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Abstract
The perception of gender and age of unfamiliar faces is reported to vary idiosyncratically across retinal locations
such that, for example, the same androgynous face may appear to be male at one location but female at another.
Here, we test spatial heterogeneity for the recognition of the identity of personally familiar faces in human
participants. We found idiosyncratic biases that were stable within participants and that varied more across
locations for low as compared to high familiar faces. These data suggest that like face gender and age, face
identity is processed, in part, by independent populations of neurons monitoring restricted spatial regions and that
the recognition responses vary for the same face across these different locations. Moreover, repeated and varied social
interactions appear to lead to adjustments of these independent face recognition neurons so that the same familiar
face is eventually more likely to elicit the same recognition response across widely separated visual field locations. We
provide a mechanistic account of this reduced retinotopic bias based on computational simulations.
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Introduction
We spend most of our days interacting with acquain-

tances, family, and close friends. Because of these re-
peated and protracted interactions, the representation of

personally familiar faces is rich and complex, as reflected
by stronger and more widespread neural activation in the
distributed face processing network, as compared to re-
sponses to unfamiliar faces (Gobbini and Haxby, 2007;
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Significance Statement

In this work, we tested spatial heterogeneity for the recognition of personally familiar faces. We found
retinotopic biases that varied more across locations for low as compared to highly familiar faces. The
retinotopic biases were idiosyncratic and stable within participants. Our data suggest that, like face gender
and age, face identity is processed by independent populations of neurons monitoring restricted spatial
regions and that recognition may vary for the same face at these different locations. Unlike previous findings, our
data and computational simulation address the effects of learning and show how increased familiarity modifies
the representation of face identity in face-responsive cortical areas. This new perspective has broader implica-
tions for understanding how learning optimizes visual processes for socially salient stimuli.
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Taylor et al., 2009; Gobbini, 2010; Natu and O’Toole,
2011; Bobes et al., 2013; Sugiura, 2014; Ramon and
Gobbini, 2018; Visconti di Oleggio Castello et al., 2017a).
Differences in representations are also reflected in faster
detection and more robust recognition of familiar faces
(Burton et al., 1999; Gobbini et al., 2013; Ramon et al.,
2015; Visconti di Oleggio Castello and Gobbini, 2015;
Guntupalli and Gobbini, 2017; Visconti di Oleggio Castello
et al., 2017b).

The advantage for familiar faces could originate at dif-
ferent stages of the face processing system. The classic
psychological model by Bruce and Young (1986) posits
that recognition of familiar faces occurs when the struc-
tural encoding of a perceived face matches stored repre-
sentations (Bruce and Young, 1986). In this model, the
stored representations of familiar faces consist of “an
interlinked set of expression-independent structural codes
for distinct head angles, with some codes reflecting the
global configuration at each angle and others represent-
ing particular distinctive features” (Bruce and Young,
1986, p 309). Behavioral evidence supports the hypothe-
sis that local features are processed differentially for
personally familiar faces. For example, in a study of per-
ception of gaze direction and head angle, changes in eye
gaze were detected around 100 ms faster in familiar than
in unfamiliar faces (Visconti di Oleggio Castello and Gob-
bini, 2015). In another study, the advantage for personally
familiar faces was maintained after face inversion, a ma-
nipulation that is generally thought to reduce holistic pro-
cessing in favor of local processing (Visconti di Oleggio
Castello et al., 2017b).

Taken together, these results suggest that optimized
processing of personally familiar faces could rely on local
features. This could be sufficient to initially drive a differ-
ential response to personally familiar faces. In a study
measuring saccadic reaction time, correct and reliable
saccades to familiar faces were recorded as fast as 180
ms when unfamiliar faces were distractors (Visconti di
Oleggio Castello and Gobbini, 2015). In an EEG study
using multivariate analyses, significant decoding of famil-
iarity could be detected at around 140 ms from stimulus
onset (Barragan-Jason et al., 2015). At such short laten-
cies, it is unlikely that a viewpoint-invariant representation
of an individual face’s identity drives these differential
responses. To account for facilitated, rapid detection of
familiarity, we have previously hypothesized that person-
ally familiar faces may be recognized quickly based on
diagnostic, idiosyncratic features, which become highly
learned through extensive personal interactions (Visconti
di Oleggio Castello and Gobbini, 2015; Visconti di Oleggio
Castello et al., 2017b). Detection of these features may
occur early in the face-processing system, allowing an
initial, fast differential processing for personally familiar
faces.

Processes occurring at early stages of the visual sys-
tem can show idiosyncratic retinotopic biases (Green-
wood et al., 2017). Afraz et al. (2010) reported retinotopic
biases for perceiving face gender and age that varied
depending on stimulus location in the visual field and were
specific to each subject. These results suggest that diag-

nostic facial features for gender and age are encoded in
visual areas with limited position invariance. Neuroimag-
ing studies have shown that face-processing areas such
as OFA, pFus, and mFus have spatially restricted popu-
lation receptive fields (pRFs) that could result in retino-
topic differences (Kay et al., 2015; Silson et al., 2016;
Grill-Spector et al., 2017b). In addition, local facial fea-
tures activate the OFA (and the putative monkey homolog
PL; Issa and DiCarlo, 2012): responses to face parts are
stronger when they are presented in typical locations (de
Haas et al., 2016), and population activity in the OFA
codes the position and relationship between face parts
(Henriksson et al., 2015).

Here, we hypothesized that detectors of diagnostic
visual features that play a role in identification of familiar
faces may also show idiosyncratic retinotopic biases and
that these biases may be tuned by repeated interactions
with personally familiar faces. Such biases may affect
recognition of the identities presented in different parts of
the visual field and may be modulated by the familiarity of
those identities. We tested this hypothesis by presenting
participants with morphed stimuli of personally familiar
individuals that were briefly shown at different retinal
locations. In two separate experiments we found that
participants showed idiosyncratic biases for specific iden-
tities in different visual field locations, and these biases
were stable on retesting after weeks. Importantly, the
range of the retinal biases was inversely correlated with
the reported familiarity of each target identity, suggesting
that prolonged personal interactions with the target indi-
viduals reduced retinal biases.

We hypothesized that these biases could arise because
neurons in face-processing areas have restricted recep-
tive fields centered around the fovea (Afraz et al., 2010;
Kay et al., 2015; Silson et al., 2016), resulting in an incom-
plete coverage of the visual field. Thus, identifying a par-
ticular face at different peripheral locations would rely on
independent populations tuned to that face that cover a
limited portion of the visual field biased toward the foveal
region, leading to variations in identification across loca-
tions. To test this mechanism, we created a computa-
tional simulation in which increased familiarity with a
specific identity resulted in changes of neural properties
of the units responsive to that particular face. By either
increasing the number of units responsive to a face or by
increasing the receptive field size of those units, this
simple learning mechanism accounted for the reduced
biases reported in the two experiments, providing testable
hypotheses for future work.

These findings support the hypothesis that asymme-
tries in the processing of personally familiar faces can
arise at stages of the face-processing system where there
is reduced position invariance and where local features
are being processed, such as in OFA or perhaps even
earlier. Our behavioral results show that prolonged, per-
sonal interactions can modify the neural representation of
faces at this early level of processing, and our computa-
tional simulation provides a simple account of how this
learning process can be implemented at the neural level.
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Materials and Methods
Stimuli

Pictures of the faces of individuals who were personally
familiar to the participants (graduate students in the same
department) were taken in a photo studio room with the
same lighting condition and the same camera. Images of
two individuals were used for experiment 1, and images of
three individuals were used for experiment 2. All individ-
uals portrayed in the stimuli signed written informed con-
sent for the use of their pictures for research and in
publications.

The images were converted to grayscale, resized and
centered so that the eyes were aligned in the same posi-
tion for the three identities, and the background was
manually removed. These operations were performed us-
ing ImageMagick and Adobe Photoshop CS4. The result-
ing images were matched in luminance (average pixel
intensity) using the SHINE toolbox (function lumMatch;
Willenbockel et al., 2010) after applying an oval mask, so
that only pixels belonging to the face were modified. The
luminance-matched images were then used to create
morph continua (between two identities in experiment 1;
and among three identities in experiment 2) using Abrosoft
Fantamorph (v. 5.4.7) with seven percentages of morphing:
0, 17, 33, 50, 67, 83, and 100.

Experiment 1
Paradigm

The experimental paradigm was similar to that by Afraz
et al. (2010). In every trial, participants would see a briefly
flashed image in one of eight locations at the periphery of
their visual field (Fig. 1). Each image was shown for 50 ms
at a distance of 7° of visual angle from the fixation point,
and subtended �4° � 4° of visual angle. The images
could appear in one of eight locations evenly spaced by
45 angular degrees around fixation. For experiment 1,
only the morph ab was used (Fig. 1). Participants were

required to maintain fixation on a central red dot subten-
ding �1° of visual angle.

After the image disappeared, participants reported
which identity they saw using the left (identity a) and right
(identity b) arrow keys. There was no time limit for re-
sponding, and participants were asked to be as accurate
as possible. After responding, participants had to press
the spacebar key to continue to the next trial.

Participants performed five blocks containing 112 trials
each, for a total of 560 trials. In each block, all the images
appeared twice for every angular location (eight angular
locations � seven morph percentages � 2 � 112). This
provided ten data points for each percentage morphing at
each location, for a total of 70 trials at each angular
location.

Before the experimental session participants were
shown the identities used in the experiment (correspond-
ing to 0% and 100% morphing; Fig. 2), and practiced the
task with 20 trials. These data were discarded from the
analyses. Participants performed two identical experi-
mental sessions at least four weeks apart.

Participants sat at a distance of �50 cm from the
screen, with their chin positioned on a chin-rest. The
experiment was run using Psychtoolbox (Kleiner et al.,
2007; version 3.0.12) in MATLAB (R2014b). The screen
operated at a resolution of 1920 � 1200 and a 60-Hz
refresh rate.

Subjects
We recruited six subjects for this experiment (three

males, including one of the authors, M.V.d.O.C.). The
sample size for experiment 1 was not determined by
formal estimates of power and was limited by the avail-
ability of participants familiar with the stimulus identities.
After the first experimental session, two participants (one
male, one female) were at chance level in the task, thus
only data from four subjects (two males, mean age 27.50
� 2.08 SD) were used for the final analyses.

Figure 1. Experimental paradigm. The left panel shows the experimental paradigm, while the right panel shows the locations used in
experiment 1 (eight locations, top panel) and in experiment 2 (four locations, bottom panel).
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All subjects had normal or corrected-to-normal vision,
and provided written informed consent to participate in
the experiment. The study was approved by the Dart-
mouth College Committee for the Protection of Human
Subjects.

Experiment 2
Paradigm

Experiment 2 differed from experiment 1 in the follow-
ing parameters (Figs. 1, 3): (1) three morph continua (ab,
ac, bc) instead of one; (2) images appeared in four loca-
tions (45°, 135°, 225°, 315°) instead of eight; (3) images
were shown for 100 ms instead of 50 ms to make the task
easier.

All other parameters were the same as in experiment 1.
Participants had to indicate which of the three identities

they saw by pressing the left (identity a), right (identity b),
or down (identity c) arrow keys.

Participants performed 10 blocks containing 84 trials
each, for a total of 840 trials. In each block, all the images
appeared once for every angular location (four angular
locations � seven morph percentages � three morphs �
84). We used 70 data points at every angular location to fit
the model for each pair of identities. Thus, we used the
responses to different unmorphed images for each pair of
identities, ensuring independence of the models.

Before the experimental session participants were
shown the identities used in the experiment (correspond-
ing to 0% and 100% morphing; Fig. 3), and practiced the
task with 20 trials. These data were discarded from the
analyses. Participants performed two experimental ses-
sions at least four weeks apart.

Figure 2. Stable and idiosyncratic biases in identification in experiment 1. A, Psychometric fit for two subjects from both sessions.
Colors indicate location (see colors in bottom left corner); actual data (points) are shown only for the extreme locations to avoid visual
clutter. B, The parameter estimates across sessions (at least 33 d apart) were stable (r � 0.71 [0.47, 0.84]; Table 1). Dots represent
individual parameter estimates for each location, color coded according to each subject. Correlations were performed on the data
shown in this panel. C, Example morphs used in the experiment. Note that the morphs depicted here are shown for illustration only,
and participants saw morphs of identities that were personally familiar to them.
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Subjects
Ten participants (five males, mean age 27.30 � 1.34

SD) participated in experiment 2, five of which were re-
cruited for experiment 1 as well. No authors participated
in experiment 2. The sample size (n � 10) was determined
using G�Power3 (Faul et al., 2007, 2009) to obtain 80%
power at � � 0.05 based on the correlation of the PSE

estimates across sessions in experiment 1, using a bivari-
ate normal model (one-tailed).

All subjects had normal or corrected-to-normal vision,
and provided written informed consent to participate in
the experiment. The study was approved by the Dart-
mouth College Committee for the Protection of Human
Subjects.

Figure 3. Stable and idiosyncratic biases in identification in experiment 2. A, Psychometric fit for one subject from both sessions for
each of the morphs. Colors indicate location (see colors in bottom left corner); actual data (points) are shown only for the extreme
locations to avoid visual clutter. B, The parameter estimates across sessions (at least 28 d apart) were stable (r � 0.64 [0.5, 0.75];
Table 1). Dots represent individual parameter estimates for each location, color coded according to each participant. Correlations
were performed on the data shown in this panel. C, Example morphs used in the experiment. Note that the morphs depicted here are
shown only for illustration (participants saw morphs of identities who were personally familiar).
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Familiarity and contact scales
After the two experimental sessions, participants com-

pleted a questionnaire designed to assess how familiar
each participant was with the identities shown in the
experiment. Participants saw each target identity, and
were asked to complete various scales for that identity.
The questionnaire comprised the Inclusion of the Other
in the Self (IOS) scale (Aron et al., 1992; Gächter et al.,
2015), the Subjective Closeness Inventory (SCI; Bersc-
heid et al., 1989), and the We-scale (Cialdini et al., 1997).
The IOS scale showed two circles increasingly overlap-
ping labeled “you” and “X”, and participants were given
the following instructions: using the figure below select
which pair of circles best describes your relationship with
this person. In the figure, X serves as a placeholder for the
person shown in the image at the beginning of this sec-
tion, and you should think of X being that person. By
selecting the appropriate number please indicate to what
extent you and this person are connected (Aron et al.,
1992; Gächter et al., 2015). The SCI scale comprised the
two following questions. Relative to all your other relation-
ships (both same and opposite sex), how would you char-
acterize your relationship with the person shown at the
beginning of this section? And relative to what you know
about other people’s close relationships, how would you
characterize your relationship with the person shown at
the beginning of this section? Participants responded with
a number between one (not close at all) and seven (very
close; Berscheid et al., 1989). The We-scale comprised
the following question: please select the appropriate num-
ber below to indicate to what extent you would use the
term “WE” to characterize you and the person shown at
the beginning of this section. Participants responded with
a number between one (not at all) and seven (very much
so). For each participant and each identity, we created a
composite “familiarity score” by averaging the scores in
the three scales.

We also introduced a scale aimed at estimating the
amount of interaction or contact between the participant
and the target identity. The scale was based on the work
by Idson and Mischel (2001), and participants were asked
to respond yes/no to the following six questions. Have
you ever seen him during a departmental event? Have you
ever seen him during a party? Have you ever had a group
lunch/dinner/drinks with him? Have you ever had a one-
on-one lunch/dinner/drinks with him? Have you ever
texted him personally (not a group message)? And have
you ever emailed him personally (not a group email)? The
responses were converted to 0/1 and for each participant
and for each identity we created a “contact score” by
summing all the responses.

For each subject separately, to obtain a measure of
familiarity and contact related to each morph, we aver-
aged the familiarity and contact scores of each pair of
identities (e.g., the familiarity score of morph ab was the
average of the scores for identity a and identity b).

Psychometric fit
For both experiments, we fitted a group-level psycho-

metric curve using Logit Mixed-Effect models (Moscatelli

et al., 2012) as implemented in lme4 (Bates et al., 2015).
For each experiment and each session, we fitted a model
of the form

yk � logit��0x � �
i�1

n

��i � zi
k�Ii�

where k indicates the subject, n is the number of angular
locations (n � 8 for the first experiment, and n � 4 for the
second experiment), Ii is an indicator variable for the
angular location, �i are the model fixed-effects, and zi are
the subject-level random-effects (random intercept). From
this model, we defined for each subject the point of
subjective equality (PSE) as the point x such that logit(x) �
0.5, that is for each angular location

PSEi
k � �

�i

�0
�

zi
k

�0
� PSEi

p � �PSEi
k

Thus, the PSE for subject k at angular location i can be
decomposed in a population-level PSE and a subject-
specific deviation from the population level, indicated with
PSEp and �PSEk, respectively.

In experiment 2, we fitted three separate models for
each of the morph continua. In addition, before fitting we
removed all trials in which subjects mistakenly reported a
third identity. For example, if an image belonging to
morph ab was presented, and subjects responded with c,
the trial was removed.

To quantify the bias across locations, we computed a
variance score by squaring the �PSEi, and summing them

across locations, that is bias � �
i�1

4

��PSEi�2. Because this
quantity is proportional to the variance against 0, through-
out the manuscript we refer to it as �PSE variance.

Computational modeling
To account for the retinotopic biases we simulated a

population of neural units activated according to the
Compressive Spatial Summation model (Kay et al., 2013,
2015) and performed a model-based decoding analysis.
This model was originally developed as an encoding
model (Naselaris et al., 2011) to predict BOLD responses
and estimate pRFs in visual areas and face-responsive
areas such as OFA, pFus, and mFus (Kay et al., 2015). We
refer to activations of neural units that can be thought as
being voxels, small populations of neurons, or individual
neurons.

The CSS model posits that the response of a neural unit
is equal to

r � g·an

with a � �G�x, y�x0, y0, 	)S�x, y�dxdy, and G�x, y| x0, y0, 	� be-
ing a 2D Gaussian centered at x0, y0, with covariance 
 � 	I,
and S�x, y� being the stimulus converted into contrast map.
The term g represents the gain of the response, while the
power exponent n accounts for subadditive responses (Kay
et al., 2013).

We reanalyzed the data from the fMRI experiments in Kay
et al. (2015; pRF-estimation experiment and face-task experi-
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ment) using the publicly available data (http://kendrickkay.net/
vtcdata) and code (http://kendrickkay.net/socmodel/) to
obtain parameter estimates for three ROIs [inferior occip-
ital gyrus (IOG), also termed OFA, mFus, and pFus]. The
simulation results were similar using parameter estimates
from both experiments, thus we describe the procedure
for the face-task experiment only because of the similar-
ities with the behavioral experiments reported here. We
refer the reader to their paper for more details on the
experiments and data preprocessing. In the face-task
experiment three participants saw medium-sized faces
(3.2°) in 25 visual field locations (5 � 5 grid with 1.5°
spacing), and were asked to perform a 1-back repetition
detection task on face identity while fixating at the center
of the screen. The resulting 25 �s were used to fit the
models. As in the original paper, negative � estimates
were rectified (set to 0) and the power exponent was set
to n � 0.2 and not optimized because of the reduced
number of stimuli. Model fitting was performed with
cross-validation. Stimuli were randomly split into ten
groups, and each group was left out in turn for testing.
The parameter estimates were aggregated across cross-
validation runs taking the median value.

We simulated a population of N � Na � Nb neural units,
where Na indicates the number of units selective to iden-
tity a, and Nb indicates the number of units selective to
identity b. For simplicity we set Nb � 1 and varied Na,
effectively changing the ratio of units selective to one of
the two identities. We performed additional simulations
increasing the total number of units and found consistent
results, but here we report the simulation with Nb � 1 for
simplicity and consistency with the hypothesis of small
neural populations responsive to specific identities. The
stimuli consisted of contrast circles of diameter 4° cen-
tered at 7° from the center, and placed at an angle of 45°,
135°, 225°, and 315°, simulating experiment 2. We simu-
lated the activation of the units assuming independent
and identically distributed random noise normally distrib-
uted with mean of 0 and standard deviation of 0.1.

Each experiment consisted of a learning phase in which
we simulated the (noisy) response to the full identities a
and b in each of the four locations, with 10 trials for each
identity and location. We used these responses to train a
support vector machine (Cortes and Vapnik, 1995) with
linear kernel to differentiate between the two identities
based on the pattern of population responses. Then, we
simulated the actual experiment by generating responses
to morphed faces. For simplicity, we assumed a linear
response between the amount of morphing and the pop-
ulation response. That is, we assumed that if a morph with
m percentage morphing toward b was presented, the
population response was a combination of the responses
to a and b, weighted by (1-m, m). The amounts of mor-
phing paralleled those used in the two experiments (0, 17,
33, 50, 67, 83, 100). We simulated 10 trials for each
angular location and each amount of morphing, and re-
corded the responses of the trained decoder. These re-
sponses were used to fit a logit model similar to the model
used in the main analyses (without random effects), and to
estimate the PSE for each angular location. The sum of

these squared estimates around 50% was computed and
stored.

We varied systematically the ratio Na/Nb of units re-
sponsive to identity a, ranging from 1 to 9, and repeated
500 experiments for each ratio. For each experiment,
parameter values (pRF location and size) were randomly
sampled without replacement from the population of pa-
rameters previously estimated from the face-task experi-
ment of Kay et al. (2015). We simulated attentional
modulations by modifying the gain for the units respon-
sive to identity a between 1 and 4 in 0.5 steps, and fixing
the gain for identity b to 1. As an alternative, we simulated
the effect of increases in receptive field size for the units
responsive to identity a by increasing their receptive field
size from 0% to 50% in 10% steps, while keeping the gain
fixed to 1. We simulated receptive fields in this way from
three face-responsive ROIs (IOG, mFus, and pFus).

Code and data availability
Code for the analyses, raw data for both experiments,

single subject results, and simulations are available at
https://osf.io/wdaxs. All code is also available as Ex-
tended Data.

Results
Experiment 1

In this experiment, participants performed a two-
alternative forced-choice (AFC) task on identity discrimi-
nation. In each trial, they saw a face presented for 50 ms
and were asked to indicate which of the two identities
they just saw. Each face could appear in one of eight
stimulus locations. Participants performed the same ex-
periment with the same task a second time, at least 33 d
after the first session (average 35 � 4 d SD).

Participants showed stable and idiosyncratic retinal
heterogeneity for identification. The PSE estimates for the
two sessions were significantly correlated (Table 1; Fig.
2B), showing stable estimates, and the within-subject
correlations of �PSEs (see Materials and Methods) was
significantly higher than the between-subject correlation
(correlation difference: 0.87 [0.64, 1.10], 95% BCa confi-
dence intervals; Efron, 1987; Table 2), showing that the
biases were idiosyncratic (for example fits for two differ-
ent subjects, see Fig. 2A).

Experiment 2
In experiment 1, participants exhibited stable, retino-

topic biases for face identification that were specific to

Table 1. Correlation of parameter estimates across sessions
for the two experiments

Parameter r t df
Experiment 1
PSE 0.89 [-0.23, 1] 4.86�� 6
�PSE 0.71 [0.47, 0.84] 5.47��� 30
Experiment 2
PSE 0.98 [0.93, 0.99] 15.22��� 10
�PSE 0.64 [0.5, 0.75] 9.02��� 118

All confidence intervals are 95% BCa with 10,000 repetitions.
* p � 0.05; ��p � 0.01; ���p � 0.001.
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each participant. Experiment 1, however, used only two
target identities, thus it could not address the question of
whether the biases were specific to target identities or to
general variations in face recognition that would be the
same for all target faces. For this reason, we conducted a
second experiment in which we increased the number of
target identities. In experiment 2, participants performed a
similar task as in experiment 1 with the following differ-
ences. First, each face was presented for 100 ms instead
of 50 ms to make the task easier, since some participants
could not perform the task in experiment 1; second, each
face could belong to one of three morphs, and partici-
pants were required to indicate which of three identities
the face belonged to; third, each face could appear in four
retinal locations instead of eight (Fig. 1) to maintain an
appropriate duration of the experiment. Each participant
performed another experimental session at least 28 d
after the first session (average 33 � 8 d SD).

We found that participants exhibited stable biases
across sessions for the three morphs (Table 1; Fig. 3).
Interestingly, within-subjects correlations were higher
than between-subjects correlations for the two morphs
that included the identity c (morphs ac and bc), but not for
morph ab (Table 2), suggesting stronger differences in
spatial heterogeneity caused by identity c. To test this
further, we performed a two-way ANOVA on the PSE
estimates across sessions with participants and angular
locations as factors. The ANOVA was run for each pair of
morphs containing the same identity (e.g., for identity a,
the ANOVA was run on data from morphs ab and ac), and
the PSE estimates were transformed to be with respect
to the same identity (e.g., for identity b, we considered
PSEbc and 100 - PSEab). We found significant interactions
between participants and angular locations for identity b
(F(27,120) � 1.77, p � 0.01947) and identity c (F(27,120) �
3.34, p � 3.229e-06), but not identity a (F(27,120) � 1.17, p
� 0.2807), confirming that participants showed increased
spatial heterogeneity for identities b and c. The increased
spatial heterogeneity for identities b and c, but not a, can
be appreciated by inspecting the �PSE estimates for
each participant. Figure 4A shows lower bias across ret-
inal locations for morph ab than the other two morphs,
suggesting more similar performance across locations for
morph ab. To investigate factors explaining the difference
in performance across spatial locations between the three
identities, we compared the �PSE estimates with the
reported familiarity of the identities.

The variance of the average �PSE estimates across
sessions for each subject was significantly correlated with
the reported familiarity of the identities (r � -0.56 [-0.71,
-0.30], t(28) � -3.59, p � 0.001248), showing that the
strength of the retinal bias for identities was inversely
modulated by personal familiarity (Fig. 4B). We estimated
personal familiarity by averaging participants’ ratings of
the identities on three scales (IOS, the We-scale, and the
SCI; for details, see Materials and Methods). The three
scales were highly correlated (min correlation r � 0.89,
max correlation r � 0.96).

Because the amount of personal familiarity was corre-
lated with the amount of contact with a target identity (r �
0.45 [0.17, 0.68], t(28) � 2.65, p � 0.01304), we tested
whether a linear model predicting �PSE with both contact
and familiarity as predictors could fit the data better. Both
models were significant, but the model with two predic-
tors provided a significantly better fit (�2(1) � 6.30, p �
0.0121, log-likelihood ratio test), and explained more vari-
ance as indicated by higher R2: R2 � 0.45, adjusted R2 �
0.40 for the model with both Familiarity and contact
scores (F(2,27) � 10.82, p � 0.0003539), and R2 � 0.32,
adjusted R2 � 0.29 for the model with the familiarity score
only (F(1,28) � 12.88, p � 0.001248). Importantly, both
predictors were significant (Table 3), indicating that famil-
iarity modulated the variance of the �PSE estimates in
addition to modulation based on the amount of contact
with a person. After adjusting for the contact score, the
variance of the �PSE estimates and the familiarity score
were still significantly correlated (rp � -0.42 [-0.61, -0.16],
t(28) � -2.42, p � 0.02235).

Model simulation
In two behavioral experiments we found a stable, idio-

syncratic bias toward specific identities that varied ac-
cording to the location in which the morphed face stimuli
appeared. The bias was reduced with more familiar iden-
tities, showing effects of learning. To account for this
effect, we hypothesized that small populations of neurons
selective to specific identities sample a limited portion of
the visual field (Afraz et al., 2010). We also hypothesized
that with extended interactions with a person, more neural
units become selective to the facial appearance of
the identity. In turn, this increases the spatial extent of the
field covered by the population and thus reduces the
retinotopic bias.

To quantitatively test this hypothesis, we simulated a
population of neural units in IOG (OFA), pFus, and mFus
activated according to the Compressive Spatial Summa-
tion model (Kay et al., 2013, 2015). The parameters of this
model were estimated from the publicly available data
from Kay et al. (2015). We simulated learning effects by
progressively increasing the number of units selective to
one of the two identities, and measuring the response of
a linear decoder trained to distinguish between the two
identities. As can be seen in Figure 5A, increasing the
number of units reduced the overall bias (expressed as
variance against 0.5 of the PSE estimates; for details, see
Materials and Methods) by increasing the spatial cover-
age (Fig. 5B).

Table 2. Comparison of within-subjects correlations of pa-
rameter estimates across sessions with between-subjects
correlations

Morph Within-subjects r Between-subjects r Difference
Experiment 1
ab 0.65† [0.57, 0.8] -0.22 [-0.41, -0.01] 0.87† [0.63, 1.1]
Experiment 2
ab 0.32 [-0.10, 0.62] -0.02 [-0.15, 0.11] 0.34 [-0.07, 0.69]
ac 0.62† [0.35, 0.79] -0.07 [-0.21, 0.08] 0.68† [0.41, 0.92]
bc 0.85† [0.61, 0.95] -0.08 [-0.27, 0.12] 0.92† [0.68, 1.15]

All confidence intervals are 95% BCa with 10,000 repetitions.
† indicates that the CIs do not contain 0.
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Interestingly, the larger bias was found within the sim-
ulated IOG. Inspecting the pRF coverage of the three
ROIs revealed that the stimuli shown at 7° of eccentricity
were at the border of the receptive field coverage in IOG
(Fig. 5B) because of the smaller RF sizes (median value
across voxels of 2.98° [2.85°, 3.10°], 95% bootstrapped
confidence intervals), compared to those in pFus and
mFus (3.87° [3.65°, 4.05°] and 3.55° [3.35°, 3.75°], respec-
tively). To quantify this difference, we computed the av-
erage proportion of units covering the stimulus locations
in each ROI. As predicted from the smaller RF sizes, fewer
units in IOG covered the area where the stimuli were
presented (31.61%) compared to pFus (47.04%) and
mFus (45.83%). These results suggest that a larger reti-

notopic bias would be expected to originate from units in
IOG.

As alternative explanations, we tested whether differ-
ences in gain or increases in RF size could reduce the bias
to a similar extent as increasing the number of units.
Figure 5C shows that modulating the gain failed to reduce
the retinotopic bias in all simulated ROIs, while Figure 5D
shows that increasing RF size of the units responsive to
the more familiar identity can also reduce the retinotopic
bias.

Discussion
Afraz et al. (2010) reported spatial heterogeneity for

recognition of facial attributes such as gender and age,
suggesting that relatively independent neural populations
tuned to facial features might sample different regions of
the visual field. Prolonged social interactions with person-
ally familiar faces lead to facilitated, prioritized processing
of those faces. Here we wanted to investigate if this
learning of face identity through repeated social interac-
tions also affects these local visual processes, by mea-
suring spatial heterogeneity of identity recognition. We

Figure 4. The strength of idiosyncratic biases was modulated by personal familiarity. A, Individual subjects’ �PSE for each morph,
averaged across sessions. Note the difference in variance across locations for the three different morphs (left to right). B, The variance
across locations of �PSE estimates was inversely correlated with the reported familiarity of the identities (left panel; r � -0.56 [-0.71,
-0.30]), even when adjusting for the contact score (middle panel; rp � -0.42 [-0.61, -0.16]). The right panel shows the scatterplot
between the contact score and the �PSE variance, adjusted for the familiarity score, which were significantly correlated as well
(rp � -0.44 [-0.62, -0.17]). See Materials and Methods for definition of the familiarity score and the contact score. Dots represent
individual participant’s data, color coded according to morph type. Correlations were performed on the data shown in these panels.

Table 3. Models predicting variance of the �PSE estimates
across angular locations in experiment 2

Model R2 Score � �p
2 t p

1 0.32 Familiarity -0.0574 0.32 -3.59 0.0013
2 0.45 Familiarity -0.0390 0.17 -2.38 0.0249

Contact -0.0452 0.19 -2.512 0.0183
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measured whether face identification performance for
personally familiar faces differed according to the location
in the visual field where face images were presented. We
found that participants exhibited idiosyncratic, retinotopic
biases for different face identities that were stable across
experimental sessions. Importantly, the variability of the
retinotopic bias was reduced with increased familiarity
with the target identities. These data support the hypoth-

esis that familiarity modulates processes in visual areas
with limited position invariance (Visconti di Oleggio Cas-
tello et al., 2017a).

These results extend the reports of spatial heterogene-
ity in visual processing to face identification. Similar bi-
ases exist for high-level judgments such as face gender
and age (Afraz et al., 2010), as well as shape discrimina-
tion (Afraz et al., 2010), crowding, and saccadic precision

Figure 5. Simulating retinotopic biases and learning effects in face-responsive ROIs. We hypothesized that neural units (voxels, small
populations of neurons, or individual neurons) cover a limited portion of the visual field, and that learning increases the number of
neural units selective to a particular identity. A, Increasing the number of units selective to one identity reduces the retinotopic bias.
Results of simulating 500 experiments by varying the ratio of neural units selective to one of two identities and fixing the gain to 1 for
both identities. Dots represent median values with 95% bootstrapped CIs (1000 replicates; note that for some points the CIs are too
small to be seen). In all simulated ROIs the variance of the PSE around 50% decreases with increasing number of units selective to
a, but remains larger in IOG because of its receptive field size. B, Population coverage of the units in each ROI estimated from the
face-task data in Kay et al. (2015) and used in the simulations. Circles at the periphery show the simulated stimulus locations. Each
image is normalized to the number of units in each ROI. Receptive fields are computed with radius 2	, following the convention in
Kay et al. (2015). Percentages below each image show the average proportion of units whose receptive field cover the stimulus
locations. Compared to pFus and mFus, fewer units cover the stimuli in IOG resulting in a larger bias across locations. C, Increasing
the gain of the response to one identity fails to reduce the retinotopic bias. D, Increasing the receptive field size of the units responsive
to one identity reduces the retinotopic bias. In both C, D, each dot represents median values of PSE variance for 500 simulated
experiments. CIs are not shown to reduce visual clutter.
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(Greenwood et al., 2017). Afraz et al. (2010) suggested
that neurons in IT exhibit biases that are dependent on
retinal location because their receptive field sizes are not
large enough to provide complete translational invariance,
and stimuli in different locations will activate a limited
group of neurons. In this work, we show that these per-
ceptual biases for face processing not only exist for gen-
der and age judgments (Afraz et al., 2010), but also for
face identification and that these biases are affected by
learning.

Location-dependent coding in face-responsive areas
Neurons in temporal cortex involved in object recogni-

tion are widely thought to be invariant to object transla-
tion, that is their response to an object will not be
modulated by the location of the object in the visual field
(Riesenhuber and Poggio, 1999; Hung et al., 2005). How-
ever, evidence suggests that location information is pre-
served in activity of neurons throughout temporal cortex
(Kravitz et al., 2008; Hong et al., 2016). Location informa-
tion can be encoded as a retinotopic map, such as in early
visual cortex, where neighboring neurons are selective to
locations that are neighboring in the visual field. In the
absence of a clear cortical retinotopic map, location in-
formation can still be preserved at the level of population
responses (Schwarzlose et al., 2008; Rajimehr et al.,
2014; Henriksson et al., 2015; Kay et al., 2015).

Areas of occipital and temporal cortices show re-
sponses to objects that are modulated by position (Kravitz
et al., 2008, 2010; Sayres and Grill-Spector, 2008). In
particular, also face-responsive areas of the ventral core
system (Haxby et al., 2000; Guntupalli et al., 2017; Vis-
conti di Oleggio Castello et al., 2017a) such as OFA, pFus,
and mFus show responses that are modulated by the
position in which a face appears. Responses to a face are
stronger in these areas when faces are presented foveally
rather than peripherally (Levy et al., 2001; Hasson et al.,
2002; Malach et al., 2002). In addition, early face process-
ing areas such as PL in monkeys or OFA in humans code
specific features of faces in typical locations. Neurons in
PL are tuned to eyes in the contralateral hemifield, with
receptive fields covering the typical location of the eyes at
fixation (Issa and DiCarlo, 2012). Similarly, OFA responses
to face parts are stronger when they are presented in
typical locations (de Haas et al., 2016), and OFA activity
codes the position and relationship between face parts
(Henriksson et al., 2015).

The modulation of responses by object location in these
areas seems to be driven by differences in receptive field
sizes. In humans, pRFs can be estimated with fMRI by
modeling voxel-wise BOLD responses (Dumoulin and
Wandell, 2008; Wandell and Winawer, 2011, 2015; Kay
et al., 2013). These studies have shown that pRF centers
are mostly located in the contralateral hemifield (Kay et al.,
2015; Grill-Spector et al., 2017b), corresponding to the
reported preference of these areas for faces presented
contralaterally (Hemond et al., 2007). In addition, pRF
sizes increase the higher in the face processing hierarchy,
favoring perifoveal regions (Kay et al., 2015; Silson et al.,
2016). The location-dependent coding of faces in these

face-processing areas might be based on population ac-
tivity, since these areas do not overlap with retinotopic
maps in humans (for example, OFA does not seem to
overlap with estimated retinotopic maps; Silson et al.,
2016; but see Janssens et al., 2014; Rajimehr et al., 2014;
Arcaro and Livingstone, 2017; Arcaro et al., 2017 for work
in monkeys showing partial overlap between retinotopic
maps and face patches).

Cortical origin of idiosyncratic biases and effects of
familiarity

Populations of neurons in visual areas and in temporal
cortex cover limited portions of the visual field, with pro-
gressively larger receptive fields centered around perifo-
veal regions (Grill-Spector et al., 2017b). This property
suggests that biases in high-level judgments of gender,
age, and identity may be due to the variability of feature
detectors that cover limited portions of the visual field
(Afraz et al., 2010). While the results from our behavioral
study cannot point to a precise location of the cortical
origin of these biases, our computational simulation sug-
gests that a larger bias could arise from responses in the
OFA, given the estimates of receptive field size and ec-
centricity in this area (Kay et al., 2015; Grill-Spector et al.,
2017b). We cannot exclude that this bias might originate
in earlier areas of the visual processing stream.

In this work, we showed that the extent of variation in
biases across retinal locations was inversely correlated
with the reported familiarity with individuals, suggesting
that a history of repeated interaction with a person may
tune the responses of neurons to that individual in differ-
ent retinal locations, generating more homogeneous re-
sponses. Repeated exposure to the faces of familiar
individuals during real-life social interactions results in a
detailed representation of the visual appearance of a
personally familiar face. Our computational simulation
suggests a simple process for augmenting and strength-
ening the representation of a face. Learning through social
interactions might cause a greater number of neural units
to become responsive to a specific identity, thus covering
a larger area of the visual field and reducing the retino-
topic biases. Our results showed that both ratings of
familiarity and ratings of amount of contact were strong
predictors for reduced retinotopic bias; however, familiar-
ity still predicted the reduced bias when accounting for
amount of contact. While additional experiments are
needed to test whether pure perceptual learning is suffi-
cient to reduce the retinotopic biases to the same extent
as personal familiarity, these results suggest that re-
peated personal interactions can strengthen neural rep-
resentations to a larger extent than mere increased
frequency of exposure to a face. This idea is consistent
with neuroimaging studies showing a stronger and
more widespread activation for personally familiar
faces compared to unfamiliar or experimentally learned
faces (Leibenluft et al., 2004; Gobbini and Haxby, 2006,
2007; Cloutier et al., 2011; Natu and O’Toole, 2011;
Bobes et al., 2013; Ramon and Gobbini, 2018; Visconti
di Oleggio Castello et al., 2017a).

New Research 11 of 14

September/October 2018, 5(5) e0054-18.2018 eNeuro.org



Effects of attention
Could differences in attention explain the modulation of

retinotopic biases reported here? Faces, and personally
familiar faces in particular, are important social stimuli
whose correct detection and processing affects social
behavior (Brothers, 2002; Gobbini and Haxby, 2007). Be-
havioral experiments from our lab have shown that per-
sonally familiar faces break through faster in a continuous
flash suppression paradigm (Gobbini et al., 2013), and
hold attention more strongly than unfamiliar faces do in a
Posner cueing paradigm (Chauhan et al., 2017). These
results show that familiar faces differ not only at the level
of representations, but also in allocation of attention. At
the neural level, changes in attention might be imple-
mented as increased gain for salient stimuli or increased
receptive field size (Kay et al., 2015). In an fMRI experi-
ment, Kay et al. (2015) reported that pRF estimates were
modulated by the type of task. Gain, eccentricity, and size
of the pRFs increased during a 1-back repetition detec-
tion task on facial identity as compared to a 1-back task
on digits presented foveally.

To address differences in gain in our computational
simulation, we modified the relative gain of units respon-
sive to one of the two identities and found that it did not
influence the PSE bias across locations. This bias was
more strongly modulated by the number of units respon-
sive to one of the identities. On the other hand, simulating
increases in receptive field size reduced the retinotopic
bias almost as much as increasing the number of units.
These simulations suggest two alternative, and possi-
bly interacting, mechanisms that can reduce retinotopic
biases in identification: recruitment of additional units
selective to an identity or changes in RF properties.
Additional experiments are needed to further charac-
terize the differences in attention and representations
that contribute to the facilitated processing of person-
ally familiar faces.

Implications for computational models of vision
Many computational models of biological vision posit

translational invariance: neurons in IT are assumed to
respond to the same extent, regardless of the object
position (Riesenhuber and Poggio, 1999; Serre et al.,
2007; Kravitz et al., 2008). Even the models that currently
provide better fits to neural activity in IT such as hierar-
chical, convolutional neural networks (Yamins et al., 2014;
Kriegeskorte, 2015; Yamins and DiCarlo, 2016) use
weight sharing in convolutional layers to achieve position
invariance (LeCun et al., 2015; Schmidhuber, 2015; Good-
fellow et al., 2016). While this reduces complexity by
limiting the number of parameters to be fitted, neuroim-
aging and behavioral experiments have shown that trans-
lational invariance in IT is preserved only for small
displacements (DiCarlo and Maunsell, 2003; Kay et al.,
2015; Silson et al., 2016; for review, see Kravitz et al.,
2008), with varying receptive field sizes and eccentricities
(Grill-Spector et al., 2017a). Our results highlight the lim-
ited position invariance for high-level judgments such as
identity, and add to the known spatial heterogeneity for
gender and age judgments (Afraz et al., 2010). Our results

also show that a higher degree of invariance can be
achieved through learning, as shown by the reduced bias
for highly familiar faces. This finding highlights that to
increase biological plausibility of models of vision, differ-
ences in eccentricity and receptive field size should be
taken into account (Poggio et al., 2014), as well as more
dynamic effects such as changes induced by learning and
attention (Grill-Spector et al., 2017a).

Conclusions
Taken together, the results reported here support our

hypothesis that facilitated processing for personally famil-
iar faces might be mediated by the development or tuning
of detectors for personally familiar faces in the visual
pathway in areas that still have localized analyses (Gob-
bini et al., 2013; Visconti di Oleggio Castello et al., 2014,
2017b; Visconti di Oleggio Castello and Gobbini, 2015).
The OFA might be a candidate for the cortical origin of
these biases as well as for the development of detectors
for diagnostic fragments. Patterns of responses in OFA
(and neurons in the monkey putative homolog PL; Issa
and DiCarlo, 2012) are tuned to typical locations of face
fragments (Henriksson et al., 2015; de Haas et al., 2016).
pRFs of voxels in this region cover an area of the visual
field that is large enough to integrate features of interme-
diate complexity at an average conversational distance
(Kay et al., 2015; Grill-Spector et al., 2017b), such as
combinations of eyes and eyebrows, which have been
shown to be theoretically optimal and highly informative
for object classification (Ullman et al., 2001, 2002; Ullman,
2007).

Future research is needed to further disambiguate dif-
ferences in representations or attention that generate
these biases and how learning reduces them. Nonethe-
less, our results suggest that prioritized processing for
personally familiar faces may exist at relatively early
stages of the face processing hierarchy, as shown by the
local biases reported here. Learning associated with re-
peated personal interactions modifies the representation
of these faces, suggesting that personal familiarity affects
face-processing areas well after developmental critical
periods (Arcaro et al., 2017; Livingstone et al., 2017). We
hypothesize that these differences may be one of the
mechanisms that underlies the known behavioral advan-
tages for perception of personally familiar faces (Burton
et al., 1999; Gobbini and Haxby, 2007; Gobbini, 2010;
Gobbini et al., 2013; Visconti di Oleggio Castello et al.,
2014, 2017b; Ramon et al., 2015; Visconti di Oleggio
Castello and Gobbini, 2015; Chauhan et al., 2017; Ramon
and Gobbini, 2018).
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