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The wastewater treatment industry is undergoing a major shift towards a proactive
interest in recovering materials and energy from wastewater streams, driven by
both economic incentives and environmental sustainability. With the array of
available treatment technologies and recovery options growing steadily, systematic
approaches to determining the inherent trade-off between multiple economic and
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environmental objectives become necessary, namely enviroeconomic optimization.
The main objective of this chapter is to present one such methodology based on
superstructure modeling and multi-objective optimization, where the main environ-
mental impacts are quantified using life cycle assessment (LCA). This methodology
is illustrated with the case study of a municipal wastewater treatment facility. The
results show that accounting for LCA considerations early on in the synthesis
problem may lead to dramatic changes in the optimal process configuration, thereby
supporting LCA integration into decision-making tools for wastewater treatment
alongside economical selection criteria.

1.1 INTRODUCTION

Untreated sewage presents a threat to human health and the environment. For the
most part, wastewater treatment design retains its foundations in engineering tra-
ditions established in the early 20th century [17]. The aerobic treatment processes
used to produce an effluent that complies with the discharge standards are often en-
ergy intensive, and may be significant contributors to greenhouse gas (GHG) emis-
sions including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) [14].
Moreover, large quantities of sludge may be produced as a by-product of aerobic
treatment, and wastewater treatment facilities can also be land demanding. However,
a paradigm shift is underway towards making wastewater treatment facilities more
sustainable, driven by a range of sustainability issues including increase in electric-
ity demand and price [34], and long-term nutrient scarcity and high extraction costs
[7, 53]. In this new paradigm, wastewater is regarded as a renewable resource from
which water, materials and energy can be recovered, thereby transitioning to resource
recovery facilities [29].

Because wastewater treatment is often regarded as being an end-of-pipe technol-
ogy, the design of wastewater treatment facilities tends to focus on minimizing the
environmental impacts of given contaminants present in the effluent, such as organic
matter (COD), nitrogen (N) and phosphorus (P). Indeed, many environmental regula-
tions still focus on the removal of these targeted contaminants without consideration
of the broader environmental issues. Nowadays there is a greater awareness that sus-
tainability objectives, beyond receiving water quality, should be accounted for in the
design and operation of wastewater treatment facilities, in response to which there
has been much research emphasis on life cycle assessment (LCA) in the wastewater
treatment industry in recent years.

LCA is a holistic, cradle-to-grave standardized approach to evaluating the envi-
ronmental impacts of products and services [35]. As far as wastewater treatment is
concerned, LCA was first applied in the 1990s for identifying the environmental
impacts of various small-scale wastewater treatment technologies [21]. Since then, it
has been increasingly used in this industry as a means of comparing different wastew-
ater treatment technologies [27, 25, 67] or sludge management technologies [72], and
for evaluating the main environmental impacts associated with specific wastewater
treatment processes [73, 58]. The sensitivity of the LCA results to various impact
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assessment methods has also been investigated [64]. As pointed out in a recent re-
view paper [16], however, there is a need for better linking LCA with economic and
societal assessments in order to provide a more complete and accurate sustainability
picture for decision makers.

An approach to incorporating LCA evaluation into a knowledge-based decision-
support system to design wastewater treatment plants (WWTPs) has recently been
presented in [28]. The results demonstrate the potential of LCA for decision making,
although the approach is largely dependent on the data quality and their specifications
[37]. Moreover, this approach may not provide further information with regards to
the optimal (or near-optimal) solutions. In essence, superstructure optimization [10]
provides an ideal framework to identify optimal solutions of those design problems
having a large number of alternative processes, and it may be combined with multi-
objective optimization in the presence of multiple conflicting objectives, e.g. eco-
nomic and environmental performance indicators. This approach has been successful
in various application areas, including the synthesis of water networks [2, 39, 61], as
well as wastewater treatment and resource recovery systems [65, 60, 13]. Because it
is computationally demanding, the key to its success is the development and selec-
tion of mathematical models for the units that are simple enough for the optimization
problems to remain tractable, yet provide reliable estimates of their performances and
associated costs.

The main objective of this chapter is to present a modeling methodology for de-
cision in wastewater treatment and resource recovery systems in order to arrive at
WWTP designs that are both environmentally sustainable and economically viable,
namely enviroeconomic optimization. This methodology is based on superstructure
modeling and multi-objective optimization, where the main environmental impacts
are quantified using life cycle assessment (LCA). Moreover, these developments are
illustrated with a simple case study in municipal wastewater treatment. The rest of
this chapter is organized as follows: a review of resource recovery and WWTP design
is first presented (Sect. 1.2), followed by the methodology (Sect. 1.3) and illustrative
case study (Sect. 1.4), before drawing conclusions.

1.2 BACKGROUND

1.2.1 RESOURCE RECOVERY FROM WASTEWATER

This subsection reviews various technologies for recovery of energy and materials
from wastewater, with an emphasis on proven technologies. For further details, we
refer the reader to the recent survey/perspective articles [53, 7].

The organic compounds present in municipal (and many industrial) wastewaters
can be converted into a methane-rich biogas via anaerobic digestion. It is estimated
that about 30-60 L/d of methane per capita can be generated from a typical munic-
ipal wastewater by transforming all of the biodegradable organic matter into bio-
gas [57]. Moreover, anaerobic digestion can be adopted in conjunction with down-
stream resource recovery units due to its minimal effect on ammonia or phosphate
removal. In contrast to biogas generation from high-strength wastewater and wastew-
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ater sludge that has been employed for many years, direct anaerobic treatment of
low-strength wastewater has not been widely practiced so far, especially in temper-
ate climates where wastewater temperature is in the range of 5-15◦C. Innovations in
reactor design to maintain elevated biomass inventories, such as the upflow anaer-
obic sludge blanket (UASB) and anaerobic membrane bioreactor (AnMBR), have
mitigated some of the limitations and have extended the range of applications of
anaerobic treatment [46, 45, 52]. Particularly promising configurations include the
submerged anaerobic membrane bioreactor (SAnMBR; [33, 48]) and, more recently,
the anaerobic fluidized membrane bioreactor (AFMBR; [40]). Research is underway
to develop improved membranes and reactor designs that reduce membrane fouling
and enhance dissolved methane recovery [68, 70]. In urban water systems, thermal
energy can be recovered through the use of heat pumps or heat exchangers. Al-
though in the form of low-grade energy due to small temperature differences, this
energy may be suitable for heating buildings [22]. Besides biogas and thermal en-
ergy, promising technologies for electricity or hydrogen generation from wastewater
are also emerging [50, 41].

Nitrogen (N), phosphorus (P), and potassium (K) are critical nutrients for in-
tensive agriculture, whereas there has been increasing concern about the long-term
scarcity or high extraction cost associated with these nutrients; Phosphorus is a non-
renewable mineral resource, which is fast depleting. It is estimated that the world-
wide phosphorus demand will outstrip supply within a few decades as a consequence
of an expanding population, which has major implications in terms of global food
security as 90% of the phosphate (PO3−

4 ) rock reserves are located in just five coun-
tries [53]. There has been little discussion regarding potassium as a macro-nutrient
target for recovery so far, although its price is projected to rise substantially in the
next decade due to a limited geological distribution [7]. Fertilizer production is also
highly reliant on the energy-intensive and natural gas-dependent ammonia produc-
tion process. The rising natural gas market price in past decades is projected to con-
tinue (doubling by 2025), which will directly affect the price and supply of nitrogen
fertilizers [7]. In this context, much research has been dedicated to N and P recovery
from nutrient-rich wastewater in recent years [20, 44, 69]. In the presence of a pre-
cipitating or fixing agent, a majority of the phosphates – which accounts for 50-80%
of the total P compounds in municipal wastewater [75] – can be recovered. More-
over, technologies for recovering soluble N compounds from municipal wastewater
– around 50-80% of the total N content [75] – are becoming economically viable.
Ion exchange, for instance, can recover either ammonia, nitrate or phosphates by
passing the secondary effluent through adsorbent columns and chemical regenera-
tion [47, 36], and the resulting nutrient-enriched solutions can be further processed
into a saleable product (e.g., fertilizer). Nonetheless, key challenges for the wider
deployment of ion exchange units include their potential for fouling with suspended
solids, the limited exchange capacity of certain adsorbents, the limited ion selec-
tivity, and their high capital costs [54]. A range of absorbents are available, which
include zeolites (e.g. clinoptilolite) for ammonium ions (NH+

4 ) fixation [3, 78] and
polymeric resins with higher exchange capacities. Research is also underway to de-
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velop anion adsorbents with high phosphate selectively and easy regeneration char-
acteristics, including hydrotalcite (HTAL) [43] and polymeric resins with hydrated
ferric oxide nanoparticles [51]. An alternative promising technology for P recovery
is reactive filtration, which combines physical filtration of particulate P compounds
with co-precipitation and adsorption of soluble P compounds onto coated sand in
a moving bed filter – up to 95% P recovery by using hydrous ferric oxide (HFO)
coated sand [56]. In addition, adoption of crystallization for P recovery from con-
centrated wastewater streams has attracted substantial interest to produce reusable
compounds such as calcium phosphate (Ca3(PO4)2) and struvite (MgNH4PO4) [44].
The recovery technology involves precipitation in either stirred tanks or fluidized
bed reactors [9], with the latter being the most commonly applied in struvite crystal-
lization. Note, however, that most nutrient recovery technologies to date have been
applied to sludge liquors with PO3−

4 concentrations of 50-100 mg/L, for which 80%
removal efficiencies or higher have been reported [76]. For dilute streams, such as
secondary effluents with PO3−

4 concentrations of 4-12 mg/L, struvite crystallization
may be combined with adsorbent columns and fed with the enriched solutions from
the adsorbent regeneration e.g. RIM-NUT process reported by [47]. Besides N and
P recovery, organic carbon too can be recovered as polyhydroalkanoates (PHAs)
[15], whereas heavy metals can be recovered via adsorption, membrane filtration, or
chemical precipitation [26].

1.2.2 DESIGN OF WASTEWATER TREATMENT FACILITIES

The traditional rules and guidelines for design of wastewater treatment facilities –
see, e.g., Metcalf & Eddy [75] – are being challenged nowadays by tighter economic
and environmental constraints. Moreover, with the extra degrees of freedom offered
by advanced treatment and separation technologies, the plant synthesis/design prob-
lem becomes much more complex, especially when it comes to selecting the most
sustainable wastewater treatment facilities in a given regional context [66].

Mathematical modeling has been a powerful tool in assisting decision making in
WWTP design since the 1990s. Not only have the computational capabilities and
numerical solution technology improved dramatically, but the mathematical mod-
els too have become more predictive, now enabling plant-wide simulation routinely
using a range of commercial simulators (GPS-X R©, BioWin R©, WEST R©, etc). Con-
ventional model-based WWTP design starts with the selection of a plant layout, and
then focuses on the detailed design and analysis of this particular layout. The se-
lection of an appropriate design that meets the specified objectives and constraints
involves comparing the capital and operating costs of multiple plant configurations,
thus requiring repetitive model simulations alongside comprehensive process knowl-
edge. As the number of processes and configurations increases, this design approach
becomes more tedious, and ultimately unmanageable.

In order to deal with large numbers of treatment or separation units and possible
interconnections, a system engineering approach is most useful. Systematic methods
for the synthesis of complex chemical plants and biorefineries based on superstruc-
ture modeling and optimization are well developed [10, 42, 49]. These approaches
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are also increasingly applied to water network synthesis in process plants in order
to minimize fresh water consumption and wastewater generation through regenera-
tion, recycle and reuse [23, 39]. Regarding municipal wastewater facilities, the need
for systematic approaches has been emphasized [6, 31], but relatively few studies
have been published to date [65, 4, 5, 60, 13]. These studies provide insight into the
potential of the systematic optimization-based approaches for wastewater treatment
design, but they are nonetheless limited to optimizing a given process or selecting
the most appropriate process among a small number of alternatives mainly based on
economical considerations.

Another challenging task for WWTP design is satisfying multiple conflicting ob-
jectives simultaneously, while meeting the discharge regulations. One example is
the trade-off between nutrient discharge targets and plant-wide energy consumption.
Traditionally, these problems have been addressed using single objective optimiza-
tion through weighting of the various contributions in an overall cost index. In con-
trast, multi-objective optimization provides a means of describing multiple objectives
separately by determining the so-called Pareto solution set of non-dominated solu-
tions [30]. This approach has not been applied widely in WWTP design to date, per-
haps due to the complexity of wastewater treatment processes. A decision-making
tool to support the design of WWTPs based on multi-criteria evaluation was pro-
posed in [24], The selection of different process alternatives in this tool is based on
an overall degree-of-satisfaction index, as obtained through the weighting of selected
criteria and objectives, and it relies on a mix of mathematical modeling and quali-
tative knowledge. Another interactive multi-objective optimization platform coupled
with model-based simulation, called NIMBUS, was presented in [30]. This platform
allows a decision maker to simultaneously consider the design of WWTPs from dif-
ferent standpoints, and to balance between the different objectives. More recently,
an integrated framework combining LCA with dynamic simulation to compare dif-
ferent treatment processes was developed in [12], with a focus on source separation
and energy/nutrient recovery. On the whole, these existing approaches are certainly
heading in the right direction, but the exploration remains limited to a small number
of process configurations nonetheless. In contrast, the following sections present and
illustrate a superstructure modeling and optimization methodology, which addresses
some of these limitations.

1.3 METHODOLOGY

The combination of traditional wastewater treatment technology with advanced en-
ergy and materials recovery solutions offers considerable promise to improve the
sustainability and reduce the cost of wastewater facilities. Clearly, the ultimate goal
here is a closed cycle, energy-sufficient process, where all waste streams are recy-
cled and the only output is saleable/valuable products. This section investigates the
question as to how to select and interconnect, from a wide variety of unit operations,
those units which will lead to the most sustainable wastewater treatment systems – a
problem known as synthesis or flow-sheeting in process engineering.

The synthesis problem statement starts with the specification of the following
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data:
• A set of wastewater streams of given flow rates and compositions;
• A set of water sinks with known maximum concentration limits or financial

penalties as defined by local/federal authorities;
• A set of treatment and separation units with given performance for targeted

compounds and associated costs and environmental burdens.

These specifications can be represented by a generic superstructure, which considers
every possible interconnection in a fixed network topology. One such superstruc-
ture is illustrated in Fig. 1.3, for a simple network topology that consists of a single
wastewater stream, two sinks (treated effluent and biosolids), and a range of treat-
ment/separation units. The objective of the synthesis problem is to determine an
optimal resource recovery facility in terms of: (i) its units; (ii) the piping intercon-
nections between the units; and (iii) the flowrates and compositions in the intercon-
nections. Here, optimal is understood in terms of maximizing the net present value
(NPV) and minimizing given environmental impacts.

1.3.1 SURROGATE-BASED OPTIMIZATION

Mathematically, superstructure optimization problems can be formulated as opti-
mization models with two types of decisions:

• the discrete, usually binary, decisions on the units that should be included
in the system along with their interconnections, here denoted by y; and,

• the continuous decisions that define the flows and compositions as well as
certain design and operating parameters, here denoted by x.

This leads to multi-objective mixed-integer nonlinear programs (MO-MINLP) in the
form:

min
x,y

[KPI1(x,y),KPI2(x,y), . . .] (P)

s.t. h(x) = 0
g(x,y)≤ 0
x≤ 0,y ∈ {0,1} .

The objective of the MO-MINLP consists of minimizing two or more key perfor-
mance indicators (KPIs), which are functions of both types of variables. These vari-
ables must also satisfy restrictions of the form g(x,y)≤ 0, either design specifications
in terms of discharge allowance and physical operating limits, or logical constraints
for the existence of piping interconnections with nonzero flows or the sequencing
of certain units. Last, but not least, the continuous variables x must obey material
balance equations of the form h(x) = 0, where usually dim(h)< dim(x), describing
models of the physical units.

A key element of the superstructure optimization approach is that these latter
models should remain as simple as possible in order to comply with state-of-the-art
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algorithms and computational capabilities, thereby calling for a surrogate-based ap-
proach for the synthesis problem. Previous work by [60] advocates for the use of
surrogate models constructed from state-of-the-art WWTP simulators as depicted in
Fig. 1.1. In order to determine solutions that are accurate enough, the most promis-
ing process alternatives determined from the superstructure optimization problem (P)
are then validated against the simulator-projected performances and costs. Typically,
this would create an iteration between the superstructure optimization and the simu-
lator for refining the surrogates. In particular, recent developments in surrogate-based
optimization can provide guarantees that the iterations will converge to a (local) op-
timum with minimum recourse to high-fidelity models [1, 11]. Finally, the selected
process candidates can be considered for detailed performance and cost analyses, in-
cluding integration options and operability issues. To account for additional design
and operational constraints, further iterations with the superstructure optimization
block may then be necessary.

Figure 1.1 Illustration of the proposed methodology based on multi-objective superstructure
optimization and surrogates models [77]

The following subsection presents an approach to deriving surrogate models for
predicting plant-wide performance. Then, the computation of economic and environ-
mental performance indicators is discussed in Sects. 1.3.3 and 1.3.4. Finally, numer-
ical solution considerations are discussed in Sect. 1.3.5.

1.3.2 PLANT-WIDE PERFORMANCE SURROGATES

Performance models in the superstructure optimization problem (P) are based on
the material balances on flows (F) and concentrations (X) around the sources, the
units and the sinks. For instance, the material balances for a given species c in the
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treatment unit k can be formulated as [60]:

F in
k =

Nsource

∑
i=1

Fi→k +
Nunit

∑
k′=1

Fk′→k

X in
k,c F in

k =
Nsource

∑
i=1

Fi→k Xi,c +
Nunit

∑
k′=1

Fk′→k Xout
k′,c

X in
k,c F in

k (1−ρk,c) =
Nunit

∑
k′=1

Fk→k′ X
out
k,c +

Nsink

∑
j=1

Fk→ j Xout
k,c ,

where the superscripts in and out refer to flows/concentrations entering or leaving the
unit, respectively; and ρk,c stands for the removal efficiency of species c in unit k.

This latter removal efficiency is key to the accuracy of the superstructure opti-
mization model, yet the direct use of complex biodegradation models (such as ADM1
[8] and ASM1-3 [32]) or complex crystallization/adsorption/filtration models in the
MO-MINLP (P) is currently computationally intractable. As already mentioned, our
approach considers surrogate models constructed from input-output data predicted
by state-of-the-art process simulators instead. Specifically, the performance – either
at steady state or averaged over a cyclic steady state – of a given unit can be computed
for various influent compositions (COD, NH+

4 , etc) and given operation parameters
(HRT, SRT, etc). Then, simple regression models can be fitted to the simulated data
points, e.g. in the form of linear, piecewise-linear or polynomial input-output rela-
tionships, as appropriate. For instance, Fig. 1.2 shows the outlet COD concentration
of an anaerobic digester predicted by the ManTIS3 model in GPS-X for various inlet
COD and NH+

4 , along with the corresponding linear regression model used in the
superstructure optimization problem (P). In order to limit the number of variables in
the surrogate models, multiple instances of the same unit can be considered as part
of the superstructure, which correspond to different sets of operating parameters; for
example, two instances of an anaerobic digester with SRTs of 15 and 20 days.

1.3.3 ECONOMIC PERFORMANCE INDICATORS

The superstructure optimization problem (P) involves minimizing a number of KPIs
representing a particular plant configuration’s performance. As far as economical
performance is concerned, one can consider the net present value (NPV) over the
project’s lifetime, given by:

KPINPV =−CAPEX+
LT

∑
yr=1

(SALES−OPEX)

(1+DISC)yr , (1.1)

where LT denotes the project lifetime, typically 20 years; SALES represents revenues
from energy/nutrient sales; CAPEX and OPEX denote the costs caused by WWTP
capital investment and operation respectively; and DISC is the discount factor over
the whole project lifetime, namely the rate at which future payoffs are discounted
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Figure 1.2 Illustration of a linear surrogate model obtained from GPS-X simulated data

back to present value. Alternatively, one may consider a life-cycle costing (LCC)
indicator [63].

Reliable costing information needed to compute such indicators, including capi-
tal and operating costs, can be obtained from preliminary costing software, such as
CapdetWorks R©. The use of a common source and methodology for costing various
technologies presents the advantage of consistency, although such data may not be
widely available or reliable for the newer technologies. Similar to the approach out-
lined previously in Sect. 1.3.2 for plant-wide performance surrogates, one approach
involves deriving costing surrogates based on data generated from these computer
programs for each unit by varying their size and regressing these data as appropri-
ate. Since the residence time in a given unit is fixed here, their volume is indeed
proportional to the inlet flow rate.

1.3.4 ENVIRONMENTAL PERFORMANCE INDICATORS

The main environmental impacts associated with each process configuration in
the superstructure can be estimated using LCA—an illustration of possible sub-
processes modeled within the boundary of a WWTP system are shown in Fig. 1.3,
which includes the WWTP infrastructure, operational inputs and emissions over the
plant’s lifetime. To carry out the inventory analysis, a rather natural choice for the
functional unit is ‘a unit volume of wastewater influent over a given time period’
[71]. Moreover, where a given product is attributed multiple functions, allocation
can be made preferentially by substitution; for instance, treated effluents plus nutri-
ents recovered from the WWTP would be accounted for as fertilizer replacement, and
green electrical power generated from a CHP system would be exported to the grid.
This way, a wastewater treatment facility is credited with the avoided environmen-
tal burdens, such as GHG emissions or resource depletion, that would otherwise be
incurred by generating the corresponding amount of fertilizer or electricity through
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conventional routes.
Impact categories that are most relevant for wastewater treatment facilities include

the global warming potential (GWP100) and the eutrophication potential (EP). The
overall load for a given category j can be quantified as follows:

KPI j = INFRA j +LT · (OPER j +WWEFF j +WWSLU j−CRED j) , (1.2)

where INFRA j, OPER j, WWEFF j, WWSLU j and CRED j represent the individ-
ual loads associated with the required infrastructure, annual operation of the plant,
discharged effluent, discharged sludge, and obtained credit, respectively. All these
loads may themselves be computed as combinations of a list of ‘elementary’ envi-
ronmental burdens corresponding, but not limited, to: the use of steel, concrete or
electrical power; the emissions of CO2 or methane from the treatment units; the re-
lease of COD, ammonia, phosphates or suspended solids with the treated effluent;
and the utilization of nitrogen, phosphorus or magnesium resources. In particular,
these elementary impacts can be obtained from the EcoInvent data base, which is
available through LCA software such as SimaPro R©. Aggregation of these various
burdens into the loads in Eq. (1.2) relies on inventory data predicted by the plant-
wide performance surrogates (Sect. 1.3.2). As a first approximation, the loads may
be assumed to scale linearly with the inventory flows. Further details regarding the
impact assessment can be found in [77, 59].

1.3.5 NUMERICAL SOLUTION STRATEGIES

The superstructure optimization problem (P) yields a nonconvex optimization model
due to the presence of bilinear terms that arise in the material balances of the units as
a result of contaminant mixing, in addition to other nonlinearities in certain perfor-
mance and costing expressions. This nonconvexity can lead to multiple local optimal
solutions, thereby calling for the implementation of global optimization techniques
to guarantee a reliable solution. Recent work in water network synthesis [2, 38]
demonstrates that deterministic global optimization solvers such as BARON [74]
or ANTIGONE [55] are now able to provide global optimality certificates within
reasonable computational times for such problems.

With regards to the multi-objective nature of the problem, popular (deterministic)
approaches to computing Pareto sets include the weighted, ε-constraints and goal
programming methods [62]. For instance, the weighted-sum approach combines a
set of objectives into a unique objective by using weights which are varied in or-
der to describe the solution set, whereas the ε-constraint method converts all but
one objectives into inequality constraints whose right-hand-side values are varied to
describe the solution set.

1.4 CASE STUDY

The main objective of the present case study is to illustrate the methodology outlined
in Sect. 1.3, along with typical results. Due to space restrictions, the reader is referred
to [77, 59] for a more detailed account of the results and further discussion.



12

Figure 1.3 Schematic representation of the system boundary and superstructure in the case
study [59]

The case study considers the synthesis of a wastewater treatment/recovery facil-
ity for a 10,000 m3/day municipal wastewater stream with the average compositions
reported in Table 1.1. In agreement with the EU Directive 91/271/EEC on Urban
Wastewater Treatment, the targeted maximum concentrations for the treated efflu-
ent stream are 142.3 mg/L total COD, 7.6 mg/L NH+

4 , 10.3 mg/L NO−3 , 0.82 mg/L
PO3−

4 and 25.9 mg/L TSS, which correspond to minimum abatements of 75% total
COD, 80% total N and total P, and 90% TSS. Besides the inlet and outlet wastewa-
ter streams, the case study also considers an outlet biosolids stream in connection to
sludge production. The superstructure shown in Fig. 1.3 is comprised of the follow-
ing treatment/separation units—see [60, 77] for further details:

• Biological treatment, including 3 activated sludge processes (with i. nitri-
fication, ii. nitrification and denitrification, and iii. enhanced phosphorus
removal), 1 SAnMBR unit, 2 digesters (with solids retention times of 15
and 20 days), and 1 Sharon-Anammox Process;

• Resource recovery, including 1 struvite precipitation unit for P recovery and
1 ion exchange unit for N recovery;

• Physical separation, with 1 membrane unit, and 1 primary clarifier (besides



Towards the Synthesis of Wastewater Recovery Facilities 13

the secondary clarifiers of the activated sludge processes).

The focus is on optimizing two KPIs, namely NPV and GWP100 over a period of 20
years.

In order to carry out the computations, the performance of each treatment unit is
predicted by the ManTIS3 simulator within GPS-X R©, which includes the most com-
mon biological, physical and chemical processes in WWTPs. Surrogate models are
developed for the biological treatment units based on performance and GHG emis-
sion projections by the simulator. For the membrane units and the primary clarifier,
simple models based on split fractions for the solids are used, assuming no biological
reactions and a perfect split for the soluble species. Finally, performance predictions
for the ion exchange units are based on literature data, regressed by the Langmuir
isotherm model [60, 77]. In addition, the CAPEX and OPEX of all the units, but
membranes, are estimated using CapdetWorks

TM
, and regressed with simple linear

models as a function of the unit volume and/or processed flow rate (within the op-
erational range). The CAPEX and OPEX of the membrane units, on the other hand,
are set based on expert’s recommendations [60]. The LCA model is implemented
in Simapro 7.3, with a midpoint approach CML 2 baseline 2000 (V2.05) applied as
characterization method at the LCIA stage. Statistics on the UK country-level N and
P fertilizer composition (International Fertilizer Industry Association 2014) and UK
average electricity grid mix [19] are adopted in this study to credit the WWTP system
with the avoided production of fertilizers and electricity. The inventory for generic
fertilizer production and fuel combustion is derived from the EcoInvent database
(v2.2).

Table 1.1

Composition of the municipal wastewater in the case study

Total COD Soluble COD TSS VSS VFA

569 mg L−1 129 mg L−1 259 mg L−1 231 mg L−1 10 mg L−1

Total N Ammonia Total P Phosphate Alkalinity

51.6 mg L−1 38 mg L−1 7.6 mg L−1 4.1 mg L−1 253 mg CaCO3 L−1

The optimal configuration shown in Fig. 1.4 is obtained by maximizing the NPV
of the treatment facility only, without consideration to environmental impacts; that
is, it corresponds to one of the end-points of the Pareto set (single-objective opti-
mization). About 91% of the wastewater stream is processed in the activated sludge
process with enhanced phosphorus removal (A2O), before mixing with the remain-
ing part of the wastewater stream and discharging into the environment. The sludge
produced by the activated sludge treatment is processed into the anaerobic digester
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(SRT 20 days), whose supernatant stream is returned to the activated sludge unit
and the biosolids stream is disposed into a landfill. The treated wastewater meets
all the discharge requirements, and it is the minimum TSS abatement of 90% which
happens to be the most restrictive here. The NPV for this optimal configuration is es-
timated as M£-7.69, with the breakdown costing analysis including CAPEX, OPEX
and SALES shown in Table 1.2. Because CAPEX is indeed the largest contributor to
NPV, the WWTP configuration for maximizing NPV is comprised of a minimal num-
ber of treatment units in order to comply with the discharge constraints. Moreover, a
longer SRT is selected for the anaerobic digester in order to increase the amount of
biogas produced and mitigate the sludge disposal cost.

Table 1.2

Economic and environmental performance in the case study problems
Flowsheet maximal maximal

NPV enviroeconomic value

CAPEX, M£ -5.42 -7.70
OPEX, M£/yr -0.45 -0.64
SALES, M£/yr 0.24 0.42
NPV, M£ -7.69 -10.07
GWP100, × 104 tCO2e 23.2 1.72
Net profit, M£ -14.3 -10.6

Figure 1.4 Optimal plant configuration for the NPV maximization problem

In the enviroeconomic optimization problem, the conflicting objectives of NPV
and GWP100 are considered simultaneously. The plant configuration shown in
Fig. 1.5 is one particular point on the optimal Pareto solution set (not shown); if
monetization were used for GWP100, this solution would correspond to a carbon
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trading price of £28.5/tCO2, currently DECC’s central scenario [18]. Observe that
this plant configuration is markedly different from the economically optimum one in
Fig. 1.4. The SAnMBR unit treats about 96% of the incoming wastewater stream: the
sludge produced by this unit is processed in the anaerobic digester (SRT 20 days),
whose digester cake is sent for disposal, incurring a significant cost due to the landfill
tax. Furthermore, the digester liquor is mixed with both the SAnMBR outlet stream
and the bypass stream, and passed through the ion exchange and struvite precipi-
tation units for N and P recovery. Here again, the treated wastewater meets all the
discharge requirements, but it is now the minimum phosphate abatement of 80%
which becomes most restrictive. As shown in Table 1.2, the NPV is greater by about
M£2.4 due to a high CAPEX, but the GHG emissions are reduced by over 13 fold,
thus defining an enviroeconomic trade-off. The SAnMBR unit becomes part of the
optimal configuration in combination with both N and P recovery units due to their
lower GHG emissions compared with conventional activated sludge treatment, both
CO2 emissions from electrical power consumption and N2O evolved from biological
nitrification/denitrification.

Figure 1.5 Optimal plant configuration for the enviroeconomic optimization problem
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1.5 CONCLUSIONS

This chapter has presented and illustrated a systematic optimization-based method-
ology for incorporating LCA alongside economic criteria into a multi-objective op-
timization methodology for the synthesis of sustainable WWTPs. This methodology
relies on surrogate models as a means for overcoming the limitation of current global
optimization technology, which does not allow for optimizing complex plant config-
urations (e.g., complex biological processes, multiple scales, time dependence, etc)
all in a single step. A key requirement in applying this methodology nonetheless
is the availability of reliable performance models for the treatment and separation
units, on the one hand, and reliable costing and environmental impact data, on the
other hand. Our work advocates the use of state-of-the-art wastewater treatment sim-
ulators for deriving simple response-surface models, which are general enough to
be independent of detailed design choices and keep the superstructure optimization
model computationally tractable; and the use of LCA state-of-the-art databases to
assess the main environmental impacts likewise.

Overall, this methodology should be regarded as a decision-support system for
identifying, among hundreds or even thousands of alternatives, a number of promis-
ing wastewater treatment and resource recovery systems for a given wastewater
stream and regional context. The preselected plant configurations can be consid-
ered for detailed design analysis and optimization in a subsequent step. The case
study results demonstrate that the proposed framework can provide valuable insights
for decision-making in WWTP design (see also [77, 59]), and that LCA integration
into decision-making tools for wastewater treatment alongside economical consider-
ations may lead to radical changes in the design of tomorrow’s wastewater treatment
facilities.
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