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Asynchronous Distributed Optimization
via Randomized Dual Proximal Gradient
Ivano Notarnicola, Student Member, IEEE, and Giuseppe Notarstefano, Member, IEEE

Abstract—In this paper we consider distributed optimization
problems in which the cost function is separable, i.e., a sum of
possibly non-smooth functions all sharing a common variable,
and can be split into a strongly convex term and a convex one.
The second term is typically used to encode constraints or to regu-
larize the solution. We propose a class of distributed optimization
algorithms based on proximal gradient methods applied to the
dual problem. We show that, by choosing suitable primal variable
copies, the dual problem is itself separable when written in terms
of conjugate functions, and the dual variables can be stacked into
non-overlapping blocks associated to the computing nodes. We
first show that a weighted proximal gradient on the dual function
leads to a synchronous distributed algorithm with local dual
proximal gradient updates at each node. Then, as main paper
contribution, we develop asynchronous versions of the algorithm
in which the node updates are triggered by local timers without
any global iteration counter. The algorithms are shown to be
proper randomized block-coordinate proximal gradient updates
on the dual function.

I. INTRODUCTION

Several estimation, learning, decision and control problems
arising in cyber-physical networks involve the distributed
solution of a constrained optimization problem. Typically,
computing processors have only a partial knowledge of the
problem (e.g., a portion of the cost function or a subset of
the constraints) and need to cooperate in order to compute a
global solution of the whole problem. A key challenge when
designing distributed optimization algorithms in peer-to-peer
networks is that the communication among the nodes is time-
varying and possibly asynchronous.

Early references on distributed optimization algorithms in-
volved primal and dual subgradient methods and Alternating
Direction Method of Multipliers (ADMM), designed for syn-
chronous communication protocols over fixed graphs. More
recently time-varying versions of these algorithmic ideas have
been proposed to cope with more realistic peer-to-peer network
scenarios. A Newton-Raphson consensus strategy is proposed
in [1] to solve unconstrained, convex optimization problems
under asynchronous, symmetric gossip communications. In [2]
a primal, synchronous algorithm, called EXTRA, is proposed
to solve smooth, unconstrained optimization problems. In [3]
the authors propose accelerated distributed gradient meth-
ods for unconstrained optimization problems over symmetric,
time-varying networks connected on average. In order to deal
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with time-varying and directed graph topologies, in [4] a push-
sum algorithm for average consensus is combined with a pri-
mal subgradient method in order to solve unconstrained convex
optimization problems. Paper [5] extends this algorithm to
online distributed optimization over time-varying, directed net-
works. In [6] a novel class of continuous-time, gradient-based
distributed algorithms is proposed both for fixed and time-
varying graphs and conditions for exponential convergence are
provided. A distributed (primal) proximal-gradient method is
proposed in [7] to solve (over time-varying, balanced com-
munication graphs) optimization problems with a separable
cost function including local differentiable components and a
common non-differentiable term. In [8] experiments of a dual
averaging algorithm are run for separable problems with a
common constraint on time-varying and directed networks.

For general constrained convex optimization problems, in
[9] the authors propose a distributed random projection algo-
rithm, that can be used by multiple agents connected over a
(balanced) time-varying network. In [10] the author proposes
(primal) randomized block-coordinate descent methods for
minimizing multi-agent convex optimization problems with
linearly coupled constraints over networks. In [11] an asyn-
chronous ADMM-based distributed method is proposed for a
separable, constrained optimization problem. The algorithm is
shown to converge at the rate O(1/t) (being t the iteration
counter). In [12] the ADMM approach is proposed for a more
general framework, thus yielding a continuum of algorithms
ranging from a fully centralized to a fully distributed. In [13]
a method, called ADMM+, is proposed to solve separable,
convex optimization problems with a cost function written as
the sum of a smooth and a non-smooth term.

Successive block-coordinate updates are proposed in [14],
[15] to solve separable optimization problems in a parallel
big-data setting. Another class of algorithms exploits the
exchange of active constraints among the network nodes to
solve constrained optimization problems [16]. This idea has
been combined with dual decomposition and cutting-plane
methods to solve robust convex optimization problems via
polyhedral approximations [17]. These algorithms work under
asynchronous, directed and unreliable communication.

The contribution of the paper is twofold. First, for a
fixed graph topology, we develop a distributed optimization
algorithm (based on a centralized dual proximal gradient idea
introduced in [18]) to minimize a separable strongly convex
cost function. The proposed distributed algorithm is based on
a proper choice of primal constraints (suitably separating the
graph-induced and node-local constraints), that gives rise to
a dual problem with a separable structure when expressed in
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terms of local conjugate functions. Thus, a proximal gradient
applied to such a dual problem turns out to be a distributed
algorithm where each node updates: (i) its primal variable
through a local minimization and (ii) its dual variables through
a suitable local proximal gradient step. The algorithm inherits
the convergence properties of the centralized one and exhibits
an O(1/t) rate of convergence in objective value. We point
out that the algorithm can be accelerated through a Nesterov’s
scheme [19], obtaining an O(1/t2) convergence rate.

Second, as main contribution, we propose an asynchronous
algorithm for a symmetric event-triggered communication
protocol. In this communication set-up, a node is in idle mode
until its local timer triggers. When in idle, it continuously
collects messages from neighboring nodes that are awake
and, if needed, updates a primal variable. When the local
timer triggers, it updates local primal and dual variables and
broadcasts them to neighboring nodes. Under mild assump-
tions on the local timers, the whole algorithm results into
a uniform random choice of one active node per iteration.
Using this property and showing that the dual variables can
be stacked into separate blocks, we are able to prove that
the distributed algorithm corresponds to a block-coordinate
proximal gradient, as the one proposed in [20], performed
on the dual problem. Specifically, we are able to show that
the dual variables handled by a single node represent a single
block-variable, and the local update at each triggered node
turns out to be a block-coordinate proximal gradient step (in
which each node has its own local step-size). The result is
that the algorithm inherits the convergence properties of the
block-coordinate proximal gradient in [20].

An important property of the distributed algorithm is that
it can solve fairly general optimization problems including
both composite cost functions and local constraints. A key
distinctive feature of the algorithm analysis is the combination
of duality theory, coordinate-descent methods, and properties
of the proximal operator when applied to conjugate functions.

To summarize, our algorithms compare to the literature in
the following way. Works in [1], [3]–[6] do not handle con-
strained optimization and use different methodologies. In [7],
[9], [10] primal approaches are used. Also, local constraints
and regularization terms cannot be handled simultaneously. In
[7] a proximal operator is used, but only to handle a common,
non-smooth cost function (known by all agents) directly on
the primal problem. The algorithm in [10] uses a coordinate-
descent idea similar to the one we use in this paper, but it
works directly on the primal problem, does not handle local
constraints and does not make use of proximal operators. In
this paper we propose a flexible dual approach to take into
account both local constraints and regularization terms. The
problem set-up in [11]–[13] is similar to the one considered
in this paper. Differently from our approach, which is a
dual method, ADMM-based algorithms are proposed in those
references. This difference results in different algorithms as
well as different requirements on the cost functions. Moreover,
compared to these algorithms we are able to use constant, local
step-sizes (which can be locally computed at the beginning of
the iterations) so that the algorithm can be run asynchronously
and without any coordination step. On this regard, we propose

an algorithmic formulation of the asynchronous protocol that
explicitly relies on local timers and does not need any global
iteration counter in the update laws.

The paper is organized as follows. In Section II we set-up
the optimization problem, while in Section III we derive an
equivalent dual problem amenable for distributed computation.
The distributed algorithms are introduced in Section IV and
analyzed in Section V. Finally, in Section VI we highlight the
flexibility of the proposed algorithms by showing important
optimization scenarios that can be addressed, and corroborate
the discussion with numerical computations.

Notation: Given a closed, nonempty convex set X , the
indicator function of X is defined as IX(x) = 0 if x 2 X and
IX(x) = +1 otherwise.

Let ' : Rd ! R [ {+1}, its conjugate function '
⇤ :

Rd ! R is defined as '⇤(y) := supx
�
y
>
x� '(x)

 
. Let ' :

Rd ! R[{+1} be a closed, proper, convex function and ↵ a
positive scalar, the proximal operator prox↵' : Rd ! Rd is
defined by prox↵'(v) := argminx

�
'(x)+ 1

2↵kx�vk2
 

. We
also introduce a generalized version of the proximal operator.
Given a positive definite matrix W 2 Rd⇥d, we define

proxW,'(v) := argmin
x

n
'(x) +

1

2

��x� v
��2
W�1

o
.

II. PROBLEM SET-UP AND NETWORK STRUCTURE

We consider the following optimization problem

min
x

nX

i=1

⇣
fi(x) + gi(x)

⌘
, (1)

where fi : Rd ! R [ {+1} are proper, closed and strongly
convex extended real-valued functions with strong convexity
parameter �i > 0 and gi : Rd ! R[{+1} are proper, closed
and convex extended real-valued functions.

Note that the split of fi and gi may be non-unique and
depend on the problem structure. Intuitively, on fi an easy
minimization step can be performed (e.g., by division free
operations, [21]), while gi has an easy expression of its
proximal operator.

Remark II.1 (Min-max problems). Our setup does not require
fi to be differentiable, thus one can also consider each strongly
convex function fi given by fi(x) := maxj2{1,...,mi} fij(x),
mi 2 N, where {fij(x) | j 2 {1, . . . ,mi}} is a nonempty
collection of strongly convex functions. ⇤

Since we will work on the dual of problem (1), we introduce
the next standard assumption which guarantees that the dual
is feasible and equivalent to the primal (strong duality).

Assumption II.2 (Constraint qualification). The intersection
of the relative interior of dom

Pn
i=1 fi and the relative

interior of dom
Pn

i=1 gi is non-empty. ⇤
We want this optimization problem to be solved in a

distributed way by a network of peer processors without a
central coordinator. Each processor has a local memory, a
local computation capability and can exchange information
with neighboring nodes. We assume that the communication
can occur among nodes that are neighbors in a given fixed,
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undirected and connected graph G = ({1, . . . , n}, E), where
E ✓ {1, . . . , n} ⇥ {1, . . . , n} is the set of edges. That is, the
edge (i, j) models the fact that node i and j can exchange
information. We denote by Ni the set of neighbors of node i

in the fixed graph G, i.e., Ni := {j 2 {1, . . . , n} | (i, j) 2 E},
and by |Ni| its cardinality.

In Section IV we will propose distributed algorithms for
three communication protocols. Namely, we will consider a
synchronous protocol (in which neighboring nodes in the
graph communicate according to a common clock), and two
asynchronous ones, respectively node-based and edge-based
(in which nodes become active according to local timers).

To exploit the sparsity of the graph we introduce copies
of x and their coherence (consensus) constraint, so that the
optimization problem (1) can be equivalently rewritten as

min
x1,...,xn

nX

i=1

⇣
fi(xi) + gi(xi)

⌘

subj. to xi = xj 8 (i, j) 2 E
(2)

with xi 2 Rd for all i 2 {1, . . . , n}. The connectedness of G
guarantees the equivalence.

Since we propose distributed dual algorithms, next we
derive the dual problem and characterize its properties.

III. DUAL PROBLEM DERIVATION

We derive the dual version of the problem that will allow
us to design our distributed dual proximal gradient algorithms.
To obtain the desired separable structure of the dual problem,
we set-up an equivalent formulation of problem (2) by adding
new variables zi, i 2 {1, . . . , n}, i.e.,

min
x1,...,xn
z1,...,zn

nX

i=1

⇣
fi(xi) + gi(zi)

⌘

subj. to xi = xj 8 (i, j) 2 E
xi = zi 8 i 2 {1, . . . , n}.

(3)

Let x = [x>
1 . . . x

>
n ]

> and z = [z>1 . . . z
>
n ]>, the La-

grangian of primal problem (3) is given by

L(x, z,⇤, µ) =
nX

i=1

✓
fi(xi) + gi(zi)

+
X

j2Ni

⇣
�
j
i

⌘>
(xi � xj) + µ

>
i (xi � zi)

◆

=
nX

i=1

✓
fi(xi) +

X

j2Ni

⇣
�
j
i

⌘>
(xi � xj) + µ

>
i xi

+ gi(zi)� µ
>
i zi

◆
,

where ⇤ and µ are respectively the vectors of the Lagrange
multipliers �ji 2 Rd, (i, j) 2 E , and µi 2 Rd, i 2 {1, . . . , n},
and in the last line we have separated the terms in x and z.
Since G is undirected, the Lagrangian can be rearranged as

L(x, z,⇤, µ) =
nX

i=1

✓
fi(xi) + x

>
i

⇣ X

j2Ni

(�ji � �
i
j) + µi

⌘

+ gi(zi)� z
>
i µi

◆
.

The dual function is

q(⇤, µ) := min
x,z

L(x, z,⇤, µ)

= min
x

nX

i=1

✓
fi(xi) + x

>
i

✓ X

j2Ni

(�ji � �
i
j) + µi

◆◆

+min
z

nX

i=1

⇣
gi(zi)� z

>
i µi

⌘

=
nX

i=1

min
xi

✓
fi(xi) + x

>
i

⇣ X

j2Ni

(�ji � �
i
j) + µi

⌘◆

+
nX

i=1

min
zi

⇣
gi(zi)� z

>
i µi

⌘
,

where we have used the separability of the Lagrangian with
respect to each xi and each zi. Then, by using the definition
of conjugate function (given in the Notation paragraph), the
dual function can be expressed as

q(⇤, µ) =
nX

i=1

 
�f

⇤
i

✓
�
X

j2Ni

(�ji � �
i
j)� µi

◆
� g

⇤
i (µi)

!
.

The dual problem of (3) consists of maximizing the dual
function with respect to dual variables ⇤ and µ, i.e.,

max
⇤,µ

nX

i=1

✓
�f

⇤
i

✓
�
X

j2Ni

(�ji � �
i
j)� µi

◆
� g

⇤
i (µi)

◆
. (4)

By Assumption II.2 the dual problem (4) is feasible and
strong duality holds, so that (4) can be equivalently solved to
get a solution of (3).

In order to have a more compact notation for problem (4),
we stack the dual variables as y = [y>1 . . . y

>
n ]

>, where

yi =


⇤i

µi

�
2 Rd|Ni|+d (5)

with ⇤i 2 Rd|Ni| a vector whose block-component associated
to neighbor j is �ji 2 Rd. Thus, changing sign to the cost
function, dual problem (4) can be restated as

min
y
�(y) = F

⇤(y) +G
⇤(y), (6)

where

F
⇤(y) :=

nX

i=1

f
⇤
i

⇣
�
X

j2Ni

(�ji � �
i
j)� µi

⌘
, G

⇤(y) :=
nX

i=1

g
⇤
i

�
µi

�
.

IV. DISTRIBUTED DUAL PROXIMAL ALGORITHMS

In this section we derive the distributed optimization algo-
rithms based on dual proximal gradient methods.

A. Distributed Dual Proximal Gradient (DDPG)
We begin by deriving a synchronous algorithm on a fixed

graph. We assume that all the nodes share a common clock.
At each time instant t 2 N, every node communicates with
its neighbors in the graph G = ({1, . . . , n}, E) (defined in
Section II) and updates its local variables.

First, we provide an informal description of the distributed
optimization algorithm. Each node i 2 {1, . . . , n} stores a
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set of local dual variables �
j
i , j 2 Ni, and µi, updated

through a local proximal gradient step, and a primal variable
x
?
i , updated through a local minimization. Each node uses a

properly chosen, local step-size ↵i for the proximal gradient
step. Then, the updated primal and dual values are exchanged
with the neighboring nodes. The local dual variables at node
i are initialized as �ji0, j 2 Ni, and µi0. A pseudo-code of the
local update at each node of the distributed algorithm is given
in Algorithm 1.

Algorithm 1 Distributed Dual Proximal Gradient (DDPG)

Processor states: x?
i , �ji for all j 2 Ni and µi

Initialization: �ji (0) = �
j
i0 for all j 2 Ni, µi(0) = µi0

x?
i (0) = argminxi

n
x>
i

⇣P
j2Ni

�
�j
i0 � �i

j0

�
+µi0

⌘
+fi(xi)

o

Evolution:
FOR: t = 1, 2, . . . DO
receive x

?
j (t� 1) for each j 2 Ni, update

�
j
i (t) = �

j
i (t� 1) + ↵i

⇥
x
?
i (t� 1)� x

?
j (t� 1)

⇤

and update

µ̃i = µi(t� 1) + ↵i x
?
i (t� 1)

µi(t) = µ̃i � ↵i prox 1
↵i

gi

✓
µ̃i

↵i

◆

receive �ij(t) for each j 2 Ni and compute

x?
i (t) = argmin

xi

⇢
x>
i

✓ X

j2Ni

⇣
�j
i (t)� �i

j(t)
⌘
+µi(t)

◆
+fi(xi)

�

Remark IV.1. In order to start the algorithm, a preliminary
communication step is needed in which each node i receives
from each neighbor j its �

i
j0 (to compute x

?
i (0)) and the

convexity parameter �j of fj (to set ↵i, as it will be clear
from the analysis in Section V-B). This step can be avoided
if the nodes agree to set �ji0 = 0 and know a bound for ↵i.
Also, it is worth noting that, differently from other algorithms,
in general �ji (t) 6= ��ij(t). ⇤

We point out once more that to run the DDPG algorithm the
nodes need to have a common clock. Also, it is worth noting
that, as it will be clear from the analysis in Section V-B, to
set the local step-size each node needs to know the number of
nodes, n, in the network. In the next sections we present two
asynchronous distributed algorithms which overcome these
limitations.

B. Asynchronous DDPG (A-DDPG)

Next, we propose a node-based asynchronous algorithm. We
consider an asynchronous protocol where each node has its
own concept of time defined by a local timer, which randomly
and independently of the other nodes triggers when to awake
itself. Between two triggering events the node is in an idle
mode, i.e., it continuously receives messages from neighboring
nodes and, if needed, runs some auxiliary computation. When

a trigger occurs, it switches into an awake mode in which it
updates its local (primal and dual) variables and transmits the
updated information to its neighbors.

Formally, the triggering process is modeled by means of a
local clock ⌧i 2 R�0 and a randomly generated waiting time
Ti. As long as ⌧i < Ti the node is in idle mode. When ⌧i = Ti

the node switches to the awake mode and, after running the
local computation, resets ⌧i = 0 and draws a new realization
of the random variable Ti. We make the following assumption
on the local waiting times Ti.

Assumption IV.2 (Exponential i.i.d. local timers). The waiting
times between consecutive triggering events are i.i.d. random
variables with same exponential distribution. ⇤

When a node i wakes up, it updates its local dual variables
�
j
i , j 2 Ni and µi by a local proximal gradient step, and

its primal variable x
?
i through a local minimization. The local

step-size of the proximal gradient step for node i is denoted by
↵i. In order to highlight the difference between updated and
old variables at node i during the “awake” phase, we denote
the updated ones as �ji

+
and µi

+ respectively. When a node
i is in idle it receives messages from awake neighbors. If a
dual variable �ij is received it computes an updated value of
x
?
i and broadcasts it to its neighbors. It is worth noting that,

being the algorithm asynchronous, there is no common clock
as in the synchronous version.

Algorithm 2 Asynchronous DDPG (A-DDPG)

Processor states: x?
i , �ji for all j 2 Ni and µi

Initialization: �ji = �
j
i0 for all j 2 Ni, µi = µi0 and

x
?
i = argmin

xi

n
x
>
i

⇣P
j2Ni

⇣
�
j
i0 � �

i
j0

⌘
+µi0

⌘
+fi(xi)

o

set ⌧i = 0 and get a realization Ti

Evolution:
IDLE:

WHILE: ⌧i < Ti DO:
receive x

?
j and/or �ij from each j 2 Ni.

IF: �ij is received THEN: compute and broadcast

x?
i = argmin

xi

⇢
x>
i

✓ X

k2Ni

⇣
�k
i � �i

k

⌘
+ µi

◆
+ fi(xi)

�

go to AWAKE.

AWAKE:
update and broadcast �ji

+
=�ji + ↵i

�
x
?
i � x

?
j

�
, 8 j 2 Ni

update

µ̃i = µi + ↵i x
?
i

µ
+
i = µ̃i � ↵i prox 1

↵i
gi

✓
µ̃i

↵i

◆

compute and broadcast

x?
i = argmin

xi

⇢
x>
i

✓ X

j2Ni

⇣
�j
i

+ � �i
j

⌘
+ µ+

i

◆
+ fi(xi)

�

set ⌧i = 0, get a new realization Ti and go to IDLE.
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C. Edge-based asynchronous algorithm

In this section we present a variant of the A-DDPG in which
an edge becomes active uniformly at random, rather than a
node. In other words, we assume that timers are associated
to edges, rather than to nodes, that is a waiting time Tij is
extracted for edge (i, j).

The processor states and their initialization stay the same
except for the timers. Notice that here we are assuming
that nodes i and j have a common waiting time Tij and,
consistently, a local timer ⌧ij . Each waiting time Tij satisfies
Assumption IV.2.

In Algorithm 3 we report (only) the evolution for this mod-
ified scenario. In this edge-based algorithm the dual variable
µi (associated to the constraint xi = zi) cannot be updated
every time an edge (i, j), j 2 Ni, becomes active (otherwise
it would be updated more often than the variables �ji , j 2 Ni).
Thus, we identify one special neighbor jµi 2 Ni and update
µi only when the edge (i, jµi) is active.

Algorithm 3 Edge-Based Formulation of Algorithm 2 (evolution)
IDLE: WHILE ⌧ij < Tij DO: nothing

go to AWAKE.
AWAKE:

send x
?
i to j and receive x

?
j from j

update and send to j, �ji
+
= �

j
i + ↵i

�
x
?
i � x

?
j

�

IF: j = jµi THEN: update µ
+
i = prox↵ig⇤

i

�
µi + ↵i x

?
i

�

compute

x?
i = argmin

xi

⇢
x>
i

✓ X

j2Ni

⇣
�j
i

+ � �i
j

⌘
+ µ+

i

◆
+ fi(xi)

�

set ⌧ij = 0, deal on a new realization Tij and go to IDLE.

V. ANALYSIS OF THE DISTRIBUTED ALGORITHMS

To start the analysis we first introduce an extended version
of (centralized) proximal gradient methods.

A. Weighted Proximal Gradient Methods

Consider the following optimization problem

min
y2RN

�(y) := �(y) + (y), (7)

where � : RN ! R and  : RN ! R [ {+1} are convex
functions.

We decompose the decision variable as y = [y>1 . . . y
>
n ]

>

and, consistently, we decompose the space RN into n sub-
spaces as follows. Let U 2 RN⇥N be a column permuta-
tion of the N ⇥ N identity matrix and, further, let U =
[U1 U2 . . . Un] be a decomposition of U into n submatrices,
with Ui 2 RN⇥Ni and

P
i Ni = N . Thus, any vector y 2 RN

can be uniquely written as y =
P

i Uiyi and, viceversa,
yi = U

>
i y.

We let problem (7) satisfy the following assumptions.

Assumption V.1 (Block Lipschitz continuity of r�). The
gradient of � is block coordinate-wise Lipschitz continuous

with positive constants L1, . . . , Ln. That is, for all y 2 RN

and si 2 RNi it holds

kri�(y + Uisi)�ri�(y)k  Liksik,

where ri�(y) is the i-th block component of r�(y). ⇤
Assumption V.2 (Separability of  ). The function  is block-
separable, i.e., it can be decomposed as  (y) =

Pn
i=1  i(yi),

with each  i : RNi ! R[{+1} a proper, closed convex
extended real-valued function. ⇤
Assumption V.3 (Feasibility). The set of minimizers of prob-
lem (7) is non-empty. ⇤

1) Deterministic descent: We first show how the standard
proximal gradient algorithm can be generalized by using a
weighted proximal operator.

Following the same line of proof as in [18], we can prove
that a generalized proximal gradient iteration, given by

y(t+ 1) = proxW, 

⇣
y(t)�Wr�

�
y(t)

�⌘
(8)

= argmin
y

⇢
 (y)+

1

2

���y�
⇣
y(t)�Wr�

�
y(t)

�⌘���
2

W�1

�
,

converges in objective value to the optimal solution of (7) with
rate O(1/t).

In order to extend the proof of [18, Theorem 3.1] we need to
use a generalized version of [18, Lemma 2.1]. To this end we
can use a result by Nesterov, given in [22], which is recalled
in the following lemma for completeness.

Lemma V.4 (Generalized Descent Lemma). Let Assumption
V.1 hold, then for all s 2 RN

�(y + s)  �(y) + s
>r�(y) + 1

2

�� s
��2
W�1 ,

where W := diag(w1, . . . , wn) satisfies wi  1
nLi

for all
i 2 {1, . . . , n}. ⇤

Tighter conditions than the one given above can be found
in [14] and in [23].

Theorem V.5. Let Assumption V.1 and V.3 hold and let {y(t)}
be the sequence generated by iteration (8) applied to problem
(7). Then for any t � 1

�(y(t))� �(y?) 
��y0 � y

?
��2
W�1

2t
,

where W := diag(w1, . . . , wn) with wi  1
nLi

, y0 is the initial
condition and y

? is any minimizer of problem (7).

Proof. The theorem is proven by following the same argu-
ments as in [18, Theorem 3.1], but using Lemma V.4 in place
of [18, Lemma 2.1].

2) Randomized block coordinate descent: Next, we present
a randomized version of the weighted proximal gradient,
proposed in [20, Algorithm 2] as Uniform Coordinate Descent
for Composite functions (UCDC) algorithm.

The convergence result for UCDC is given in [20, Theo-
rem 5], here reported for completeness.



6

Algorithm 4 UCDC
Initialization: y(0) = y0

FOR: t = 0, 1, 2, . . . DO
choose it 2 {1, . . . , n} with probability 1

n
compute

T
(it)
�
y(t)

�
= argmin

s2RNit

n
Vit(y(t), s)

o
(9a)

where

Vit(y, s) :=rit�(y)
>
s+

Lit

2
ksk2+ it(yit+s) (9b)

update

y(t+ 1) = y(t) + UitT
(it)
�
y(t)

�
. (10)

Theorem V.6 ( [20, Theorem 5]). Let Assumptions V.1, V.2
and V.3 hold. Let �? denote the optimal cost of problem (7).
Then, for any " 2

⇣
0,�(y0) � �?

⌘
, there exists t̄(", ⇢) > 0

such that if y(t) is the random sequence generated by UCDC
(Algorithm 4) applied to problem (7), then for all t � t̄ it
holds that

Pr
⇣
�(y(t))� �?  "

⌘
� 1� ⇢,

where y0 2 RN is the initial condition and ⇢ 2 (0, 1) is the
target confidence. ⇤

B. Analysis of the synchronous algorithm

We start this section by recalling some useful properties of
conjugate functions that will be useful for the convergence
analysis of the proposed distributed algorithms.

Lemma V.7 ( [24], [25]). Let ' be a closed, strictly convex
function and '⇤ its conjugate function. Then

r'⇤(y)=argmax
x

�
y
>
x�'(x)

 
=argmin

x

�
'(x)�y

>
x
 
.

Moreover, if ' is strongly convex with convexity parameter
�, then r'⇤ is Lipschitz continuous with Lipschitz constant
given by 1

� . ⇤
In the next lemma we establish some important properties

of problem (6) that will be useful to analyze the proposed
distributed dual proximal algorithms.

Lemma V.8. Let �(y) := F
⇤(y) and  (y) := G

⇤(y)
consistently with the notation of problem (7) in Appendix V-A.
Problem (6) satisfies Assumption V.1 (block Lipschitz continu-
ity of r�), with (block) Lipschitz constants given by

Li =

s
1

�2
i

+
X

j2Ni

⇣ 1

�i
+

1

�j

⌘2
, i 2 {1, . . . , n},

Assumption V.2 (separability of  ) and Assumption V.3 (fea-
sibility). ⇤
Proof. The proof is split into blocks, one for each assumption.

Block Lipschitz continuity of rF
⇤: We show that the

gradient of F ⇤ is block coordinate-wise Lipschitz continuous.
The i-th block component of rF

⇤ is

riF
⇤(y) =


r⇤iF

⇤(y)
rµiF

⇤(y)

�
,

where the block-component of r⇤iF
⇤ associated to neighbor

j is given by r�j
i
F

⇤ and is equal to

r�j
i
F

⇤(y) = rf
⇤
i

✓
�
X

k2Ni

⇣
�
k
i � �

i
k

⌘
� µi

◆

�rf
⇤
j

✓
�
X

k2Nj

⇣
�
k
j � �

j
k

⌘
� µj

◆
.

By Lemma V.7 both rf
⇤
i and rf

⇤
j are Lipschitz continuous

with Lipschitz constants 1
�i

and 1
�j

respectively, thus also
r�j

i
F

⇤ is Lipschitz continuous with constant Lij =
1
�i

+ 1
�j

.
By using the (Euclidean) 2-norm, we have that r⇤iF

⇤(y) is
Lipschitz continuous with constant

qP
j2Ni

L2
ij .

Similarly, the gradient of F ⇤ with respect to µi is

rµiF
⇤(y) = rf

⇤
i

✓
�
X

k2Ni

⇣
�
k
i � �

i
k

⌘
� µi

◆

and is Lipschitz continuous with constant 1
�i

. Finally, we
conclude that riF

⇤(y) is Lipschitz continuous with constant

Li =

s
1

�2
i

+
X

j2Ni

L2
ij =

s
1

�2
i

+
X

j2Ni

⇣ 1

�i
+

1

�j

⌘2
.

Separability of G
⇤: By definition G

⇤(y) =
Pn

i=1 g
⇤
i (µi),

where µi is a component of the block yi. Thus, denot-
ing G

⇤
i (yi) := g

⇤
i (µi), it follows immediately G

⇤(y) =Pn
i=1 g

⇤
i (µi) =

Pn
i=1 G

⇤
i (yi).

Feasibility: From Assumption II.2 and the convexity condition
on fi and gi, strong duality holds, i.e., dual problem (6) is
feasible and admits at least a minimizer y?.

Next, we recall how the proximal operators of a function
and its conjugate are related.

Lemma V.9 (Moreau decomposition, [26]). Let ' : Rd !
R[{+1} be a closed, convex function and '⇤ its conjugate.
Then, 8x 2 Rd, x = prox'(x) + prox'⇤(x). ⇤
Lemma V.10 (Extended Moreau decomposition). Let ' :
Rd ! R [ {+1} be a closed, convex function and '

⇤ its
conjugate. Then, for any x 2 Rd and ↵ > 0, it holds

x = prox↵'

�
x
�
+ ↵prox 1

↵'⇤

⇣
x

↵

⌘
.

Proof. Let h(x) = ↵'(x), then from the Moreau decompo-
sition in Lemma V.9, it holds x = proxh(x) + proxh⇤(x).
To prove the result we simply need to compute proxh⇤(x) in
terms of '⇤. First, from the definition of conjugate function
we obtain h

⇤(x) = ↵'
⇤ � x

↵

�
. Then, by using the definition

of proximal operator and standard algebraic properties from
minimization, it holds true that proxh⇤(x) = ↵prox 1

↵'⇤
�
x
↵

�
,

so that the proof follows.



7

The next lemma shows how the (weighted) proximal oper-
ator of G⇤ can be split into local proximal operators that can
be independently carried out by each single node.

Lemma V.11. Let y = [y>1 . . . y
>
n ]

> 2 Rn(D+d) where
yi = [⇤>

i µ
>
i ]

> with ⇤i 2 RD and µi 2 Rd, i 2 {1, . . . , n}.
Let G

⇤(y) =
Pn

i=1 g
⇤
i (µi), then for a diagonal weight

matrix D↵ = diag(↵1, . . . ,↵n) > 0, the proximal operator
proxD↵,G⇤ evaluated at y is given by

proxD↵,G⇤
�
y
�
=

2

666664

⇤1

prox↵1g⇤
1
(µ1)

...
⇤n

prox↵ng⇤
n
(µn)

3

777775
.

⇤
Proof. Let ⌘ = [⌘>1 . . . ⌘

>
n ]

> 2 Rn(D+d), with ⌘i =
[u>

i v
>
i ]

>, ui 2 RD and vi 2 Rd, be a variable with the
same block structure of y = [y>1 . . . y

>
n ]

> 2 Rn(D+d), with
yi = [⇤>

i µ
>
i ]

> (as defined in (5)).
By using the definition of weighted proximal operator and the
separability of both G

⇤ and the norm function, we have

proxD↵,G⇤
�
y
�
:= argmin

⌘2Rn(D+d)

⇢
G

⇤(⌘) +
1

2

���⌘ � y

���
2

D�1
↵

�

=argmin
⌘

⇢ nX

i=1

✓
g
⇤
i (vi) +

1

2↵i
kui�⇤ik2+

1

2↵i
kvi�µik2

◆�
.

The minimization splits on each component ⌘i of ⌘, giving

proxD↵,G⇤
�
y
�
=

2

666666666664

argmin
u1

ku1 � ⇤1k2

argmin
v1

n
g
⇤
1(v1) +

1

2↵1
kv1 � µ1k2

o

...
argmin

un

kun � ⇤nk2

argmin
vn

n
g
⇤
n(vn) +

1

2↵n
kvn � µnk2

o

3

777777777775

so that the proof follows from the definition of proximal
operator.

We are ready to show the convergence of the DDPG
introduced in Algorithm 1.

Theorem V.12. For each i 2 {1, . . . , n}, let fi be a proper,
closed and strongly convex extended real-valued function with
strong convexity parameter �i > 0, and let gi be a proper con-
vex extended real-valued function. Suppose that in Algorithm 1
the local step-size ↵i is chosen such that 0 < ↵i  1

nLi
, with

Li given by

Li =

s
1

�2
i

+
X

j2Ni

⇣ 1

�i
+

1

�j

⌘2
, 8 i 2 {1, . . . , n}. (11)

Then the sequence y(t) = [y1(t)> . . . yn(t)>]> generated by
the DDPG (Algorithm 1) for all t � 1 satisfies

�(y(t))� �(y?) 

��y0 � y
?
��2
D�1

↵

2t
,

where y
? is any minimizer of (6), y0 = [y1(0)> . . . yn(0)>]>

is the initial condition and D↵ := diag(↵1, . . . ,↵n).

Proof. To prove the theorem, we proceed in two steps. First,
from Lemma V.8, problem (6) satisfies the assumptions of
Theorem V.5 and, thus, a (deterministic) weighted proximal
gradient solves the problem. Thus, we need to show that
DDPG (Algorithm 1) is a weighted proximal gradient scheme.

The weighted proximal gradient algorithm, (8), applied to
problem (6), with W := D↵, is given by

y(t+ 1) = proxD↵,G⇤

⇣
y(t)�D↵rF

⇤�
y(t)

�⌘
. (12)

Now, by Lemma V.8, Li given in (11) is the Lipschitz constant
of the i-th block of rF

⇤. Thus, using the hypothesis ↵i 
1

nLi
, we can apply Theorem V.5, which ensures convergence

with a rate of O(1/t) in objective value.
In order to disclose the distributed update rule, we first split

(12) into two steps, i.e.,

ỹ = y(t)�D↵rF
⇤�
y(t)

�
(13a)

y(t+ 1) = proxD↵,G⇤
�
ỹ
�

(13b)

and, then, compute explicitly each component of both the
equations. Focusing on (13a) and considering that D↵ is
diagonal, we can write the i-th block component of ỹ as

ỹi =


⇤̃i

µ̃i

�
= yi(t)� ↵iriF

⇤�
y(t)

�
,

where the explicit update of the block-component of ⇤̃i

associated to neighbor j is

�̃
j
i = �

j
i (t)� ↵i

@F
⇤(y)

@�
j
i

�����
y=y(t)

(14)

= �
j
i (t) + ↵i


rf

⇤
i

⇣
�
X

k2Ni

(�ki (t)� �
i
k(t))� µi(t)

⌘

�rf
⇤
j

⇣
�
X

k2Nj

(�kj (t)� �
j
k(t))� µj(t)

⌘�

and the explicit update of µ̃i is

µ̃i = µi(t)� ↵i
@F

⇤(y)

@µi

�����
y=y(t)

(15)

= µi(t) + ↵irf
⇤
i

⇣
�
X

k2Ni

(�ki (t)� �
i
k(t))� µi(t)

⌘
.

Now, denoting

x
?
i (t) := rf

⇤
i

⇣
�
X

k2Ni

(�ki (t)� �
i
k(t))� µi(t)

⌘
,

from Lemma V.7 it holds

x
?
i (t)=argmin

xi

⇢
x
>
i

✓ X

k2Ni

⇣
�
k
i (t)��ik(t)

⌘
+µi(t)

◆
+fi(xi)

�
.

Thus, we can rewrite (14) and (15) in terms of x?
i obtaining

�̃
j
i = �

j
i (t) + ↵i

h
x
?
i (t)� x

?
j (t)

i

µ̃i = µi(t) + ↵i x
?
i (t).
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Finally, the last step consists of applying the rule (13b) to ỹ.
In order to highlight the distributed update, we rewrite (13b)
in a component-wise fashion, i.e.,

y(t+ 1) =

2

666664

⇤1(t+ 1)
µ1(t+ 1)

...
⇤n(t+ 1)
µn(t+ 1)

3

777775
= proxD↵,G⇤

0

BBBBB@

2

666664

⇤̃1

µ̃1
...
⇤̃n

µ̃n

3

777775

1

CCCCCA
,

and applying Lemma V.11 and Lemma V.10 with 'i = g
⇤
i ,

we obtain

y(t+ 1)=

2

66666664

⇤̃1

prox↵1g⇤
1
(µ̃1)

...
⇤̃n

prox↵ng⇤
n
(µ̃n)

3

77777775

=

2

66666664

⇤̃1

µ̃1�↵1prox 1
↵1

g1

⇣
µ̃1

↵1

⌘

...
⇤̃n

µ̃n�↵nprox 1
↵n

gn

⇣
µ̃n

↵n

⌘

3

77777775

,

so that the proof follows.

Remark V.13 (Nesterov’s acceleration). We can include a
Nesterov’s extrapolation step in the algorithm, which accel-
erates the algorithm (further details in [19]), attaining a
faster O(1/t2) convergence rate in objective value. In order to
implement the acceleration, each node needs to store a copy of
the dual variables at the previous iteration. Thus, the update
law in (13) would be changed in the following

ỹ = y(t)�D↵rF
⇤�
y(t)

�

ŷ(t) = proxD↵,G⇤
�
ỹ
�

y(t+ 1) = ŷ(t) + ✓t (ŷ(t)� ŷ(t� 1)) .

where ✓t represents the Nesterov overshoot parameter. ⇤

C. Analysis of the node-based asynchronous algorithm
In order to analyze the algorithm we start recalling some

properties of i.i.d. exponential random variables. Let it 2
{1, . . . , n}, t = 1, 2, . . . be the sequence identifying the
generic t-th triggered node. Assumption IV.2 implies that
it is an i.i.d. uniform process on the alphabet {1, . . . , n}.
Each triggering will induce an iteration of the distributed
optimization algorithm, so that t will be a universal, discrete
time indicating the t-th iteration of the algorithm itself. Thus,
from an external, global perspective, the described local asyn-
chronous updates result into an algorithmic evolution in which,
at each iteration, only one node wakes up randomly, uniformly
and independently from previous iterations. This variable will
be used in the statement and in the proof of Theorem V.14.
However, we want to stress that this iteration counter does not
need to be known by the agents.

Theorem V.14. For each i 2 {1, . . . , n}, let fi be a proper,
closed and strongly convex extended real-valued function with
strong convexity parameter �i > 0, and let gi be a proper con-
vex extended real-valued function. Suppose that in Algorithm 2
each local step-size ↵i is chosen such that 0 < ↵i  1

Li
, with

Li =

s
1

�2
i

+
X

j2Ni

⇣ 1

�i
+

1

�j

⌘2
, 8 i 2 {1, . . . , n}. (16)

Then the sequence y(t) = [y1(t)> . . . yn(t)>]> generated
by the A-DDPG (Algorithm 2) converges in objective value
with high probability, i.e., for any " 2

�
0,�(y0)

�
, where

y0 = [y1(0)> . . . yn(0)>]> is the initial condition, and target
confidence 0 < ⇢ < 1, there exists t̄(", ⇢) > 0 such that for
all t � t̄ it holds

Pr
⇣
�(y(t))� �?  "

⌘
� 1� ⇢,

where �? is the optimal cost of problem (6).

Proof. To prove the theorem, we proceed in two steps. First,
we show that we can apply the Uniform Coordinate Descent
for Composite functions (Algorithm 4) to solve problem (6).
Second, we show that, when applied to this problem, Algo-
rithm 4 gives the iterates of our A-DDPG.

The first part follows immediately by Lemma V.8, which
asserts that problem (6) satisfies the assumptions of Theo-
rem V.6, so that Algorithm 4 solves it.

Next, we show that the two algorithms have the same
update. First, by Lemma V.8, Li given in (16) is the Lipschitz
constant of the i-th block of rF

⇤. Thus, in the rest of
the proof, following [20], we set ↵i = 1

Li
(the maximum

allowable value). Clearly the convergence is preserved if a
smaller stepsize is used.

Consistently with the notation in Algorithm 4, let it denote
the uniform-randomly selected index at iteration t. Thus,
T

(it)(y(t)) = argminsit2RNit

n
Vit(y(t), sit)

o
defined in (9)

can be written in terms of a proximal gradient update applied
to the it-th block component of y. In fact, by definition, for
our function � = F

⇤ +G
⇤, we have

T
(it)
�
y(t)

�
= argmin

s2RNit

n
ritF

⇤�
y(t)

�>
s

+
Lit

2
ksk2 + g

⇤
it

�
yit(t) + s

�o
.

In order to apply the formal definition of a proximal gradient
step, we add a constant term and introduce a change of variable
given by s̄ := yit(t) + s, obtaining

T
(it)
�
y(t)

�
= �yit(t) + argmin

s̄2RNit

n
U

>
it F

⇤�
y(t)

�

+ritF
⇤�
y(t)

�>
(s̄�yit(t)) +

Lit

2
ks̄�yit(t)k2 + g

⇤
it(s̄)

o
,

which yields

T
(it)
�
y(t)

�
=�yit(t)+prox 1

Lit
g⇤
it

⇣
yit(t)�

1

Lit

ritF
⇤�
y(t)

�⌘
.

Thus, update (10) in fact changes only the component yit of
y, which is updated as

yit(t+ 1) = yit(t) + T
(it)
�
y(t)

�
(17)

= prox 1
Lit

g⇤
it

⇣
yit(t)�

1

Lit

ritF
⇤�
y(t)

�⌘
,

while all the other ones remain unchanged, i.e., yi(t + 1) =
yi(t) for all i 2 {1, . . . , n} with i 6= it.
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Following the same steps as in the proof of Theorem V.12,
we split the update in (17) into a gradient and a proximal
steps. The gradient step is given by

ỹit =


⇤̃it

µ̃it

�
= yit(t)�

1

Lit

ritF
⇤�
y(t)

�

where ⇤̃it and µ̃it are the same as in (14) and (15) respectively.
The proximal operator step turns out to be

yit(t+ 1) =


⇤it(t+ 1)
µit(t+ 1)

�
= prox 1

Lit
g⇤
it

✓
⇤̃it

µ̃it

�◆
.

Applying Lemma V.11 on the it-th block with ↵it = 1/Lit ,
we can rewrite (17) as


⇤it(t+ 1)
µit(t+ 1)

�
=

"
⇤̃it(t)

µ̃it � 1
Lit

proxLitgit

⇣
Lit µ̃it

⌘
#
, (18)

where each component of ⇤̃it is given by

�̃
j
it
= �

j
it
(t) +

1

Lit

h
x
?
it(t)� x

?
j (t)

i
,

and

µ̃it = µit(t) +
1

Lit

x
?
it(t),

with

x
?
i (t)=argmin

xi

⇢
x
>
i

✓ X

k2Ni

⇣
�
k
i (t)��ik(t)

⌘
+µi(t)

◆
+fi(xi)

�
.

Here we have used again the property from Lemma V.7

rf
⇤
i

⇣
�
X

k2Ni

(�ki (t)� �
i
k(t))� µi(t)

⌘
= x

?
i (t).

Now, from Assumption IV.2 a sequence of nodes it, t =
1, 2..., becomes active according to a uniform distribution, so
that each node triggering can be associated to an iteration of
Algorithm 4 given by the update in (18). That is, only a node it
is active in the network, which performs an update of its dual
variables yit . In order to perform the local update, the selected
node it needs to know the most updated information after
the last triggering. As regards the neighbors’ dual variables
�
it
j , j 2 Nit , they have been broadcast by each j 2 Nit the

last time it has become active. Regarding the primal variables
x
?
j , j 2 Nit , the situation is a little more tricky. Indeed, x?

j ,
j 2 Nit , may have changed in the past due to either j or
one of its neighbors has become active. In both cases j has to
broadcast to it its updated dual variable (either because it has
become active or because it has received, in idle, an updated
dual variable from one of its neighbors).

Remark V.15. Differently from the synchronous algorithm,
in the asynchronous version nodes do not need to know the
number of nodes, n, in order to set their local step-size. In
fact, each node i can set its parameter ↵i by only knowing
the convexity parameters �i and �j , j 2 Ni. ⇤
Remark V.16. If a strongly convex, separable penalty term is
added to the dual function � = F

⇤ + G
⇤, then it becomes

strongly convex, so that a stronger result from [20, Theo-
rem 7] applies, i.e., linear convergence with high probability

is guaranteed. Note that strong convexity of the dual function
� is obtained if the primal function has Lipschitz continuous
gradient, [27, Chapter X, Theorem 4.2.2]. ⇤

D. Analysis of the edge-based asynchronous algorithm
The convergence of Algorithm 3 relies essentially on the

same arguments as in Theorem V.14, but with a different block
partition. In fact, we have to split the y variable into |E| blocks
(with |E| the number of edges of G). Notice that since the dual
variables µi are only n, they need to be associated to a subset
of edges. Thus, the variable y is split in blocks yij given by
yij = [�ji �

i
j µi] if j = jµi and yij = [�ji �

i
j ] otherwise. This

is why in the algorithm µi is updated only when neighbor jµi

becomes active.

VI. MOTIVATING OPTIMIZATION SCENARIOS AND
NUMERICAL COMPUTATIONS

A. Constrained optimization
As first concrete setup, we consider a separable constrained

convex optimization problem

min
x

nX

i=1

hi(x)

subj. to x 2
n\

i=1

Xi ✓ Rd

(19)

where each hi is a strongly convex function and each Xi is a
closed, convex set.

This problem structure is widely investigated in distributed
and large-scale optimization as shown in the literature review.
Notice that, as pointed out in our discussion in the introduc-
tion, we assume strong convexity of hi, but we do not need
to assume smoothness.

We can rewrite this problem by transforming the constraints
into additional terms in the objective function, by using
indicator functions IXi associated to each Xi,

min
x2Rd

nX

i=1

⇣
hi(x) + IXi(x)

⌘
.

Since each Xi is a convex set, then IXi is a convex function.
Thus the problem can be mapped in our distributed setup (1)
by setting fi(x) = hi(x) and gi(x) = IXi(x).

Treating the local constraints in this way, we have to per-
form a local unconstrained minimization step when computing
x
?
i , while the local feasibility is entrusted to the proximal oper-

ator of gi. In fact, the proximal operator of a convex indicator
function reduces to the standard Euclidean projection, i.e.,

proxIX

�
v
�
= argmin

x

n
IX(x) +

1

2
kx� vk2

o
= ⇧X(v).

Remark VI.1. When considering quadratic costs hi, we
can benefit greatly from a numerical point of view. In fact,
an unconstrained quadratic program can be solved via effi-
cient methods, which often result in division-free algorithms
(possibly after some off-line precomputations), and can be
implemented in fixed-point arithmetic, see [21] for further
details. ⇤
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An attractive feature of our setup is that one can conve-
niently decide how to rewrite the local constraints. In the
formulation above, we suggested to include the local constraint
into gi. But it is also reasonable to include the constraint into
fi, by consider the indicator function in its definition, i.e.,
define

fi(x) :=

(
hi(x) if x 2 Xi

+1 otherwise.
(20)

and, thus, have gi identically zero (still convex). This strategy
results into an algorithm which is basically an asynchronous
distributed dual decomposition algorithm. Notice that with this
choice recursive feasibility is obtained provided that the local
algorithm solves the minimization in an interior point fashion.

Between these two extreme scenarios one could also con-
sider other possibilities. Indeed, it could be the case that
one can benefit from splitting each local constraint Xi into
two distinct contributions, i.e., Xi = Yi [ Zi. In this way
the indicator function of Yi (e.g., the positive orthant) could
be included into fi, allowing for a simpler constrained local
minimization step, while the other constraint could be mapped
into the second term as gi(x) = IZi(x).

The choice in (20) leads to a simple observation: leaving the
gi equal to zero seems to be a waste of a degree of freedom
that could be differently exploited, e.g., by introducing a
regularization term.

B. Regularized and constrained optimization
As highlighted in the previous paragraph, the flexibility

of our algorithmic framework allows us to handle, together
with local constraints, also a regularization cost through the
gi. Regularize the solution is a useful technique in many
applications as sparse design, robust estimation in statistics,
support vector machine (SVM) in machine learning, total
variation reconstruction in signal processing and geophysics,
and compressed sensing. In these problems, the cost fi is
a loss function representing how the predictions based on a
theoretical model mismatch the real data. Next, we focus on
the most widespread choice for the loss function, which is
the least square cost, giving rise to the following optimization
problem

min
x

nX

i=1

kAix� bik2 (21)

where Ai are data/regressors and bi are labels/observations.
A typical challenge arising in regression problems is due

to the fact that problem (21) is often ill-posed and standard
algorithms easily incur in over-fitting phenomena. A viable
technique to prevent over-fitting consists of adding a regular-
ization cost; usual choices are the `2-norm, also referred as
Tikhonov regularization or ridge regression, or the `1-norm,
which leads to the so called LASSO (Least Absolute Shrinkage
and Selection Operator) problem

min
x

nX

i=1

kAix� bik2 + �kxk1

where � is a positive scalar.

In some cases (as, e.g., in distributed estimation [28]) one
may be interested in having the solution bounded in a given
box or leaving in a reduced subspace. This gives rise to the so
called constrained LASSO problem, see, e.g., [23], [29], [30].

As discussed before, our setup can simultaneously manage a
constrained and regularized problem as the constrained lasso.
The first way to map the problem in our setup is by defining

fi(x) :=

(
kAix� bik2 if x 2 Xi

+1 otherwise
(22)

and setting

gi(x) :=
�

n
kxk1.

The proximal operator of the `1-norm admits an analytic
solution which is well known as soft thresholding operator.
When applied to a vector v 2 Rd (with `-th component v`),
it gives a vector in Rd whose `-th component is

⇣
prox�k·k1

(v)
⌘

`
=

8
><

>:

v` � �, v` > �

0, |v`|  �

v` + �, v` < ��
�� �

i.e., it thresholds the components of v which are in modulus
greater then �, see, e.g., [18], [31].

Alternatively, we may include both the constraint Xi and
the regularization term into the gi, obtaining an unconstrained
local minimization at each node. This choice is particularly
appealing when the constraint Xi is a box, i.e., Xi = {v 2
Rd | lb`  v`  ub` for all ` 2 {1, . . . , d}}. In this case the
proximal operator of gi becomes a saturated version of the
soft-thresholding operator, as depicted in Figure 1.

lb`

ub`

�� �

Fig. 1. Saturated soft-thresholding operator.

C. Numerical tests

In this section we provide a numerical example showing the
effectiveness of the proposed algorithms.

We test the proposed distributed algorithms on a constrained
LASSO optimization problem,

min
lbxub

nX

i=1

kAix� bik2 + �kxk1,

where x 2 R3 is the decision variable, and Ai 2 R150⇥3 and
bi 2 R150 represent respectively the data matrix and the labels
associated with examples assigned to node i. The inequality
lb  x  ub is meant component-wise.
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We randomly generate the LASSO data following the idea
suggested in [31]. Each element of Ai is ⇠ N (0, 1), and
bis are generated by perturbing a “true” solution xtrue (which
has around a half nonzero entries) with an additive noise
v ⇠ N (0, 10�2

I). Then the matrix Ai and the vector bi are
normalized with respect to the number of local samples at each
node. The box bounds are set to lb =

⇥
�0.8 �0.8 �0.8

⇤>

and ub =
⇥
0.8 0.8 0.8

⇤>, while the regularization param-
eter is � = 0.1.

To match the problem with our distributed framework, we
introduce copies xi of the decision variable x. Consistently, we
define the local functions fi as the least-square costs in (22),
where each Xi is the box defined by lb and ub. We let each gi

be the `1-norm regularization term with local parameter �/n.
We initialize to zero the dual variables �ji , j 2 Ni, and µi for
all i 2 {1, . . . , n}, and use as step-sizes ↵i = Li, where Li has
the expression in (11), with �i being the smallest eigenvalue
of A>

i Ai.
We consider an undirected connected Erdős-Rényi graph G,

with parameter 0.2, connecting n = 50 nodes.
We run both the synchronous and the asynchronous algo-

rithms over this underlying graph and we stop them if the
difference between the current dual cost and the optimal value
drops below the threshold of 10�6.

Figure 2 shows the difference between the dual cost at
each iteration t and the optimal value, �(y(t)) � �?, in a
logarithmic scale. In particular, the rates of convergence of
the synchronous (left) and asynchronous (right) algorithms
are shown. For the asynchronous algorithm, we normalize the
iteration counter t with respect the number of agents n.

0 100 200 300
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10�5
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10�3

10�2

10�1

100

t

�
(y
(t
))

�
�
?

0 2 4 6 8
10�6
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10�4

10�3

10�2

10�1

100

t/n

�
(y
(t
))

�
�
?

Fig. 2. Evolution of the cost error, in logarithmic scale, for the synchronous
(left) and node-based asynchronous (right) distributed algorithms.

Then we concentrate on the asynchronous algorithm. In
Figure 3 we plot the evolution of the (three) components of the
primal variables, x?

i (t), i 2 {1, . . . , n}. The horizontal dotted
lines represent the optimal solution. It is worth noting that
the optimal solution has a first component slightly below the
constraint boundary, a second component equal to zero, and
a third component on the constraint boundary. This optimal
solution can be intuitively explained by the “simultaneous
influence” of the box constraints (which restrict the set of
admissible values) and the regularization term (which enforces
sparsity of the vector x). In the inset the first iterations for a

subset of selected nodes are highlighted, in order to better
show the transient, piece-wise constant behavior due to the
gossip update and the effect of the box constraint on each
component.

Specifically, for the first component, it can be seen how the
temporary solution of some agents hits the boundary in some
iterations (e.g., one of them hits the boundary from iteration 50
to iteration 100) and then converges to the (feasible) optimal
value. The second components are always inside the box
constraint and converge to zero, while the third components
start inside the box and then in a finite number of iterations
hit the boundary.

VII. CONCLUSIONS

In this paper we have proposed a class of distributed
optimization algorithms, based on dual proximal gradient
methods, to solve constrained optimization problems with non-
smooth, separable objective functions. The main idea is to
construct a suitable, separable dual problem via a proper
choice of primal constraints and solve it through proximal
gradient algorithms. Thanks to the separable structure of
the dual problem in terms of local conjugate functions, a
weighted proximal gradient update results into a distributed
algorithm, where each node performs a local minimization on
its primal variable, and a local proximal gradient update on
its dual variables. As main contribution, two asynchronous,
event-triggered distributed algorithms are proposed, in which
the local updates at each node are triggered by a local
timer, without relying on any global iteration counter. The
asynchronous algorithms are shown to be special instances
of a randomized, block-coordinate proximal gradient method
on the dual problem. The convergence analysis is based on
a proper combination of duality theory, coordinate-descent
methods, and properties of proximal operators.
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