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Abstract We address a generic Mixed-Integer Bilevel Linear Program (MI-
BLP), i.e., a bilevel optimization problem where all objective functions and
constraints are linear, and some/all variables are required to take integer val-
ues. Rather than proposing an ad-hoc method applicable only to specific cases,
we describe a general-purpose MIBLP approach.

We first propose necessary modifications needed to turn a standard branch-
and-bound MILP solver into an exact and convergent MIBLP solver, also
addressing MIBLP unboundedness and infeasibility. Contrarily to other ap-
proaches, in our convergent framework both leader and follower problems can
be of mixed-integer type—provided that the leader variables influencing fol-
lower’s decisions are integer and bounded.

We then introduce new classes of linear inequalities to be embedded in
this branch-and-cut framework, some of which are intersection cuts based on
feasible-free convex sets. We present a computational study on various classes
of benchmark instances available from the literature, in which we demonstrate
that our approach outperforms alternative state-of-the-art MIBLP methods.

1 Introduction

Bilevel optimization is a very challenging topic that received much of attention
in recent years, as witnessed by the flourishing recent literature. In this paper
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we address a generic Mixed-Integer Bilevel Linear Program (MIBLP), i.e., a
bilevel optimization problem where all objective functions and constraints are
linear, and some/all variables are required to take integer values.

We aim at developing a general-purpose exact algorithm applicable to a
general MIBLP (under mild conditions), rather than ad-hoc methods for spe-
cific cases. Our algorithmic design choice was to look for non-invasive sup-
plements needed to convert an effective branch-and-cut Mixed-Integer Linear
Programming (MILP) exact code into a valid MIBLP solver. In this way, we
inherit the wide arsenal of tools (cuts, heuristics, propagations, etc.) available
in modern MILP solvers, and do not have to address non-bilevel specific issues
like numerical stability, effective LP parametrization, multi-threading support,
and alike. This is a distinguished feature of our work: instead of proposing
sophisticated bilevel-specific solution schemes for MIBLP, as in most papers
from the literature, we build on a stable and powerful MILP solver and add
bilevel-specific features to it.

We first introduce necessary modifications of branching, node-evaluation
and fathoming rules of a standard branch-and-bound based MILP solver, and
prove that they lead to an exact and (under some mild conditions) conver-
gent MIBLP solver. We then propose the use of Intersection Cuts (IC’s) [3]
within this branch-and-cut framework. Our approach relies on defining appro-
priate convex feasible-free sets that can be used to cut off bilevel infeasible
points obtained from a problem relaxation. As far as we know, this is the first
time IC’s have been exploited in the context of bilevel programming. Many
of the generic MIBLP approaches proposed in the literature are illustrated
using small numerical examples involving few decision variables only (see, e.g.
[2, 11, 15, 18]). To our knowledge, the present paper gives one of the most ex-
tensive computational studies for general MIBLP solvers ever reported in the
literature. Extensive computational results on a testbed containing more than
300 instances from the literature with up to 80,000 variables are presented.
An outcome of our experiments is that our approach outperforms available
state-of-the-art MIBP solvers by a large margin.

The paper is organized as follows. Section 2 gives a brief introduction to
general bilevel optimization and to MIBLP. Section 3 presents a basic MILP-
based branch-and-bound algorithm for MIBLP, and proves its finite conver-
gence under appropriate assumptions. An improved branch-and-cut algorithm
is then described in Section 4, where we present two new families of valid MI-
BLP cuts along with their separation procedures. In Section 5, results of our
computational study are provided. Some conclusions and possible directions
for future work are finally addressed in Section 6.

A very preliminary version of our work appeared in [10].
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2 The problem

A general bilevel optimization problem is defined as

min
x∈Rn1 ,y∈Rn2

F (x, y) (1)

G(x, y) ≤ 0 (2)

y ∈ arg min
y′∈Rn2

{f(x, y′) : g(x, y′) ≤ 0 }, (3)

where F, f : Rn1+n2 → R, G : Rn1+n2 → Rm1 , and g : Rn1+n2 → Rm2 .
Let n = n1 + n2 denote the total number of decision variables, and let Nx =
{1, . . . , n1} andNy = {1, . . . , n2} denote the index sets of the x and y variables,
respectively.

We will refer to F (x, y) and G(x, y) ≤ 0 as the leader objective function
and constraints, respectively, and to (3) as the follower subproblem. In case
the follower subproblem has multiple optimal solutions, we assume that one
with minimum leader cost among those with G(x, y) ≤ 0 is chosen—i.e. we
consider the optimistic version of bilevel optimization. The reader is referred
to [14] for a comprehensive discussion on this topic.

By defining the follower value function for a given x ∈ Rn1

Φ(x) = min
y∈Rn2

{f(x, y) : g(x, y) ≤ 0 }, (4)

one can restate the bilevel optimization problem as follows:

minF (x, y) (5)

G(x, y) ≤ 0 (6)

g(x, y) ≤ 0 (7)

(x, y) ∈ Rn (8)

f(x, y) ≤ Φ(x). (9)

Note that the above optimization problem would be hard (both theoretically
and in practice) even if one would assume convexity of F,G, f and g (which
would imply that of Φ), due to the intrinsic nonconvexity of (9).

Dropping condition (9) leads to the so-called High Point Relaxation (HPR).
Clearly, if HPR is infeasible, so is its bilevel counterpart. Thus, without loss
of generality, we will assume HPR is feasible.

As HPR contains all the follower constraints, any HPR solution (x, y) sat-
isfies f(x, y) ≥ Φ(x), hence (9) actually implies f(x, y) = Φ(x). Notice that
replacing Φ(x) with some more tractable underestimator allows one to derive a
heuristic solution, i.e., an upper bound on the value of optimal bilevel solution.
Similarly, the solution of the problem obtained overestimating Φ(x) provides
a valid lower bound for the problem. An HPR solution (x, y) will be called
bilevel infeasible if it violates (9). A point (x, y) ∈ Rn will be called bilevel
feasible if it satisfies all constraints (6)–(9).
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2.1 Mixed-Integer Bilevel Linear Program

In the remaining part of the paper we will focus on the relevant special case
in which some/all variables are required to be integer, and all leader/follower
constraints and objective functions are linear/affine functions. To be more
specific, we will consider the following Mixed-Integer Bilevel Linear Program
(MIBLP), in its value-function reformulation (5)-(9):

min cTx x+ cTy y (10)

Gxx+Gyy ≤ q (11)

Ax+By ≤ b (12)

x− ≤ x ≤ x+ (13)

y− ≤ y ≤ y+ (14)

xj integer, ∀j ∈ Jx (15)

yj integer, ∀j ∈ JL
y (16)

dT y ≤ Φ(x) (17)

where cx, cy, Gx, Gy, q, A, B, b, x−, x+, y−, and y+ are given rational
matrices/vectors of appropriate size, while sets Jx ⊆ Nx and JL

y ⊆ Ny (where
superscript L stands for leader) identify the (possibly empty) indices of the
integer-constrained variables in x and y, respectively. Constraints (13)-(14)
define explicit lower/upper bounds on the variables; as customary, we allow
some entries in x−, x+, y−, y+ to be ±∞.

As to the value function Φ(x) for a given x, it is computed by solving the
follower MILP :

Φ(x) := min dT y (18)

Ax+By ≤ b (19)

l ≤ y ≤ u (20)

yj integer, ∀j ∈ Jy (21)

where l and u are, respectively, lower and upper bounds on the y variables in
the follower—possibly lj = −∞ and/or uj = +∞ for some j. Without loss of
generality, one can assume l ≤ y− and u ≥ y+, i.e., the bound constraints (14)
on the y variables are not weaker than the corresponding bounds (20) in the
follower problem. For the same reason, one can assume that Jy ⊆ JL

y .
Note that the follower objective function (18) does not depend on x, as the

latter would just introduce a constant term without changing the set of the
optimal follower solutions.

Letm denote the number of rows of matrix A, let Aj denote its j-th column,
and let Aij denote its generic entry. In what follows we will use notation

JF := {j ∈ Nx : Aj 6= 0} (22)
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to denote the index set of the leader variables xj (not necessarily integer-
constrained) appearing in the follower problem.

Dropping the nonconvex condition (17) from (10)-(17) leads to HPR, which
is a MILP in this setting. Dropping integrality conditions as well leads to the
LP relaxation of HPR, which will be denoted by HPR.

Solving MIBLP’s is much more challenging than single-level MILP’s: first
of all, MIBLP’s are ΣP

2 -hard [13]. Furthermore, it is known that allowing
continuous variables in the leader and integer variables in the follower, may
lead to bilevel problems whose optimal solutions are unattainable (see, e.g.,
[12, 16]). Finally, in contrast to single-level MILP’s, unboundness of a relax-
ation of the problem (namely, the HPR-relaxation) does not allow to draw
conclusions on the optimal solution of MIBLP. More precisely, MIBLP’s with
unbounded HPR-relaxation value can be unbounded, infeasible, or admit an
optimal solution.

To deal with the above difficulties, in the remainder of this article we
impose the following assumptions:

Assumption 1 All the integer-constrained variables x and y have finite lower
and upper bounds both in HPR and in the follower MILP.

Assumption 2 JF ⊆ Jx, i.e., continuous leader variables xj (if any) do not
appear in the follower problem—hence they are immaterial for the computation
of the value function Φ(x).

3 A finitely-convergent branch-and-bound algorithm

We next show how a classical Branch-and-Bound (B&B) scheme for MILP can
be modified to obtain an exact MIBLP solver. Correctness and finite conver-
gence will be proved under the Assumptions 1 and 2 stated above.

If for all HPR solutions, the follower MILP is unbounded, one may safely
conclude that the MIBLP is infeasible. In Section 3.1 we first show that such
a situation may be detected by solving a single LP. This check can be seen as
a preprocessing step, so that without loss of generality we may assume that
for an arbitrary HPR solution, the follower MILP is well defined.

In Sections 3.2 and 3.3 we detail the bilevel-feasibility check and refinement
procedures, that need to be “plugged-in” at some critical branch-and-bound
nodes. Observe that under our assumptions, the HPR feasible set can be un-
bounded (we impose no bounds on continuous variables), which may result
into unbounded HPR solution value. We will show that our algorithm is able
to detect whether a given MIBLP is in fact unbounded, infeasible, or admits
an optimal solution.

3.1 Dealing with infeasible/unbounded follower MILP’s

We now address the special cases where, for a given x, function Φ(x) is not
well-defined as the follower MILP (18)-(21) is either infeasible or unbounded.
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In case of infeasibility, no bilevel-feasible solution of the type (x, ·) exists.
This situation of course cannot occur when (x, y) is a feasible HPR solution,
in that HPR includes all follower constraints (19)–(21).

The situation where the follower MILP is unbounded for some HPR so-
lution (x, y) was instead analyzed by [19, Lemma 2], who showed that this
implies infeasibility of the MIBLP model (10)-(17). We next prove a more
general result along the same lines, showing that the solution of a single LP
(as opposed to a series of MILP’s) is enough to handle all cases of unbound-
edness of the follower MILP.

Theorem 1 Assume B is a rational matrix, and let v∗ be the optimal value
of the following LP:

v∗ := min dT∆y (23)

B∆y ≤ 0 (24)

∆yj ≤ 0, ∀j ∈ {1, . . . , n2} : uj < +∞ (25)

∆yj ≥ 0, ∀j ∈ {1, . . . , n2} : lj > −∞ (26)

−1 ≤∆y ≤ 1, (27)

If v∗ < 0, then the MIBLP model (10)-(17) is infeasible, otherwise the value
function Φ(x) is well defined for every HPR solution (x, y).

Proof Observe that the LP (23)–(27) is not unbounded (because of (27)) nor
infeasible (as ∆y = 0 is a feasible solution). So let ∆y∗ be any optimal extreme
solution of it. The rationality of B implies that of ∆y∗, so we can multiply the
latter by a positive scalar to get an integer vector ∆y that satisfies (24)–(26).
Now take any HPR solution (x, y).

If v∗ < 0, we have dT ∆y < 0. Thus, for any solution y′ satisfying (19)–
(21), the new solution y′′ = y′ + α∆y is feasible, and has a smaller value, for
every integer α > 0. This means that the follower MILP is unbounded.

If v∗ ≥ 0, instead, the LP relaxation the follower MILP cannot be un-
bounded, as any unbounded ray would correspond to a solution ∆y of (23)–
(27) with dT∆y < 0. So the follower MILP itself cannot be unbounded, and
Φ(x) is well defined.

The claim then follows from the arbitrariness of (x, y). ut

Note that the case v∗ ≥ 0 does not rule out the possibility that MIBLP
model (10)-(17) is infeasible. However, Theorem 1 can be used as a prepro-
cessing step to exclude unboundedness of all follower MILP’s. In what follows,
we will therefore assume that the value function Φ(x) is well defined for every
HPR solution (x, y).

3.2 Feasibility check and refinement procedure

We now describe two procedures that are instrumental for the correctness of
our B&B scheme.



Intersection cuts for bilevel optimization 7

Given a feasible solution (x∗, y∗) of HPR, checking bilevel feasibility re-
quires solving the follower MILP (18)-(21) for x = x∗ to compute Φ(x∗), and
to check whether dT y∗ ≤ Φ(x∗) holds.

Observe that the follower MILP for x = x∗ cannot be infeasible, as the
input (x∗, .) is a feasible HPR solution, nor unbounded by assumption (see
Subsection 3.1)

In a more general setting, one is interested in the following problem: given
an HPR solution (x∗, ·), find a bilevel-feasible HPR solution of the form (x̂, ·)
with “x̂ close to x∗” that minimizes the HPR objective (10), if any. This
problem can be solved by the refinement procedure described below.

Algorithm 1: Refinement procedure

Input : An HPR solution (x∗, y∗);
Output: A refined bilevel-feasible solution (x̂, ŷ) with x̂j = x∗j for all j ∈ JF (if any);

1 Solve the follower MILP (18)-(21) for x = x∗ to compute Φ(x∗);
2 Define a restricted HPR by temporarily adding the following constraints to HPR:

xj = x∗j for all j ∈ JF , and dT y ≤ Φ(x∗);

3 Solve the restricted HPR;
4 if the restricted HPR is unbounded then return “MIBLP is UNBOUNDED”;
5 Let (x̂, ŷ) be the optimal solution found, and return (x̂, ŷ)

At Step 1 we solve the follower problem for xj = x∗j for all j ∈ JF . At
Steps 2 and 3, one defines a restricted HPR and computes a best bilevel-
feasible solution (x̂, ŷ) with x̂j = x∗j for all j ∈ JF , respectively; this is just a

MILP because, for the restricted HPR, (17) becomes dT y ≤ Φ(x∗) = const.
Special cases arise when the restricted HPR defined at Step 2 is either un-

bounded or infeasible. In the former case (Step 4), the bilevel problem (10)-(17)
is unbounded as we can exhibit a bilevel-feasible solution (x̂, ŷ) of arbitrarily
small cost cTx x̂+cTy ŷ. In the latter case, no bilevel-feasible HPR solution of the
form (x̂, ·) exists, and the procedure returns a dummy solution of HPR-cost
conventionally set to +∞.

3.3 The overall branch-and-bound framework

Recall that our main goal is to solve MIBLP by using a standard LP-based
B&B algorithm applied to HPR, where the value-function constraint (17) is
handled implicitly. In our basic scheme, branching is performed by restricting
the domain of the integer-valued x and y variables, i.e., by modifying the
lower/upper HPR bounds (x−j , x

+
j , y

−
j , y

+
j , ) appearing in (13) and (14) for the

integer-constrained variables xj with j ∈ Jx and yj with j ∈ JL
y .

Finite convergence of the above scheme can be guaranteed in case:

a) The B&B algorithm for the underlying HPR, as well as for the follower
MILP, is finely convergent.
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b) One can always prune a given B&B node where all variables xj with j ∈ Jx
have been fixed by branching.

Points a) and b) are in fact handled by Assumptions 1 and 2. A simple B&B
algorithm that solves MIBLP in a finite number of iterations is then illustrated
in Algorithm 2. For the sake of conciseness, only the bilevel-specific features
are described in full details.

Algorithm 2: A basic branch-and-bound scheme for MIBLP
Input : A MIBLP instance satisfying Assumptions 1 and 2;
Output: An optimal MIBLP solution (if any).

1 Apply a standard LP-based B&B to HPR, branching as customary on
integer-constrained variables xj and yj that are fractional at the optimal LP
solution; incumbent update, as well as node-fathoming because of
unboundedness of HPR, are instead inhibited as they require a bilevel-specific
check;

2 for each unfathomed B&B node where standard branching cannot be performed
do

3 if HPR is not unbounded then
4 Let (x∗, y∗) be the HPR solution at the current node;
5 Compute Φ(x∗) by solving the follower MILP for x = x∗;

6 if dT y∗ ≤ Φ(x∗) then
7 The current solution (x∗, y∗) is bilevel feasible: update the

incumbent, fathom the current node, and continue with another
node

8 end

9 end
10 if all variables xj with j ∈ JF are fixed by branching then
11 Apply refinement Algorithm 1 to (x, ·);
12 Possibly update the incumbent with the resulting solution (x̂, ŷ), if any;
13 Fathom the current node

14 else
15 Branch on any xj (j ∈ JF ) not fixed by branching yet (even if x∗j is

integer in the LP-solution at the node), so as to reduce its domain in
both child nodes

16 end

17 end

In Steps 2-17, we handle B&B nodes in which the standard branching
on a fractional variable is not possible. This may happen because integrality
requirements are met, or the current HPR is unbounded. Nodes for which HPR
is infeasible do not need any special treatment instead, and can be fathomed
as usual.

As customary, the current node is fathomed in case the current relaxation
is finite and has an optimal solution that is bilevel feasible (Step 7).

Compared to a standard B&B algorithm, the following modified rules need
to be applied:

– Fathoming is inhibited in case of an unbounded HPR value. Instead, at
Step 15 one continues to branch on an integer xj (even if x∗j is integer)
until its value is fixed by branching.
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– If HPR value is unbounded and all variables xj (j ∈ JF ) are fixed by
branching, we apply the refinement algorithm of Step 11. If the refinement
procedure returns “MIBLP is UNBOUNDED”, the algorithm terminates.
Otherwise, the incumbent is possibly updated (if the refinement procedure
returns a finite value), and the node is eventually fathomed.

– Branching is also not required if all variables xj (j ∈ JF ) have been fixed by
branching (Step 10). Indeed, under Assumption 2, one can use Algorithm 1
to compute the best bilevel-feasible solution (x̂, ŷ) for the node.

As customary, the algorithm returns “MIBLP is INFEASIBLE”, if upon
the enumeration of all B&B nodes, no feasible solution is found. Observe that,
even in case of an unbounded HPR value, this situation is handled correctly,
due to the refinement algorithm of Step 11. In the worst case, this step will be
executed for every possible combination of feasible xj integer values, j ∈ JF ,
until all of the B&B nodes are discarded.

Theorem 2 Under Assumptions 1 and 2, Algorithm 2 correctly solves MIBLP
in a finite number of iterations.

Proof Finiteness follows immediately Assumption 1, as each branching oper-
ation strictly reduces the domain of an integer-constrained variable. Thus a
finite number of B&B nodes will be generated, and each node requires a finite
number of operations to be processed. Correctness follows from the fact that,
because of Assumption 2, Step 11 actually computes the best bilevel-feasible
solution (x̂, ŷ) for the current node (if any), so the node can be pruned after
the incumbent update. ut

Note that we allow branching on y variables, though this could be avoided
by a simple modification of our scheme. The rationale of this choice is that
we prefer to exploit the underlying MILP solver as much as possible, and to
deviate from it only when strictly needed for the correctness of the approach.
Also observe that, contrarily to other approaches from the literature, branching
on y variables is a legitimate option in our setting because it does not affect
the follower lower/upper bound vectors l and u, hence value function Φ(x∗)
computed at Step 4 remains “completely blind” with respect to branching.

3.4 Comparison with the literature

The first generic branch-and-bound approach to MIBLP was given in [16]. The
approach works for problems without y variables in the leader constraints. Our
algorithm is much less restrictive than the one in [16], for which the authors are
able to prove convergence only under the assumptions that the HPR feasible
region is compact and that either all leader variables are integer (i.e., Jx = Nx),
or all follower variables are continuous (i.e., JL

y = Jy = ∅).
A MILP-based branch-and-cut algorithm was introduced in [6, 7]. This

approach builds upon the ideas from [16], and cuts off integer bilevel infeasible
solutions by adding cuts that exploit the integrality property of the leader and
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the follower variables. However, this method works with integer variables only
and does not allow y variables in the leader constraints.

In the branch-and-sandwich in [11] (which is a more general approach for
nonlinear bilevel problems) novel ideas for deriving lower and upper bounds
on the follower value function Φ(x) are proposed. Also here, it is assumed that
the HPR feasible region is compact. On the other hand, continuous x variables
influencing the follower’s decision are allowed (i.e., JF ⊆ Nx), in which case
only ε-convergence can be guaranteed.

In [19], an exact approach based on multi-way branching on the slack
variables on the follower constraints is proposed. The algorithm solves a series
of MILP’s, obtained by restricting the slack variables, until the convergence
is reached. Again, all x variables are required to be integer and bounded, and
the constraint matrix A must be integer.

Recently, [5] proposed a method that works for integer x and y variables
only: HPR is embedded into a branch-and-bound tree, bilevel infeasible so-
lutions being cut off by linearizing the bilevel continuous problems resulting
from the separation procedure.

A Benders-like decomposition scheme for general MIBLP’s is given in [18],
whereas an approach for nonlinear MIBLP’s is introduced in [15]; in both
cases, the algorithms assume the HPR feasible region be compact.

To the best of our knowledge, our algorithm is a first convergent branch-
and-bound approach which returns a provably optimal solution (if such ex-
ists) without assuming the HPR feasible region to be compact (only integer
variables need to be bounded). Moreover, our algorithm is capable of handling
continuous x variables (as long as they do not influence the follower decisions),
in combination with a mixed-integer follower.

4 A branch-and-cut algorithm

We next elaborate the B&B algorithm described in the previous section, and
introduce new families of linear cuts used to speedup its convergence within a
sound Branch&Cut (B&C) scheme.

4.1 Intersection cuts

Intersection Cuts (IC’s) have been introduced by Balas [3] in the 1970th, and
are widely used in Mixed-Integer Programming. Their use for MIBLP was not
investigated until our very recent work [10], where for the first time we showed
their usefulness in the context of bilevel optimization.

The definition of an IC violated by a given point (x∗, y∗) requires the
definition of two sets:

(1) a cone pointed at (x∗, y∗) that contains all the bilevel feasible solutions,
and
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(2) a convex set S that contains (x∗, y∗) but no bilevel feasible solutions in its
interior.

The larger the convex set, and the smaller the cone, the better the resulting
IC. We will next briefly address point (1), while point (2) will be the subject
of the next section.

As customary in mixed-integer programming, our IC’s are generated for
vertices (x∗, y∗) of the HPR polyhedron, so a suitable cone is just the cor-
ner polyhedron associated with the corresponding optimal basis. All relevant
information about this cone is readily available in the “optimal tableau”. As
the HPR at a given B&B node exploits locally-valid information (notably, the
reduced variable domain resulting from branching), our IC’s will be locally (as
opposed to globally) valid as well.

4.2 Bilevel-free polyhedra

We next describe how to derive bilevel-free polyhedra to be used to generate
valid cuts as outlined in the previous section. With a little abuse of nota-
tion, in what follows we will call “facet” an inequality appearing in the outer
description of a polyhedron.

Theorem 3 below was implicit in some early references (including [19]),
where it was only used as a branching rule in a B&B setting.

Theorem 3 For any ŷ ∈ Rn2 that satisfies (20)–(21), the set

S(ŷ) = {(x, y) ∈ Rn : dT y > dT ŷ, Ax+Bŷ ≤ b} (28)

does not contain any bilevel feasible point (not even on its frontier).

Proof We have to prove that no bilevel feasible (x, y) exists such that dT y >
dT ŷ and Ax + Bŷ ≤ b. Indeed, for any bilevel feasible solution (x, y) with
Ax+Bŷ ≤ b, one has

dT y ≤ Φ(x) = min
y′
{dT y′ : Ax+By′ ≤ b, (20)–(21) hold for y′} ≤ dT ŷ,

hence (x, y) 6∈ S(ŷ). ut

Note that inequalities (Ax+By)i ≤ bi in the follower MILP that do not involve
x variables, if any, would lead to useless inequalities of the form 0 ≤ bi− (Bŷ)i
(= a nonnegative constant), so they do not contribute to the definition of S(ŷ).
This is the reason why, for example, the bound constraints l ≤ y ≤ u do not
correspond to facets of S(ŷ).

Unfortunately, the above set is not directly suited to be used for IC gener-
ation, as one needs to ensure that any bilevel-infeasible HPR solution (x∗, y∗)
to be cut belongs to the interior of the bilevel-free polyhedron—actually, to
get numerically reliable IC’s one has to guarantee a certain minimum distance
of (x∗, y∗) from all the facets of the polyhedron itself. So one needs to ad-
dress extended versions of the above set, whose facets are “moved apart” by
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a non-negligible amount. In our setting, this can be done under the following
assumption.

Assumption 3 Ax+By − b is integer for all HPR solutions (x, y).

The above assumption holds true, in particular, when all the x and y variables
appearing in the follower MILP are constrained to be integer, and (A,B, b) is
integer—a very common assumption in the MIBLP literature.

Let 1 = (1, · · · , 1) denote a vector of all ones of suitable size.

Theorem 4 Under Assumption 3, for any ŷ ∈ Rn2 that satisfies (20)–(21),
the extended polyhedron

S+(ŷ) = {(x, y) ∈ Rn : dT y ≥ dT ŷ, Ax+Bŷ ≤ b+ 1} (29)

does not contain any bilevel feasible point in its interior.

Proof To be in the interior of S+(ŷ), a bilevel feasible (x, y) should satisfy
dT y > dT ŷ and Ax+Bŷ < b+ 1. By assumption, the latter condition can be
replaced by Ax+Bŷ ≤ b, hence the claim follows from Theorem 3. ut

Example. Figure 1 illustrates the application of our IC’s to a notorious exam-
ple from [16] which is frequently used in the literature, namely:

min
x∈Z

−x− 10y (30)

y ∈ arg min
y′∈Z
{ y′ : (31)

−25x+ 20y′ ≤ 30 (32)

x+ 2y′ ≤ 10 (33)

2x− y′ ≤ 15 (34)

2x+ 10y′ ≥ 15 }. (35)

In this all-integer example, there are 8 bilevel feasible points (depicted as
crossed squares in Figure 1), and the optimal bilevel solution is (2, 2). The
drawn polytope corresponds to the HPR feasible set.

We first apply the definition of the bilevel-free set from Theorem 3 with
ŷ defined as the follower optimal solution for x = x∗. After solving the first
HPR, the point A = (2, 4) is found. This point is bilevel infeasible, as for
x∗ = 2 we have dT y∗ = y∗ = 4 while Φ(x∗) = 2. Solving the follower for x = 2
we compute ŷ = 2 and the intersection cut derived from the associated S(ŷ)
is depicted in Figure 1(a). In the next iteration, the optimal HPR solution
moves to B = (6, 2). Again, for x∗ = 6, f(x∗, y∗) = y∗ = 2 while Φ(x∗) = 1.
So we compute ŷ = 1 and generate the IC induced by the associated S(ŷ),
namely 2x + 11y ≤ 27 (cf. Figure 1(b)). In the next iteration, the fractional
point C = (5/2, 2) is found and ŷ = 1 is again computed. In this case, C is not
in the interior of S(ŷ) so we cannot generate an IC cut from C but we should
proceed and optimize HPR to integrality by using standard MILP tools such
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Fig. 1: Illustration of the effect of alternative intersection cuts for a notorious
example from [16]. Shaded regions correspond to the bilevel-free sets for which
the cut is derived.

as MILP cuts or branching. This produces the optimal HPR solution (2, 2)
which is bilevel feasible and hence optimal.

We next apply the definition of the enlarged bilevel-free set from Theorem 4
(whose assumption is fulfilled in this example) with ŷ defined as before; see
Figures 1(c) and (d). After the first iteration, the point A = (2, 4) is cut off by
a slightly larger S+(ŷ = 2), but with the same IC as before (y ≤ 2). After the
second iteration, from the bilevel infeasible point B = (6, 2) we derive a larger
set S+(ŷ = 1) and a stronger IC (x+ 6y ≤ 14). In the third iteration, solution
D = (2, 2) is found which is the optimal bilevel solution, so no branching at
all is required in this example.
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4.3 Relaxed bilevel-free polyhedra

We now address a very crucial point for the computational effectiveness of IC’s,
namely: the bilevel-free polyhedron should be as large as possible in order to
derive sufficiently deep IC’s. In particular, one should try to “remove from the
polyhedron” as many facets as possible—as long as this does not affect the
bilevel-free property of course. To this end, one can apply the following simple
(yet very powerful) argument.

Theorem 5 Let S = {(x, y) ∈ Rn : αT
i x + βT

i y ≤ γi, i = 1, . . . , k} be any
polyhedron not containing bilevel-feasible points in its interior. Then one can
remove from S all its facets i ∈ {1, . . . , k} such that the half-space {(x, y) ∈
Rn : αT

i x+ βT
i y ≥ γi} does not contain any bilevel-feasible solution.

Proof Obvious, as the removal of any such facet from the definition of S cannot
bring bilevel-feasible points into it. ut

Note that the condition on the theorem refers to a closed half-space, i.e., the
condition is ≥ γi and not > γi. This is consistent with the fact that S is
allowed to contain bilevel-feasible points on its frontier.

Corollary 1 Let S = {(x, y) ∈ Rn : αT
i x + βT

i y ≤ γi, i = 1, . . . , k} be any
polyhedron not containing bilevel-feasible points in its interior. Then one can
remove from S all its facets i ∈ {1, . . . , k} such that

n1∑
j=1

max{αijx
−
j , αijx

+
j }+

n2∑
j=1

max{βijy−j , βijy
+
j } < γi.

In our implementation, the above corollary is automatically applied within
IC separation, by using the current lower/upper bounds (x−, x+, y−, y+) at
the given B&B node.

Corollary 2 Let S+(ŷ) be the bilevel-free polyhedron defined by (29) and as-
sume a lower bound FLB on dT y is known. If dT ŷ < FLB, one can remove
the facet dT y ≥ dT ŷ from the definition of S+(ŷ).

In our implementation, the above property is only exploited for “zero-sum”
instances where the leader and follower objective functions satisfy F (x, y) =
−f(x, y), i.e., cx = 0 and cy = −d in (10). Indeed, at every B&B node, the
incumbent value z∗ (say) is an upper bound for the leader objective function,
hence FLB = −z∗ is a lower bound for the follower’s one.

4.4 Separation of intersection cuts

We now address the question of how to cut a given vertex (x∗, y∗) of HPR
by using an IC. Given for granted that we use the cone associated with the
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current LP basis, as explained in Subsection 4.1, what remains is the choice
of the bilevel-free set to be used.

As IC’s require that (x∗, y∗) belongs to the interior of the bilevel-free set,
we concentrate on the extended polyhedron S+(ŷ) from Theorem 4. In doing
so, we have to restrict ourselves to the cases where Assumption 3 holds. We
also assume that (possibly after scaling) d is an integer vector, so as to replace
the bilevel-infeasibility conditions of the type dT y < dT y∗ by dT y ≤ dT y∗− 1.

As our IC’s are locally valid cuts, in this section we denote by (x−, x+, y−, y+)
the variable bounds at the current branching node, as modified by branching.
Needless to say, notation (A,B, b, d, l, u) refers instead to the original follower
MILP, that is required to be completely blind with respect to branching.

A very natural option for defining S+(ŷ) is to choose ŷ as an optimal
solution of the follower MILP for x = x∗, namely:

SEP− 1 : ŷ ∈ arg min dT y (36)

Ax∗ +By ≤ b (37)

l ≤ y ≤ u (38)

yj integer ∀j ∈ Jy (39)

Note that the above problem is always feasible when (x∗, y∗) is an HPR so-
lution. Also note that one cannot write ≤ b + 1 in (37) as this would allow
(x∗, ·) to belong to the frontier of S+(ŷ).

In our B&C scheme, the computation of ŷ typically does not require extra
effort as the follower MILP is solved anyway for the sake of checking bilevel
feasibility of (x∗, y∗) and, possibly, producing heuristic solutions.

By minimizing dT ŷ, the above model maximizes the distance of (x∗, y∗)
from the facet dT y ≥ dT ŷ of S+(ŷ). This is an aggressive policy that works
very well in some cases. However, a possible drawback is that the other facets
of S+(ŷ) can be quite close to (x∗, y∗), which tends to reduce the depth of the
derived IC.

An alternative approach is to define ŷ so as to have a large number of
“removable facets” according to Corollary 1, i.e., facets of type (Ax+Bŷ)i ≤
bi + 1 with

∑
j∈Nx

max{Aijx
−
j , Aijx

+
j }+ (Bŷ)i ≤ bi. (40)

This leads to the following alternative separation MILP (recall that m denotes
the number of rows of B).
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SEP− 2 : ŷ ∈ arg min

m∑
i=1

wi (41)

dT y ≤ dT y∗ − 1 (42)

By + s = b (43)

si + (Lmax
i − L∗i )wi ≥ Lmax

i , ∀i = 1, . . . ,m (44)

l ≤ y ≤ u (45)

yj integer, ∀j ∈ Jy (46)

s free (47)

w ∈ {0, 1}m (48)

where, for each i = 1, . . . ,m,

L∗i :=
∑
j∈Nx

Aijx
∗
j ≤ Lmax

i :=
∑
j∈Nx

max{Aijx
−
j , Aijx

+
j }.

In the model, the binary variable wi attains value 0 if the facet (Ax+Bŷ)i ≤
bi + 1 can be removed according to (40), wi = 1 otherwise.

The objective function (41) then minimizes the number of facets that can-
not be removed.

Equations (43) define the free variable si = (b− By)i for each constraint,
hence condition s ≥ L∗ implied by (44) actually imposes that the final solution
ŷ satisfies Ax∗ + Bŷ ≤ b. Together with (42), this guarantees that (x∗, y∗)
belongs to the interior of S+(ŷ).

In case wi = 0, constraint (44) actually enforces the stronger condition
si ≥ Lmax

i , i.e.,
∑

j∈Nx
max{Aijx

−
j , Aijx

+
j } + (Bŷ)i ≤ bi. Hence condition

(40) holds and the corresponding facet can be removed, as claimed.

4.5 Informed no-good cuts

A known drawback of IC’s is their dependency on the LP basis associated
with the point to cut, which can create cut accumulation in the LP relaxation
and hence shallow cuts and numerical issues. Moreover, IC’s are not directly
applicable if the point to cut is not a vertex of a certain LP relaxation of the
problem at hand, as it happens e.g. when it is computed by the internal MILP
heuristics.

We next describe a general-purpose variant of IC’s whose derivation does
not require any LP basis and is based on the well-known interpretation of IC’s
as disjunctive cuts. In a sense, we are replacing the cone defined by the LP
basis by the cone induced by the tight bound constraints. It turns out that
the resulting inequality is valid and violated by any bilevel infeasible solution
of HPR in the relevant special case where all x and y variables are binary.
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We are given a point ξ∗ = (x∗, y∗) ∈ Rn and a polyhedron

S = {ξ ∈ Rn : gTi ξ ≤ gi0, i = 1, . . . , k}

whose interior contains ξ∗ but no bilevel-feasible points. Assume that variable-
bound constraints ξ− ≤ ξ ≤ ξ+ are present in the HPR, where some entries
of ξ− or ξ+ can be −∞ or +∞, respectively. Given ξ∗ with ξ− ≤ ξ∗ ≤ ξ+, let

L := {j ∈ {1, . . . , n} : |ξ∗j − ξ−j | ≤ |ξ
∗
j − ξ+j |}

and U := {1, . . . , n}\L. In other words, L contains the indices of the variables
that are closer to their lower bound than to their upper bound, and vice-versa
for U . For the relevant case where ξ∗j ∈ {ξ

−
j , ξ

+
j } for all j ∈ {1, . . . , n}, sets L

and U then contain the indices of the variables at their lower or upper bound,
respectively. Given the partition (L,U), we define the corresponding linear
mapping ξ 7→ ξ ∈ Rn with

ξj :=

{
ξj − ξ−j , for j ∈ L
ξ+j − ξj , for j ∈ U

(variable shift and complement). By assumption, any feasible point ξ must
satisfy the k-way disjunction

k∨
i=1

(

n∑
j=1

gijξj ≥ gi0), (49)

whereas ξ∗ violates all the above inequalities. Now, each term of (49) can be
rewritten in terms of ξ as

n∑
j=1

gij ξj ≥ βi := gi0 −
∑
j∈L

gijξ
−
j −

∑
j∈U

gijξ
+
j , (50)

with gij := gij if j ∈ L, gij = −gij otherwise. If βi > 0 for all i = 1, . . . , k, one

can normalize the above inequalities to get
∑n

j=1(gij/βi) ξj ≥ 1 and derive

the valid disjunctive cut in the ξ space

n∑
j=1

γjξj ≥ 1, (51)

where γj := max{gij/βi : i = 1, . . . , k}. Finally, one can transform it back to
the ξ space in the obvious way.

It is easy to see that, in case ξ∗j ∈ {ξ
−
j , ξ

+
j } for all j ∈ {1, . . . , n}, one has

β > 0, hence the above cut is indeed valid and obviously violated as ξ
∗

= 0.
In all other cases, the above cut separation is just heuristic.

Inequality (51) will be called Informed No-Good (ING) cut as it can be
viewed as a strengthening of the following no-good cut often used for bilevel
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problems with all-binary variables—and in many other Constraint Program-
ming (CP) and Mathematical Programming (MP) contexts:∑

j∈L
ξj +

∑
j∈U

(1− ξj) ≥ 1. (52)

The cut above corresponds to the very generic choice

S = {ξ ∈ Rn : ξj ≤ 1 ∀j ∈ L, 1− ξj ≤ 1 ∀j ∈ U}

and is violated by ξ∗ but is satisfied by any other binary point, hence resulting
into a very weak cut. To the best our knowledge, ING cuts are new; they will
hopefully be useful in other CP and MP contexts.

5 Computational results

To evaluate the performance of our B&C solution method, we implemented it
(in C language) on top of the general-purpose MILP solver IBM ILOG Cplex
12.6.3 using callbacks.

Internal Cplex’s heuristics as well as preprocessing have been deactivated in
all experiments. IC separation is applied both to fractional solutions (in the so-
called usercut callback) and to integer solutions (in the so-called lazyconstraint
callback). For fractional solutions, IC’s whose normalized violation is very
small are just skipped, and a maximum number of cuts max node cuts (a
given parameter) is allowed to be generated at each node.

Internal numerical-precision thresholds for integrality and constraint-satis-
faction tests are set to a very small value (10−9) so as to guarantee a very
precise overall computation.

Our computational study has been performed on an Intel Xeon E3-1220V2
3.1GHz, with 16GB of RAM. This is a quad-core processor launched by Intel
in 2012 and credited for 1,892 Mflop/s in the Linpack benchmark report of
Dongarra [9].

Computing times reported in what follows are in wall-clock seconds and
refer to 4-thread runs. The time limit for each run was set to 3,600 wall-clock
seconds.

5.1 Testbed

Table 1 summarizes details about the data sets that have been considered
in our computational study. The following four data sources with a total
number of 302 instances have been considered: CARAMIA-MARI (available from
the authors of [5] upon request), DENEGRE and INTERDICTION (both available
at https://github.com/tkralphs/MibS/tree/library/data in February
2016), and MIPLIB (available at http://homepage.univie.ac.at/markus.

sinnl/program-codes/bilevel).

https://github.com/tkralphs/MibS/tree/library/data
http://homepage.univie.ac.at/markus.sinnl/program-codes/bilevel
http://homepage.univie.ac.at/markus.sinnl/program-codes/bilevel
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Table 1: Our testbed. Column #inst reports the total number of instances in
the class, while column type indicates whether the instances are binary (B) or
integer (I).

Class source # inst type Notes
CARAMIA-MARI [5] 70 I randomly generated (very small and easy)
DENEGRE [6],[17] 50 I randomly generated (medium difficulty)
INTERDICTION [6],[17] 125 B interdiction inst.s (treated as general bilevel)
MIPLIB [10] 57 B from MIPLIB 3.0 (very large and difficult)

Class CARAMIA-MARI contains 70 randomly generated instances with
n1, n2 ∈ {5, 10, 15}, with no leader constraints and with m = n1 + n2 fol-
lower constraints. All variables are required to be integer and all coefficients
are randomly generated integer values; see [5] for further details.

Instances of class DENEGRE have been proposed in [6]. They consist of n1 ∈
{5, 10, 15} integer leader variables, and the number of integer follower variables
n2 is set such that n1+n2 = 20. There are m ∈ {20, 30, 40} follower constraints
and no constraints at the leader. All coefficients are integers in the range
[−50, 50].

Instances of class INTERDICTION have the following structure. All variables
are binary and each variable in the leader is associated with a variable in the
follower, and vice-versa. The leader has a single constraint that is called the
interdiction-budget constraint. The follower problem consists of some combi-
natorial optimization problem defined on the y variables only, plus additional
constraints that involve both x and y variables and have the form xi+yi ≤ 1. In
other words, the leader is allowed to interdict to the follower the use of some
items, subject to the interdiction budget. The leader and follower problems
share the same objective function, with opposite signs. In class INTERDICTION,
the follower problem is an assignment problem (25 instances with 25+25 vari-
ables) or a knapsack problem (100 instances with up to 50+50 variables).
Although interdiction problems can in some cases be treated with specialized
ad-hoc algorithms exploiting the problem structure (as, e.g., done in [6]), in
our computational study they are treaded as general bilevel problems.

Finally, class MIPLIB has been introduced in [10] with the aim of producing
very challenging instances for MIBLP solvers. It is derived from 19 instances
of MILPLIB 3.0 [4] containing only binary variables. They have been con-
verted into bilevel problems by labeling the first Y% (rounded up) variables
as y’s, and the remaining ones as x’s, with Y ∈ {10, 50, 90}, thus resulting
in 57 instances in total. All constraints in the resulting model belong to the
follower subproblem, while the objective function is used as the leader objec-
tive cTx x + cTy y. Finally, the follower objective is defined as dT y = −cTy y. In
[10], only 30 out of 57 instances from this class have been considered—those
containing equality constraints were left out, for the sake of comparison with
an alternative solver which could not handle equality constraints. By design,
instances in class MIPLIB are much larger (and difficult) than those in the
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other classes, and involve up to about 80,000 HPR variables and up to about
5,000 follower constraints.

5.2 Benchmark solver

In order to have a benchmark code, we implemented the solution method
recently proposed in [6], called BENCHMARK in what follows. To have an apple-to-
apple comparison, we decided to embed the cuts proposed in [6, cf. Proposition
2.2] within our own Cplex-based code. These cuts can only be applied to
pure integer MIBLP instances in which all variables are integer-constrained,
and all constraint coefficients are integer as well. They are used to cut-off
a bilevel-infeasible integer vertex (x∗, y∗) of HPR at a given node, so they
have been implemented in the Cplex’s lazyconstraint callback. Each such cut
is obtained by adding up all tight constraints (including variable bounds) at
(x∗, y∗), written in their ≥ form, and then adding 1 to the right-hand side.
Note that the resulting cut is locally valid, and requires that all coefficients in
the node-LP matrix are integer (meaning that one is not allowed to generate
other cuts with non-integer coefficients); see [6] for details.

A comparison with the results on 30 instances (that were available online)
from the set DENEGRE reported in [6, cf. Table 2.4] is given in Table 2. Comput-
ing times for the original implementation refer to an eight-core AMD Opteron
Processor 6128 @2.0 Ghz with 32GB of memory, launched in March 2010.
Time limit for BENCHMARK was set to 3,600 wall-clock seconds, while a time
limit of 30,000 seconds was used in [6]. Table 2 reports the value of the best
solution found (BestSol), the computing time in seconds (time), the percent-
age gap between the final lower and upper bounds (%GAP), and the speedup
of BENCHMARK with respect to the original implementation (column speedup,
not reported in case of both hit the time limit).

According to the table, our BENCHMARK implementation is about 10-100
times faster (and solves to proven optimality two more instances) than the orig-
inal one. Moreover, for problems not solved to proven optimality, BENCHMARK
systematically produces better lower and upper bounds. This is not surprising,
as our implementation is based on the commercial software Cplex, while the
original one uses the open-source software COIN-OR (BLIS).

We can therefore conclude that our benchmark code BENCHMARK represents
in fair way a state-of-the-art exact solver for general MIBLP’s .

5.3 Results

In this subsection we compare the performance of six alternative settings for
our MIBLP solver, namely:

– SEP-1a: our B&C solver using model SEP-1 of Subsection 4.4 for IC sep-
aration, and generating at most max node cuts=20 cuts at each node (in-
cluding root);
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Table 2: Performance of our BENCHMARK code.

Original implementation [6] Our BENCHMARK implementation
Instance BestSol time [s] %GAP BestSol time [s] %GAP speedup

miblp-20-20-50-0110-5-1 -548 60.62 0 -548 0.78 0 77.7
miblp-20-20-50-0110-5-2 -558 30000.00 25.1 -583 3600.00 5.7 –
miblp-20-20-50-0110-5-3 -477 0.14 0 -477 0.01 0 14.0
miblp-20-20-50-0110-5-4 -753 0.22 0 -753 0.02 0 11.0
miblp-20-20-50-0110-5-5 -392 0.11 0 -392 0.01 0 11.0
miblp-20-20-50-0110-5-6 -1061 1091.91 0 -1061 5.38 0 203.0
miblp-20-20-50-0110-5-7 -547 0.35 0 -547 0.02 0 17.5
miblp-20-20-50-0110-5-8 -936 0.32 0 -936 0.02 0 16.0
miblp-20-20-50-0110-5-9 -877 0.24 0 -877 0.02 0 12.0
miblp-20-20-50-0110-5-10 -340 0.85 0 -340 0.03 0 28.3

miblp-20-20-50-0110-10-1 -353 30000.00 47.0 -359 3600.00 30.7 –
miblp-20-20-50-0110-10-2 -659 15.82 0 -659 0.63 0 25.1
miblp-20-20-50-0110-10-3 -618 120.31 0 -618 0.89 0 135.2
miblp-20-20-50-0110-10-4 -597 30000.00 25.7 -604 3600.00 13.8 –
miblp-20-20-50-0110-10-5 -1003 0.06 0 -1003 0.01 0 6.0
miblp-20-20-50-0110-10-6 -672 30000.00 26.2 -707 3600.00 17.3 –
miblp-20-20-50-0110-10-7 -618 30000.00 36.8 -669 3600.00 22.3 –
miblp-20-20-50-0110-10-8 -667 997.46 0 -667 9.89 0 100.9
miblp-20-20-50-0110-10-9 -256 6849.91 0 -256 39.12 0 175.1
miblp-20-20-50-0110-10-10 -429 30000.00 23.6 -441 773.36 0 38.8

miblp-20-20-50-0110-15-1 -289 30000.00 60.6 -420 3600.00 31.4 –
miblp-20-20-50-0110-15-2 -645 30000.00 23.2 -645 3600.00 17.1 –
miblp-20-20-50-0110-15-3 -593 30000.00 20.2 -593 3499.93 0 8.6
miblp-20-20-50-0110-15-4 -396 30000.00 36.4 -424 3600.00 20.9 –
miblp-20-20-50-0110-15-5 -75 30000.00 90.1 -320 3600.00 52.2 –
miblp-20-20-50-0110-15-6 -596 30000.00 40.4 -596 3600.00 32.2 –
miblp-20-20-50-0110-15-7 -471 30000.00 28.0 -471 3600.00 3.5 –
miblp-20-20-50-0110-15-8 -242 30000.00 73.9 -301 3600.00 64.8 –
miblp-20-20-50-0110-15-9 -584 324.33 0 -584 4.30 0 75.4
miblp-20-20-50-0110-15-10 -251 9.12 0 -251 0.08 0 114.0

– SEP-2a: our B&C solver with SEP-2 and max node cuts=20 for all nodes
(including root);

– SEP-1b: our B&C solver with SEP-1 and max node cuts=20 for the root
node only (=0 for all other nodes);

– SEP-2b: our B&C solver with SEP-2 and max node cuts=20 for the root
node only (=0 for all other nodes);

– ING: our B&C solver with ING cuts applied to the SEP-1 bilevel-free poly-
hedron; only integer points being separated, i.e., max node cuts=0 for all
nodes;

– BENCHMARK: our benchmark code implementing cuts in [6].

The computational analysis reported in [10] shows that ING cuts signifi-
cantly outperform standard no-good cuts, hence the latter were not considered
in our computational tests. Note that, similarly to no-good cuts, ING cuts only
work for binary problems, thus setting ING cannot be applied to the instances
of classes CARAMIA-MARI and DENEGRE, as they contain general-integer vari-
ables.

First, we provide a summary of our results on the class of CARAMIA-MARI

instances, see Table 3. Given that these instances are solved by each of our
settings within fractions of a second, we conclude that they are too easy and
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Table 3: Summary of results obtained for the CARAMIA-MARI class. All 70
instances are solved to optimality by each of the settings. Average computing
time (t[s]) and average number of nodes are reported.

setting SEP-1a SEP-2a SEP-1b SEP-2b BENCHMARK

t[s] 1.5 2.5 0.1 0.3 0.1
nodes 88.2 101.1 369.7 345.0 398.5

do not consider them in the remainder of this computational study. Note that
the best performing approach presented in [5] needed on average 35 seconds
for this class, on a PC Pentium Core 2 Duo with a 2 GHz processor and 1 GB
RAM and using CPLEX 12.3.

We next compare the performance of our different settings using perfor-
mance profiles [8]. To construct performance profiles, for each setting s ∈ S
and instance p ∈ P , a performance ratio

rp,s =
tp,s

mins′∈S{tp,s′}

is calculated, where tp,s is the time setting s needs to solve instance p to
optimality. If a setting s does not solve instance p, rp,s is set to rM , which is a
value larger than any rp,s, e.g., rM = maxs∈S,p∈P rp,s + 1. In the profiles, the
cumulative distribution function of the performance ratio

ρs(τ) =
100

|P |
∣∣{p ∈ P : rps ≤ τ}

∣∣
is displayed for each setting s ∈ S. In particular, the value ρs(1) is the per-
centage of instances, for which setting s is the fastest, and ρs(rM−1) gives the
percentage of instances setting s manages to solve to optimality. In the perfor-
mance profile plot, those two values correspond, respectively, to the leftmost
and rightmost point of the graph for setting s.

The performance profile plot for all 232 instances from the classes MIPLIB,
INTERDICTION and DENEGRE is given in Figure 2. Note that the horizontal axis
is log-scaled. Analyzing the obtained results, we may conclude that, consis-
tently over all different instance classes, our intersection cuts embedded in the
branch-and-cut framework significantly outperform the BENCHMARK code. Set-
ting SEP-2a turns out to be the best performing one: for 28% of all instances,
SEP-2a is the fastest approach, and it manages to solve to optimality 71% of
them within the time limit of one hour. In comparison, the BENCHMARK code is
the fastest one for only 8% of all instances and manages to solve only 42% of
them to optimality.

To evaluate usefulness of ING cuts, we separately considered only binary in-
stances (namely, those from classes INTERDICTION and MIPLIB) and compared
our setting ING with the five remaining ones. The corresponding performance
profile is reported in Figure 3. We observe that ING outperforms BENCHMARK

by a large margin, being the fastest performing approach for about 15% of
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Fig. 2: Performance profile plot over all instances (classes DENEGRE,
INTERDICTION and MIPLIB); setting ING is missing as it only works for bi-
nary problems. For each plotted line, the leftmost value gives the percentage
of instances for which the corresponding setting was the fastest, while the
rightmost value gives the percentage of instances solved to proven optimality.
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Fig. 3: Performance profile plot over all binary instances (classes INTERDICTION
and MIPLIB). Setting ING is now included.
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all binary instances, and solving to optimality 48% of them. On the contrary,
BENCHMARK is almost never the fastest one, and it manages to solve only 32%
of all binary instances to optimality.

In Table 4 we further summarize the obtained results. We provide the
number of solved instances (#) per each class, the shifted geometric mean of
computing times and the number of branch-and-cut nodes, as well as the aver-
age gap. The shifted geometric mean for a given shift s and values v1, v2, . . . , vn
is defined as n

√∏
(vi + s)− s (see, e.g., [1]). Computing times and number of
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Table 4: Summary of obtained results. We report the number of solved in-
stances (#), the shifted geometric mean for computing time (t[s]) and for
number of nodes (nodes), and the average gaps (g[%]).

MIPLIB (57 inst.s) INTERDICTION (125 inst.s) DENEGRE (50 inst.s)
setting # t[s] nodes g[%] # t[s] nodes g[%] # t[s] nodes g[%]

SEP-1a 20 599 9655.9 27.65 83 148 36769.3 33.06 42 40 574.0 4.61
SEP-2a 20 618 8552.9 26.12 104 50 2513.4 4.64 40 60 692.3 7.16
SEP-1b 18 660 100475.8 27.85 64 245 240859.4 48.39 45 35 12452.1 3.89
SEP-2b 18 666 80172.1 28.42 61 317 295595.8 41.55 43 39 13421.1 5.06
ING 16 872 172334.9 30.71 69 173 71967.8 44.35 - - - -
BENCHMARK 15 954 234670.7 31.78 44 496 1310639.5 63.45 38 58 27918.5 9.20

nodes are shifted by 10 seconds and 100 nodes, respectively. The percentage
gap for each instance is calculated as min{100, 100 · (UB − LB)/(|UB| +
10−10)}, i.e., gaps are clipped to 100% to avoid too-large values that would
make the comparison harder.

Analyzing Table 4, one easily concludes that the most-challenging instances
considered in our computational study are those from the MIPLIB class. Com-
puting times, number of nodes and final gaps are much larger than the re-
spective values of DENEGRE class. The setting SEP-2a turns out to be the best
performing one for classes MIPLIB and INTERDICTION. Its success is particu-
larly striking for the INTERDICTION class, for which the average gap is only
4.64%, whereas for the remaining five settings this gap remains larger than
30%. This indicates that SEP-2 model for separating ICs has a practical value
when the follower has a clean (combinatorial) substructure, which is exploited
by our facet-removal scheme for enlarging the bilevel-free polyhedron.

A slightly different behavior can be observed for instances from the DENEGRE
class. Recall that this class contains very small instances with up to 20 integer
variables. Most of these instances are very easy and can be solved within a
fraction of a second. See, for example, Table 1, which reports the computing
times for BENCHMARK over the largest 30 instances from this class. For such
small instances, separating intersection cuts at every node of the B&C tree is
too time consuming, and it does not pay off in general. This explains why the
settings with max node cuts=0 at the non-root B&C nodes (SEP-1b, SEP-2b
and also BENCHMARK) perform much better for these particular cases.

6 Conclusions

We have presented a finitely-convergent (under appropriate conditions)
branch-and-cut method for MIBLP, that is intended to be a modification of a
classical MILP scheme. By design, our approach focuses on the add-on extras
required to convert a branch-and-cut MILP exact code into a valid MIBLP
solver. In this way, we inherit the rich set of tools (cuts, heuristics, propa-
gations, etc.) available in modern MILP solvers, and concentrate on bilevel-
specific issues.
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Valid intersection cuts for MIBLP have been proposed, along with the
corresponding separation procedures. We have also introduced a class of “In-
formed No-Good” (ING) cuts that can be used in the pure-binary case. An
extensive computational analysis on different classes of instances from the lit-
erature has been reported, showing that the proposed approach outperforms
previous proposals by a large margin.

Future work should address the use of different bilevel-free polyhedra for
deriving deeper intersection cuts. Different kinds of cuts not requiring the LP
basis (like ING cuts) are also of interest and should be investigated as well.
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8. E. D. Dolan and J.J. Moré. Benchmarking optimization software with
performance profiles. Mathematical programming, 91(2):201–213, 2002.

9. J.J. Dongarra. Performance of various computers using standard linear
equations software. 2014.



26 Fischetti, Ljubić, Monaci, Sinnl
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