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Palais-Smale sequences for the fractional CR Yamabe
functional and multiplicity results

Chiara Guidi®™ & Ali Maalaoui'® & Vittorio Martino®

Abstract In this paper we consider the functional whose critical points are solutions of the
fractional CR Yamabe type equation on the sphere. We firstly study the behaviour of the Palais-
Smale sequences characterizing the bubbling phenomena and therefore we prove a multiplicity
type result by showing the existence of infinitely many solutions to the related equation.

Keywords: fractional sub-elliptic operators, critical exponent.
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1 Introduction and statement of the results

Let N > 1 and let S?V*+1 denote the (2N+1)-dimensional sphere, equipped with its
standard CR structure. In this paper we consider the following energy functional

1 1 *
Bu) = = / wAopu dug — — ul?” dvs, we HF (SPNHY (1)
2 Jgan+41 p* Jg2n+1
whose critical points satisfy the fractional CR Yamabe type equation
Agru = |ulP" 2y on 2N e HY (SQNH) . (2)

Here k£ € R is a parameter such that 0 < 2k < Q := 2N + 2, Ay is the sub-elliptic
intertwining operator of order 2k and H*(S?N*1) is the related fractional Sobolev space,
as defined for instance in [9, 10] (we will give all the rigorous definitions in Section 2);
also, the exponent p* is the critical one for the embedding H*(S?N+1) < LP"(S2N+1),
Just to fix the ideas, for instance when & = 1, the operator As is nothing but the
standard conformal sub-Laplacian on the sphere. For a given point ¢y € S?V*! the
Cayley transform C is a natural conformal diffeomorphism

C:HN — SV {—¢o}
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which is analogous to the standard stereographic projection in the Euclidean case; here
HY denotes the Heisenberg group and —(y is the antipodal point with respect to (o.
Therefore a similar functional Eg can be defined equivalently on HY, via the Cayley
transform C, and the related equation on H” is given by

LoxU =|UP 72U onHY, U e DFEN). (3)

We refer the reader to the next section for the precise definition of the Heisenberg
group, the space D¥(HY) and the relation between Ay, and Loy.

This kind of conformally invariant operators were introduced in [12] and they can be
seen as the CR counterpart to the GJMS operators defined in the Riemannian setting
in [13]. Indeed, as in the Euclidean case, the existence of an infinite family of explicit
positive solutions (bubbles) to the previous equations is known, moreover due to the
lack of compactness of the Sobolev embedding (which can be seen geometrically as
the action of the conformal group), the functional E does not satisfy the Palais-Smale
condition.

However, a sharp Sobolev inequality has been proved by Frank and Lieb in [11], showing
that the extremals are exactly the bubbles. All these facts suggest that a characteriza-
tion of the Palais-Smale sequences should be possible, making the bubbling phenomena
completely explicit, as in the classic case [29, 17, 18] (see also the books [30, 6] and the
references therein); for the fractional case in the Riemmanian setting see [7, 25, 26].
Indeed, this is what we will prove in our first result. The proof is quite involved and
delicate if compared to the standard case: this is due basically to the non-Euclidean
setting, the degeneracy of the given operators and also the fractional nature of the
problem, making it non-local. As it is commonly known in the standard setting, the
bubbling phenomena occurs at a local scale which makes it harder to deal with in a
non-local setting. In fact, even if a natural behavior is expected, any variational prob-
lem needs a careful analysis depending on the ambient manifold and the structure of
the operators involved (see for instance [14, 21]). In our particular case, in addition to
the results in [11], we will make use of some point-wise commutator estimates, which
have been recently written specifically for this type of operators (see [20]): as is the
case of local operators, this kind of estimates are useful in order to study regularity
properties, after localizing with cut-off functions (see for instance [4, 28, 16]). In order
to state our main result we define the following map: let us fix (o € S?N*!, for a given
R >0 and ¢ € S2N*1 we let p be the function

piHY 5 2V (), p=Com,odg

where w = C71(¢) and § and 7 denote dilations and translations on the Heisenberg
group, respectively. Also we define the inverse map o = p~'. Therefore, we will prove
the following

Theorem 1.1. Let u, be a Palais-Smale sequence for the functional E at level c. Then
there exist us, a solution of (2), m sequences of points C},... ¢" € SNt such that
lim, oo ¢, = ¢t € SN for il =1,...,m and m sequences of real numbers R, ... R™
converging to zero, such that:



i) Un = Uso + Y0y U 4+ 0(1) in HE (S2NHL)
i) Bun) = B(uo) + 3% By (Uso) + o(1)

where

L= (A) W BUL o0,
Here ol, = (pl)7 1, pl, = Codpi 0Ty, wh = C7Y(¢L) with € : HYN — S2N+HI\{ (1Y, Also
Agi denotes half the absolute value of the Jacobian determinant of ol ; B are smooth

compactly supported functions, such that 8! =1 on B% (¢, supp(B') € Bi(¢") and UL,
are solutions of (3) and the B’s stand for the balls on the sphere.

(Y

The proof of the previous theorem will be carried out in Section 3.

We would like to mention explicitly that we recently found a paper on arXiv ([19]),
in which the authors prove an existence result for the fractional Q-curvature problem
on the three dimensional CR sphere: in their Lemma 2.1, they claim a behavior for
Palais-Smale sequences along some flow lines, similar to our Theorem 1.1; the proof is
missing, the authors cite a couple of papers, which in turn consider only local operators.
To the best of our knowledge, we did not find any references dealing with these peculiar
issues that we are considering in the present paper.

Once we have characterized the Palais-Smale sequences, in Section 4 as main application
we will prove a multiplicity result for equation (2). We will argue by contradiction as
in [23]; in particular, with the help of some special groups of isometries, we will restrict
the functional ' to some special subspaces and we will assume that the Palais-Smale
condition fails: the action of the groups and the boundedness of the energy will lead to
a contradiction. Therefore, a standard application of the minimax argument will give
us the following result

Theorem 1.2. There exist infinitely many solutions of (3) (or equivalently of (2)),
distinct from the standard bubbles.

Moreover, depending on the choice of the group of isometries, the existence of sign
changing solutions can be shown as well. In this setting, we recall the paper [22], where
the existence of infinitely many sign changing solutions was proven for the standard
CR-Yamabe equation on the sphere (here k& = 1), by following the idea of Ding [5]
combined with the action of the group of isometries generated by the Reeb vector field
of the standard sphere. Moreover, recently in [15], under a technical assumption on the
range of the parameter k, the author proved the existence of a number of sequences of
sign-changing solutions of equation (2), whose elements have mutually different nodal
properties. The proof is based again on Ding’s approach and on a iterative argument as
in [2], starting from the result in [22] (the assumption on k£ makes the iteration works
fine). Also, in his Remark 3.2, the author wonders if his technical assumption could be
removed in order to gain the compactness of some Sobolev embeddings: it seems that
we can remove this assumption and still obtain existence of solutions.

Acknowledgement The second author aknowledge the financial support of the Seed
Grant of AURAK, No.: AAS/001/18, Critical Problems in the Sub-Elliptic Setting.



2 Definitions and notation

We identify the Heisenberg group HY with CV xR ~ R?N*! with elements w = (z,t) =
(x +iy,t) ~ (z,y,t) € RV x RY x R and group law

w-w = (2,t)- (1) = (z+ 2, t+t +2Im(z2")) YV w,w € HY,

where Im denotes the imaginary part of a complex number and zz’ is the standard
Hermitian inner product in CV. Left translations on HY are defined by

:HY - HY (W) =w-w' YweHY
and dilations are
Oy HY - HY  6y(z,t) = (M2, \%) Y A>0.

The homogeneous dimension of HY with respect to 6y will be denoted by Q = 2N + 2.
The natural distance that we will adopt in our setting is the Koranyi distance, given
by
o1
d((2,1), (2,1) = (|2 = 2'|* + (t = ' = 2Im(227))*) *

and we denote by Bf the ball of center w and radius R > 0 defined by the distance d.

Moreover we denote by
N

O = dt +2) (widy; — yida;)
=1

the standard contact form on HY and by dvpy the volume form associated to @y. The
canonical basis of left invariant vector fields on HY is given by
0 0 0 0 0

X= 2 g0l v % 0l 2 1N
1T 0z, T e T 5y T M ar o T

and the sub-Laplacian operator associated to this Carnot structure is given by

1 N

m:4;;ﬁ+ﬁw

The Heisenberg group can be identified with the unit sphere in CN*! minus a point
through the Cayley transform C : HY — S2N¥+1\ {(0,...,0,—1)} defined as follows

2z 1— 2% —it
T4 |z|2+dit" 1+ |22+t )

C(z,t) = (
On the unit sphere S2V*1 = {¢ € CN*1 . |¢| = 1} we consider the distance

d(¢,n)?* =2[1-¢ql, ¢necVH



and we denote by Br(¢) € S?N*! the ball of center ¢ and radius R > 0. With this
definition of d, the relation between the distance of two points w = (z,t), v’ = (2/,¢)
in HY and the distance of their images C(w), C(w’) in S?V+1 is given by

/ / 4 % 4 i
et et = dtor!) (i iprs) (meee)

From this relation we deduce the following inclusions

C L (Br(¢) 2 BS 9 for every R > 0 (4)
2
and
C YBgr(N)) C B% forevery 1> R >0
where A is the point (1,0,...,0) € S2N*1 On S?V*! we consider the standard contact
form
N+1 B B
Os =i ) (¢d¢; — (;dG),
j=1

and we denote by dwvg the volume form associated to 8g. The conformal sub-Laplacian
is then

1 N+1 o o N2
Ay = 5 z:l(TjTj +T5Tj) + e
j:
where T} are the differential operators defined by
N+1
g — 0
Ti=——¢( Co=—,7=1,...,N+1.
oG Y ; G

Let H;,; be the space of harmonic polynomials on CN*1 homogeneous of degree j and
[ in variables z and Z respectively, restricted to S?V*1. The Hilbert space LQ(SQN 1
decomposes as L?(S?N+1) = D, >0 Hj1 and we denote by y7; an orthonormal basis
for the space H;;, in particular we require y;”J to be eigenfunction for the conformal
sub-Laplacian Ay. Then, the conformal sub-Laplacian acts on yjy as Azy;-’fl = )\j/\ly;?l,
where \; = j + 5. Let us fix 0 < 2k < @, and consider

dim(H;,;)
w=>Y" > dh(wyf;e LS.
75l m=1
We define the operator
dim(H;,;) X
Ay =37 3T (gA) e wy
3l m=1



where dim(H;;) = N K,Sg;fl_),lj),'l(,] M) §s the dimension of H,;1. Moreover, we define

the Sobolev space

(52N+1) {u c L2(52N+1) Ak e L2(52N+1)}

with inner product

(u, v)g :/ AfuAky dug
§2N+1

and norm )
dim(#H;,;) 2

1
[ulle = (u,u); = Z Z (AL (w) 2

We consider the intertwining operator Ag, on S?N*t1 defined, up to multiplicative

constants, by

Qi2k Q-2
Jac,*® (AQkU)OT = Ao <JaCTQQ ( )) Vr € Aut(SPNTY) w e (SN ). (5)

Moreover from now on we endow HF (52N ‘H) with the inner product

dim(#H;)

(U, v) g = Z Z it (u)eff (v) = /SZNHUA%U dvg

with
(e )

\j(k) = F(Qf’f +j) ji=0,1,...

)

1
and norm |Jull yx = ([gens1 WAggu dvg)? which is equivalent to ||ully. The dual of
HF (S2N +1) will be denoted by H=*. In HY the symbol of the intertwining operators

is defined, up to a multiplicative constant, by

14k
F<|2T| +5 )

Loy, = 27"

1—k
r ()
we choose the multiplicative constant to be equal 1 so that we recover Lo = —A; and
Ly = (—Ap)? — T?. Hereafter we consider only real valued functions. The quadratic
form associated to L9f will be denoted by agy :
az (U) = UﬁQkU dUH
HN

and we define the space

Q
prEY)={ U e Lo HY) : agy, < oo}

6



The operators Agg and Loy, are related by the following identity

Q—2k Q+2k
Loy, (AC 22 (yo C)> = Ao (Aggu)oC Vu e H* ($2VH1) (6)

where A¢ is twice the absolute value of the Jacobian determinant of the Cayley trans-

form
2Q

(14 |22 + )V

We recall now the following sharp Sobolev inequality that was proved by Frank and
Lieb in [11]

Ac =

Q—2k

2Q Q
(/ |u| @2k d'l)s) < CS/ wAgpu dvg (7)
G2N+1 G2N+1
where
F(N+17k 2 oNa1
Ol M) = | (g (oY ©)
2
won41 is the measure of SN+ and
. 2Q
Pr=0 "%

is the critical exponent. Indeed the embedding
Hk(S2N+1) N Lp* (S2N+1) (9)

is continuous but not compact and this is due to the scale invariance of the norms,
induced by the action of the conformal group. Also, we will denote by p = (p*)’ = QQTQ%
and it follows from (9) that

Lﬁ(sZNJrl) N H*k<SZN+1).

For ¢ HY open and bounded we denote by HY(£) the closure of C$°(Q) with respect

to the norm )
2
101y = ( [ 02t don)

and it holds

HE(Q) = LP(Q).
Optimizer functions for (7) are images through the Cayley transform of functions of
the type A %00 dy-1 0 Tg-1 where

w(z,t) = @) —5 (10)

(1 +]22)2 + )77




for a suitable positive constant ¢(Q) (see [11]). These functions satisfy the equation
LopU =|UP 72U onHY U e DFHY),

hence they are critical points for the energy functional Ey defined on D*(HY) by

1 1 .
Ba(0) =5 [ ULal dog— o [ P dug.
2 Juv p* Jun
In fact the functions wy ¢ = Ao dy-1 0 T¢-1 are (the only) ground state solutions

of EH

3 Classification of the Palais-Smale sequences

Let H be an Hilbert space, a sequence {z, nen C H is called a Palais-Smale (PS) se-
quence for F' € C'(H,R) at level c if F(z,) — ¢ and VF(z,) — 0. F is said to satisfy
the Palais-Smale condition if any (PS) sequence admits a converging subsequence.

Now, we begin the proof of our main result, that is Theorem 1.1.
Lemma 3.1. Every (PS) sequence u,, for E is bounded.
Proof. Let u, be a (PS) sequence for E at level ¢ i.e.

E(u,) = ¢, dE(uy) — 0in H™F (S2NH1).
Therefore we have

2¢+o(1) + o(D)||un|| gr = 2E(uyp) — (dE(uy,), upn)

pt—2 «
—(T22) [ el s,
S

hence
HunH2 k= 2E(un) + 2/ ‘un‘p* dvg
H p* S2N+1
2
It follows that w, is bounded in H* ($2N+1). O

The result above implies that, up to a subsequence, there exists a function us €
H* (52N*1) such that

Up — U weakly in H* (SQNH) , (11)
Up — Uso  strongly in LP(S?NT1) for 1 <p < p*. (12)



Moreover, uq, is a weak solution to (2). Indeed, since u,, is a (PS) sequence for E, for
any ¢ € H¥ (52N +1) we have

/ pAopun dvg = / olunl” 2w, dvg + o(1)
S2N+1 §2N+1

as n — oo, and by (12) and (11) we have respectively

/ pAopu, dug — P AokUss dug
S2N+1

§2N+1

/2N+1 g0|un|p*,2un dvg — /2N+1 So‘uoo ’p*,2uoo dvg
S S

showing that u~, weakly satisfies (2). We set v,, = u,, — uoo, with this notation we have
the following

Lemma 3.2. The sequence v, is a (PS) sequence for E. More precisely, it holds
E(vy) = E(up) — E(us) + 0o(1)

and
dE(vy,) — 0, in HF(S*NH1).

Proof. We have

2 .
2E(uy) = / (Un + Uoo ) Ak (Un, + Uso) dvg — — |vn, + uso|? dug
G2N+1

p* Jg2N+1

2B (1) + 2B (o) + 2B (t1as), vy) + 2 / oo |2t vy dvgt

G2N+1

2 * * *
+ */ |on|P + |usol? — |vn + uso|? dug.
D S2N+1

Since v, — 0 in LP for every 1 < p < p*, we have fS2N+1 [too|P” 2 Usovy dvg = o(1) as
n — 00; moreover dE(us) = 0, so that it remains to show that the last integral in the
expression above goes to 0 as n — oo. It is possible to choose a big enough positive
constant C such that

Dl 5= {00 + tocl” = [0al?” = Jioel”"| < Clon]?"~toe] + Coa]uoel” .

Hence, by the Holder inequality

/ . dvg:/ @, dvs—l—/ @] dus
§2N+1 S2N+1\ 0/, M.
1

p*—1
< / |®,,| dvg + C (/ |vn|P” d'l)s) ’ (/ [too|P dv5> ’
SQN+1\M€ . Me

*

j 1
+C </ |uoo|p* dvs) ’ (/ ‘Un’p* dvs) ! .
€ ME




Here M. C S?N+1, defined for any € > 0 by the Egorov theorem, is such that |S2V+1\
M| < € and v, converges to 0 uniformly on M,. So that, the first integral in the
expression above converges to 0 as n — oo, while the other two terms go to 0 as e — 0,
uniformly in n. Therefore we get the desired energy estimate. Now we prove that for
any ¢ € HF (S2N+1) with [/l i (g2v+1y < 1, it holds

(dE(vn), ) =o0(1) asn — co.
We have

(@B (). ¢) = [

G2N+1

= <dE(U’fl)7 90> + <dE<uoo)7 ()0>+

- /2N+1 <|un‘p*_2un - |Un p*_QUn - |uoo|p*_2uoo) ¢ dvg.
S

‘;DAQk(Un + Uoo) dvs — / |un|p*_2un§0 dvg

§2N+1

Since (dE(ux), ) = 0 and (dE(uy),p) = o(1) as n — oo, it remains to show that the
last integral in the equality above converges to 0 as n — co. Again, for a big enough
positive constant C' we have

] = | fun ™2t — o]0~ ftog || < Clon]”” ]| + Clo uoe

and by the Holder inequality and Egorov theorem

/ Ul dus| < / o
S2N+1 G2N+1

S [lonl? 2lucell| gl + [[lonlluccl™ 2| e il zoe
Lp*-1 Lp*-1

P2yl dus + / [0l [uoo P20 dug
S2N+1

f,H\vn‘p*72|uoo|H p* +H|Un|’u00’p*72H p*
Lpr*

—1 Lp*-1

S lonl” e

*

Lpfi—l(SQN-l»l\Me)

Lp*-1 (SQN'H\ME

L S L
Lpr*=1(M,) Lp*=1(M,)

=o0(1) asmn — oo and € — 0, uniformly in n.

: o [

This concludes the proof. ]

Ho

Lemma 3.3. Let u,, be a (PS) sequence at level ¢ < SCEZ , then u, converges strongly
to 0 in H* (S*N*1). Here Cg is the Sobolev constant defined in (8).

* i *
Proof. By the Sobolev inequality (7), we have |juy || . < Cg |lun|/%, so that

o(l) = / Up Aoty dvg —/ |un|p* dvg
§2N+1 §2N+1

> 2 1 _ C% p*72
> [|un |z § Munllgp ™) -

10



Now, following the argument given in Lemma 3.1, we notice that the choice of ¢ in the
statement implies

p*
p*—2
_Q
< Cg% +o(1).

lunl[ 27 < 2¢+o(1)

2 «
This, for n big enough, ensures the positivity of the factor 1—Cg [Jun |l ?_ concluding
the proof. O

Hereafter we assume the (PS) sequence (uy)nen converges weakly to 0 in H* (S?V+1)
and strongly in LP(S?VN*1) for 1 < p < p*. Moreover, since we want to investigate the
behavior of (u,) when the (PS) condition is not satisfied, we will assume that w,, does
not converge strongly to 0 in H* (SQN‘H). For any €y > 0, we define

r—0 n—oo

Yep = {g c 92N+, liminfliminf/ \un\p* dvg > 60}.
Br(¢)

In the sequel we will need to localize our equation, therefore we will use some com-
mutator estimates. For a given k € (0, %), we define the 3-commutator Comm®*?* (-, )
by

Comm*“2k (

u,v) = Comm(u,v) = Log(uv) — ulog(v) — vLog(u),

and we let Ry denote the Riesz potential on HYV (see Appendix). Then the following
Lemma [20] holds

Lemma (commutator estimates). Let 0 < 2k < @ and € > 0. Given 71 and T
in (max{0,2k — 1},2k] such that 71 + 7o > 2k, there exists L € N, s;1 € (0,71),
sj2 € (0,72), for j =1,---, L, satisfying 71 + 12 — sj1 — Sj2 — 2k € [0, €) such that

L
(Comm(u, v)] S D" Rrym sy sy 2k ( By | om0l R, o[ £1,0]). (13)
j=1

Next, we state the first Lemma characterizing the concentration set:

Lemma 3.4. There exists g > 0 such that if (o ¢ X, then for a small enough r > 0,
we have u, — 0 in H* (B.({p)).

Proof. Suppose by contradiction that for every e > 0 there exists (o ¢ X, such that u,
does not converges to 0 in H* (B,(¢p)) for every r > 0. Notice that ¢y ¢ ¥ implies the
existence of a radius r > 0 such that

/ lun|P” dug < e. (14)
Bar(Co)

Since u, is a (PS) sequence, there exists a sequence 6, € H~* (SQN +1) converging to 0
in H=F (52841 such that

Aok (un) = |un\p*_2un + Oy,

11



Since we want to localize around (y, we consider the Cayley transform C where we set
the north pole as (5. We notice that for any couple of functions u, v it holds

Y=

Agy(uv) = Ay (L34 (A (uw) 0€)] 0 !

and

& X & L
Lop(AL (uv) o C) =voCLoK(AL uoC)+ AL uoCLok(voC)+ Comm(AL uoC,voC).
We go back now to our Palais-Smale sequence and we compute

Aok (nuy) = nAogk(uy) + Lo.t.
= n|un|” "2un + 16, + Lot

Here 7 is a smooth cut off function with supp(n) C Bs,.({p) and n = 1 on B,({y). So
we first estimate ||1.o.t|| -+. We have

3 L 1
(Comm(AZ un 0 €70 C) S S Rakot, (R, (Lon(BE n 0 C)) Ry, (L2 (1 0C)))
i=1

L
S Bty (Ru (@ + 00) 0 C) sy (Lar(10C)) ) (15)
i=1

1 1
~ F * ¥ . . . . .
where i, = [A; un|? QA(’}’ Uuy,. Since the terms of the sumation above are similar in

nature we will give here the proof for a single term. Since 1, is bounded in L?, we have
that R(1, oC) converges strongly to zero (up to a subsequence) in L7 L_ 1

1
locfora>5—©.
So we fix R > 0 big enough. Then we have

| oot (Relin © Coxg Ro(Lan(no ) | S I1Rs(in © O)ll g | 25 0 )12,

1
where = =
P

+ % Hence

1_
P

| okt (Rein 0 Oy RolLanmoC))) | 0.

=

Outside BY%, we have that

1
Xun\ gy, Rs(Lar(n o C))(z) S s
Thus,
5 - 1
| Ratest (Ru(in 0 ©)xezm g Be(Lan(n o D) || S N o Cls gy
and since

~ *_1
ltin 0 Cllzs S llunllf- < C,

~

12



by letting first n — oo then R — co we get

1
Now we move to estimating the term Aé’* PupLox(noC)oC~L. Indeed, we have

1 1
AGHE (MY upoCinoC)oC =o(1).

H—k

11—

a1 1
IAE wnLok(noC)oC Lo S llunllL2|AE Lar(n o C) OC_IHL%
and since u,, — 0 in L? we have that

1
IAZ wnLog(noC) o C Y| s = o(1).

Therefore, we have that ||l.o.t||;-+» = o(1). By the sub-elliptic regularity estimates we
find

Inltnl L5 oy  [[lant”” 210+ 0 |+ Iotli-ra, <

Hﬁk(Br(CO

T 100nll i1+ (B, (o)) + 0(1)-

(16)
< Hn‘un‘p Un

H=*(Br (o)

We estimate the first term in the inequality above as follows

[t~ )5S [t =2

2Q
H=%(B(Co) L@F2F (B (¢o))
4k
S Hun pr_*Q(kBr(Co)) H77Un HLP* (Br(<o0))

4k
S lunll £, oy 1l o

Substituting the estimates above in (16) and using (14), we find

4k
O—2%
el e, (copy S anll 2o s, oy Il (. gop) + 0(1)

2%
S €9 |lnunll grp, g +01)-

Now, we choose € small enough to have |[nun || g, (¢,)) — 0, leading to a contradiction
to our assumptions. ]

Given r > 0, We can define now the concentration function

Qn(r) = sup / lun P dug.
B:(¢)

CcS2N+1

Since we are assuming that u, does not satisfies the (PS) condition, the Lemma above
ensures the existence of a small enough €y > 0 such that X., # (. Thus, for any fixed

13



§ > € > 0, there exist a sequence of points ¢, € S2N+1 and a sequence of radii R,, — 0
such that

Qn(R) = / P dvg = e. (17)
BRn (Cn)

Up to a subsequence, we can assume that ¢, — (g € S2V*! as n — co. Again, we fix a
coordinate system in CV*! so that ¢y = (0,...,0,1) and denote by —(o = (0,...,0, —1)

the antipodal point of (5. We set
0= C_I(Bl(Co)) C HV.

Clearly, for n big all the balls C~!(Bg, (¢,)) will be contained in . Hence, by means
of the map C~!, the problem of characterizing (PS) sequences can be studied in HY,
where the points w, = C71((,) accumulate at the point 0 = C~1((p) in the interior of
the domain 2. Also, we define the map

Pn: HN — S2N+1 \ {_CO}v pn(w) =Co Twy, © 6Rn(w)

and the functions
Q—2k
U, = Aij Un O Pn,

here A, is twice the absolute value of the Jacobian determinant of the map p,. Also
we define the inverse map o, = p,'. From now on we denote the preimage of a ball
Brr, (G,) € SN+1 with respect to the function p, by

Bi = p" (Brr.(G)) -
Notice that, for n big, we can always assume (,, € B 1 (Co), hence B is well defined and

C~Y(Brr,((n)) C Q for every RR,, < 3. Recalling the relation between Lo and Asgy
expressed in (6), we have

/ UnﬁgkUn dvg = / unAQk:un dUS7
Bﬁ BRRn (Cn) (18)
/ U P dugy = / P dvs.
By BrRy (Cn)

In the sequel we will make use of the following relation obtained from inclusions (4)

B = i (Ba,nl6) > S 07,0 ( By ) = B,
Also, we will use the notation
By = C'(Br(G))-
Lemma 3.5. Let us set Fy, = LopUy, — |Up|P" ~2U,, then for every R > 0
sup { (P, F) gt i+ supp(F) € Bfy, F € HE(BY), | Fllp <1} 0

i.€.
F,—0 in Hy¥(@Y).

loc

14



Proof. Let us consider n big enough to have (6R,)~* > R, and F' € H¥(BY%) such that
supp(F) C BY% and ||F|| 41 < 1. We have

(Fo, F) s gx = / F (E%Un —|Un P**QUn) dvg
(671
S/ F (£2kUn_ ‘Un‘p*_2Un> dvg
(3Rn)~1
Q+2k
= A F (.Agkun — \un]p*_Qun> o p, dvg
67(13Rn)_1

Q2% .
= / <Apn @ F) oo, (Agkun — |un|P _2un> dug .
B1(¢n)

1
3

On the other hand, recalling (6), we find
— / AN FLoyF) 0 0y, dug
HF §2N+1
= FLopF dvyg < C,

Q—2k
HN

thus <Fn,F>H—k7Hk — 0. O

Lemma 3.6. For ¢ > 0 small enough in (17), there exists Uy, € D*(HY) such that
U, — Usx in H{gc (HN) and

LowUso = |Uso|? "2Us  on HY.

Proof. The sequence U, is bounded in Hfgc (]HIN ), hence there exists Uy, such that, up
to subsequence, U,, — U, weakly in in H{gc (HN ) and U,, — Uy strongly in L{’O C(HN )
for 1 <p < p*. From (18) we deduce

limsup/ \Un|P” dog < sup/ lun|P” dvg < oo (19)
B S2N+1

n—oo n neN

so that Uy, € LP (HY). Moreover, by the same argument given after the proof of
Lemma 3.1, we have that Us, satisfies (3), hence

/ UsoLopUso dvgyg < 00. (20)
HN

It follows that Uy, € D*(HN).
In virtue of Lemma 3.2, we replace U,, by U,, — U so that, from now to the end of the
proof, we can assume Uy, = 0. By (17) we have

/ Unl?” dogs = / [un|”" dvs = e. (21)
B? BRn(Cn)

15



Let 8 € C§°, such that supp(8) C B} then

18Unll g S 122k (BUR) | g + 18Ul 2 - (22)
Again, we use the fact that

= ,B.CQk(Un) + l.o.t.

So first, we have that
UnLok(B) = Unx po L2k (8) + Unxun gy, Lok (B) -
Therefore,

1UnLok(B)lze S 1Unll 25 1£26 (B @ + Unll 1o~

xuv\po Lok (D)l o

L L

1
S Unllz2sy) + 7@ 1UnllLes -

Since Uy, — 0 in L}, and ||U,||»+ is bounded, if we let n — oo and then R — oo, we
have that |UpLok(B)||17 = o(1). Next, we move to the term Comm(3,U,,). Again, we
have that from Lemma (commutator estimates),

L
(Comm(B, Un)| S 3 Rat-s, s, ( Ry s | L6 (Un) By | Lok (B)] ) -
j=1

So we consider one term of the form Roj_s_¢ (Rt|£2k(Un)|Rs|£2k(6)|) (). Using the

same splitting as in (15), we have that
HCOI’IlHl(ﬁ, Un)HH*]C = 0(1)5

and thus |[L.o.t||z—x = o(1). Clearly ||8U,| ;2 — 0, and by Lemma 3.5 we know that

F, —0in ngf (HN), hence, we have

1 Lok (BUR) | - < |BL2#Un + Lot g

< HB (10" =20, + F) ‘ka +o(1)
< |8l 2|, + o).
Therefore
18Vl S | 810" —200 |, +o0()
and

16



p*—2

18U e S +o(1)

"llzesy)
2k

Q
N </B" |Un|? dUH) ||6Un||Lp* (3?) +o(1)
1

S €9 18Ul o+ sy + 0(1)
=o(1)

as n — 0o. O

From the Lemma above and (21), it follows

/ |Uso|?” dvg = ¢,

hence Uy # 0 is a solution to (3). We consider a cut off function 7 such that v =1 on
BY, supp(y) € BY, and we define 8 =y oC~!. In virtue of the inclusions
4 2

c (B

1
2

(¢o)) € BY € (B, (G) < BY,

the function § is a cut off function such that 8 =1 on Bi((p) and supp(8) C Bi((p),
4
moreover for n big enough we have

supp(3 © pn) = supp(y © 7w, ©0r,) € By 1 € By,
Bop, =1 on B(6Rn)—1

We set
Q

U = Ay BU ooy (23)

where A, is half the absolute value of the Jacobian determinant of o, and consider
Up = Up, — Up -

For clarity sake, we recall here the definition of u, with respect to U,

2k

Uy = A ? Upooy,.
We have then

Lemma 3.7. After taking a subsequence if necessary, we have

Up — 0 weakly in H* (S2N+1) .

17



Proof. Since we have already proved that w, — 0, it suffices to show that v, — 0
weakly in H* (S2N*1). On the other hand, v, is bounded in H* (S2N*+1) so that, after
taking a subsequence if necessary, it converges to some limit; hence we only need to
prove that the distributional limit is zero, i.e. it suffices to prove that for f € C'* it

holds
/ vp f dvg — 0.
S2N+1

Let us fix R > 0. We estimate the integral above, first on Bg,r((,) and then on the
exterior domain S*2N+1\ Br r((,), we have

/ v f dug
BRnR(C’ﬂ)

Q—2k
/ AcrsQ fBUoo ooy dug
BRnR(C’ﬂ)

Q+2k
/ A,22 Uso(fB) 0 p dugg
B

n
R

Q+2k Q2+2k
<CR I llelo® [ Uil v
B
On the exterior domain, for n big enough we find

Q—2k

AazQ fﬁUoo ooy, dug

v f dug

/52N+1\BRHR(Cn) /Bl(g‘o)\BRnR(Cn)

IN

Q+2k
/ ApiQ Uoo(fﬁ) o pp dvg
B;Rgl \Bj

Q+2k Q2+2k
<CRnE [fllscllAcllod® / Uso| du.
B —1\3%2
2R, 4

1
p*

Q26
< Ol f el Aclo® /B Unol?* dugg

0 BO
2R;1\ £

Then, the thesis follow letting n — oo and then R — oo in the following estimate

vp f dug
SQN+1

Q+2k  Q+42k

S lellbel 2 Re® [ (U] don
R

Q+2k

2Q
ISl 10l 0 )
2Ry VT

Lemma 3.8. We have

dE(vy) — 0 in H™F (2N and  dE(u,) — 0 in H (SN

18



Proof. Let f € H* (52N+1) and f,, = Agpvy, — |[vn|P" ~2v,. First we notice that

1 1
Aoi(v) = | Ap,F [,gk(Ag:L Up, O pn)> ooy,

i

= (Ap_n EQk(ﬁ o anoo)> O0p .

Thus, we get,

Lo nfavs = [ f(Auton) — o200 dus
G2N+1 G2N+1

L *
= / Aﬁ: fopnLok(BoppUs) dug — / flonlP 20, dvg.
HN

G2N+1

Now notice that
1 1
/ A,gn f o pn[Qk(ﬁ o anoo) dvyg = / Af;n f o anoo['Qk(/B o pn) dvy
HN HN
1
+ [ AR (8) 0 puLa(Unc) dun
HN
1
+ [ AR F o puComm(Un, 50 pu) dur
HN
_1 .
= / FBA,? U |P " 2Us) © 0, dug
G2N+1

1
+ /N Agnf o anOOEQk(ﬁ © pn) dUH
H

1
+/ A}‘,’;f o pp,Comm(U, 5 0 pn) dvg.
HN

Therefore, we have that

1
/ fnf dvg = / Ap, fopnUseLok(B o pp) dvg
G2N+1 HN

1
+ / AZ £ © puComm(Une, B 0 py) dvg
HN

T,

:Il—l-fg—l-lg.

p _2Uoo) ooy dug

We estimate each of the three terms above separately. But first, we notice that

Q
i

2k—
L2k (B0 p)llir = Rn " [|L2x(Y)]| r-

19
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In particular, if p > %, then || Lok (B 0 pn)|lLr — 0. Now we have, for R > 1,

|I1] =

1
/ AL f 0 puUsLon(B 0 pu) dum
H

< HA foanLP HU EQk(BOpn)HLP
< Al (10 o128 © o) | oy + IUsoll o e gy [ £ (B 0 o)l g )

where ]% + % = =. Taking p > %, we have for R fixed that

1
5

1Usoll La(89) 1£26(B © pn)llLr — 0 as n — oo .

On the other hand, we have that

HUooHLp*(HN\B%)”£2k(/B o pn)HL% = HUOOHLP*(HN\B%)HﬁQk(’y)HL% —0as R— 0.

Hence
(L] = o(L)[| fll g»-

We move now to the term Ip. First, we recall the following estimate for the Riesz
potentials:

[ Rk —s—t (R (u) Bs (0))|[ o S [l Lo [[0]] Loz

for % = qil + q% — % In particular we have from Lemma (commutator estimates) and

the previous estimates,
|Comm(Use, 8 0 pu)llzo S UL~ pagasy 12 (8 © pu)l s
+ U o sy I1£26(B 0 po)ll g
S HUooHiq@Ll) BY) [ L2k(B 0 pn)l|Lr
o 1Ueel g 126 ) g

1
where = =
D

have that

+ .- % Hence, taking p > % and letting first n — 0 then R — oo, we

1,1

p g
[Comm(Uss, B 0 pn)||r = o(1). (25)

In particular,

| L] < || fll x| Comm (Use, B 0 pn)llze = o(D)|| fl| g as n — oo.

Now we estimate the term I3.
D —1 p*—2
151 5 | (B =871 0 pulUeel?” Vs o 17

but Uy, € DF(HY) and

Q+2k

(8= 57 0 pultrcl™ 20 |, < C I

0 0
(B R, \B(8Rn)_1)

20



so that
(3] < o(1) || £l g -

Hence we have proved that f,, — 0 in H~* (52N+1). Now we turn to dE(u,). Again,
we consider f € H* (5’2N H) and compute

+ / (‘un’p*72un - |vn|p*72vn - |Hn p*72ﬂn> J dvus.
52N+1

We notice that, since dE(uy) and dE(v,) converge to zero in H—* (S2N*1) it suffices
to show

Ap = [unlP" 2wy — [0u P 20 — [Tn|? 2T — 0 in HF (52N+1) . (26)

In order to prove (26), we will show [[Ap|[;5(g2n+1) — 0. Let us fix R > 0. First we

want to and obtain an estimate for A,, in the exterior domain D,, = S*N*1\ Brr ((,)
and then we will move to the interior of the ball Brg, (¢,). We write u,, = U, + v, in
the definition of A4,, and we notice that for a big enough positive constant C' we have

’An| - ‘|ﬂn + Un|p*_2(ﬂn + Un) - |ﬂn‘p*_2ﬂn - |Un|p*_2vn

< C ([Tl 2o + 0al” 70

Hence, by the Holder inequality and recalling that supp(5op,) C BSR_I and BOE C B%,
n 2

Lp(Dn>>

4k 4k
S (Il Vonlior o + Wl oy Bl 55,
4k

A s A

we have

_ *—2
1Anll LoD,y S (H’“’”’p "l ooy

|

ﬂn‘vn‘p*_Q‘

p*( BO BO
( 23;1\ %)
4k

Q—2k

il gy W0 07
t (BQRZI\B%)

= o(1),

21



as R — oo, uniformly in n. Similarly, in the interior of the ball Brg, (¢,) we find

|

1Al Lo (Br, (ca)) = <H|Un|p _QUn‘ Un|vn[? _2‘

ak
— ||Q-2k
S [ L (Brr,, (Cn)) ||UTLHLP*(BRRn(€n))

_4k
Tl B o) 1 5 i, 0

4k

S = (8 0 pr)Usell - gy 108 © pr)Uoel sy

LP(BRRy, (Cn)) LP(BRR,, (Cn)))

4k

+ HUn —(Bo Pn)UOOHLp* (B%) ||(B © pn)Uoonpf(kB%) .

Therefore, recalling the fact that U,, — Uy, in H, k

loc

/ ‘An’ﬁ dvs —0
BRrR,, (Cn)

as desired. O

(]HIN ), we finally obtain

Lemma 3.9. We have the following energy estimate
E(uy,) = E(uy) — Eg(Us) + o(1).

Proof. We compute

1
E(u,) == (/ Uy Aopuy dvg +/ Vp Aoty dvg — 2/ U Aag vy, dv5>
2 52N+1 52N+1 SQN+1
1 .
B—— [un|P dvg.
p* Jg2n+1

(27)

Let us estimate the second term in the identity above
/ 'UnA2kvn dUS = / ﬂ S anooL"Qk(ﬁ © anoo) dUH
S2N+1 HN

— - 52 0 prUsoLotUso dvg + /]HIN Bo ango/lgk(ﬁ o pp) dvg

+ / B o ppUsComm(Us, B 0 py) dvog
HN
= Il + IQ —+ 13.

Clearly,
Il = / Uoo£2kao d’UH + 0(1)
HN

22



and using the same argument as in Lemma 3.6,

[ Io] = ‘/ B o pUZ Lok (B o py) dug
HN

< lU2 2
S MU o) €268 0 pn)lle + U o (HV\ B,

)HﬁﬂiﬂopnmL%
S HUooﬂizq(BoR)Hﬁzk(ﬁ o pn)llLr + ||Uoo||%p*(HN\B%)Hﬁ%(’Y)HL%

for %D + % =1, taking p > % and letting n — oo then R — oo, we have that

as n — oo. Now for I3, using (25), we have
13| S [[Uso |l Lo [| Comm(Usc, B 0 pn) || r = o(1).

Combining the estimates of I, Is and I3, we find
/ v Ao vy, dvg = / Uso Lok Uoo dvgr + o(1) . (28)
S2N+1 HN

Now we estimate the third term in (27)

/ un-AZszn dvg = / Un£2k(ﬁ o anoo) dvy
§2N+1 HN
= B o pnUnLorUs dvy + / UnUsoLok(B © pn) dvm
HN HN

+ U, Comm (Use, B 0 pp) dvg
HN

= Iy + I5s + Is.

Let us fix R > 0 and define B,, = BgR,l \B%. For n big enough to have fop, =1 on
B?GRH)*l D B%, we get

Iy = / UnLokUso dvg +/ 6 © annEQkao dvg ,
BY n

R

and we estimate the second term in the identity above by

0

2Rt

B0 pnUnLorUse de‘ <CIUl
B, Lp (B

) ||£2kaoHLﬁ(Bn) =o(1),

as R — oo uniformly in n. Hence, since U,, — Uy, in Hfgc

(HY)

I, = / Uso Lok Uso dvg + o(1).
B

0
R

23



Let us turn the attention to I

15| =

/ UTLUOO£2I€(B o pn) d'UH
HN

S0l o (VL) 13808 © )l + [Uoc o ey 1 E26 D g )

here L + 1 —
Weep—i-q

= %. Once again, if we take p > %v and let n — oo then R — oo we get

I5 = 0(1)
Also,

5| < [|Unl o= [[Comm (Usc, 8 0 pn)l| L7 = o(1) -

Combining the estimates for Iy, I5 and I we get

/2N ) UpAsggvy, dvg = /
S2N+

UsoLokUso dvg + 0(1) . (29)
Bt
We consider now the last term in (27). We are going to show that

/ a7 dvg = / un? dug —/ Usl? dvogr +0(1) asn— oo, (30)
G2N+1 G2N+1 HN

Hence, using (28), (29) and (30) to estimate the right hand side of (27) we get

E(uy,) = E(uy) — Eg(Us) + o(1)

as desired. Before proving (30) we make a few observations. Let us fix R > 0 and define
D, = S*M+1\ Brp ((,). First, we notice that for n big enough to have S0 p, =1 on
BY we find

/ TP dvg = / |Up — UsoP” dugr = 0(1)
BRR, (¢n) By

as n — 00, since by Lemma 3.6 U,, — Uy

D, BO \Bn

or; 1 \VOR

(31)

in HY  (HV). Also,

Uso|?” dvg = 0o(1), (32)
HN\BY,

2

as R — oo uniformly in n. Moreover

/ TP dvsg = / fun[P" dvs — / foal?” dus + o(1) (33)
mn Dn D7l

as R — oo uniformly in n. Indeed, for a suitable constant C, independent of n we have

[ Junl” = = o | dvs <0 [ ol dvs € [ fonl™ ) dos
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but
/ |ﬂn‘p*71|vn| de = / |Un - ﬁ o anoo|p*71’/B S anoo| d—UH
Dy HN\B?,

5/ |Un—5°PnUOO‘p*_1|UOO|dUH
By,

Q+2k
2k
S ||Un —po anoo| gp*z(Bn) HUOOHLP*(Bn)

S HUOOHLP*(Bn)
=o(1),

as R — oo uniformly in n. Similarly

/ ‘vn’p*—l‘un‘ dvg S / ’/3 © anoo’p*_l‘Un - B o anoo‘ dvg
Dy HN\B,

Q+2k

S Mool o, 1Un = B0 prUooll 1 (3,

5 ||UOOHLP*(BTL)

as R — oo uniformly in n, proving (33). We are ready now to prove (30):

/ T |P” dvg = / @, |P” dug —|—/ [Gn|P" dvg
S2N+1 BrR, (Cn) D,

& / [Tl dus + o(1)
Dy,

(3:3)/ |un|p* dvg—/ |vn|p* dvg + o(1)

n n

@/ lun]?" dus + o(1)

n

= o o dos= [ bl dus ot
S2N+1 BRrRy, (Cn)

:/ lun|P” dug / |Un|P” dog + o(1).
S2N+1 By

Now, recalling that [z, |Un|P?” dvy — [0 |Usc|P” dvg for any R as n — oo we finally
R R
get (30). O
Remark 3.1. Let w be defined by (10). Let us explicitly recall that the functions
Wie = )\Qk;QwoéA_l oTg-1, A>0,8€ HY |

are solutions to (3) which have all the same energy

E _Q
Cg = EH((UA@) = aCS * >0, VA>0 andéEHN.
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where Cg is the Sobolev constant in (8). In particular they are the only ones with this
energy ([11]).

Now we conclude the proof of the main result.
Proof of Theorem 1.1 . We define

= Up — Uoo
and by Lemma 3.2 we have

E(ul) = E(u,) — E(us) + o(1) .

n

By the procedure described above, we find a sequence of points ¢! converging to a
concentration point ¢! € S2N+1 g sequence of radii Rib converging to zero, a solution
UL to equation (3) and a sequence v} defined as in (23); therefore we set:

2._,1 1_ 1
5 = Uy — Uy = Up — Uog — U

U n -

By Lemma 3.9, we get
E2) = E(ul) — Eg(UL) 4 o(1) = E(un) — E(us) — Ex(UL) + o(1).

n

Now we iteratively apply this procedure obtaining

m—1
m __ !
Uy = Up — Uoo — E vy,

=1

and
m—1

E(uy') = E(un) — E(uos) — Z EH(Uéo) +o(1) .
=1

Since Eg(UL,) > Cg for every [ = 1...m, we stop the process when ¢ — mCg < Chg.

_Q
Indeed, by Lemma 3.3, (PS) sequences at levels strictly below %C ¢ ** converge strongly
in H* (SQN‘H), and this concludes the proof. O

4 Existence of infinitely many solutions

In this section we will prove the existence of infinitely many solutions of (3) proceeding
as in [23]. The key idea is to find a suitable subspace of the space of variations for the
functional we are interested in, on which it is straightforward to perform the following
minimax argument by Ambrosetti and Rabinowitz (see [1, Theorems 3.13 and 3.14]).

Lemma 4.1. Let X be a closed infinite dimensional subspace of H" (52N+1). Assume
that E|,, the restriction of E on X, satisfies the Palais-Smale compactness condition
on X. Then, there exists a sequence uy of critical points for E|, such that

/ lun P dvg — 00 as n — oo.
G2N+1
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Let us start by fixing some notations. We denote by O(2N + 2), the group of (2N +
2) x (2N + 2) orthogonal matrices, and

UN+1)={gec O@2N+2): gJ = Jg},

0 —IN+1>
J = .
(IN+1 0

Since the elements of U(N + 1) define isometries on S?V*! and Ay, is an intertwining
operator (i.e. satisfies (5)), it follows that the functional E is invariant under the action
of U(N +1):

where

E(u) = FE(uog), forallgeUN+1), (34)

(for a detailed proof see for instance [15]). For a subgroup G of U(N + 1) we define
Xag= {uEH’g (52N+1) D uog=u, VgEG}.

Lemma 4.2. Let G be a subgroup of U(N + 1) such that for any ¢y € SN the G-
orbit of (y has at least one accumulation point. Then, E|Xc’ the restriction of E to
Xa, satisfies the Palais-Smale condition.

Proof. Let u, be a (PS) sequence for E, X at level c¢. By contradiction, we suppose
that u, does not admit a converging subsequence in X¢. Hence, by the classification
of (PS) sequence given in Theorem 1.1, we deduce that the set of concentration points

0={ces™.1<i<m}

is discrete, finite and non-empty. Here we have adopted the same notation used in
Theorem 1.1. Let (yp € ©. Then, since the (PS) sequence u,, is invariant under the
action of G, if g; with i = 1, ..., j, are j fixed elements in G, we have that also ¢’ = g;(o
are concentration points belonging to ©. Again, by Theorem 1.1 and recalling Remark
3.1 we have

J

. ; k-2

= lim Bun) = Bluse) + 3 B (U50) 2 Blue) +iG505% . (39)
1=

On the other hand, by assumption, the G-orbit of {y has an accumulation point, there-

fore © contains infinitely many concentration points of the type (; = ¢;(o. Hence, letting

j — oo in (35) we reach a contradiction. O

We recall that quite a few examples of infinite dimensional subgroups of U(N + 1)
satisfying hypotheses of Lemma 4.2 are provided in [23] and [15]. Now we prove our
result:

Proof of Theorem 1.2 . Let G be a subgroup of U(N + 1) such that X is an infinite
dimensional vector space and suppose that for each ¢y € S?N*! the G-orbit of ¢

27



contains at least one accumulation point. By Lemma 4.2, E Xg satisfies the Palais-
Smale condition, therefore Lemma 4.1 allows to perform a minimax argument ensuring
the existence of a sequence of critical points u, in X¢ for E) Xg such that

/2N+1 [un P dvg — 00 as n — oc. (36)
N

Now, since the functional E is invariant under the action of G, by the Principle of
Symmetric Criticality (see [24]), we have that any critical point of E) x 1s also a
critical point for E. Moreover, to each u,, solution to (2), corresponds a solution

1
Up = AE 1, 0C to (3) and (36) implies
o o
/ U, Lo U, dvg = / AL up o CLayy <Aé’ Uy, OC> dvg
HN HN

= /2N ) Up Aoy, dug
S2N+

.
:/ |un P dvg — 00 as n — oo.
S2N+1

_Q
But all the solutions to (3) of the type w) ¢ have the same energy %CS 2k (see Remark
3.1), consequently

1 1\ ! 1 1\ 'k _@9
wy eLogwy e dvg = ( — *> Ey(wye) = < — > —C %,
/HN eLokwy ¢ > ) (wxe) 5 oCs

So, it is clear that in the sequence U,, (and hence in the sequence u,,) there are infinitely
many solutions of (3) (or equivalently of (2)), distinct from w) ¢. O

A Appendix

We recall here some definitions and properties for the Riesz potentials on Carnot groups.
So let G be a Carnot group of homogeneous dimension ) and A its sub-Laplacian,
then we have

Theorem A.1 ([11]). Let 0 < a < @ and consider h(t,x) the fundamental solution of
the operator —Ap + %, then the integral

1 *® oy
Rul(z) = F(‘;)/o 15U (t, 2)dt
converges absolutely and it satisfies the following properties:
e R, is a kernel of type a. In particular it is homogeneous of degree o — Q)

e Ry is the fundamental solution of —A

® RyoxRg= Roip foraand >0 and a+ 3 < Q.
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o For f € LP(G) and 1 < p < 0o, we have that
(~A)"%f = f * Ra.
In this paper, we used the convention
Rof = (=D)75f = f * Ra.
From the integral form of R, one has
Ra(z) ~ [z ~@*

and p(x) = (Ra(az))ﬁ defines a G-homogeneous norm, smooth away from the ori-
gin and it induces a quasi-distance that is equivalent to the left-invariant Carnot-
Caratheodory distance. In a similar way, one can define the function R,, introduced
in [8], for « < 0 and o & {0, —2,—4,...} by

/ t2 7 h(t, @)dt
0

%
I'(3)

Again, it is easy to see that R, is G-homogeneous of degree a — Q and

R, (x) =

Ra() ~ |z]*79.

Using this function, it is possible to define another representation for the fractional
sub-Laplacian, which we use in the proofs of our results.

Theorem A.2 ([8]). If u is a Schwartz function on G, then for 0 < o < 2 one has

(—Ab)%u(x) = PV/G(u(y) - u(x))]é_a(yflx)dy
Using classical interpolation (or what is it called A-kernel estimates in [9]) one has for
0<a<@Q,

[ Roullp < llullg, (37)

for % = % — % and 1 < ¢ < oco. In the case of the Heisenberg group one in fact has
more explicit computations for the operator Lo (see [27]). In fact, one can replace R,

by the expected Green’s function of Lo that is

1
Gak(T) = ek W

and R_, by the kernel
1

sz, = én7km

The integral representation formula holds also for the operator Lo in our results, with
R_o replaced by Koy.

29



References

1]

2]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A. Ambrosetti, P. H. Rabinowitz. Dual variational methods in critical point theory
and applications. J. Funct. Anal. 14 (1973), 349-381.

T. Aubin. Nonlinear Analysis on Manifolds, Monge-Ampére equations. Springer-
Verlag, New York, (1982).

T.P. Branson, L. Fontana, C. Morpurgo. Moser-Trudinger and Beckner-Onofri’s
inequalities on the CR sphere. Ann. of Math. 177 (2013), 1-52.

S. Chanillo. A note on commutators. Indiana Univ. Math. J. 31, no. 1, (1982),
7-16.

W.Y. Ding. On a conformally invariant elliptic equation on R™. Comm. Math.
Phys. 107 (2) (1986), 331-335.

O. Druet, E. Hebey, F. Robert, Blow-up theory for elliptic PDFEs in Riemannian
geometry. Mathematical Notes, 45. Princeton University Press, Princeton, NJ,
(2004).

Y. Fang, M. del Mar Gonzélez, Asymptotic behavior of Palais-Smale sequences
associated with fractional Yamabe-type equations. Pacific J. Math. 278 (2015), no.
2, 369-405.

F. Ferrari, B. Franchi. Harnack inequality for fractional sub-Laplacians in Carnot
groups. Math. Z. 279 (1-2), (2015), 435-458.

G. Folland, E. Stein. Hardy spaces on homogeneous groups. Mathematical Notes,
28. Princeton University Press, N.J. (1982).

R.L. Frank, M. del Mar Gonzéalez, D.D. Monticelli, J. Tan. An extension problem
for the CR fractional Laplacian. Adv. Math. 270 (2015), 97-137.

R. L. Frank, E. H. Lieb. Sharp constants in several inequalities on the Heisenberg
group. Ann. of Math. (2) 176 (2012), no. 1, 349-381.

A. Gover, C.R. Graham. CR invariant powers of the sub-Laplacian. J. Reine
Angew. Math. 583 (2005), 1-27.

C.R. Graham, R. Jenne, L.J. Mason, G.A.J. Sparling. Conformally invariant
powers of the Laplacian I. Ezistence. J. Lond. Math. Soc. (2) 46(3) (1992), 557-
565.

T. Isobe. Nonlinear Dirac equations with critical nonlinearities on compact spin
manifolds. J.Funct. Anal., 260, (2011), 253-307.

A. Kiristdly. Nodal solutions for the fractional yamabe problem on Heisenberg
groups. Proc. Roy. Soc. Edinburgh Sect. A, accepted.

30



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[26]

[27]

28]

[29]

[30]

E. Lenzmann, A. Schikorra. Sharp commutator estimates via harmonic exten-
stons. Preprint arXiv:1609.08547.

P.L. Lions, The concentration-compactness principle in the calculus of variations.
The limit case. I. Rev. Mat. Iberoamericana 1 (1985), no. 1, 145-201.

P.L. Lions, The concentration-compactness principle in the calculus of variations.
The limit case. II. Rev. Mat. Iberoamericana 1 (1985), no. 2, 45-121.

C. Liu, Y. Wang. Existence results for the fractional Q-curvature problem on three
dimensional CR sphere. Commun. Pure Appl. Anal. 17 (2018), no. 3, 849-885

A. Maalaoui. A Note on Commutators of the Fractional Sub-Laplacian on Carnot
Groups. Commun. Pure Appl. Anal. 18 (2019), no. 1, 435-453

A. Maalaoui, V. Martino Characterization of the Palais-Smale sequences for the
conformal Dirac-FEinstein problem and applications. In Press, Journal of Differ-
ential Equations, https://doi.org/10.1016/j.jde.2018.08.037

A. Maalaoui, V. Martino. Changing-sign solutions for the CR-Yamabe equation.
Differential Integral Equations 25 (2012), no. 7-8, 601-609.

A. Maalaoui, V. Martino, G. Tralli. Complex group actions on the sphere and
sign changing solutions for the CR-Yamabe equation. J. Math. Anal. Appl. 431
(2015), 126-135.

R.S. Palais. The principle of symmetric criticality. Comm. Math. Phys. 69 (1)
(1979), 19-30.

G. Palatucci, A. Pisante. Improved Sobolev embeddings, profile decomposition,
and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial
Differential Equations 50 (2014), no. 3-4, 799-829.

G. Palatucci, A. Pisante. A global compactness type result for Palais-Smale se-
quences in fractional Sobolev spaces. Nonlinear Anal. 117 (2015), 1-7.

L. Roncala, S. Thangavelub. Hardy’s inequality for fractional powers of the sub-
laplacian on the Heisenberg group. Advances in Mathematics, 302, (2016), 106-
158.

A. Schikorra. e-regularity for systems involving non-local, antisymmetric opera-
tors. Calc. Var. Partial Differential Equations 54, no. 4, (2015), 3531-3570.

M. Struwe, A global compactness result for elliptic boundary value problems in-
volving limiting nonlinearities. Math. Z. 187 (1984), no. 4, 511-517.

M. Struwe, Variational methods. Applications to nonlinear partial differential
equations and Hamiltonian systems. Fourth edition. Springer-Verlag, Berlin,
(2008).

31



