columns of G[j]

B
(t) j 2 N in

i
(t)[{i}

into a matrix G
[i](t), ordered according to a tie breaking rule.

In particular, we use lexicographic ordering that guarantees
uniqueness of the local basis for a given local problem. Com-
pactly, we write G

[i](t) = lexsort([j2N in
i (t)[{i}G

[j]
B
(t)).

Then agent i solves a reduced version of (4), i.e., a problem
as (5) in which G

[i](t) is used in place of GR. In par-
ticular, it computes the lexicographically optimal solution
with corresponding basis B

[i](t) and corresponding dual
variables [u[i](t)>, v[i](t)]>. Then agent i runs the Local
Greedy routine described in Section IV-B on the vector
u
[i](t) to (try to) generate a new column h

[i]
GEN. Finally, agents

perform a so-called pivoting operation, denoted by PIVOT,
in order to decide whether or not to include the new column
in B

[i](t). Specifically, if the generated column h
[i]
GEN has

negative reduced cost, then agent drops a column from the
current basis B

[i](t) and introduces h
[i]
GEN. Otherwise, the

routine simply returns the previous basis. As for the LP
solution, also the pivoting operation is performed by taking
into account a lexicographic tie-breaking rule, see, e.g., [24].

At the first iterations, agents may not have knowledge
of any column of G, and then be able to build a feasible
local basis. For this reason, each agent initializes G

[i]
B
(0)

with the solution BHM of a local optimization problem
on a set HM of artificial variables. That is, it considers
N + 1 decision variables with very high cost and solves
an optimization problem depending on such variables and ↵

and � (where their cost is the same as in (4)). We point out
that in this procedure, known as big-M method, the artificial
variables affect the solution only in the first iterations of
the algorithm, and are dropped during its evolution. The
distributed algorithm is formally reported in the following
table from the perspective of node i.

We stress that our distributed algorithm is scalable in terms
of local communication, computation and memory. Indeed,
agents exchange at most N+1 columns from the local candi-
date basis. Thus, the computation complexity of (7) is always
bounded by the number of in-neighbors. Also, each agent



Distributed Algorithm Greedy Distributed Column Gener-
ation (GREEDICOLUMN)

Initialization: G
[i]
B
(0) = BHM obtained via big-M

Evolution: for all t = 1, 2, . . .

Receive G
[j]
B
(t) from j 2 N in

i
(t) and set

G
[i](t) = lexsort

⇣
[j2N in

i (t)[{i} G
[j]
B
(t)

⌘
.

Find optimal basis B
[i](t+ 1) with its corresponding

dual optimal solution [u[i](t)>, v[i](t)]> of

min
✓R,↵,�

1>
|V |�

subj. to G
[i](t) ✓R � ↵+ � = 0|V |

1>
R
✓R = 1

↵ � 0|V |, � � 0|V |, ✓R � 0R.

(7)

Generate column h
[i]
GEN = LOCALGREEDY(u[i](t), i)

B
[i](t+ 1) = PIVOT

⇣
B

[i](t+ 1), h[i]
GEN

⌘

Construct G[i]
B
(t+ 1) as columns of G in B

[i](t+ 1)

generates at most one new column at each communication
round, and it stores only B

[i](t) and [u[i](t)>, v[i](t)]> (N+1
components). Thus, it is also memory efficient. Moreover,
Assumption 4.1 models asynchronous communication and
unreliable networks. Indeed, if a node is running its computa-
tion it is simply assumed not to have incoming and outgoing
edges. Similarly, packet losses are modeled by neglecting (at
a given time) those edges associated to packets not reaching
the recipient. Finally, finite-time convergence allows agents
to implement distributed stopping criteria as in [25].

We now provide a formal statement of the finite-time
convergence of GREEDICOLUMN distributed algorithm to
an optimal solution of the submodular minimization prob-
lem (1). The proof is omitted for the sake of space and will
be provided in a forthcoming document.

Theorem 4.2: Let Assumption 4.1 hold and consider the
sequences {B[i](t), u[i](t)}t�0, i 2 {1, . . . , N} generated
by GREEDICOLUMN. Then, in a finite number of com-
munication rounds, say T 2 N, all the agents agree on
a common optimal basis B

? corresponding to an optimal
solution (✓?,↵?

,�
?) of (4). Moreover, for all t � T it holds

u
[i](t) = 1X? ,

for all i 2 {1, . . . , N}, being X
? an optimal solution of the

submodular minimization problem (1). ⇤
V. NUMERICAL COMPUTATIONS

In this section we apply GREEDICOLUMN to a concrete
example to numerically show its effectiveness.

A. The s–t Minimum Cut Problem
The s–t Minimum Cut Problem arises as a key problem

in several areas as machine learning, decision making and
signal processing. It is, e.g., related to the maximum flow

problem in a network, or to image segmentation (with nodes
associated to pixels and edge capacities giving dissimilarity
between two pixels), see [3]–[5], [7] and references therein.

Consider a static directed graph Gst = (Vst, Est), where
Vst = {s, t, 1, . . . N} is the set of nodes and Est is the edge
matrix. In particular, s is called source node, and has only
outgoing edges. Conversely, t is called sink node, and has
only incoming edges. A positive capacity i,j is associated
to each edge (i, j) 2 Est.

A cut U is a subset of Vst that contains the source s but
does not contain the sink t. The cost of the cut is obtained
by summing the capacities of the edges going from U to
Vst \ U . The goal is to find a s–t minimum cut, i.e., a cut
U minimizing this cost. This problem can be cast as the
following submodular minimization problem [8]. Let V =
Vst \ {s, t}, then, for all X ✓ V , define the function

F (X) =
P
i2X

j2V \X

i,j +
P

j2V [{t}\X
s,j +

P
i2X

i,t �
P

j2V [{t}
s,j .

The first term takes into account the edges from X to V \X ,
the second one those from s to V \ X and (possibly) to t,
and the third one those from X to t. Finally, the last term
guarantees that F (;) = 0. The minimization of the function
F (X) over all subsets X of V gives an s–t minimum cut
as U = X

? [ {s}, with X
? being the minimum of F .

B. Numerical Computations for the s–t Min-Cut Problem

We consider a network of agents communicating ac-
cording to a time-varying communication graph G(t) =
({1, . . . , N}, E(t)) satisfying Assumption 4.1. Each agent
i of the network is associated to a node i 2 V of the s–t
min-cut graph, see Figure 2 for a graphical interpretation.

s t

Communication

Network

s–t min-cut graph

Fig. 2. s–t min-cut graph and its associated communication network. Only
an instance of the (time-varying) communication graph is shown.

We generate random s–t min-cut graphs by constructing
Erdős-Rényi random graphs of |V | nodes, with edges ex-
istence probability 0.1. Source and sink nodes s and t are
randomly attached to the other nodes with a discrete uniform
probability. The edge capacities are fractional numbers, with
one decimal digit, uniformly drawn in [0.1, 10]. We analyze
the performance of our algorithm in two different scenarios:
(i) a sequence of fixed (cycle) communication graphs with an
increasing number of nodes, and (ii) an unreliable network
modeled as an underlying (random) fixed graph with packet
losses. For comparison, we use the submodular optimization
(centralized) toolbox in [26] to compute the optimal cost J?.



(i): We analyze the performance of the proposed al-
gorithm in terms of convergence steps, while varying the
network size (in terms of diameter) as a function of the
problem size. We consider |V | = {8, 16, 24, 32, 40, 48}. For
each case, we run 100 instances. The communication graph
is a cycle that has diameter equal to dG = N � 1 =
|V | � 1. The results are reported in Figure 3 (left). The
red line in the center of each box is the median value of
communication rounds needed for the convergence. Edges
of the box represent the 25-th and the 75-th percentiles.
The whiskers represents the most extreme data points not
considered as outliers (marked with the red crosses). We
highlight that the communication rounds needed for the
convergence scales linearly with the problem size.

(ii): We test the robustness of our algorithm when
running over unreliable networks subject to packet losses.
We consider the same random model introduced above for
a network of 48 nodes connected by a random graph with
diameter dG = 9. The same graph is used as “nominal”
communication graph. In particular, at each communication
round, the i-th agent discards the incoming message from
the j-th agent according to a given, fixed probability of
loss given by {10%, 30%, 50%, 90%}. Figure 3 (right) shows
the number of communication rounds necessary to converge
to an optimal solution. Consistently with the theory, the
algorithm converges to an optimal solution even with 90%
probability of losses. As expected, the convergence time
increases as the packet loss probability increases.

8 16 24 32 40 48
0

200

400

600

800

|V |

C
om

m
u
n
ic
at
io
n
R
ou

n
d
s

500 1000 1500
0

50

100

150

200

t

m
ax

i
2
{1

,.
..
,N

}

⇣ J
[i
] (
t
)
�

J
?

⌘ 0% msg loss

10% msg loss

30% msg loss

50% msg loss

90% msg loss

Fig. 3. Left: communication rounds trend while increasing the network
diameter dG with the problem size (dG = |V |� 1). Right: communication
rounds to convergence with different loss probabilities.

VI. CONCLUSIONS

In this paper, we proposed a distributed algorithm to
minimize submodular functions over peer-to-peer networks,
where an agent knows the function values only for those
sets including itself. Exploiting the submodular structure
and a linear program reformulation of the original problem,
we designed a distributed column generation algorithm for
submodular minimization. Agents are endowed with a local
greedy procedure to generate columns without explicitly
solving a pricing problem having exponentially many con-
straints. We showed the finite-time convergence of the dis-
tributed algorithm to an optimal solution of the submodular
minimization problem. Numerical simulations corroborated
the theoretical results.
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