

This is the final peer-reviewed accepted manuscript of:

Enrico Malaguti, Silvano Martello, Alberto Santini,

The traveling salesman problem with pickups, deliveries, and draft limits,

Omega, Volume 74, 2018, Pages 50-58, ISSN 0305-0483.

The final published version is available online at

https://doi.org/10.1016/j.omega.2017.01.005

© 2017 This manuscript version is made available under the Creative Commons Attribution-
NonCommercial-NoDerivs (CC BY-NC-ND) 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

The Traveling Salesman Problem

with Pickups, Deliveries, and Draft Limits

Enrico Malaguti, Silvano Martello, Alberto Santini

DEI “Guglielmo Marconi”, Università di Bologna,

Viale Risorgimento 2, I-40136 Bologna, Italy

tenrico.malaguti,silvano.martello,a.santiniu@unibo.it

April 21, 2020

Abstract

We introduce a new generalization of the traveling salesman problem with pickup and
delivery, that stems from applications in maritime logistics, in which each node represents a
port and has a known draft limit. Each customer has a demand, characterized by a weight,
and pickups and deliveries are performed by a single ship of given weight capacity. The ship
is able to visit a port only if the amount of cargo it carries is compatible with the draft
limit of the port. We present an integer linear programming formulation and we show how
classical valid inequalities from the literature can be adapted to the considered problem. We
introduce heuristic procedures and a branch-and-cut exact algorithm. We examine, through
extensive computational experiments, the impact of the various cuts and the performance of
the proposed algorithms.

Keywords Traveling salesman; routing; maritime logistics; draft limits; branch-and-cut; con-
structive heuristics.

1 Introduction

One of the most well known variants of the (asymmetric) Traveling Salesman Problem (TSP) is the
TSP with Pickup and Delivery (TSPPD). The problem is defined on a directed graph G “ pN,Aq

with node set N “ t0, 1, . . . , n, n ` 1, . . . 2n, 2n ` 1u and arc set A “ tpi, jq : i, j P Nu. Node 0 is
the starting depot and node 2n ` 1 is the ending depot (that can eventually coincide). Each arc
pi, jq P A has a cost cij • 0, and we assume that the triangle inequality (cij § cik ` ckj @i, j, k P N)
holds. One has to serve n customers, each of which is associated with a pickup node i and a
delivery node j. We assume, without loss of generality that, for any customer i, the pickup node
i is in t1, . . . , nu, and the corresponding delivery node j coincides with n ` i. The objective is
to find a Hamiltonian path of minimum total cost that starts at node 0 and terminates at node
2n ` 1, in which the pickup node of every customer is visited before the corresponding delivery
node. Although a customer may be origin or destination of a number of di↵erent requests, we
always associate two distinct nodes to each request.

In the capacitated TSPPD (sometimes referred to in the literature as the TSPPD),

1

(i) each customer has a demand di, defined by a positive value (weight) associated with his
pickup node i. We conventionally associate dn`i “ ´di with the corresponding delivery
node. (For the depot, we assume d0 “ d2n`1 “ 0.);

(ii) pickups and deliveries are performed by a single vehicle of capacity Q;

(iii) at no time during the tour the total load of the vehicle can exceed Q;

(iv) the vehicle leaves and returns to the depot empty.

In this paper we consider a generalization of the capacitated TSPPD that stems from maritime
applications, in which nodes represent ports. Each node i P t1, . . . , 2nu has a draft limit li ° 0.
In maritime terminology the draft is the distance between the waterline and the bottom of the
hull of a ship, and it varies as a function of the cargo onboard the ship. If the draft of a ship is
greater than the draft limit of a port, the ship is not able to enter and operate safely at that port
(see Figure 1). A ship could then deliver part of its cargo at other ports, until its draft is small
enough to allow a visit to the port. The relationship between the amount of cargo onboard and
the draft of a ship is given, and therefore the draft limit li can be expressed with the same unit
as the demands di and the capacity Q. In other words, for the Traveling Salesman Problem with

Pickups, Deliveries and Draft Limits (TSPPDD) it must also hold that

(v) when traveling along arc pi, jq, the total load of the ship cannot exceed minpli, ljq.

We assume in the following, without loss of generality, that demands, ship capacity, and drafts are
positive integers.

The impact of drafts on maritime logistics is becoming more and more important, as the average
size of the vessels is increasing. While draft was traditionally an issue related mostly with tankers
and bulk vessels, it now involves container ships as well: the average size of a container ship has
increased by 19% just in the four years between January 2007 and January 2011 (see Notteboom
and Vernimmen [11]). Upgrading port infrastructure is, most of the time, too expensive and

Figure 1: In the picture above, the draft of a ship as a function of the cargo on board. In the
picture below, a ship able to enter a port (left) and one whose draft is too large to enter the same
port (right).

2

time consuming to be considered a feasible solution. Therefore, the burden of ensuring a proper
balance between the economy of scale provided by the bigger vessels and the feasibility of the fleet
composition and route planning, is left with the ship operator. As observed by Tirschwell [17],

It’s a lot easier for a carrier CEO to sign an order for a new ship than for a port to deepen its

draft so that ships can enter or leave fully loaded. One takes 10 minutes, the other 10 years.

To the best of our knowledge, this is the first study on the TSPPDD, although the constraints we
impose have been separately considered by other authors.

Dumitrescu, Ropke, Cordeau, and Laporte [6] studied the polytope of the TSPPD, derived
facet-defining inequalities, and developed a branch-and-cut algorithm in which the inequalities are
separated heuristically. They solved to optimality instances with up to 35 origin-destination pairs.

Ropke, Cordeau, and Laporte [15] and Ropke and Cordeau [14] studied the pickup and de-
livery problem with time windows, i.e., a multi-vehicle generalization of the TSPPD in which
customers can only be visited within their opening time. The former paper presents a branch-
and-cut algorithm, while the latter improves on it, by using a branch-and-cut-and-price approach.
The traveling salesman problem with draft limits was introduced by Glomvik Rakke, Christiansen,
Fagerholt, and Laporte [7]. In this problem, the ship starts from the depot completely loaded and
the objective is to find the shortest Hamiltonian path to satisfy the demands of the customers
without violating the drafts limits. They proposed two formulations, a branch-and-cut algorithm,
and a method to strengthen the bounds through the solution of knapsack problems. The approach
was tested on 240 instances with up to 48 nodes, derived from the TSP Library.

Battarra, Pessoa, Subramanian, and Uchoa [3] investigated the same problem, proposing math-
ematical formulations as well as a branch-and-cut and a branch-and-cut-and-price algorithm. The
latter algorithm proved to be very e↵ective and solved to optimality all the instances proposed in
[7].

A constraint that can remind our draft constraint has been considered by Ma, Cheang, Lim,
Zhang, and Zhu [10], who studied a vehicle routing problem with link capacity constraints, in
which road links (i.e., arcs) have limitations on the tonnage of the vehicles allowed to travel along
them.

Di↵erently from other generalizations of the TSP (see, e.g., Cordeau, Nossack, and Pesch [5]),
the TSPPDD does not have a natural decomposition into simpler problems. In the next section
we present a mathematical model for the TSPPDD. In Section 3 we obtain a number of valid
inequalities that are used in Section 4 to obtain a branch-and-cut algorithm. In order to provide
a good initial solution to the algorithm, a heuristic and a local search approach are proposed in
Section 5. Computational experiments are presented in Section 6, and conclusions follow in Section
7.

2 Mathematical model

In this section we present an Integer Linear Programming (ILP) formulation of the TSPPDD, and
we show how it can be simplified through arc removal.

3

2.1 Integer Linear Program

For each arc pi, jq P A, let xij be a binary variable taking the value 1 if and only if arc pi, jq is part
of the solution, and yij be an integer variable representing the quantity of cargo on board the ship
when traveling along arc pi, jq.

Let us define two parameters, �ij and �ij, to represent a lower and an upper bound, respectively,
on yij. The former can be defined as

�ij “

$
’’’&

’’’%

di if i P t1, . . . , nu and j P t1, . . . , nu Y tn ` iu ; (1)

´dj if i, j P tn ` 1, . . . , 2nu; (2)

di ´ dj if i P t1, . . . , nu and j P tn ` 1, . . . , 2nuztn ` iu; (3)

0 otherwise. (4)

In case (1) i is an origin and j is either another origin or the destination of i: a ship traveling along
pi, jq must carry at least the cargo picked up at i. In case (2) both i and j are destinations: the
cargo destined to j must be on board when traveling along pi, jq. In case (3) i is an origin and j is
a destination either than that of i: a ship traveling along pi, jq must carry both the cargo picked
up at i and the one to be delivered at j. Finally, if i is a destination and j is an origin, the ship
could possibly be empty.

An obvious upper bound on yij is mintli, lj, Qu. A tighter bound may be obtained by decreasing
these three quantities as

�ij “ mintli ` mint0, diu, lj ´ maxt0, dju, Q ´ maxt0,´di, djuu (5)

Indeed: (i) if i is a destination then the minimum between li and Q may be decreased by the
amount of cargo delivered at i; (ii) if j is an origin then the minimum between lj and Q may be
decreased by the amount of cargo to be picked up at j.

The TSPPDD can then be formally defined through the following Integer Linear Programming

(ILP) model:

4

min
ÿ

iPN

ÿ

jPN
cijxij (6)

s.t.
ÿ

jPN
xij “ 1 pi “ 0, . . . , 2nq (7)

ÿ

iPN
xij “ 1 pj “ 1, . . . , 2n ` 1q (8)

�ijxij § yij § �ijxij pi, j “ 1, . . . , 2nq (9)
ÿ

jPN
yij ´

ÿ

jPN
yji “ di pi “ 1, . . . , 2nq (10)

ÿ

jPN
y0j “ 0 (11)

ÿ

jPS
xij • 1 pi “ 1, . . . , n;S Ä N : i R S and n ` i P Sq (12)

ÿ

jPS
xij • 1 pi “ n ` 1, . . . , 2n;S Ä N : i R S and 2n ` 1 P Sq (13)

xij P t0, 1u, yij P N pi, j “ 0, . . . , 2n ` 1q. (14)

The objective function (6) minimizes the total cost of the route. Constraints (7) and (8) ensure
that the ship starts from depot 0 and ends at depot 2n ` 1 after having visited every port exactly
once. Constraints (9) guarantee the feasibility of the quantity of cargo onboard at any time.
Constraints (10) impose that all pickups and deliveries be fulfilled. Constraint (11) ensures that
the ship starts its route with no load. The precedence constraints (12) enforce each origin to be
visited before the corresponding destination, while constraints (13) impose that depot 2n ` 1 be
visited after all destinations. Note that constraints (7), (8), (12) and (13) together ensure that the
classical subtour elimination constraints be satisfied.

2.2 Arc removal due to precedence, capacity and draft constraints

The ILP model can be enhanced by removing arcs from set A according to the following consider-
ations:

• self-loop arcs pi, iq (i P N) are not considered;

• arcs of the form p0, n ` iq or pi, 2n ` 1q (i P t1, . . . , nu) cannot be part of a feasible solution,
as they would violate precedence constraints;

• arcs of the form pn ` i, iq (i P t1, . . . , nu) would make no sense in a solution;

• arcs of the form pi, jq (i, j P t1, . . . , nu) such that di ` dj ° mintlj, Qu would violate either
the draft limit at j or the ship capacity;

5

• arcs of the form pn` i, n`jq (i, j P t1, . . . , nu) such that di `dj ° mintln`i, Qu would violate
either the draft limit at n ` i or the ship capacity;

• arcs of the form pi, n ` jq (i, j P t1, . . . , nu, j ‰ i) such that di ` dj ° mintli, ln`j, Qu would
violate either the draft of i, or the draft of n ` j, or the ship capacity.

3 Valid inequalities

The TSPPDD is as a generalization of the TSPPD which, in turn, is a special case of the Precedence
Constrained TSP (PCTSP) in which the solution must satisfy precedence relations i † j imposed
to a set of node pairs. A number of valid TSPPD or PCTSP inequalities are either valid or can be
adapted to the TSPPDD, as well as to other related problems (see, e.g., Xue, Luo, and Lim [18]).
We considered in particular subtour-elimination, generalized order, capacity and fork cuts.

3.1 Subtour elimination cuts

Given a set S Ä N , let ApSq “ tpi, jq : i, j P Su and S̄ “ NzS. The classical TSP facet-defining
subtour-elimination cut is ÿ

pi,jqPApSq
xij § |S| ´ 1 @S Ä N. (15)

We will adopt the notation of Cordeau [4], namely:

�pSq “ ti P N : n ` 1 § i § 2n and i ´ n P Su psuccessor nodesq;

⇡pSq “ ti P N : 1 § i § n and n ` i P Su ppredecessor nodesq.

Balas, Fischetti, and Pulleyblank [2] have lifted (15) for the PCTSP through the precedence
constraints. As each node (but the depots) is the predecessor or successor of exactly one other
node, (15) can be lifted in two ways. Let �pS, T q “ tpi, jq P A : i P S, j P T u. For predecessors, we
have: ÿ

pi,jqPApSq
xij `

ÿ

pi,jqP�pSX⇡pSq,S̄z⇡pSqq
xij `

ÿ

pi,jqP�pS,S̄X⇡pSqq
xij § |S| ´ 1 @S Ä N, (16)

while for successors we have
ÿ

pi,jqPApSq
xij `

ÿ

pi,jqP�pS̄z�pSq,SX�pSqq
xij `

ÿ

pi,jqP�pS̄X�pSq,Sq
xij § |S| ´ 1 @S Ä N. (17)

Consider the relaxation of the TSPPDD obtained by eliminating the constraints on draft limits
and ship capacity. The resulting problem is a special case of the PCTSP, and hence inequalities
(16) and (17) are valid for the TSPPDD as well.

6

Another TSP facet-defining cut can be found by a di↵erent lifting of (15). Given a set S Ä N

with h “ |S| • 3, and any ordering of its nodes S “ ti1, . . . , ihu, Grötschel and Padberg [8] proved
that the following inequalities are valid for the TSP:

h´1ÿ

k“1

xik,ik`1
` xih,i1 ` 2

h´1ÿ

k“2

xik,i1 `

h´1ÿ

k“3

k´1ÿ

l“2

xik,il § |S| ´ 1. (18)

h´1ÿ

k“1

xik,ik`1
` xih,i1 ` 2

hÿ

k“3

xi1,ik `

hÿ

k“4

k´1ÿ

l“3

xik,il § |S| ´ 1. (19)

The dial-a-ride problem is a routing problem in which one has to design vehicle routes and schedules
for a set of requests which specify pickup and delivery between origins and destinations. Cordeau
[4] proved that, for such problem, the above cuts can be further strengthened by adding a term
that takes into account the resulting precedence constraints, obtaining:

h´1ÿ

k“1

xik,ik`1
` xih,i1 ` 2

h´1ÿ

k“2

xik,i1 `

h´1ÿ

k“3

k´1ÿ

l“2

xik,il `

ÿ

jPS̄X�pSq
xj,i1 § |S| ´ 1, (20)

h´1ÿ

k“1

xik,ik`1
` xih,i1 ` 2

hÿ

k“3

xi1,ik `

hÿ

k“4

k´1ÿ

l“3

xik,il `

ÿ

jPS̄X⇡pSq
xi1,j § |S| ´ 1. (21)

Since the precedence constraints of the dial-a-ride problem are the same as those of the TSPPDD,
these cuts are also valid for our problem.

3.2 Generalized order cuts

Another family of valid inequalities, called generalized m-order constraints, was introduced by
Ruland and Rodin [16] for the TSPPD. Given m disjoint subsets S1, . . . , Sm Ä N such that none
of them contains 0 or 2n ` 1, if it is possible to find a sequence of nodes i1, . . . , im P t1, . . . , nu

such that:

ik P Sk pk “ 1, . . . ,mq,

n ` ik`1 P Sk pk “ 1, . . . ,m ´ 1q,

n ` i1 P Sm,

then the following inequality is valid:

mÿ

l“1

ÿ

pi,jqPApSlq
xij §

mÿ

l“1

|Sl| ´ m ´ 1. (22)

7

It has been proved in [4] that, by taking into account the precedences induced by pickup and
delivery, these cuts can be lifted in two ways:

mÿ

l“1

ÿ

pi,jqPApSlq
xij `

m´1ÿ

l“2

xi1,il `

mÿ

l“3

xi1,n`il §

mÿ

l“1

|Sl| ´ m ´ 1; (23)

mÿ

l“1

ÿ

pi,jqPApSlq
xij `

m´2ÿ

l“2

xn`i1,il `

m´1ÿ

l“2

xn`i1,n`il §

mÿ

l“1

|Sl| ´ m ´ 1. (24)

Again, the validity for the TSPPDD comes from the consideration that the precedence constraints
of the two problems coincide.

3.3 Capacity-draft cuts

Given a subset S Ä N , let dpSq “
∞

iPS di. Consider a set S such that dpSq ° 0, and define the
reduced capacity with respect to S as QpSq “ minpQ,maxiPStliuq (upper bound on the load when
visiting a node of S). An immediate lower bound on the number of times a vehicle must visit S is
then ÿ

pi,jqP�pS,S̄q
xij “

ÿ

pi,jqP�pS̄,Sq
xij • rdpSq{QpSqs. (25)

Following Ropke, Cordeau, and Laporte [15], cut (25) can be strengthened by considering two
sets S, T Ä N with qpSq ° 0, and defining U “ ⇡pT qzpS Y T q. We obtain

ÿ

pi,jqPApSq
xij `

ÿ

pi,jqPApT q
xij `

ÿ

pi,jqP�pS,T q
xij § |S| ` |T | ´

R
dpSq ` dpUq

QpS Y T q

V
, (26)

which coincides with the cut obtained by [15], with the only di↵erence that QpS Y T q replaces Q.

3.4 Fork cuts

Consider any routing problem in which a feasible path P “ pk1, . . . , krq becomes infeasible if two
nodes i P S and j P T (S, T Ä N), are added at the beginning and at the end of P . Then the fork
inequality

ÿ

iPS
xi,k1 `

r´1ÿ

h“1

xkh,kh`1
`

ÿ

jPT
xk,j § r (27)

obviously holds. It has been shown in [15] that (27) can be strengthened through sets of nodes
that produce intermediate infeasible paths. Specifically we consider subsets S, T1, . . . , Tr Ä N

such that kh R Th´1 for h “ 2, . . . r. If the path pi, k1, . . . , kh, jq is infeasible for any h § r and any
pair (i P S, j P Th), then the outfork inequality

ÿ

iPS
xi,k1 `

r´1ÿ

h“1

xkh,kh`1
`

rÿ

h“1

ÿ

jPTh

xkh,j § r (28)

8

prohibits infeasible paths obtained by prematurely leaving P . Exactly in the same way one can
derive infork inequalities by prohibiting infeasible paths obtained by entering P at an intermediate
node. As these cuts are valid for any routing problem in which one can decide whether a certain
path is infeasible, they hold for the TSPPDD as well.

4 Branch-and-cut algorithm

We implemented a branch-and-cut algorithm based on the root-node formulation (6)-(14). At the
root node we relax constraints (12)-(13), which impose precedence and subtour-elimination. At
each decision node, we separate those inequalities that are violated by the current (fractional)
solution. In addition to these two families of constraints, which ensure feasibility, we generate the
cuts described in Section 3. The branch-decision tree exploration is managed by a general purpose
software (e.g, CPLEX). In this section we describe how the model was strengthened and how the
cuts were separated.

4.1 Strengthened model

In order to strengthen the root-node formulation, we added two sets of constraints to the relaxed
model.

Classical 2-cycle elimination constraints

xij ` xji § 1 @ pi, jq P A : j ° i and pj, iq P A. (29)

Property 4.1. In spite of their simplicity, constraints (29) are not implied by the relaxed model

(6)-(11), (14). Indeed

Proof. It is enough to consider the case i § n, j ° n, j ‰ n` i, dj “ ´di. Solution xij “ xji “ 1,
yij “ di, yji “ 0 does not violate (10), but it violates (29). l

There are Opn
2
q potential 2-cycle elimination constraints, hence their addition to the model is

not computationally heavy. The experiments showed however that they have limited impact on
the solution quality, so we developed the following specialized constraints, that gave much better
results.

2) Draft oriented 2-path elimination constraints

xij ` xjk § 1 @ i, j, k P t1, . . . , 2nu : certain conditions (see below) hold. (30)

Property 4.2. Inequalities (30) are valid for the following cases (corresponding to the enumeration

of all possible characterizations of i, j, k), in which a path pi, j, kq would violate either a draft (cases

1-6) or a precedence (cases 7 and 8) constraint (see Figure 2, where pickup nodes are drawn bigger

9

than delivery nodes, and the value on an arc gives the minimum load the ship would have when

traveling along it):

1. i § n, j § n, k § n and di ` dj ` dk ° minpQ, lkq.

2. i § n, j § n, k ° n, k ‰ n ` i, k ‰ n ` j and either di ` dj ´ dk ° minpQ, lj, lkq or

di ´ dk ° minpQ, li, ljq;

3. i § n, j ° n, k § n, j ‰ n ` i and di ` dk ° minpQ, lkq;

4. i § n, j ° n, k ° n, j ‰ n ` i, k ‰ n ` i and either di ´ dj ´ dk ° minpQ, li, ljq or

di ´ dk ° minpQ, lj, lkq;

5. i ° n, j § n, k ° n, k ‰ n ` j and ´di ´ dk ° minpQ, liq;

6. i ° n, j ° n, k ° n and ´di ´ dj ´ dk ° minpQ, liq;

7. i ° n, j § n, k § n and i “ n ` k;

8. i ° n, j ° n, k § n and i “ n ` k;

Proof. Consider Case 1: the load on the arc leaving k would be at least di ` dj ` dk (Figure
2a). Very similar reasonings, immediately emerging from the figures, prove: Case 2 (Figure 2b),
and note that the last condition is equivalent to di ´ dk ° li); Case 3 (Figure 2c); Case 4 (Figure
2d, and note that the last condition is equivalent to as di ´ dk ° lk); Case 5 (Figure 2e); Case 6
(Figure 2f). In cases 7 and 8 no draft violation occurs, but the precedence condition between i

and k would be violated. l
The number of potential 2-path constraints is Opn

3
q but their inclusion into the model proved

to be e↵ective. Note in addition that, as these constraints represent incompatibilities between
pairs of arcs, it would be possible to aggregate some of them into stronger clique inequalities,
representing incompatibilities between subsets of arcs. This is however automatically done by the
solver we used (CPLEX), so there would be no advantage in doing it explicitly.

4.2 Cut separation

The precedence inequalities (12) and (13) can both be separated exactly in polynomial time through
series of max-flow problems. Violated inequalities (12) can be found by solving nmax-flow problems
from i to n ` i (i “ 1, . . . , n), where the arc capacities are the values of variables xij. Violated
inequalities (13) can be found by solving, in an analogous way, n max-flow problems from n ` i

to 2n ` 1 (i “ 1, . . . , n). Details on these separation methods can be found, e.g., in Padberg and
Hong [12]

All the cuts discussed in Section 3 were instead separated in a heuristic way. A heuristic
separation method for subtour elimination cuts (16) and (17) was given by [4]. Observe that, for

10

•
i

•
j

•
k

0 di di ` dj
di ` dj

`dk

(a)

•
i

•
j

‚
k

´dk di ´ dk
di ` dj

´dk di ` dj

(b)

•
i

‚
j

•
k

´dj di ´ dj di di ` dk

(c)

•
i

‚
j

‚
k

´dj ´ dk
di ´ dj

´dk di ´ dk di

(d)

‚
i

•
j

‚
k

´di ´ dk ´dk dj ´ dk dj

(e)

‚
i

‚
j

‚
k

´di ´ dj
´dk ´dj ´ dk ´dk 0

(f)

Figure 2: Minimum load on board a ship traveling along arcs pi, jq and pj, kq.

any set S ‰ H, the arcs incident with all nodes of S can either belong to �
`

pSq, or to �
´

pSq, or
to ApSq (in which case they appear twice), and hence

ÿ

pi,jqP�`pSqY�´pSq
xij ` 2

ÿ

pi,jqPApSq
xij “ 2 |S|. (31)

By combining (31) with twice (16) in one case, and twice (17) in the other, one obtains
ÿ

pi,jqP�`pSqY�´pSq
xij ´ 2

ÿ

pi,jqP�pSX⇡pSq,S̄z⇡pSqq
xij ´ 2

ÿ

pi,jqP�pS,S̄X⇡pSqq
xij • 2 (32)

ÿ

pi,jqP�`pSqY�´pSq
xij ´ 2

ÿ

pi,jqP�pS̄z�pSq,SX�pSqq
xij ´ 2

ÿ

pi,jqP�pS̄X�pSq,Sq
xij • 2 (33)

We therefore heuristically search for subsets S violating (32) or (33), using the simple Tabu search
scheme proposed by Augerat [1] for the capacitated vehicle routing problem. Consider the separa-
tion of (16) through (32). The search starts from an empty set S and iteratively adds or removes
elements from S, trying to minimize the left hand side of (32). When a node is removed from S,
its insertion is marked as tabu for a certain number of iterations. In addition, at each iteration, if
|S| • 3, the current set S is also used to check whether (20) is violated: in fact, we can choose i1

of (20) as the node with the largest outflow and compute the left-hand side of (20) by numbering
all other nodes at random. A similar procedure is used for separating (17) through (33) as well as,
if |S| • 3, for checking whether (21) is violated.

We separate generalized order cuts (23) and (24) only for m “ 3 and |Sl| “ 2 (l “ 1, 2, 3) as,
for larger values, they become computationally very expensive. Notice that in this case sets Sl can

11

be written as:
S1 “ ti1, n ` i2u, S2 “ ti2, n ` i3u, S3 “ ti3, n ` i1u

and equation (23) becomes:

xi1,n`i2 ` xn`i2,i1 ` xi2,n`i3 ` xn`i3,i2 ` xi3,n`i1 ` xn`i1,i3 ` xi1,i2 ` xi1,n`i3 § 2. (34)

For every possible choice of i1 P t1, . . . , nu, we find the node i2 P t1, . . . , nu such that the three
terms containing only indices i1, i2, n` i2 in the lhs of (34) are maximized. Then, we find the node
i3 P t1, . . . , nu that maximizes the other five terms. In other words, for (23)

i2 “ arg max
1§j§n

txi1,n`j ` xn`j,i1 ` xi1,ju; (35)

i3 “ arg max
1§j§n

txi2,n`j ` xn`j,i2 ` xj,n`i1 ` xn`i1,j ` xi1,n`ju, (36)

and analogously, for (24):

i2 “ arg max
1§j§n

txi1,n`j ` xn`j,i1 ` xn`i1,n`ju; (37)

i3 “ arg max
1§j§n

txi2,n`j ` xn`j,i2 ` xj,n`i1 ` xn`i1,ju. (38)

We separate capacity-draft cuts (26) using the procedure detailed in [15] which starts with sets
S “ tiu and T “ tn ` ju for all possible i, j P t1, . . . , nu and tries to augment these sets at each
iteration.

Finally, fork cuts are separated in both their basic version (27), and in the strenghtened infork
and outfork versions (see (28)). The path P “ pk1, . . . , krq that forms the backbone for the cut
is constructed as follows. We fix a node k0 P t1, . . . , 2nu and we consider all paths pk0, k1, . . . , krq

for r • 2, that can be constructed by adding arcs corresponding to base columns of the linear
relaxation of the problem. In other words, arc pi, jq is used to extend the path only if xij ° 0. For
each such path, set T is constructed as

T “ tj : j R P and pk0, k1, . . . , kr, jq is infeasibleu,

and the corresponding set S is

S “ ti : i R P and pi, k1, . . . , kr, jq is infeasible for all j P T u.

Notice that, by construction, k0 P S. An inequality (27) is added whenever it is violated by the
current choice of P , S, and T . For non-violated inequalities, we attempt lifting into outfork and
infork inequalities. For example, we attempt to find a violated outfork inequality (28) by adding,
in a greedy way, as many nodes as possible to sets T1, . . . , Tr. Attempting this procedure for all
r values would clearly be computationally too expensive, and hence, on the basis of preliminary
experiments, we only considered paths with r § 6. In addition, whenever we check a sub-path
for feasibility, we store the result in a hash table from which it can be retrieved at a later time.
The feasibility check ensures that no precedence constraint is violated and that the draft limits
are respected, by assuming that the ship is has the minimum possible load when it enters the
sub-path.

12

5 Heuristic algorithms

In this section we present the heuristics used to obtain feasible initial solutions to the TSPPDD.
We will call an origin-destination pair pi, n` iq a request. We will call an insertion of a request in a
partial path a couple pporig, pdestq that indicates the positions in the partial path where, respectively,
the origin and the destination of the request are inserted. Our approach consists of two constructive
heuristics, followed by a refinement procedure.

5.1 Constructive heuristics

Our constructive heuristics start with an empty path and proceed by inserting one request at a
time, until no requests are left (and hence an initial feasible solution has been obtained). We
considered two approaches, denoted as Sorted Insert and Best Insert. In the former approach,
the requests are preliminarily ordered according to some score that only depends on the requests
themselves, and then are inserted one by one in such order: the current request is inserted in a
position chosen according to a heuristic criterion. In the latter approach, at each iteration, each
non-inserted request is assigned a score and a possible insertion, and the request with the highest
score is correspondingly inserted.

The heuristics build a solution by using two kinds of scores, one related to the requests, and
one related to their insertion. The request scores are

R1 the cost ci,n`i of the origin-destination arc;

R2 the value minpli, ln`iq ´ di of the additional load the ship can carry when entering the two
ports.

In order to introduce the insertion scores, let us define, for a path P :

• cP “
∞

pi,jqPP cij, the cost of the path;

• dP “
∞

pi,jqPP :1§i§n di, the total load picked up along the path;

• wP “
∞

pi,jqPP pmintQ, li, lju ´ yijq, where yij is the load of the ship when traveling along arc
pi, jq: wP represents the waste of capacity along the path.

The insertion score is assigned to a possible insertion pporig, pdestq by considering the extended path
P given by the insertion. Four scores (the lower, the better) were evaluated:

I1 cP , the cost of the new path;

I2 cPdP , a measure that favors paths with low cost, while giving priority to requests with low
demand;

13

I3 cP ` ⇢dP , where ⇢ ° 0 is a prefixed parameter, a measure similar to the previous measure,
but with lesser impact of dP . (We adopted, on the basis of preliminary computational
experiments, the value ⇢ “ 1);

I4 cPwP , a measure that favors paths with low cost and high capacity utilization.

Four Sorted Insert procedures were obtained by sorting the requests according to decreasing or
increasing request score R1 or R2. For each of them, the insertion was decided using, as insertion
score, either I1 or I4 (note that I2 and I3 need not be considered, since once the current request has
been fixed, dP is constant for all insertions). In total this results in eight di↵erent implementations.

Four Best Insert procedures were obtained by respectively evaluating, for each non-inserted
request, insertion scores I1-I4. For each of them, two implementations were obtained by selecting
the next request and position either as the one providing the smallest insertion score, or the
one providing the largest regret, i.e., the largest di↵erence between the second minimum and the
minimum insertion score (or the insertion score, when only one insertion is feasible). In this case
too we thus obtained eight di↵erent implementations.

For the values of n we used in our computational experiments, the CPU time taken by these
procedures is negligible, hence all of them were executed (and refined, as shown in the next section).
Other scores were attempted too, but the sixteen implementations we described were the only non
dominated ones.

5.2 Refinement

The feasible solutions produced by the constructive heuristics were improved through a very simple
Tabu search, defined by the following ingredients:

• move: three-opt (see Lin [9]) with check on the feasibility of the resulting solution. Notice
that, for an oriented graph, every triplet of arcs has just one possible recombination;

• Tabu list: for each move, the cheapest removed arc is stored;

• Tabu tenure: a prefixed parameter (having value 30 in our implementation);

• halting criteria: a prefixed maximum number of iterations, or of iterations with no improve-
ment. (We used values 50000 and 500, respectively, in our experiments).

6 Computational experiments

The exact and heuristic approaches of the previous sections were implemented in C++ and run
on an Intel Xeon 3.10 GHz with 8 GB RAM, equipped with four cores. In order to allow future
fair comparisons, all the experiments were performed by setting to one the number of threads.

We used IBM ILOG CPLEX 12.6 as ILP solver for the branch-and-cut algorithm of Section
4. Remind that we relax the precedence and subtour-elimination inequalities (12)-(13): at each

14

decision node, the inequalities that are violated by the current solution are separated and added
via a CPLEX callback. The additional valid inequalities of Section 3 were not generated at
each decision node: the decision about separation is taken according to di↵erent probabilistic
distributions, depending on the number of explored nodes and on the specific cut. Namely, the
probability of separation linearly decreases from 1 to ↵ for nodes 1–100, from � to � for nodes 101–
20 000, while it is set to � for all subsequent nodes. Good values of ↵, � and � were determined,
through preliminary computational experiments, as

• subtour elimination cuts: ↵ “ 0.9, � “ 0.5, � “ 0.05;

• generalized order cuts: ↵ “ 1 (always separated), � “ 1, � “ 0.1;

• capacity-draft cuts: ↵ “ 0.75, � “ 0.125, � “ 0.0125;

• fork cuts: ↵ “ 0.75, � “ 0.0625, � “ 0.00625.

We randomly generated our benchmark starting from the eight instances of the TSPLIB [13]
that have been used in [7] and in [3] to generate benchmarks for the TSP with draft limits: bayg29,
burma14, fri26, gr17, gr21, gr48, ulysses16, and ulysses22. From each TSP instance we obtained
TSPPDD instances having 2n ` 2 nodes, with n P t10, 14, 18, 22u, as follows. For each value of n,

• a TSP node was randomly selected as the starting and ending depot (TSPPDD nodes 0 and
2n ` 1). Then n origin-destination pairs were randomly selected from the remaining TSP
nodes, together with the corresponding costs. A TSP node was allowed to be selected more
than once, but not for the same pair;

• the n demands dj were randomly generated in the interval r1, 100s;

• four sets of instances were obtained by setting the ship capacity to Q “ 50nC, with C P
1

10
,

3

10
,
1

2
, 2

(
, as follows:

– for each C P

1

10
,

3

10
,
1

2

(
, four instances were produced by: (i) randomly selecting, with

probability P P

0, 1

3
,
2

3
, 1

(
, nodes j (1 § j § 2n) that will have a binding draft; (ii)

randomly generating the draft lj of each selected node in the interval r|dj|, Q ´ 1s; (iii)
setting the draft of the non-selected nodes to Q. Note that, for P “ 0, no node has
a binding draft, so we can evaluate our methods also on the special case given by a
capacitated TSPPD;

– for the same reason, for C “ 2, we only generated a single instance with all nodes having
draft Q “ 100n, i.e., we obtained an uncapacitated TSPPD instance.

In total, we obtained 13 instances for each value of n, i.e., 52 TSPPDD instances for each TSP in-
stance, and hence an overall benchmark of 416 instances. The computer code and the instances are
available at https://github.com/alberto-santini/tsppddl. The results of the computational
experiments are reported in Tables 1 and 2.

15

https://github.com/alberto-santini/tsppddl

|N
|

C
B
a
s
ic

m
o
d
e
l

2
-
c
y
c
le

2
-
p
a
t
h

S
u
b
t
.
e
li
m
.

G
e
n
.
o
r
d
e
r

C
a
p
.-
d
r
a
ft

F
o
r
k

B
&
C

R
o
o
t

F
in
a
l

R
o
o
t

F
in
a
l

R
o
o
t

F
in
a
l

R
o
o
t

F
in
a
l

R
o
o
t

F
in
a
l

R
o
o
t

F
in
a
l

R
o
o
t

F
in
a
l

R
o
o
t

F
in
a
l

2
2

0
.1

4
.0
6

0
.0
0

3
.8
8

0
.0
0

4
.0
2

0
.0
0

4
.0
1

0
.0
0

4
.0
1

0
.0
0

3
.7
8

0
.0
0

2
.6
5

0
.0
0

2
.4
7

0
.0
0

2
2

0
.3

1
6
.8
4

2
.3
0

1
6
.6
9

2
.3
3

1
8
.0
3

2
.2
2

1
6
.2
7

1
.8
7

1
6
.4
2

1
.7
8

1
6
.3
1

1
.7
6

1
4
.2
8

0
.3
3

1
4
.2
0

0
.3
2

2
2

0
.5

2
0
.3
5

2
.9
8

2
0
.6
9

3
.2
1

2
1
.0
6

2
.8
4

1
9
.9
6

2
.1
0

2
0
.1
2

3
.0
5

2
0
.0
9

2
.9
5

1
9
.6
7

1
.9
2

1
9
.2
3

1
.5
2

2
2

2
.0

9
.9
9

0
.0
0

1
0
.0
5

0
.0
0

9
.7
1

0
.0
0

8
.7
4

0
.0
0

9
.9
0

0
.0
0

9
.5
3

0
.0
0

9
.7
7

0
.0
0

8
.7
2

0
.0
0

3
0

0
.1

1
5
.9
5

6
.5
1

1
5
.5
6

6
.4
6

1
5
.7
8

6
.6
3

1
5
.8
3

6
.1
9

1
5
.8
7

6
.0
7

1
5
.2
2

5
.6
5

1
2
.3
7

2
.6
7

1
2
.3
5

2
.4
1

3
0

0
.3

2
7
.4
7

1
9
.3
5

2
7
.4
2

1
9
.0
9

2
7
.4
5

1
9
.2
5

2
7
.0
0

1
8
.2
3

2
7
.4
3

1
8
.9
5

2
6
.9
7

1
8
.6
3

2
6
.5
2

1
7
.1
1

2
5
.9
3

1
6
.0
2

3
0

0
.5

2
4
.3
4

1
5
.9
6

2
4
.2
9

1
6
.2
0

2
4
.3
4

1
6
.1
6

2
3
.7
1

1
4
.5
4

2
4
.3
0

1
6
.0
3

2
4
.3
0

1
6
.0
1

2
3
.9
6

1
5
.5
1

2
3
.4
4

1
4
.0
1

3
0

2
.0

1
0
.2
7

0
.8
3

1
0
.2
8

0
.7
7

1
0
.2
7

0
.7
4

9
.8
9

0
.1
4

1
0
.2
0

0
.7
9

1
0
.2
8

0
.8
2

1
0
.2
7

0
.8
3

9
.8
9

0
.0
9

3
8

0
.1

1
9
.7
4

1
5
.0
7

1
9
.4
7

1
5
.0
6

1
9
.7
4

1
5
.0
2

1
9
.6
8

1
4
.8
8

1
9
.6
9

1
4
.8
2

1
8
.9
2

1
3
.7
9

1
6
.9
6

9
.4
5

1
6
.0
0

8
.8
8

3
8

0
.3

2
8
.7
4

2
4
.7
4

2
8
.5
1

2
4
.7
4

2
8
.6
1

2
4
.6
6

2
8
.5
5

2
4
.4
9

2
8
.5
4

2
4
.7
8

2
8
.4
5

2
4
.5
8

2
8
.2
0

2
3
.9
3

2
7
.7
8

2
2
.3
9

3
8

0
.5

2
3
.5
3

1
9
.5
3

2
3
.6
3

1
9
.5
0

2
3
.5
3

1
9
.5
4

2
3
.4
3

1
9
.0
3

2
3
.1
5

1
9
.0
1

2
3
.5
3

1
9
.3
7

2
3
.3
2

1
8
.9
6

2
3
.1
5

1
8
.4
5

3
8

2
.0

1
0
.4
7

4
.1
6

1
0
.4
8

4
.2
0

1
0
.4
7

4
.1
5

1
0
.4
3

3
.7
1

1
0
.4
4

3
.9
8

1
0
.4
3

4
.4
9

1
0
.4
7

4
.6
2

1
0
.4
3

4
.5
6

4
6

0
.1

2
4
.6
7

2
1
.5
9

2
4
.5
7

2
1
.5
1

2
4
.6
7

2
1
.5
6

2
4
.6
1

2
1
.5
0

2
4
.5
8

2
1
.6
1

2
3
.7
1

2
0
.5
4

2
1
.1
4

1
5
.8
5

1
9
.9
4

1
5
.1
7

4
6

0
.3

3
6
.7
9

3
4
.6
4

3
6
.7
4

3
4
.5
9

3
6
.7
4

3
4
.4
9

3
6
.7
0

3
4
.4
0

3
6
.7
9

3
4
.6
7

3
5
.9
3

3
3
.5
4

3
6
.4
0

3
4
.1
4

3
5
.2
5

3
1
.3
5

4
6

0
.5

2
9
.6
8

2
7
.4
0

2
9
.4
0

2
7
.4
0

2
9
.5
6

2
7
.4
2

2
9
.6
2

2
7
.0
7

2
9
.7
1

2
7
.4
2

2
9
.5
7

2
7
.2
3

2
9
.5
9

2
7
.3
7

2
9
.2
3

2
6
.1
2

4
6

2
.0

1
5
.2
7

1
2
.8
2

1
5
.3
2

1
2
.7
9

1
5
.2
4

1
2
.4
3

1
5
.2
3

1
1
.9
4

1
5
.2
6

1
2
.6
6

1
5
.2
7

1
2
.9
6

1
5
.2
7

1
2
.8
0

1
5
.2
3

1
1
.9
4

A
v
e
ra

g
e

2
1
.8
2

1
4
.9
6

2
1
.7
2

1
4
.9
6

2
1
.6
2

1
4
.6
9

2
1
.5
7

1
4
.4
8

2
1
.7
0

1
4
.8
1

2
1
.4
0

1
4
.5
1

2
0
.5
0

1
3
.2
2

1
8
.3
3

1
0
.8
3

T
ab

le
1:

E
↵
ec
t
of

el
im

in
at
io
n
co
n
st
ra
in
ts

an
d
cu
ts

on
th
e
p
er
ce
nt
ag
e
ga
p
s
b
et
w
ee
n
u
p
p
er

an
d
lo
w
er

b
ou

n
d
.

C
P

|N
|“

2
2

|N
|“

3
0

|N
|“

3
8

|N
|“

4
6

C
H

T
S

B
&
C

O
P
T

C
H

T
S

B
&
C

O
P
T

C
H

T
S

B
&
C

O
P
T

C
H

T
S

B
&
C

O
P
T

0
.1

0
0
.1
4

0
.0
0

0
.0
0

8
1
.7
9

1
.0
3

1
.0
3

7
8
.8
6

6
.2
0

6
.2
0

5
1
2
.3
4

8
.0
5

7
.9
7

0

0
.1

0
.3
3

0
.3
7

0
.0
0

0
.0
0

8
1
.5
3

0
.1
6

0
.1
6

7
1
1
.3
8

8
.7
5

8
.7
5

2
1
6
.3
9

1
2
.4
9

1
2
.4
9

0

0
.1

0
.6
7

0
.3
8

0
.0
0

0
.0
0

8
4
.4
4

3
.3
9

3
.3
9

6
1
3
.2
6

9
.7
1

9
.7
1

3
2
3
.9
6

1
9
.2
9

1
9
.2
9

0

0
.1

1
0
.1
0

0
.0
0

0
.0
0

8
5
.9
4

5
.0
7

5
.0
7

4
1
4
.0
1

1
0
.8
5

1
0
.8
5

1
2
6
.0
0

2
0
.9
6

2
0
.9
4

0

0
.3

0
0
.2
9

0
.0
0

0
.0
0

8
1
8
.1
8

1
6
.2
6

1
6
.1
9

1
2
8
.0
4

2
2
.9
9

2
2
.9
9

0
3
7
.5
8

3
2
.3
6

3
2
.3
6

0

0
.3

0
.3
3

0
.9
1

0
.0
0

0
.0
0

8
2
0
.4
6

1
7
.1
9

1
7
.1
9

0
3
1
.8
1

2
6
.9
2

2
6
.9
2

0
4
1
.5
2

3
5
.4
8

3
5
.4
8

0

0
.3

0
.6
7

0
.7
2

0
.0
0

0
.0
0

8
1
9
.3
8

1
6
.3
7

1
6
.3
7

0
2
9
.1
0

2
2
.5
0

2
2
.5
0

0
4
0
.4
4

3
1
.3
7

3
1
.3
7

0

0
.3

1
1
.7
4

1
.2
7

1
.2
7

7
1
8
.5
8

1
4
.3
5

1
4
.3
5

0
2
6
.2
9

1
7
.1
6

1
7
.1
6

0
3
4
.2
7

2
6
.1
7

2
6
.1
7

0

0
.5

0
4
.3
7

2
.1
4

2
.1
4

5
2
3
.9
8

2
1
.5
3

2
1
.5
3

0
3
1
.9
8

2
5
.7
7

2
5
.7
7

0
3
9
.1
8

3
2
.9
4

3
2
.9
4

0

0
.5

0
.3
3

4
.3
7

2
.6
7

2
.6
7

6
2
0
.6
6

1
7
.6
0

1
7
.6
0

0
2
7
.0
8

2
4
.5
9

2
4
.5
9

0
3
5
.8
4

3
2
.7
4

3
2
.7
4

0

0
.5

0
.6
7

2
.8
1

0
.7
4

0
.7
3

7
1
6
.3
2

1
3
.7
6

1
3
.7
6

1
1
9
.1
8

1
6
.6
1

1
6
.6
1

0
3
3
.1
4

2
3
.8
8

2
3
.8
8

0

0
.5

1
1
.8
0

0
.6
8

0
.5
3

7
4
.3
9

3
.1
4

3
.1
4

4
8
.9
5

6
.8
1

6
.8
1

2
1
9
.4
7

1
4
.9
0

1
4
.9
0

0

2
.0

0
0
.0
0

0
.0
0

0
.0
0

8
0
.2
8

0
.0
9

0
.0
9

7
5
.5
8

4
.5
6

4
.5
6

3
1
3
.6
4

1
1
.9
4

1
1
.9
4

1

A
v
e
ra

g
e

1
.3
8

0
.5
8

0
.5
6

7
.3
8

1
1
.9
9

1
0
.0
0

9
.9
9

2
.8
5

1
9
.6
6

1
5
.6
5

1
5
.6
5

1
.2
3

2
8
.7
5

2
3
.2
7

2
3
.2
7

0
.0
8

C
P
U

se
c
s

0
.0
1

2
.2
3

4
3
1

0
.0
2

1
0
.3
2

2
3
9
8

0
.0
6

3
2
.5
6

3
1
7
5

0
.1
4

9
4
.0
1

3
5
4
9

T
ab

le
2:

P
er
ce
nt
ag
e
ga
p
s
of

th
e
u
p
p
er

b
ou

n
d
s
p
ro
d
u
ce
d
by

th
e
co
n
st
ru
ct
iv
e
h
eu
ri
st
ic
,
th
e
T
ab

u
re
fi
n
em

en
t,
an

d
th
e
b
ra
n
ch
-a
n
d
-c
u
t
al
go
ri
th
m

w
it
h
re
sp
ec
t
to

th
e
b
es
t
lo
w
er

b
ou

n
d
.

16

Table 1 examines the impact of strengthening constraints (Section 4.1) and valid inequalities
(Section 3). The table considers the separate inclusion of each constraint or cut and reports, for
each of them, the percentage gaps (at the root node and final, i.e. after 1 hour CPU time) with
respect to the best known upper bound. For di↵erent values of n and C, the first two columns give
the percentage gaps for the basic model (6)-(14), the last two columns give the percentage gaps
for the branch-and-cut algorithm (Sections 4 and 5) while the other pairs of columns refer to the
separate addition of constraints and cuts. An additional row gives the average gaps over the 416
instances.

The results after 1 hour CPU time (columns ‘Final’) show that fork cuts are the most powerful
inequalities for smaller capacity values, while subtour elimination cuts frequently obtain better
results for larger capacities. In a single case (|N | “ 46, C “ 0.3) capacity-draft cuts prevail:
disaggregated results show that they produce the best gap for 14 instances out of 32. In many
cases subtour elimination, generalized order, and capacity-draft cuts produce similar gaps. The
results at the root node (columns ‘Root’) exhibit a similar behavior. The last two columns show
that an e↵ective combination of the various cuts within the branch-and-cut algorithm produce
by far the best results. There is a single exception for |N | “ 38 and C “ 2.0, where subtour
elimination beats branch and cut: it must be noted, however, that, as previously described, such
capacity value produces uncapacitated TSPPD instances.

Table 2 provides the percentage gaps of the upper bounds with respect to the best lower bound.
For di↵erent values of C and P , the table contains four groups of four columns (one group for each
number of nodes). In each group, the first three columns provide the percentage gaps between
the upper bounds produced by the constructive heuristic of Section 5.1 (column CH), the tabu
refinement of Section 5.2 (column TS), and the branch-and-cut algorithm (column B&C) with
respect to the final lower bound value obtained by the branch-and-cut algorithm of Section 4. The
fourth column of each group gives the number of instances (out of 8) solved to proven optimality by
the branch-and-cut algorithm. Two additional rows give the average values over the 104 instances
generated for each number of nodes, and the average CPU times (in seconds) required by the three
algorithms.

The results show that the branch-and-cut algorithm is very e↵ective for the instances with 22
nodes (92% of instances solved), while, as it could be expected, its behavior worsens for larger
instances with 30, 38, and 46 nodes (36%, 15%, and 0.01% of instances solved, respectively).
The same consideration holds for the B&C optimality gaps. The heuristic algorithms exhibit a
satisfactory behavior: within very short CPU times (below 2 minutes, on average), the construc-
tive heuristic and its simple Tabu search refinement give feasible solutions not much worse than
those produced by the branch-and-cut algorithm (starting from such solutions) after one hour.
By restricting the analysis to the 150 instances for which a provably optimal solution has been
obtained, one can observe that the optimality gap of the constructive heuristic was 0.987% and
that of the Tabu search refinement was 0.013%. Note however that the CPU time requested by
branch-and-cut is not uselessly spent, as it allows to certify optimality or to evaluate the actual
optimality gap.

Overall, the outcome of our computational experiments proves that taking into account realistic

17

constraints like ship capacities and draft limits considerably increases the di�culty of finding
optimal TSP solutions. Consider for example the line of Table 2 corresponding to C “ 2.0, i.e.,
to uncapacitated TSP instances with pickup and delivery, and observe that both the gaps and
the numbers of optimally solved instances are considerably better than the average values in the
subsequent line. This is also confirmed by the fact that the algorithms in [6] for the TSPPD, as
well as those in [3] for the TSPDL were able to solve larger instances of the respective problems.
On the other hand, the good performance of the constructive heuristic and of its Tabu search
refinement indicate that such algorithms can be profitably used for practical purposes.

7 Conclusions

We have studied for the first time a realistic variant of the classical traveling salesman problem with
pickups and deliveries, that arises in maritime transportation. Considering the ship capacities and
the draft limits of the ports to be visited is a crucial addition for realistically modeling problems in
which one has to schedule the sequence of ports to be visited by a container ship. We have defined
an integer linear programming model and we have shown how valid inequalities developed for the
traveling salesman and the vehicle routing problem can be adapted to our problem. We have
developed heuristic approaches and an exact branch-and-cut algorithm. Extensive computational
experiments on instances of realistic size have shown that exactly solving this problem variant is
extremely challenging. However, we have seen that approximate solutions of good quality (and
hence particularly useful to practitioners) can be obtained within short computing times. Future
developments could extend the study to the multi-vehicle case. Indeed, while the tramp shipping
business is usually interested in scheduling one ship at a time, liner shipping operators are faced
with the problem of planning the routes of a whole fleet.

Acknowledgements

Research supported by Air Force O�ce of Scientific Research (Grants FA9550-17-1-0025 and
FA9550-17-1-0067) and by MIUR-Italy (Grant PRIN 2015).

References

[1] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberán, and D. Naddef. Separating capacity
constraints in the CVRP using tabu search. European Journal of Operational Research, 106(2-
3):546–557, 1998.

[2] E. Balas, M. Fischetti, and W.R. Pulleyblank. The precedence-constrained asymmetric trav-
eling salesman polytope. Mathematical Programming, 68(1-3):241–265, 1995.

18

[3] M. Battarra, A.A. Pessoa, A. Subramanian, and E. Uchoa. Exact algorithms for the traveling
salesman problem with draft limits. European Journal of Operational Research, 235(1):115–
128, 2014.

[4] J-F Cordeau. A branch-and-cut algorithm for the dial-a-ride problem. Operations Research,
54(3):573–586, 2006.

[5] M. Cordeau, J. Nossack, and E. Pesch. Mathematical formulations for a 1-full-truckload
pickup-and-delivery problem. European Journal of Operational Research, 242:1008–1016,
2015.

[6] I. Dumitrescu, S. Ropke, J.-F. Cordeau, and G. Laporte. The traveling salesman problem
with pickup and delivery: polyhedral results and a branch-and-cut algorithm. Mathematical

Programming, 121(2):269–305, 2010.

[7] J. Glomvik Rakke, M. Christiansen, K. Fagerholt, and G. Laporte. The traveling salesman
problem with draft limits. Computers & Operations Research, 39(9):2161–2167, 2012.

[8] M. Grötschel and M.W. Padberg. Lineare charakterisierungen von travelling salesman prob-
lemen. Zeitschrift für Operations Research, 21(1):33–64, 1977.

[9] S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical Journal,
44(10):2245–2269, 1965.

[10] H. Ma, B. Cheang, A. Lim, L. Zhang, and Y. Zhu. An investigation into the vehicle routing
problem with time windows and link capacity constraints. Omega, 40(3):336–347, 2012.

[11] T.E Notteboom and B. Vernimmen. The e↵ect of high fuel costs on liner service configuration
in container shipping. Journal of Transport Geography, 17(5):325–337, 2009.

[12] M. Padberg and S. Hong. On the symmetric travelling salesman problem: A computational
study. Mathematical Programming Study, 12:78–107, 1980.

[13] G. Reinelt. Tsplib–a traveling salesman problem library. ORSA Journal on Computing,
3(4):376–384, 1991.

[14] S. Ropke and J.-F. Cordeau. Branch and cut and price for the pickup and delivery problem
with time windows. Transportation Science, 43(3):267–286, 2009.

[15] S. Ropke, J.-F. Cordeau, and G. Laporte. Models and branch-and-cut algorithms for pickup
and delivery problems with time windows. Networks, 49(4):258–272, 2007.

[16] K.S. Ruland and E.Y. Rodin. The pickup and delivery problem: Faces and branch-and-cut
algorithm. Computers & Mathematics with Applications, 33(12):1–13, 1997.

19

[17] P. Tirschwell. Berth productivity: The trends, outlook and market forces impacting ship
turnaround times. Port Productivity (White paper), pages 1–24. Journal of Commerce, July
2014.

[18] L. Xue, Z. Luo, and A. Lim. Exact approaches for the pickup and delivery problem with
loading cost. Omega, 59:131–145, 2016.

20

	Introduction
	Mathematical model
	Integer Linear Program
	Arc removal due to precedence, capacity and draft constraints

	Valid inequalities
	Subtour elimination cuts
	Generalized order cuts
	Capacity-draft cuts
	Fork cuts

	Branch-and-cut algorithm
	Strengthened model
	Cut separation

	Heuristic algorithms
	Constructive heuristics
	Refinement

	Computational experiments
	Conclusions

