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A duality-based approach for distributed min-max optimization
with application to demand side management

Ivano Notarnicola1, Mauro Franceschelli2, Giuseppe Notarstefano1

Abstract— In this paper we consider a distributed optimiza-
tion scenario in which a set of processors aims at minimizing
the maximum of a collection of “separable convex functions”
subject to local constraints. This set-up is motivated by peak-
demand minimization problems in smart grids. Here, the goal
is to minimize the peak value over a finite horizon with: (i) the
demand at each time instant being the sum of contributions
from different devices, and (ii) the local states at different time
instants being coupled through local dynamics. The min-max
structure and the double coupling (through the devices and
over the time horizon) makes this problem challenging in a
distributed set-up (e.g., well-known distributed dual decompo-
sition approaches cannot be applied). We propose a distributed
algorithm based on the combination of duality methods and
properties from min-max optimization. Specifically, we derive
a series of equivalent problems by introducing ad-hoc slack
variables and by going back and forth from primal and dual
formulations. On the resulting problem we apply a dual sub-
gradient method, which turns out to be a distributed algorithm.
We prove the correctness of the proposed algorithm and show
its effectiveness via numerical computations.

I. INTRODUCTION

The addition of processing, measurement, communication
and control capability to the electric power grid is leading
to smart grids, in which smart generators, accumulators and
loads can cooperate to execute Demand Side Management
(DSM) programs [1]. The goal is to reduce the hourly and
daily variations and peaks of electric demand by optimizing
generation, storage and consumption. A widely adopted
objective in DSM programs is Peak-to-Average Ratio (PAR),
defined as the ratio between peak-daily and average-daily
power demands. PAR minimization gives raise to a min-max
optimization problem if the average daily electric load is
assumed not to be affected by the demand response strategy.

In [2] the authors propose a game-theoretic model for PAR
minimization and provide a distributed energy-cost-based
strategy for the users. A noncooperative-game approach is
also proposed in [3], where optimal strategies are charac-
terized and a distributed scheme is designed based on a
proximal decomposition algorithm. A key difference of the
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of Engineering, Università del Salento, Via Monteroni, 73100 Lecce, Italy,
name.lastname@unisalento.it.

2Mauro Franceschelli (corresponding author) is with the
Department of Electrical and Electronic Engineering, Uni-
versity of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy,
mauro.franceschelli@diee.unica.it.

set-up in [2], [3], compared to the one proposed in our paper,
is that in those works each agent needs to know the total
load and tariffs in the power distribution system. Moreover,
the agents do not cooperate to compute the strategy. In [4]
a Model Predictive Control scheme is proposed to optimize
micro-grid operations while satisfying a time-varying request
and operation constraints using a mixed-integer linear model.

In this paper we propose a novel distributed optimization
framework for min-max optimization problems commonly
found in DSM problems. Differently from the references
above, we consider a cooperative, distributed computation
model in which the agents in the network do not have
knowledge of aggregate quantities, communicate only with
neighboring agents and perform local computations (with no
central coordinator) to solve the optimization problem.

Duality is a widely used tool for distributed optimization
algorithms as shown, e.g., in the tutorials [5], [6]. These stan-
dard approaches do not apply to the framework considered in
this paper. In [7] a distributed consensus-based primal-dual
algorithm is proposed to solve optimization problems with
coupled global cost function and inequality constraints.

Min-max optimization is strictly related to saddle-point
problems. In [8] the authors propose a subgradient method
to generate approximate saddle-points. A min-max prob-
lem is also considered in [9] and a distributed algorithm
based on a suitable penalty approach has been proposed.
Another class of algorithms exploits the exchange of active
constraints among the network nodes to solve constrained
optimization problems which include min-max problems,
[10], [11]. Although they work under asynchronous, directed
communication they do not scale in set-ups as the one in this
paper in which the terms of the max function are coupled.
Very recently, in [12] the authors proposed a distributed
projected subgradient method to solve constrained saddle-
point problems with agreement constraints. Although our
problem set-up fits in those considered in [12], our algo-
rithmic approach and the analysis are different. In [13],
[14] saddle point dynamics are used to design distributed
algorithms for standard separable optimization problems.

The contribution of this paper is twofold. First, we propose
a novel distributed optimization framework which is strongly
motivated by peak power-demand minimization in DSM. The
optimization problem has a min-max structure with local
constraints at each node. Each term in the max function
represents a daily cost (so that the maximum over a given
horizon needs to be minimized), while the local constraints
are due to the local dynamics and input bounds of the
subsystems in the smart grid. The problem is challenging



when approached in a distributed way since it is doubly

coupled (each term of the max function is coupled among
the agents, while the local constraints impose a coupling
between different “days” in the time-horizon).

Second, as main paper contribution, we propose a dis-
tributed algorithm to solve this class of min-max opti-
mization problems. The algorithm has a very simple and
clean structure in which a primal minimization and a dual
ascent step are performed. The primal problem has a similar
structure to the centralized one. Despite this simple struc-
ture, which resembles standard distributed dual methods, the
algorithm is not a standard decomposition scheme and the
derivation of the algorithm is non-obvious. Specifically, the
algorithm is derived by heavily resorting to duality theory
and properties of min-max optimization (or saddle-point)
problems. In particular, a sequence of equivalent problems
is derived in order to decompose the originally coupled
problem into locally-coupled subproblems, and thus being
able to design a distributed algorithm. An interesting feature
of the algorithm is its expression in terms of dual variables of
two different problems and of the original primal variables.
Since we apply duality more than once and on different
problems, this property, although apparently intuitive, was
not obvious a priori. Another appealing feature of the al-
gorithm is that every limit point of the primal sequence at
each node is a (feasible) optimal solution of the original
optimization problem (although this is only convex and not
strictly convex). This property is obtained by the minimizing
sequence of the local primal subproblems without resorting
to averaging schemes, [15]. Finally, since each node only
computes the decision variable of interest, our algorithm can
solve both large-scale (many agents are present) and big-data
(a large horizon is considered) problems.

The paper is structured as follows. In Section II we provide
some useful preliminaries on optimization, duality theory
and subgradient methods. In Section III we formalize our
distributed min-max optimization set-up and present the main
contribution of the paper, a novel, duality based distributed
optimization method. In Section IV we characterize its
convergence properties. Finally, in Section V we corroborate
the theoretical results with a numerical example involving
peak power minimization in a smart-grid scenario.

Due to space constrains all proofs are omitted in this paper
and will be provided in a forthcoming document.

II. PRELIMINARIES

A. Optimization and Duality

Consider a constrained optimization problem, addressed
as primal problem, having the form

min
z2Z

f(z)

subj. to g(z) � 0
(1)

where Z ✓ RN is a convex and compact set, f : RN ! R
is a convex function and each component gs : RN ! R,
s 2 {1, . . . , S}, of g is a convex function.

The following optimization problem

max
µ

q(µ)

subj. to µ ⌫ 0
(2)

is called the dual of problem (1), where q : RS ! R
is obtained by minimizing with respect to z 2 Z the
Lagrangian function L(z, µ) := f(z) + µ

>
g(z), i.e., q(µ) =

minz2Z L(z, µ). Problem (2) is well posed since the domain
of q is convex and q is concave on its domain.

It can be shown that the following inequality holds

inf
z2Z

sup
µ⌫0

L(z, µ) � sup
µ⌫0

inf
z2X

L(z, µ), (3)

which is called weak duality. When in (3) the equality holds,
then we say that strong duality holds and, thus, solving
the primal problem (1) is equivalent to solving its dual
formulation (2). In this case the right-hand-side problem
in (3) is referred to as saddle-point problem of (1).

Definition 2.1: A pair (z?, µ?) is called an primal-dual
optimal solution of problem (1) if z

? 2 Z and µ
? ⌫ 0, and

(z?, µ?) is a saddle point of the Lagrangian, i.e.,

L(z?, µ)  L(z?, µ?)  L(z, µ?)

for all z 2 Z and µ ⌫ 0. ⇤
A more general min-max property can be stated. Let Z ✓

RN and W ✓ RS be nonempty convex sets. Let � : Z ⇥
W ! R, then the following inequality

inf
z2Z

sup
w2W

�(z, w) � sup
w2W

inf
z2Z

�(z, w)

holds true and is called the max-min inequality. When the
equality holds, then we say that �, Z and W satisfy the
strong max-min property or the saddle-point property.

The following theorem gives a sufficient condition for the
strong max-min property to hold.

Proposition 2.2 ([16, Propositions 4.3]): Let � be such
that (i) �(·, w) : Z ! R is convex and closed for each
w 2 W , and (ii) ��(z, ·) : W ! R is convex and closed
for each z 2 Z. Assume further that W and Z are convex
and compact sets. Then

sup
w2W

inf
z2Z

�(z, w) = inf
z2Z

sup
w2W

�(z, w)

and the set of saddle points is nonempty and compact. ⇤

B. Subgradient Method

Consider the following (constrained) optimization problem

min
z2Z

f(z) (4)

with Z ✓ RN a closed convex set and f : RN ! R convex.
The (projected) subgradient method is the iterative algorithm

z(t+ 1) = PZ

⇣
z(t)� �(t)erf(z(t))

⌘
(5)

where t 2 N denotes the iteration index, �(t) is the step-size,
erf(z(t)) denotes a subgradient of f at z(t), and PZ(·) is
the Euclidean projection onto Z.



Assumption 1: The step-size �(t) � 0 satisfies the fol-
lowing diminishing condition

lim
t!1

�(t) = 0,
1X

t=1

�(t) = 1,

1X

t=1

�(t)2 < 1. ⇤

Proposition 2.3 ([17, Proposition 3.2.6]): Assume that
the subgradients erf(z) are bounded for all z 2 Z and
the set of optimal solutions is nonempty. Let the step-size
�(t) � 0 satisfy the diminishing condition in Assumption 1.
Then the subgradient method in (5) applied to problem (4)
converges in objective value and sequence z(t) converges
to an optimal solution. ⇤

III. PROBLEM SET-UP AND DISTRIBUTED
OPTIMIZATION ALGORITHM

In this section we set-up the distributed min-max optimiza-
tion problem and propose a distributed algorithm to solve it.

A. Distributed min-max optimization set-up

We consider a network of N processors which commu-
nicate according to a connected, undirected graph G =
({1, . . . , N}, E), where E ✓ {1, . . . , N} ⇥ {1, . . . , N} is
the set of edges. That is, the edge (i, j) models the fact
that node i and j exchange information. We denote by Ni

the set of neighbors of node i in the fixed graph G, i.e.,
Ni := {j 2 {1, . . . , N} | (i, j) 2 E}.

Motivated by applications in Demand Side Management of
Smart Grids, we introduce a min-max optimization problem
to be solved by the network processors in a distributed way.
Specifically, we associate to each processor i a decision
vector x

i = [xi
1, . . . , x

i
S ]

> 2 RS , a constraint set Xi ✓ RS

and local cost functions gis, s 2 {1, . . . , S}, and set-up the
following optimization problem

min
x1,...,xN

max
s2{1,...,S}

NX

i=1

gis(x
i
s)

subj. to x
i 2 Xi, i 2 {1, . . . , N}

(6)

where for each i 2 {1, . . . , N} the set Xi ✓ RS is nonempty,
convex and compact, and the functions gis : R ! R, s 2
{1, . . . , S}, are convex.

Note that we use the superscript i 2 {1, . . . , N} to
indicate that a vector x

i 2 RS belongs to node i, while
we use the subscript to identify a vector component, i.e., xi

s,
s 2 {1, . . . , S}, is the s-th component of xi.

Using a standard approach for min-max problems, we
introduce an auxiliary variable P to write the so called
epigraph representation of problem (6), given by

min
x1,...,xN ,P

P

subj. to x
i 2 Xi, i 2 {1, . . . , N}
NX

i=1

gis(x
i
s)  P, s 2 {1, . . . , S}.

(7)

Notice that, this problem is convex, but not strictly convex.
This means that it is not guaranteed to have a unique solution.
This impacts on dual approaches when trying to recover a
primal optimal solution, see e.g., [15] and references therein.

B. Algorithm description

Next, we introduce our distributed optimization algorithm.
Informally, the algorithm consists of a two-step procedure.
First, each node i 2 {1, . . . , N} stores a set of variables ((xi,
⇢
i), µi) obtained as the primal-dual optimal solution pair

of a local min-max optimization problem with a structure
similar to the centralized problem. The coupling with the
other nodes in the original formulation is replaced by a term
depending on neighboring variables �

ij , j 2 Ni. These
variables are updated in the second step according to a
suitable linear law weighting the difference of neighboring
µ
i. Nodes use a diminishing step-size denoted by �(t) and

can initialize the variables �
ij , j 2 Ni to zero. In the

next table we formally state our Primal Min-Max Dual
Subgradient distributed algorithm from the perspective of
node i.

Distributed Algorithm Primal Min-Max Dual Subgradient
Processor states: (xi

, ⇢
i), µi and �

ij for j 2 Ni

Evolution:
Gather �

ji(t) from j 2 Ni

Compute
�
(xi(t+1), ⇢i(t+1)), µi(t+1)

�
as a primal-

dual optimal solution pair of

min
xi,⇢i

⇢
i

subj. to x
i 2 Xi

gis(x
i
s) +

X

j2Ni

�
�
ij(t)� �

ji(t)
�
s
 ⇢

i
,

s 2 {1, . . . , S}

(8)

Gather µ
j(t+ 1) from j 2 Ni

Update for all j 2 Ni

�
ij(t+1) = �

ij(t)� �(t)(µi(t+1)�µ
j(t+1)) (9)

The structure of the algorithm and the meaning of the
updates will be clear in the constructive analysis carried out
in the next section. At this point we want to point out that
although problem (8) has the same min-max structure of
problem (7), ⇢i is not a copy of the centralized cost P , but
rather a local contribution to that cost. That is, as we will
see, the total cost P will be the sum of the ⇢

is.

IV. ALGORITHM ANALYSIS

The analysis of the proposed Primal Min-Max Dual Sub-
gradient distributed algorithm is constructive and heavily
relies on duality theory tools.

We start by deriving the equivalent dual problem of (7)
which is formally stated in the next lemma.

Lemma 4.1: The optimization problem

max
µ2RS

NX

i=1

qi(µ)

subj. to 1>
µ = 1, µ ⌫ 0

(10)



where 1 := [1, . . . , 1]> 2 RS and

qi(µ) := min
xi2Xi

SX

s=1

µsgis(x
i
s), i 2 {1, . . . , N}, (11)

is the dual of problem (7) and strong duality holds. ⇤
In order to make problem (10) amenable for a distributed

solution, we can rewrite it in an equivalent form. To this end,
we introduce copies of the common optimization variable
µ and coherence constraints having the sparsity of the
connected graph G, obtaining

max
µ1,...,µN

NX

i=1

qi(µ
i)

subj. to 1>
µ
i = 1, µi ⌫ 0, i 2 {1, . . . , N}

µ
i = µ

j
, for all (i, j) 2 E .

(12)

Notice that we have also duplicated the simplex constraint
so that it becomes a local constraint for each node.

To solve this problem we can use a dual decomposition
approach by designing a dual subgradient algorithm. This
can be done since the constraints are convex and the cost
function concave. A dual subgradient algorithm applied to
problem (12) would immediately result into a distributed
algorithm if functions qi were available in a closed form.

Intuition suggests that deriving the dual of a dual problem
would somehow bring back to a primal formulation. How-
ever, we want to stress that:

(i) problem (12) is dualized rather than problem (10),
(ii) different constraints are dualized, namely the coherence

constraints rather than the simplex ones.
We start deriving the dual subgradient algorithm by du-

alizing only the coherence constraints. Thus, we write the
partial Lagrangian

L2(µ
1
, . . . ,µ

N
, {�ij}(i,j)2E)

=
NX

i=1

⇣
qi(µ

i) +
X

j2Ni

�
ij>(µi � µ

j)
⌘ (13)

where �
ij 2 RS for all (i, j) 2 E are Lagrange multipliers

associated to the constraints µ
i � µ

j = 0. By exploiting
the undirected nature and the connectivity of communication
graph G, after some algebraic manipulations, we get

L2(µ
1
, . . . ,µ

N
, {�ij}(i,j)2E)

=
NX

i=1

⇣
qi(µ

i) + µ
i>

X

j2Ni

(�ij � �
ji)

⌘
,

(14)

which is separable with respect to µ
i, i 2 {1, . . . , N}.

The dual of problem (12) is thus

min
{�ij}(i,j)2E

⌘({�ij}(i,j)2E) =
NX

i=1

⌘i

�
{�ij

,�
ji}j2Ni

�
, (15)

where for all i 2 {1, . . . , N}

⌘i({�ij
,�

ji}j2Ni)= max
1>µi=1,µi⌫0

qi(µ
i)+µ

i>
X

j2Ni

(�ij��
ji).

In order to apply a subgradient method to problem (15),
we recall, [18, Section 6.1], that

@̃⌘({�ij}(i,j)2E)

@�ij
= µ

i? � µ
j?
, (16)

where @̃⌘(·)
@�ij denotes the component associated to the variable

�
ij of a subgradient of ⌘, and

µ
k? 2 argmax

1>µk=1,µk⌫0

✓
qk(µ

k) + µ
k>

X

h2Nk

(�kh � �
hk)

◆
,

for k = i, j. The dual subgradient algorithm for problem (12)
can be summarized as follows, for each node i 2 {1, . . . , N}:

(S1) receive �
ji(t), j 2 Ni and compute a subgradient µi(t+

1) by solving

max
µi

qi(µ
i) + µ

i>
X

j2Ni

(�ij(t)� �
ji(t))

subj. to 1>
µ
i = 1, µi ⌫ 0.

(17)

(S2) exchange with neighbors the updated µ
j(t+1), j 2 Ni,

and update �
ij , j 2 Ni, via

�
ij(t+1) = �

ij(t)� �(t)(µi(t+1)�µ
j(t+ 1)).

where �(t) denotes the step-size.
It is worth noting that in (17) the value of �

ij(t) and
�
ji(t), for j 2 Ni, is fixed as highlighted by the index t.

Moreover, we want to stress, once again, that the algorithm
is not implementable as it is written, since functions qi are
not available in closed form. On this regard, here we slightly
abuse notation since in (S1)-(S2) we use µ

i(t) as in the
Primal Min-Max Dual Subgradient algorithm, but we have
not proven the equivalence yet. Since we will prove it in the
next lemmas we preferred not to overweight the notation.

Lemma 4.2: The dual subgradient updates (S1)-(S2), with
step-size �(t) satisfying Assumption 1, generate sequences
{�ij(t)}, (i, j) 2 E that converge in objective value to ⌘

? =
q
? = P

?, optimal costs of (15), (10) and (7), respectively.⇤
We can explicitly rephrase update (17) by plugging in the

definition of qi, given in (11), thus obtaining the following
max-min optimization problem

max
1>µi=1,µi⌫0

✓
min
xi2Xi

SX

s=1

µ
i
s

⇣
gis(x

i
s)+

X

j2Ni

(�ij(t)��
ji(t))s

⌘◆
.

(18)

Notice that this is a local problem at each node i once the
value for �ij(t) and �

ji(t) for all j 2 Ni are given.
Lemma 4.3: Max-min optimization problem (18) is the

saddle point problem associated to problem (8). Moreover,
a primal-dual optimal solution pair of (8), call it {(xi(t +
1), ⇢i(t+1)), µi(t+1)}, exists and (xi(t+1), µi(t+1)) is
a solution of (18).

Proof: We give a constructive proof which clarifies how
problem (8) is derived from (18). Define

�(xi
, µ

i) :=
SX

s=1

µ
i
s

⇣
gis(x

i
s)+

X

j2Ni

(�ij(t)��
ji(t))s

⌘
(19)



and note that (i) �(·, µi) is closed and convex for all µi ⌫
0 and (ii) �(xi

, ·) is closed and concave (linear over the
compact 1>

µ
i = 1, µi ⌫ 0), for all xi 2 RS . Thus we can

invoke the saddle point Proposition 2.2 which allows us to
switch the max and min operators, and write

max
1>µi=1,µi⌫0

✓
min
xi2Xi

SX

s=1

µ
i
s

⇣
gis(x

i
s)+

X

j2Ni

(�ij(t)��
ji(t))s

⌘◆

=min
xi2Xi

✓
max

1>µi=1,µi⌫0

SX

s=1

µ
i
s

⇣
gis(x

i
s)+

X

j2Ni

(�ij(t)��
ji(t))s

⌘◆
.

(20)

Since the inner maximization problem depends nonlinearly
on x

i (which is itself an optimization variable), the solution
cannot be obtained without considering the optimization also
on x

i. We overcome this issue by substituting the inner
maximization problem with its equivalent dual. Notice that
the inner problem is a linear program when x

i are kept fixed,
and thus strong duality can be exploited. Introducing a scalar
multiplier ⇢i associated to the simplex constraint, we have

max
µi

SX

s=1

µ
i
s

⇣
gis(x

i
s) +

X

j2Ni

(�ij(t)� �
ji(t))s

⌘

subj. to 1>
µ
i = 1, µi ⌫ 0

(21)

is equivalent to its dual

min
⇢i

⇢
i (22)

subj. to gis(x
i
s)+

X

j2Ni

(�ij(t)��
ji(t))s  ⇢

i
, s2{1, . . . , S}

where the S inequality constraints follow from the minimiza-
tion of the partial Lagrangian of (21) with respect to µ

i ⌫ 0.
Plugging formulation (22) in place of the inner maximization
in (20), we can write a joint minimization, i.e., minimize
simultaneously with respect to x

i and ⇢
i, which leads to (8).

To prove the second part, notice that problem (8) is convex.
Then, the problem satisfies the Slater’s constraint qualifica-
tion and, thus, strong duality holds. Therefore, a primal-dual
optimal solution pair (xi(t + 1), ⇢i(t + 1), µi(t + 1)) exists
and from the previous arguments the proof follows. ⇤

We point out that the previous lemma shows that per-
forming minimization in (8) turns out to be equivalent to
performing step (S1).

We are now ready to state the main result of the paper,
namely the convergence of the Primal Min-Max Dual Sub-
gradient distributed algorithm.

Theorem 4.4: Let {(xi(t), ⇢i(t))}, i 2 {1, . . . , N}, be the
sequence generated by the Primal Min-Max Dual Subgradi-
ent distributed algorithm, with �(t) satisfying Assumption 1.
Then, the sequence {

PN
i=1 ⇢

i(t)} converges to the optimal
cost P ? of (6) and every limit point of the sequence {xi(t)},
i 2 {1, . . . , N}, is an optimal (feasible) solution of (6). ⇤

Remark 4.5: From condition (20) it can be shown that
each ⇢

i(t) is equal to ⌘i({�ij
,�

ji}j2Ni) for all t � 0.
Since the optimal cost of (15) is equal to the optimal

primal cost P
?, then we have that limt!1

P
i ⇢

i(t) =
limt!1

P
i ⌘i(t) = P

?. ⇤
V. NUMERICAL SIMULATIONS

In this section we propose a numerical example in which
we apply the proposed method to a network of Thermostati-
cally Controlled Loads (TCLs) (such as air conditioners, heat
pumps, electric water heaters), [19].

The dynamical model of the i-th device is given by

Ṫ
i(⌧) = �↵

�
T

i(⌧)� T
i
out(⌧)

�
+Qx

i(⌧), (23)

where Ti(⌧) � 0 is the temperature, ↵ > 0 is a parameter
depending on geometric and thermal characteristics, T i

out(⌧)
is the air temperature outside the device, xi(⌧) 2 [0, 1] is the
control input, and Q > 0 is a scaling factor.

We consider a discretized version of the system with
constant input over the sampling interval �⌧ , i.e., xi(⌧) = x

i
s

for ⌧ 2 [s�⌧, (s+ 1)�⌧), and sampled state T
i
s ,

T
i
s+1 = T

i
se

�↵�⌧ +
�
1� e

�↵�⌧
�✓Q

↵
x
i
s � T

i
out,s

◆
. (24)

We assume that the power consumption gis(xi
s) of the

i-th device in the s-th slot [s�⌧, (s + 1)�⌧ ] is directly
proportional to x

i
s. For the sake of simplicity we consider

gis(xi
s) = x

i
s in the numerical example proposed in this

section. Thus, optimization problem (6) for this scenario is

min
x1,...,xN

max
s2{1,...,S}

NX

i=1

x
i
s

subj. to x
i 2 Xi, i 2 {1, . . . , N}

(25)

where Xi := {xi 2 RS | Aix
i � bi and x

i 2 [0, 1]S}, with
Ai and bi obtained by enforcing the dynamics constraints
(24) and temperature constraints T

i
s 2 [Tmin, Tmax].

In the proposed numerical example we consider N = 15
agents communicating according to an undirected connected
Erdős-Rényi random graph G with parameter 0.2. We con-
sider a horizon of S = 50. Finally, a diminishing step-
size sequence �(t) = ( 1t )

0.8 at iteration t, which satisfies
Assumption 1, is used.

In Figure 1 we show the evolution at each algorithm itera-
tion t of the local objective functions ⇢

i(t), i 2 {1, . . . , N},
(solid lines) which converge to stationary values. We also
plot their sum

PN
i=1 ⇢

i(t) (dotted line) that asymptotically
converges to the centralized optimal cost P ? of problem (25)
(see Remark 4.5).

In Figure 2 it is shown the profile of an optimal con-
sumption of the devices, i.e.,

PN
i=1 x

i
s
?, over the horizon

s = 1, . . . , S. It can be seen that the proposed method
effectively shaves off the peak power demand. In the same
figure it also shown an optimal consumption strategy x

i? that
each single device locally computes.

Finally, in Figure 3 it is shown the convergence rate of
the distributed algorithm, i.e., the difference between the
centralized optimal cost P ? and the sum of the local costsPN

i=1 ⇢
i(t), in logarithmic scale. It can be seen that the pro-

posed algorithm converges to the optimal cost with sublinear
rate O(1/

p
t) as expected for a subgradient method.
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VI. CONCLUSIONS

In this paper we have introduced a novel distributed
min-max optimization framework motivated by peak min-
imization problems in Demand Side Management. Standard
distributed optimization algorithms cannot be applied to this
problem set-up due to a highly nontrivial coupling in the
objective function and in the constraints. We proposed a
distributed algorithm based on the combination of duality
methods and properties from min-max optimization. We
proved the correctness of the proposed algorithm and cor-
roborated the theoretical results with a numerical example.
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