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Tunable metal-insulator transition, Rashba effect
and Weyl Fermions in a relativistic charge-ordered
ferroelectric oxide
Jiangang He 1,2, Domenico Di Sante3, Ronghan Li4, Xing-Qiu Chen4, James M. Rondinelli 1

& Cesare Franchini2

Controllable metal–insulator transitions (MIT), Rashba–Dresselhaus (RD) spin splitting, and

Weyl semimetals are promising schemes for realizing processing devices. Complex oxides

are a desirable materials platform for such devices, as they host delicate and tunable charge,

spin, orbital, and lattice degrees of freedoms. Here, using first-principles calculations and

symmetry analysis, we identify an electric-field tunable MIT, RD effect, and Weyl semimetal

in a known, charge-ordered, and polar relativistic oxide Ag2BiO3 at room temperature.

Remarkably, a centrosymmetric BiO6 octahedral-breathing distortion induces a sizable

spontaneous ferroelectric polarization through Bi3+/Bi5+ charge disproportionation, which

stabilizes simultaneously the insulating phase. The continuous attenuation of the Bi3+/Bi5+

disproportionation obtained by applying an external electric field reduces the band gap and

RD spin splitting and drives the phase transition from a ferroelectric RD insulator to a

paraelectric Dirac semimetal, through a topological Weyl semimetal intermediate state.

These findings suggest that Ag2BiO3 is a promising material for spin-orbitonic applications.
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Cross-controlling of order parameters by external stimuli
in a single-phase material is of great interest in both
fundamental research and technological applications1,2.

For instance, metal-to-insulator transitions (MIT) driven by the
application of an electric field represent a viable way for
designing energy-efficient logic devices3–5. Ferroelectric com-
pounds, whose spontaneous electric polarization can be reversed
by the application of an external electric field, are among the
most promising materials to achieve this type of switch6, owing
to the many different driving forces enabling ferroelectric
behavior, including cooperative interactions of lattice distor-
tions, charge, spin, and orbital ordering7–10. Among the differ-
ent types of MIT observed in nature11 (Mott12, Peierls13,
Slater14, Lifshitz15, Verwey16, to name a few), the Peierls MIT,
associated with a crystal lattice distortion, frequently exhibits a
higher transition temperature (e.g., VO2: TMIT ~ 340 K;17

YNiO3: TMIT ~ 580 K18). Although Peierls-like MITs are ubi-
quitous in oxides, the breathing mode involving cation-oxygen
bond length disproportionation usually does not couple with
ferroelectric displacements17,19–21.

Recent studies have shown that an external electric field could
also be employed to switch the Rashba–Dresselhaus (RD) spin
splitting in ferroelectric materials22–24. The RD spin splitting is a
consequence of lifting the spin degeneracy, typically occurring in
materials with strong spin–orbit coupling (SOC) lacking inver-
sion symmetry25–27. The most interesting outcome of the RD
effect is that an electron moving under an electric field (E) or a
gradient of the crystal potential (E = −∇V) behaves as it experi-
ences an effective magnetic field Beff ∞ E × p/mc2, where p, m, and
c are momentum, mass, and speed of light, respectively, that
couples to the spin of the electron28. Owing to its promising
applications in spin-orbitronics devices such as the Datta–Das
spin field-effect transistor29, the RD effect has gained growing
research attention24,28,30–32. The tunability of the RD splitting by
applying an external field is primary possible due to the depen-
dence of Beff on the crystal potential gradient, which is strongly
affected by crystal structure distortions24,30,32,33.

Additionally, Weyl semimetals are a topological phase whose
low energy excitations are the massless chiral fermions34. Weyl
semimetals are the realization of Weyl fermions in condensed
matter systems and exhibit many exotic properties35. Since the
Weyl semimetal typically only exists in crystals without either
time-reversal or inversion symmetry, but not both, it is also
possible to activate a Weyl semimetal phase in a topologically
trivial material by applying an external field. Although the
magnetic field induced Weyl semimetal has been discovered in
GdPtBi recently36, the electric field promoted Weyl semimetal has
not been reported yet.

Here, we explore the possibility of simultaneously controlling
the MIT, RD spin splitting, and Weyl fermions in a single-phase
ferroelectric oxide using an electric field by means of first-
principles calculations and symmetry analysis. We demonstrate
that this paradigm can be realized in the room temperature phase
of the known Peierls-like semiconductor Ag2BiO3. We identify an
atypical polar structural distortion that arises from the
octahedral-breathing mode associated with Bi3+/Bi5+ charge dis-
proportion. This mechanism enables an unexpected route for
tuning the MIT, RD spin splitting, and Weyl semimetallic state
simultaneously by applying an external electric field. The mod-
ulation of the charge disproportion guides the transition from a
polar insulating phase exhibiting RD spin splitting to a nonpolar
spin-degenerate Dirac semimetallic state. Remarkably, we find
that across the MIT transition there exists an intermediate
topological Weyl semimetallic state, manifested by a non-
degenerate band crossing around the Fermi level and non-trivial
surface states connecting Weyl nodes with opposite chirality.

Results
Ground state structural and electronic properties. At room
temperature (and up to at least 380 K) Ag2BiO3 crystallizes in a
polar structure with Pnn2 (No. 34) space group37 (Fig. 1a). At
220 K the polar Pnn2 phase is converted to another polar
monoclinic structure Pn (No. 7). There is no further observed
phase transition down to 2 K37. In the Pnn2 phase, each octa-
hedra shares an edge (along [100]) and a corner (along [011] and
[011] directions) with its adjacent octahedra, resulting in a
checkerboard-like distribution of inequivalent Bi3+/Bi5+ sites
(nominal oxidation state) characterized by different Bi3+/Bi5+–O
bond lengths of 2.34 and 2.13 Å, respectively37. This charge-
ordered pattern is responsible for opening a band gap (0.7 eV38),
which has been observed in other Bi oxides39,40, and for the onset
of ferroelectric behavior, which is observed for the first time. Our
density functional theory (DFT) calculations find that the fully
relaxed low-temperature Pn phase is nearly degenerate with the
Pnn2 phase in energy, and correctly reproduce the bond length
disproportionation, see Supplementary Tables 1 and 2 for a full
structural characterization. We also find a direct band gap of 0.53
eV between the occupied Bi3+ and the unoccupied Bi5+ 6s orbitals
hybridized with O-2p states at the R point k = (1/2,1/2,1/2)
(Fig. 1c). The slight underestimation of the band gap is due to
inaccuracies in the semilocal functional within DFT. The accu-
racy of DFT in reproducing the crystal structures (lattice con-
stants, volume, and Bi–O bond lengths), energy difference
between ferroelectric and paraelectric phases, and band gaps is
assessed with various functionals commonly used for ferroelectric
oxides41,42 (Supplementary Table 1).

Since the R point preserves time-reversal symmetry and the
whole crystal lacks inversion symmetry, Kramers pairs (E↑ (k) =
E↓ (−k)) are observed at the conduction band minimum and
valence band maximum. Owing to the strong SOC of the Bi
cation, both the lowest conduction band and the highest valence
band split into two branches, forming inner and outer bands with
opposite spin rotation patterns (Fig. 1e, f). The spin splitting
(ΔERD) is larger at the lowest conduction band and exhibits
strong anisotropy, manifested by a larger ΔERD in the R–T kx
direction (6.4 meV) compared to that in the R–U ky direction
(0.7 meV). Therefore, a combined Rashba and Dresselhaus spin
splitting is expected, similar to the case of the formamidinium tin
iodide perovskite FASnI3 and consistent with a C2v symmetry, in
which both Rashba and Dresselhaus spin splitting are symmetry
allowed33. The dispersion relation of the resulting electronic
states is given, to linear order, by the coupling Hamiltonian HRD

= αR(kyσx−kxσy) + αD(−kxσx + kyσy), with αR � 0:07 eV Å and
αD � 0:17 eV Å the fitted Rashba and Dresselhaus parameters.
The predominant contribution of Dresselhaus character, i.e., αD
> αR, is consistent with the calculated spin orientations showing
also parallel components to the associated crystal momentum.
The ground state band structure of the Pn phase is also insulating
and exhibits very similar dispersion (Supplementary Figure 2),
consistent with the structural similarity between the Pnn2 and Pn
phases.

Symmetry analysis and lattice dynamics. By means of symmetry
analysis based on representation theory43,44, we find that Pnn2 is
a subgroup of Pnna (Fig. 1b). Our DFT calculations show that the
Pnna phase is only 5.3 meV per atom higher in energy than Pnn2,
and can be considered as the parent phase of Pnn2. The super
group of Pnna is Imma, which is 1,391 meV per f.u. higher in
energy than Pnn2. The Imma polymorph is too high in energy to
be achieved at elevated temperature. The main structure differ-
ence between the Pnna and Pnn2 phases is the splitting of the Bi
Wyckoff positions in the lower symmetry phase Pnn2, which
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permits the Bi3+/Bi5+ charge disproportionation (Fig. 1; Supple-
mentary Table 2). From the point view of representation theory,
Pnna is connected with the room temperature phase Pnn2 by a
one-dimensional order parameter Γ2� and with the low-
temperature phase Pn by a combination of the Γ2� and another
one-dimensional order parameter Γ3� , i.e., Γ2� � Γ3� . This
assessment is validated by the phonons dispersions of the Pnna
phase (Fig. 2a), which exhibit two unstable phonon modes at Γ
with imaginary frequencies ν = 392i cm−1 (Γ2� ) and ν = 30i cm−1

(Γ3� ). The condensation of the force constant eigenvector of Γ2�

mode directly generates the room temperature phase Pnn2,
whereas a simultaneous condensation of the Γ2� and Γ3� modes,
i.e., Γ2� � Γ3� establishes the Pn phase.

The main vibrational characteristic of the Γ2� mode is a Bi–O
breathing distortion that causes the Bi3+/Bi5+ disproportionation
(Fig. 2b, c). Surprisingly, this mode is polar and is the primary
order parameter for this paraelectric (Pnna) to ferroelectric
(Pnn2) transition, which produces a spontaneous polarization

(Pz) of 8.87 μC cm−2 (Fig. 3f). Considering that Γ2� is a one-
dimensional order parameter and the fact that the calculated
polar displacement Q and ΔE/μ (where ΔE and μ are the energy
differences between the paraelectric and ferroelectric states of the
material and the dipole moment of ferroelectric phase, respec-
tively) of Ag2BiO3 are comparable with known ferroelectric
materials (Supplementary Figure 3), Ag2BiO3 should be electric-
field tunable with moderate fields.

To the best of our knowledge, this is the first example of a polar
octahedra-breathing mode. Typically, the breathing mode in
perovskites with the corner-sharing octahedra does not lift
inversion symmetry19. The reason for such an unusual behavior
in Ag2BiO3 is the coexistence of both corner-sharing and edge-
sharing octahedra, which leads to a distorted octahedral frame-
work with inversion centers on occupied Bi cation sites. The
bond-disproportionation in combination with the low-crystal
symmetry enables an acentric octahedral-breathing mode. As a
result, oxygen displacements along the c axis in the BiO6
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Fig. 1 Structural and electronic properties of Ag2BiO3. Crystal structure of a the ferroelectric Pnn2 and b the hypothetical paraelectric Pnna phase. Red, gray,
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octahedra are not completely compensated, as illustrated in
Fig. 2c. Both Ag and Bi atoms have small polar distortions along
the c axis as well. The polarity of the Γ2� mode and its connection
with the Bi3+/Bi5+ disproportionation is the crucial factor
enabling the tunability of the electronic structure and spin
properties of Ag2BiO3, as elaborated below.

Tunable MIT with RD and Weyl states. Unlike the ferroelectric
Pnn2 phase, the nonpolar Pnna phase exhibits a semimetallic
band structure without RD spin splitting (Fig. 1d). Nonetheless
we find that the Pnna phase exhibits a Dirac point at the S point
of the Brillouin zone, similar in nature to those defined in double
Dirac semimetals45–47. This feature is also independent of DFT
functional (Supplementary Figure 6). The Γ2� mode breaks the
mirror symmetry protecting the Dirac point and leads to the
opening of a gap, as evidenced in Fig. 4a. This is due to the
suppression of the charge disproportionation which produces
half-filled Bi4+ 6s orbitals crossing the Fermi level (Fig. 1d). This
means that the Γ2� order parameter simultaneously drives a
ferroelectric and a metal-to-insulator transition (Fig. 3). The
Γ2�-driven paraelectric-to-ferroelectric transition is associated
with a continuous increase of the spontaneous polarization and of
the overall ferroelectric energy gain ΔE (Fig. 3d, f). The pro-
gressive increase of the amplitude of Γ2� is coupled with an
enhanced charge disproportionation between the two inequi-
valent Bi sites, measured in terms of Bi–O bond length difference
(Fig. 3b), valence Bader charges (Fig. 3c), and by a monotonous
increase of the band gap (Fig. 3a). This type of MIT is common to
other bismutathes19,48. The degree of the ferroelectric distortion
influences the RD splitting as well, owing to the coupling between
the polar distortion and the potential gradient surrounding the
Bi3+ and Bi5+ cations. This can be quantified by the RD spin
splitting coefficient αRD defined as 2ΔERD=ΔkRD. Figure 3e

illustrates that αRD decreases linearly with the amplitude of Γ2�

until QΓ�
2
≈ 0.25 Å. For QΓ�

2
<0:25 Å there is a band crossing

between the valence and conduction RD bands (Fig. 3g), and then
αRD is ill-defined.

Interestingly, our calculations reveal that during the
ferroelectric-to-paraelectric transition at QΓ�

2
¼ 0:22 Å, there

exists an intermediate phase that shows the typical hallmark of a
Weyl semimetal state, similar to the Weyl semimetal recently
found in HgPbO3

49. Weyl semimetals are a class of quantum
materials characterized by nonzero Fermi surface Chern
numbers, which manifest as a linear band crossing around the
Fermi level with non-degenerate spins in a system with either
time-reversal or inversion symmetry broken50. In this inter-
mediate phase of Ag2BiO3, the Weyl node is located near the R
point with k = (0.4975,0.4725,0.4988), about 0.08 eV above the
Fermi level (Fig. 4a, b). Symmetry considerations indicate that
there are four pairs of Weyl nodes, whose coordinates are given
in Supplementary Table 3. The four pairs of Weyl points are
protected by a mirror operation, which is preserved through the
entire transition from the insulating-ferroelectric phase to the
metallic centrosymmetric phase, i.e., always coexisting with the
Γ2� mode. The Weyl nodes appear only at a specific interval of
the Γ2� distortions as a result of balancing two competing
interactions: (a) going towards the insulating phase the chemical
bonding become progressively stronger (bonding/antibonding
interactions increase) and destroys the Weyl nodes; (b) on the
other side, approaching the metallic phase the broken inversion
symmetry gradually fades away, which again results in the a
disappearance of the Weyl nodes.

The presence of a Weyl node in the bulk phase is typically
associated with topological non-trivial surface states, which
connect two Weyl nodes with opposite chirality, and appear as
broken Fermi arcs states. To inspect this feature, we have
derived the (001) surface electron structure by the Green’s
function based tight-binding method based on the maximally
localized Wannier functions51–55. The resulting Fermi arcs
presented in Fig. 4b. Moreover, the calculation of the Berry
curvature confirms the topological Weyl nature of this
intermediate phase (Fig. 4c).

Discussion
We have established that two pairs of distinct properties, insu-
lator/metal and RD/non-RD, through a Weyl semimetal state, are
closely connected with the ferroelectric structure distortion in
Ag2BiO2, indicating a potentially tunable MIT and spin splitting
by applying an electric field. Since the energy difference between
the semimetal paraelectric (Pnna) and insulating-ferroelectric
(Pnn2) phases is only 5.3 meV per atom and the polarization is
relatively large (8.87 μC cm−2), it is expected that the insulating
phase could be suppressed (but not passed) by a relative small
electric field (E) applied opposite to the direction of the sponta-
neous polarization (P) through the interaction P ⋅ E in the free
energy. This is depicted in Fig. 3h based on a Landau–Ginzburg
phenomenological model56. If the frequency of the electric field
pulse is carefully chosen, there should be an oscillation between
the Pnn2 and Pnna phases. By increasing the strength of the
electric field, the insulating phase of Ag2BiO3 becomes more
conducting, as shown by the density of states provided in Fig. 3a.
Since the paraelectric phase is a poor metal, however, the free
carriers will tend to screen the external electric field and therefore,
the metallic phase is expected to survive only for a short time.
This causes the so-called oscillating electroresistance effect (ER),
which has potential applications in random access information
storage57. If the applied pulse electric field is strong enough,
however, the Bi3+/Bi5+ charge-order can be melted and converted
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into a metallic phase, a phenomena called colossal ER, which has
been observed in charge-ordered insulators with strongly com-
peting metallic phases, Pr0.7Ca0.3MnO3, R0.5Ca0.5MnO3 (R =Nd,
Gd, and Y)1,2, and LuFe2O4

6.
We have demonstrated a controllable metal–insulator transi-

tion, Rashba–Dresselhaus spin splitting effect, and Weyl

semimetallic state by applying an electric field in the experi-
mentally available charge-ordered oxide Ag2BiO3 by means of
first-principles calculations. The functionalized electric-field
tunable MIT could make Ag2BiO3 a suitable material for lower
power memory applications compared to magnetic field con-
trolled MITs. Moreover, the semiconducting nature of Ag2BiO3
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2
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G ¼ F0 þ α
2Q

2
Γ�
2
þ β

4Q
4
Γ�
2
þ γ

6Q
6
Γ�
2
� jEjQΓ�

2
, where F0 is the free energy density of the paraelectric phase (Pnna). α, β, and γ are the coefficients
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could allow for the injection of a reasonable number of carriers (if
the Fermi level is properly tuned) without suppressing the fer-
roelectric instability, eventually resulting in electrically con-
trollable spin polarized currents as a consequence of the
Rashba–Dresselhaus effect58. The higher stability of oxides in
atmospheric conditions and the higher ferroelectric Curie tem-
perature of Ag2BiO3 over organic–inorganic metal halide per-
ovskites and GeTe, the prototypical ferroelectric Rashba
semiconductors22,33, make this bismuthate more practical for
realistic applications59. Finally, the electric-field tunable Weyl
semimetallic state proposed here will enable future studies on
intertwined ferroelectric and topological phenomena.

Methods
Computational details. All the first-principles calculations were conducted by
using the projector-augmented wave pseudopotential methed60,61 as implemented
in the Vienna ab intio Simulation Package (VASP)62,63. PBEsol exchange-
correlation functional64 and the plane-wave basis set with energy cutoff of 520 eV
were used. The Monkhorst-Pack k-points grids of 10×10×6, was used to sample the
Brillouin zones. All the crystal structures were fully relaxed until the
Hellmann–Feynman foreces acting on each atom were less than 0.01 eV Å−1. The
phonon dispersion was calculated by using finite displacement method as imple-
mented in the Phonopy code65. Spin orbital coupling is included in all the elec-
tronic structures calculations. The symmetry analysis was conducted using the
PSEUDO program provided by the Bilbao crystallographic server43,66. The spon-
taneous ferroelectric polarization was calculated by using Born effective charges
(Z*) of the ferroelectric phase (Pnn2) and the structure distortion (u) of ferro-
electric phase with respect to reference paraelectric phase (Pnna) as Pα ¼
e
Ω

P
k;β Z

�
k;αβuk;β where, Ω and e are the volume of unit cell and elementary charge,

respectively. The spin texture of the lowest conduction band have been computed
by plotting, for each momentum vector on the kx–ky plane, the expectation values
of the Pauli σ-matrices onto the Kohn–Sham wavefunctions, i.e., the vectorial
quantity Si(n,k) = hΨ n;kjσijΨ n;ki, with i = x,y,z and n referring to either the inner or
the outer branch of the conduction bands. Represented as a vector, the k-space
distribution of the Si(n,k) resulted in a combined Rashba and Dresselhaus spin-
pattern.

The surface state calculations have been performed using a Green’s function
based tight-binding (TB) approach51. The TB model Hamiltonian was constructed
by means of maximally localized Wannier functions (MLWFs52,53) obtained by the
the Wannier90 code54 and constructed from Bi 5s and O 6p orbitals by employing
VASP2WANNIER9055. The TB parameters were obtained from the MLWFs
overlap matrix. Finally, the berry curvatures based on the first-principles Bloch
functions provided by VASP following the recipe described in ref. 67. The
topological charge of each Weyl point (WP) is defined by the integration of the
Berry curvature over a closed surface enclosing that WP, and was computed by
employing the Wilson-loop method68.

Data and code availabity. All data are available from the corresponding authors
upon reasonable request. All codes used in this work are either publicly available or
available from the authors upon reasonable request.
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