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The standardized Withania somnifera Dunal
root extract alters basal and morphine-
induced opioid receptor gene expression
changes in neuroblastoma cells
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Abstract

Background: Behavioral studies demonstrated that the administration of Withania somnifera Dunal roots extract
(WSE), prolongs morphine-elicited analgesia and reduces the development of tolerance to the morphine’s analgesic
effect; however, little is known about the underpinning molecular mechanism(s). In order to shed light on this issue
in the present paper we explored whether WSE promotes alterations of μ (MOP) and nociceptin (NOP) opioid
receptors gene expression in neuroblastoma SH-SY5Y cells.

Methods: A range of WSE concentrations was preliminarily tested to evaluate their effects on cell viability.
Subsequently, the effects of 5 h exposure to WSE (0.25, 0.50 and 1.00 mg/ml), applied alone and in combination
with morphine or naloxone, on MOP and NOP mRNA levels were investigated.

Results: Data analysis revealed that morphine decreased MOP and NOP receptor gene expression, whereas
naloxone elicited their up-regulation. In addition, pre-treatment with naloxone prevented the morphine-elicited
gene expression alterations. Interestingly, WSE was able to: a) alter MOP but not NOP gene expression; b)
counteract, at its highest concentration, morphine-induced MOP down-regulation, and c) hamper naloxone-
induced MOP and NOP up-regulation.

Conclusion: Present in-vitro data disclose novel evidence about the ability of WSE to influence MOP and NOP
opioid receptors gene expression in SH-SY5Y cells. Moreover, our findings suggest that the in-vivo modulation of
morphine-mediated analgesia by WSE could be related to the hindering of morphine-elicited opioid receptors
down-regulation here observed following WSE pre-treatment at its highest concentration.

Keywords: Withania somnifera, MOP receptors, NOP receptors, SH-SY5Y cells

Background
The use of herbal preparations in folk medicine has
traditionally ancient roots and since often it is not fully
scientifically validated an increasing effort is currently
required to bridge this gap. Accordingly, in the last
decades a high number of herbal preparations with
specific indications, including anti-inflammatory [1],
anti-microbial [2], anti-spastic [3], anti-arrhythmic [4]

and anti-depressant [5] activities, just to name a few, has
been examined and their chemical composition and
mechanism(s) of action have been investigated in great
detail. Interestingly, instances of different therapeutic
properties coexisting in the same plant have been re-
ported, and among the most promising herbs endowed
with this feature Withania somnifera Dunal has shown an
exponential growth in terms of scientific interest [6–8].
The number of records in PubMed for the key word
“Withania somnifera” has considerably increased from 43
between 1990 and 2000 [9, 10], to 275 in the period
relative to 2000 – 2010 [11, 12]. In addition, the 566 stud-
ies collected in the period relative to 2010 – 2017 [13, 14]
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(up to the time of preparation of the manuscript) repre-
sent more than half of the total 915 citations found with
this key word search.
Withania somnifera, or Ashwagandha, is an evergreen

shrub native of the Indian subcontinent which spontan-
eously grows also in the Mediterranean basin [15]. Its
increasing attractiveness is mostly due to the anti-
inflammatory [1, 8] and anti-cancer [1, 6] properties, but
also to a number of central effects related to stress [8],
anxiety [16] and neurodegenerative disorders [8, 17].
In this frame, it is worth noting that Withanolides
and Withaferin A, abundantly present in Withania
somnifera roots, have been reported to interact with
cholinergic mechanisms [18] and also with Nuclear
factor-κB [19–21].
Previous studies from our and other laboratories have

shown that the standardized methanolic extract of With-
ania somnifera roots (WSE) prevents i) the dendritic
spine density reduction in the shell of nucleus accum-
bens of rats undergoing morphine withdrawal [22], ii)
the acquisition and expression of morphine-elicited con-
ditioned place preference [23] and iii) the development
of tolerance to the analgesic effects of morphine [24].
Moreover, we recently reported that WSE, although
lacking of analgesic properties on its own, prolongs the
anti-nociceptive effect of morphine and counteracts the
paradoxical morphine-induced hyperalgesia in CD-1 mice
[25], suggesting that WSE could represent a valuable adju-
vant in opioid-sparing pain therapies. In addition, we
assessed the binding affinities for a number of receptors
[23, 25] and we found that WSE shows moderate affinities
for GABAA and GABAB (13 and 130 μg/ml, respectively)
as well as for opioid [μ (MOP): 385 μg/ml; δ: 166 μg/ml;
κ: 775 μg/ml] receptors.
Interestingly, the absence of analgesic activity of WSE

on its own, together with its low affinity for MOP recep-
tors, suggest that the mentioned WSE/morphine inter-
play [22–25] might involve molecular mechanisms
different from a direct receptor interaction. In this
regard, gene expression alteration has been suggested as
a likely mechanism for inducing long-term neuroadapta-
tions responsible for tolerance development [26].
Furthermore, the opioid receptor gene expression regu-
lation is differently affected by diverse opioid ligands
such as morphine, fentanyl and tapentadol [27–29]
which in turn recruit different G protein-coupled recep-
tor kinase isoforms, as well as exhibit diverse tolerance
profiles [29–31].
Based on these premises, the present study was

designed to verify whether the behavioral outcomes
deriving from the interaction between WSE and mor-
phine [24, 25] might be related to changes in gene
expression of MOP and/or nociceptin- opioid (NOP)
receptor genes, both deeply involved in the regulation of

morphine analgesic properties. Notably, a critical role
has been attributed to NOP receptor in several mecha-
nisms such as desensitization, down-regulation [32–34]
and intracellular signal transduction pathways [35, 36],
involved in the analgesic responses to endogenous or
exogenous opioid ligands [37].
Hence, using the validated in-vitro model represented

by the SH-SY5Y neuroblastoma cells expressing MOP
and NOP receptors [28, 38], we aimed at evaluating
whether cell exposure to different WSE concentrations
affects MOP and NOP gene expression. Furthermore,
since MOP and NOP mRNA levels can be altered by
both morphine and naloxone [27], the effect of concomi-
tant exposure to WSE plus morphine or naloxone was
also examined.

Methods
Cell culture
Human SH-SY5Y neuroblastoma cells purchased from
ICLC-IST (Genoa, Italy), were cultured in Dulbecco’s
modified Eagle medium (DMEM), supplemented with
10% (v/v) fetal bovine serum (FBS), 100 units/ml
penicillin, 100 μg/ml streptomycin and 2 mM glutam-
ine. Cells were incubated at 37 °C in a humidified
atmosphere containing 5% CO2 and then were
allowed to reach 80% confluence before starting treat-
ments. For each analysis new cell sets were plated.
All reagents for cell culture were purchased from
Lonza (Milan, Italy).

Drugs and cell culture treatments
Morphine hydrochloride was supplied by Carlo Erba
(Milan, Italy); naloxone hydrochloride was supplied by
Research Biochemicals INC. (Cambridge, UK). WSE,
previously authenticated (NISCAIR, New Delhi, India),
was kindly provided by Natural Remedies Pvt. Ltd.,
Bangalore, India. All substances were dissolved in
DMEM and the SH-SY5Y cells were exposed to different
treatment schedules. Firstly, a range of WSE concentra-
tions (0.10–0.25-0.50-0.75 mg/ml and 1.00 mg/ml) was
tested in a cell viability assay to rule out toxic effects
that might affect the interpretation of the findings.
Secondly, the effects elicited by 10 μM morphine,

100 μM naloxone, or by their association on MOP and
NOP gene expression were evaluated (treatment A - see
Table 1).
Thirdly, the alterations of MOP and NOP mRNA

levels induced by 0.25 mg/ml, 0.50 mg/ml and 1.00 mg/
ml WSE were assessed (treatment B - see Table 1).
Fourthly, the effects elicited by WSE together with mor-
phine (treatment C - see Table 1) or naloxone (treatment
D - see Table 1) were ascertained.
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WSE extraction and high-performance liquid
chromatography (HPLC) analysis
Shade dried roots of Withania somnifera Dunal (1 Kg)
were extracted in methyl alcohol (5 L) using Soxhlet’s
extractor apparatus (Borosil Glass Works Ltd., Ahmeda-
bad, India). The extraction was prolonged until the
liquid in siphon tube of Soxhlet’s extractor did not show
any spot of extract on the thin layer chromatography
plate, developed using methanol as a solvent system.
The extract was dried under vacuum below 40 °C

yielding 20.1% of the extract.
Then the extract was dissolved in methyl alcohol

(10 mg/ml) and subsequently characterized by an
HPLC-fingerprint analysis, as certified by Natural
Remedies Pvt. Ltd., with identification of the main
withanolides present in the extract. This analysis, with
the necessary description of the technique, has been
previously reported [22]. Compounds isolated from the
extract and characterized as given in the literature [39],
were used as reference standard for HPLC analysis: 20 μl
of the mixed standard solution (≅ 100 μg/ml of each
Withanolide in methyl alcohol) and sample solution
(10 mg/ml in methanol). A HPLC system (Shimadzu, LC
2010 A, Japan) equipped with UV detector, auto-
injector, and column oven with class VP software was
used.
The stationary phase was an octadecylsilane column

(Phenomenex-Luna, C18, 5 μm, 250 mm × 4.6 mm). The
mobile phase was a mixture of phosphate buffer

[prepared by dissolving 0.136 g of KH2PO4 in 900 ml of
HPLC grade water and by adding 10% aqueous H3PO4

(pH adjusted to 2.8 ± 0.05) and making the volume of
1000 ml with water, Solvent A] and acetonitrile (Solvent
B) (HPLC grade, Qualigens). The flow rate of mobile
phase was maintained at 1.5 ml/min throughout the
analysis and the detector wave length was kept at
227 nm. Acetonitrile and phosphate buffer were mixed
and the solvent B concentration was increased as linear
gradient in the first 18 min from 5 to 45% and from the
18th to 25th min from 45 to 80%.

Cell viability assay
Cell viability was measured using the MTT [3-(4,5-di-
methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]
assay [40]. All reagents were purchased from Sigma-
Aldrich (Milan, Italy) unless otherwise indicated. Briefly,
cells were plated on 24-well plates at a density of 3 × 104

cells/well, and were grown to reach 80% confluence.
Cells were treated with a solution of WSE in DMEM
(0.10 mg/ml, 0.25 mg/ml, 0.50 mg/ml, 0.75 mg/ml and
1.00 mg/ml), or vehicle (DMEM). After 5 h, 24 h or
48 h, the culture medium was removed and replaced
with fresh medium containing the MTT solution (0.5 mg/
mL) and cells were incubated in the dark at 37 °C for 3 h.
After supernatant removal, a dimethyl sulfoxide-ethanol
(4:1) mixture was added to each well to dissolve formazan
crystals. The optical densities (OD) were then recorded
using a microplate spectrophotometer (GENios Tecan,
Austria) at 590 nm. The results were expressed as a
percentage of OD values of treated cell cultures compared
to vehicle-treated ones.

Real-time qPCR
After treatments, total RNA was isolated using the TRI-
ZOL reagent (Life Technologies, Monza, Italy) according
to the method of Chomczynski and Sacchi [41]. RNA in-
tegrity was checked by 1% agarose gel electrophoresis
and RNA concentrations were measured by spectropho-
tometry (all RNA samples displayed an OD260/OD280
ratio > 1.8 and <2.0). Total RNA was reverse transcribed
with the GeneAmp RNA PCR kit (Life Technologies,)
using random hexamers (0.75 μg of total RNA in a final
reaction volume of 20 μl). Relative abundance of each
mRNA species was assessed by real-time RT-PCR using
the Syber Green gene expression Master Mix (Life
Technologies) in a Step One Real-Time PCR System
(Life Technologies,). All samples were run in triplicate
and all data were normalized to glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) as the endogen-
ous reference gene. Relative expression of different
gene transcripts was calculated by the Delta-Delta Ct
(DDCt) method and converted to relative expression
ratio (2−DDCt) for statistical analysis [42]. The primers

Table 1 Cell culture treatments

Treatment Drug Concentration Time

A Morphine 10 μM 5 h

Naloxone 100 μM

Naloxone (30 min before) 100 μM

+

Morphine 10 μM

B WSE 0.25 mg/ml

0.50 mg/ml

1.00 mg/ml

C WSE (30 min before) 0.25 mg/ml

0.50 mg/ml

1.00 mg/ml

+

Morphine 10 μM

D WSE 0.25 mg/ml

0.50 mg/ml

1.00 mg/ml

+

Naloxone 100 μM

WSE: Withania somnifera root extract
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used for PCR amplification were designed using
Primer 3 [43] and their sequences have been previ-
ously validated (see Table 2) [28, 38].

Statistical analysis
Data from MTT assay were statistically analysed by
two-way analysis of variance (ANOVA). F-values
reaching significance (p < 0.05) were further analyzed
by Bonferroni post-hoc test. Data from gene expres-
sion were analyzed by one-way ANOVA, followed by
Newman-Keuls test. Statistical analysis was performed
using the Graph-Pad Prism software v. 5 (GraphPad
Software, San Diego, CA, USA). Results are reported
as the mean of values ± SEM (n/assay = 4).

Results
Phytochemical analysis of WSE
HPLC-fingerprint analysis of WSE indicated the pres-
ence of the following withanolides: withanoside-IV,
withanoside-V, withaferin-A, 12-deoxy withastramono-
lide, withanolide-A, and withanolide-B (Fig.1a and 1b).
Their individual concentrations, expressed as % w/w, are
reported in the Table 3; the global content of identified
withanolides in WSE was >2.5% w/w.

MTT assay for cell viability
SH-SY5Y cells exposed to WSE showed not significant
alterations of cell survival following 5 h (Table 4). On
the contrary, 24 and 48 h of exposure caused a dose-
dependent cell viability reduction which appeared
more pronounced overtime (Table 4). Two-way
ANOVA revealed a significant time × treatment inter-
action [F(10,51) = 8.23; p < 0.0001]. Since 24 and 48 h
exposure to WSE significantly decreased SH-SY5Y
viability; these time-points were excluded from the
subsequent gene expression analyses that were, ac-
cordingly, conducted following 5 h exposure only.

MOP and NOP gene expression analysis
Treatment a: Morphine and naloxone induce opposite
effects on MOP and NOP gene expression
A significant MOP gene expression down-regulation was
observed following 5 h of 10 μM morphine exposure
(0.17 ± 0.01 vs vehicle 1.00 ± 0.11, p < 0.01; Fig. 2a).
Conversely, 100 μM naloxone induced a significant
MOP mRNA increase (2.27 ± 0.25 vs vehicle 1.00 ± 0.11,

p < 0.001; Fig. 2a). The co-exposure to morphine and na-
loxone did not change MOP gene expression compared
to vehicle (Fig. 2a); however, the effects induced by
morphine or naloxone alone were significantly different
with respect to those observed after their co-exposure
(p < 0.01, p < 0.001; Fig. 2a). A trend of reduction for
NOP receptor gene expression was observed after
morphine exposure (0.66 ± 0.03 vs vehicle 1.00 ± 0.14,
p = 0.074; Fig. 2b), whereas naloxone induced a sig-
nificant NOP up-regulation (3.10 ± 0.39 vs vehicle
1.00 ± 0.14, p < 0.01; Fig. 2b). NOP gene expression
analysis after naloxone and morphine co-exposure did
not show significant alterations compared to vehicle
(Fig. 2b); however, statistically significant differences
were observed between the effects induced by the co-
exposure and those induced by the exposure to nalox-
one alone (p < 0.001; Fig. 2b).

Treatment B: WSE causes selective alterations of MOP and
NOP gene expression
WSE significantly reduced MOP gene expression levels
at all concentrations used (0.25 mg/ml WSE: 0.20 ± 0.01;
0.50 mg/ml WSE: 0.10 ± 0.01; 1.00 mg/ml WSE: 0.43 ±
0.01 vs vehicle: 1.00 ± 0.04, respectively, p < 0.001;
Fig. 3a). In addition, the decrease induced by 1.00 mg/
ml WSE was also significantly different from those in-
duced by the doses of 0.25 and 0.50 mg/ml (p < 0.001).
On the contrary, no changes of NOP mRNA levels were
caused by WSE at any concentration (Fig. 3b).

Treatments C and D: WSE modifies morphine and naloxone
effects on MOP and NOP gene expression
WSE at 0.25 and 0.50 mg/ml failed to alter the ability of
10 μM morphine to decrease MOP gene expression
(0.25 mg/ml WSE +morphine: 0.30 ± 0.04; 0.50 mg/ml
WSE +morphine: 0.26 ± 0.03 vs vehicle 1.00 ± 0.05, re-
spectively; p < 0.001; Fig. 4a); on the contrary, the highest
WSE concentration (1.00 mg/ml) significantly obstructed
the morphine-induced MOP down-regulation (Fig. 4a).
Moreover, the effects induced by 1.00 mg/ml WSE

+morphine resulted significantly different from those
induced by WSE at 0.25 or 0.50 mg/ml + morphine
(p < 0.001; Fig. 4a). In contrast, WSE pre-treatment
30 min before morphine addition to cell cultures
failed to significantly affect NOP receptor gene ex-
pression changes (Fig. 4b).

Table 2 Primer sequences used for real-time qPCR

Gene Forward (5′ – 3′) Reverse (5′ – 3′) Product size

MOP ATCACGATCATGGCCCTCTACTCC TGGTGGCAGTCTTCATCTTGGTGT 106

NOP GGCCTCTGTTGTCGGTGTTC GTAGCAGACAGAGATGACGAGCAC 175

GAPDH GGTCGGAGTCAACGGATTT TGGACTCCACGACGTACTCA 281

MOP μ opioid receptor, NOP nociceptin/orphanin FQ opioid peptide receptor, GAPDH glyceraldehyde-3-phosphate dehydrogenase
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Interestingly, all WSE concentrations tested hampered
the naloxone-induced MOP up-regulation, and indeed a
significant decrease of MOP mRNA levels was observed
resembling the effect caused by WSE alone (0.25 mg/ml
WSE + naloxone: 0.27 ± 0.07; 0.50 mg/ml WSE + nalox-
one: 0.25 ± 0.08; 1.00 mg/ml WSE + naloxone: 0.55 ±

0.07 vs vehicle 1.00 ± 0.02, respectively; p < 0.001; Fig. 5a).
Moreover, significant differences were observed between
the effects induced by naloxone +1.00 mg/ml WSE
and those induced by naloxone +0.25 or 0.50 mg/ml
WSE (p < 0.05 for both WSE concentrations; Fig. 5a).

Fig. 1 Chromatogram of WSE (a) obtained using an HPLC system (Shimadzu, LC 2010 A, Japan) equipped with UV detector, auto-injector, and
column oven with class VP software (see Methods for details); numbers above peaks refer to the withanolides reported in the lower panel of the
figure (b)

Table 3 Phytochemical analysis of Withania somnifera root
extract by HPLC

Analyte Concentration (% w/w)

a) Withanoside-IV 0.88

b) Withanoside-V 0.47

c) Withaferin-A 0.66

d) 12-Deoxy withastramonolide 0.33

e) Withanolide-A 0.41

f) Withanolide-B 0.07

Sum of withanolides conc.’s (w/w) 2.82

(Batch No.: WS/11003; Lab Reference/Report No.: FP101002)

Table 4 Effects of Withania Somnifera root extract on cell
viability in the SH-SY5Y cells

Time of exposure

5 h 24 h 48 h

Vehicle 100.00 ± 3.64 100.00 ± 12.62 100.00 ± 15.10

0.10 mg/ml WSE 91.83 ± 14.38 90.52 ± 15.53 79.65 ± 14.40

0.25 mg/ml WSE 93.90 ± 5.40 72.63 ± 4.16 14.11 ± 1.43***

0.50 mg/ml WSE 107.21 ± 6.41 49.35 ± 3.79*** 15.02 ± 4.13***

0.75 mg/ml WSE 107.04 ± 5.35 51.73 ± 2.69*** 7.41 ± 3.02***

1.00 mg/ml WSE 109.90 ± 6.23 34.69 ± 6.29*** 7.62 ± 2.76***

Data are expressed as mean ± SEM (*** p < 0.001 vs vehicle are indicated
in bold) and analyzed by two-way ANOVA. F-values reaching significance
(p < 0.05) were further analysed by Bonferroni post-hoc test
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Finally, NOP receptor gene expression analysis
disclosed the ability of WSE, at its lower concentrations,
to prevent the naloxone-induced NOP up-regulation; on
the contrary, in the presence of the highest WSE
concentration, naloxone was still able to significantly
up-regulate NOP gene expression (2.20 ± 0.32 vs vehicle
1.00 ± 0.10; p < 0.01, Fig. 5b). Statistically significant dif-
ferences were observed between the effects induced by
naloxone +1.00 mg/ml WSE and those induced by
naloxone +0.25 or 0.50 mg/ml WSE (p < 0.01 for both
concentrations; Fig. 5b).

Discussion
The modulation of morphine analgesic effect exhibited
in-vivo by Withania somnifera [24, 25] could represent
an useful tool to improve the opioid-sparing strategies in
pain therapy. However, little is known about how WSE
can modify the molecular mechanisms leading to the
development of tolerance, which represents one of the
major limitations in opiate clinical use.
On these bases, since cellular adaptations responsible

for tolerance development can include gene expression
alterations [26], the present study investigated the effects

induced by WSE on the MOP and NOP receptor mRNA
levels in neuroblastoma SH-SY5Y cells.
To this end, a range of WSE concentrations was tested

by MTT assay showing that the concentrations of WSE
examined were not cytotoxic up to 5 h of exposure. In
contrast, the increase of the exposure time revealed a
significant decrease of cell viability. Based on MTT
results, 5 h was the interval selected to perform the gene
expression analyses since at this time a general toxicity
response could be ruled out in the interpretation of the
findings.
The first experiment (treatment A, see Methods)

showed that morphine elicited MOP gene expression
down regulation and NOP receptor reduction, though not
significant, whereas naloxone evoked a significant increase
of their mRNA levels. The finding of morphine-induced
MOP down-regulation is in agreement with previous data
obtained from our [27] and other laboratories [44, 45] in
SH-SY5Y, as well as in other cell lines [46, 47].
Our data additionally demonstrated that, in agreement

with previous studies [46], morphine-induced MOP
down-regulation was inhibited by naloxone pre-treatment.
However, the effect of naloxone on opioid receptor gene

Fig. 2 MOP (a) and NOP (b) relative gene expression in SH-SY5Y
neuroblastoma cells following 5 h of exposure to 10 μM morphine,
100 μM naloxone and their association. Data represent 2−DDCt values
calculated by using the DDCt method. Gene expression was normalized
to GAPDH as housekeeping gene. Data are expressed as mean ± SEM
(° p = 0.074; ** p < 0.01, *** p < 0.001 vs vehicle; ## p < 0.01 and ###
p < 0.001 vs naloxone + morphine; data analyzed by one-way ANOVA
followed by Newman-Keuls tests)

Fig. 3 MOP (a) and NOP (b) relative gene expression in SH-SY5Y
neuroblastoma cells following 5 h of exposure to WSE (0.25 mg/ml,
0.50 mg/ml and 1.00 mg/ml). Data represent 2−DDCt values calcu-
lated by using the DDCt method. Gene expression was normalized
to GAPDH as housekeeping gene. Data are expressed as mean ±
SEM (***p < 0.001 vs vehicle, ### p < 0.001 vs 1.00 mg/ml WSE; data
analyzed by one-way ANOVA followed by Newman-Keuls tests)
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expression were not restricted to the receptor antagonism
activity; in fact, naloxone alone significantly up-regulated
MOP and NOP gene expression. This peculiar ability of
naloxone has been observed in some previous studies. In
particular, Gach et al. [46] reported that naloxone alone
produced an approximately 20% increase of MOP mRNA
levels as well as a 68% increase in MOP protein levels in
MCF-7 cells. Moreover, the prolonged intracerebroven-
tricular infusion of naloxone or naltrexone has been re-
ported to cause a marked up-regulation of prodynorphin
gene expression in selected rat brain areas [48].
The results of second part of the study (treatment B,

see Methods), in which we tested the effects of WSE
(0.25, 0.50 and 1.00 mg/ml)on the MOP and NOP gene
expression indicate for the first time that WSE induced
selective alterations of opioid receptor mRNA levels. In
particular, we observed a significant decrease of MOP
gene expression without alterations of NOP mRNA
levels. Notably, the WSE-induced MOP down-regulation
appeared significantly more pronounced at the lower
concentrations than at the highest one. Several issues
arise from these results. First, WSE clearly reduces, in a
dose-independent manner, MOP mRNA levels only. It is
conceivable that the different effects caused by diverse
WSE concentrations might depend on the presence of

multiple components endowed with diverse activities. In
this frame, the lack of a dose-dependent effect suggests
the existence of a complex interaction among the differ-
ent components in the extract. In fact, WSE is a root ex-
tract containing many chemical constituents, of which
12 alkaloids and 35 withanolides [49, 50], responsible for
its multiple medicinal properties. In this regard, it is
worth considering that there are instances in which the
use of isolated single constituents of an herbal prepar-
ation does not precisely reproduce the therapeutic
profile of the whole extract. For example, although the
antidepressant properties ascribed to the use of Hyperi-
cum perforatum (Saint John’s Wort) are recognized to be
mainly due to hypericin and hyperforin [51], the lit-
erature suggests caution in interpreting the results
obtained following the administration of different
extracts [52] or individual compounds [53], because
of their peculiar pharmacokinetic and pharmacody-
namic properties [52, 54].
The MOP gene expression observed after exposure to

WSE could help understanding the data previously
reported by Kulkarni and Ninan [24]. These authors
observed the lack of morphine analgesic effect when the
opiate was administered to mice that had previously
received 100 mg/kg WSE for nine days. Based on our

Fig. 4 MOP (a) and NOP (b) relative gene expression in SH-SY5Y
neuroblastoma cells following 5 h of exposure to WSE (0.25 mg/ml,
0.50 mg/ml and 1.00 mg/ml) in association to 10 μM morphine. Data
represent 2−DDCt values calculated by using the DDCt method. Gene
expression was normalized to GAPDH as housekeeping gene. Data
are expressed as mean ± SEM (***p < 0.001 vs vehicle; ###p < 0.001
vs 1.00 mg/ml WSE +morphine; data analyzed by one-way ANOVA
followed by Newman-Keuls tests)

Fig. 5 MOP (a) and NOP (b) relative gene expression in SH-SY5Y
neuroblastoma cells after 5 h of 100 μM naloxone and WSE exposure
(0.25 mg/ml, 0.50 mg/ml and 1.00 mg/ml). Data represent 2−DDCt

values calculated by using the DDCt method. Gene expression was
normalized to GAPDH as housekeeping gene. Data are expressed as
mean ± SEM (**p < 0.01, ***p < 0.001 vs vehicle, #p < 0.05, ##p < 0.01
vs naloxone +1.00 mg/ml WSE; data analyzed by one-way ANOVA
followed by Newman-Keuls tests)
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results, it is conceivable that morphine inefficacy could
depend on MOP down-regulation induced by WSE.
A peculiar alteration of MOP gene expression emerged

after treatment C. In these experiments cells exposed to
morphine following a WSE pre-treatment for a total
period of 5 h still exhibited a significant MOP mRNA
decrease after lower WSE concentrations. In contrast, at
the highest WSE concentration we observed a lack of
MOP receptor down-regulation, an observation that
highlights the peculiar feature of this (1.00 mg/ml) WSE
concentration. This result could explain how the toler-
ance to morphine analgesic effect was hampered when
WSE (100 mg/kg i.p.) was injected 30 min before mor-
phine [24]. Therefore, based on these two observations,
it can be hypothesized that the simultaneous presence of
high WSE concentration and morphine could somehow
be responsible of maintaining an adequate MOP recep-
tor amount sufficient to produce the analgesic response.
The absence of NOP alterations induced by WSE

alone represents an additional point of interest. In fact,
previous studies suggested that MOP and NOP recep-
tors are both involved in tolerance development. Not-
ably, NOP receptor knockout mice display a partial loss
of morphine tolerance [55]. In this frame, recent results
obtained in our laboratory showed that fentanyl as well
as the 14-O-Methylmorphine-6-sulfate, two potent
analgesic agents endowed with lower tolerance to the
analgesic effect than morphine, did not modify NOP
receptor gene expression [27, 38]. Hence, since WSE
pre-treatment followed by morphine exposure dis-
closed the potential ability of WSE to hinder the
morphine-induced NOP alteration, these results could
be related to a less rapid onset of morphine tolerance
in the presence of WSE. In fact, the recruitment of
the nociceptin/orphanin FQ (N/OFQ) - NOP system
could be functional to the occurrence of morphine
tolerance, and the N/OFQ antagonists may prevent
tolerance development [56–58].
Finally, since we observed that opioid receptor gene

expression can be increased by the competitive antagon-
ist naloxone, we also evaluated whether WSE may influ-
ence these naloxone’s effects. Results showed that WSE
hampered naloxone-elicited MOP up-regulation and
prevented NOP up-regulation. However, this last effect
on NOP was elicited by only the lower WSE concentra-
tions but not by the highest one thus underlining, once
again, the different effect produced by WSE at its high-
est concentration (1.00 mg/ml).
Interestingly, G protein-coupled receptors (GPCRs),

such as MOP and NOP, can adopt multiple active con-
formations that combine to a diverse set of downstream
effectors and structurally distinct ligands can preferen-
tially activate a subset of intracellular signaling cascades
(so called biased ligands) [59]. In this regard, since WSE

displays a moderate affinity for opioid receptors, it is
conceivable that its interaction could interfere with the
intracellular signaling triggered by the opioid ligands.
Moreover, also the posttranslational control of GPCRs
seems to be crucial; in fact, the gene expression regula-
tion achievable by targeting mRNAs could be a promis-
ing candidate to coordinate the complex response to
analgesic drugs [60, 61]. Additional research will be
necessary to fully elucidate the opioid receptor transcrip-
tional regulation and the downstream signaling influ-
enced by the WSE/morphine interplay.

Conclusions
In summary, present in-vitro data suggest that the ability
of WSE to affect morphine analgesic profile could take
place through the gene expression regulation. In this
regard, it has been hypothesized that the altered gene
expression is a likely process for inducing neuroadapta-
tions responsible for tolerance. In particular, the reduc-
tion of dendritic spine density has been correlated with
the development of morphine tolerance and this neuroa-
daptation is regulated at gene expression level [26]. Since
WSE ability to counteract morphine-induced spine
density reduction upon withdrawal [22], as well as its
morphine tolerance counteracting action have been
demonstrated [24], it is conceivable that the mechanism
by which WSE exerts these effects can include the opi-
oid receptor gene expression regulation. In conclusion,
our results showed that WSE may influence the opioid
receptor gene expression and they offer new information
about the complex interaction of the WSE with opioid
ligands’ effects on the MOP and NOP biosynthesis.
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