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Palais-Smale sequences for the fractional CR Yamabe

functional and multiplicity results

Chiara Guidi(1) & Ali Maalaoui(2) & Vittorio Martino(3)

Abstract In this paper we consider the functional whose critical points are solutions of the

fractional CR Yamabe type equation on the sphere. We firstly study the behaviour of the Palais-

Smale sequences characterizing the bubbling phenomena and therefore we prove a multiplicity

type result by showing the existence of infinitely many solutions to the related equation.
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1 Introduction and statement of the results

Let N ≥ 1 and let S2N+1 denote the (2N+1)-dimensional sphere, equipped with its
standard CR structure. In this paper we consider the following energy functional

E(u) =
1

2

∫
S2N+1

uA2ku dvS − 1

p∗

∫
S2N+1

|u|p∗ dvS , u ∈ Hk
(
S2N+1

)
(1)

whose critical points satisfy the fractional CR Yamabe type equation

A2ku = |u|p∗−2u on S2N+1, u ∈ Hk
(
S2N+1

)
. (2)

Here k ∈ R is a parameter such that 0 < 2k < Q := 2N + 2, A2k is the sub-elliptic
intertwining operator of order 2k andHk(S2N+1) is the related fractional Sobolev space,
as defined for instance in [9, 10] (we will give all the rigorous definitions in Section 2);
also, the exponent p∗ is the critical one for the embedding Hk(S2N+1) ↪→ Lp∗(S2N+1).
Just to fix the ideas, for instance when k = 1, the operator A2 is nothing but the
standard conformal sub-Laplacian on the sphere. For a given point ζ0 ∈ S2N+1 the
Cayley transform C is a natural conformal diffeomorphism

C : HN → S2N+1 \ {−ζ0}
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which is analogous to the standard stereographic projection in the Euclidean case; here
HN denotes the Heisenberg group and −ζ0 is the antipodal point with respect to ζ0.
Therefore a similar functional EH can be defined equivalently on HN , via the Cayley
transform C, and the related equation on HN is given by

L2kU = |U |p∗−2U on HN , U ∈ Dk(HN ). (3)

We refer the reader to the next section for the precise definition of the Heisenberg
group, the space Dk(HN ) and the relation between A2k and L2k.
This kind of conformally invariant operators were introduced in [12] and they can be
seen as the CR counterpart to the GJMS operators defined in the Riemannian setting
in [13]. Indeed, as in the Euclidean case, the existence of an infinite family of explicit
positive solutions (bubbles) to the previous equations is known, moreover due to the
lack of compactness of the Sobolev embedding (which can be seen geometrically as
the action of the conformal group), the functional E does not satisfy the Palais-Smale
condition.
However, a sharp Sobolev inequality has been proved by Frank and Lieb in [11], showing
that the extremals are exactly the bubbles. All these facts suggest that a characteriza-
tion of the Palais-Smale sequences should be possible, making the bubbling phenomena
completely explicit, as in the classic case [29, 17, 18] (see also the books [30, 6] and the
references therein); for the fractional case in the Riemmanian setting see [7, 25, 26].
Indeed, this is what we will prove in our first result. The proof is quite involved and
delicate if compared to the standard case: this is due basically to the non-Euclidean
setting, the degeneracy of the given operators and also the fractional nature of the
problem, making it non-local. As it is commonly known in the standard setting, the
bubbling phenomena occurs at a local scale which makes it harder to deal with in a
non-local setting. In fact, even if a natural behavior is expected, any variational prob-
lem needs a careful analysis depending on the ambient manifold and the structure of
the operators involved (see for instance [14, 21]). In our particular case, in addition to
the results in [11], we will make use of some point-wise commutator estimates, which
have been recently written specifically for this type of operators (see [20]): as is the
case of local operators, this kind of estimates are useful in order to study regularity
properties, after localizing with cut-off functions (see for instance [4, 28, 16]). In order
to state our main result we define the following map: let us fix ζ0 ∈ S2N+1, for a given
R > 0 and ζ ∈ S2N+1, we let ρ be the function

ρ : HN → S2N+1 \ {−ζ0}, ρ = C ◦ τw ◦ δR

where w = C−1(ζ) and δ and τ denote dilations and translations on the Heisenberg
group, respectively. Also we define the inverse map σ = ρ−1. Therefore, we will prove
the following

Theorem 1.1. Let un be a Palais-Smale sequence for the functional E at level c. Then
there exist u∞ a solution of (2), m sequences of points ζ1n, . . . , ζ

m
n ∈ S2N+1 such that

limn→∞ ζ ln = ζ l ∈ S2N+1 for l = 1, . . . ,m and m sequences of real numbers R1
n, . . . , R

m
n

converging to zero, such that:
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i) un = u∞ +
∑m

l=1 v
l
n + o(1) in Hk

(
S2N+1

)
ii) E(un) = E(u∞) +

∑m
l=1EHN (U l

∞) + o(1)

where
vln = (Λσl

n
)
Q−2k
2Q βlU l

∞ ◦ σl
n.

Here σl
n = (ρln)

−1, ρln = C◦δRl
n
◦τwl

n
, wl

n = C−1(ζ ln) with C : HN → S2N+1\{−ζ l}. Also
Λσl

n
denotes half the absolute value of the Jacobian determinant of σl

n; β
l are smooth

compactly supported functions, such that βl ≡ 1 on B 1
4
(ζ l), supp(βl) ⊂ B1(ζ

l) and U l
∞

are solutions of (3) and the B’s stand for the balls on the sphere.

The proof of the previous theorem will be carried out in Section 3.
We would like to mention explicitly that we recently found a paper on arXiv ([19]),
in which the authors prove an existence result for the fractional Q-curvature problem
on the three dimensional CR sphere: in their Lemma 2.1, they claim a behavior for
Palais-Smale sequences along some flow lines, similar to our Theorem 1.1; the proof is
missing, the authors cite a couple of papers, which in turn consider only local operators.
To the best of our knowledge, we did not find any references dealing with these peculiar
issues that we are considering in the present paper.
Once we have characterized the Palais-Smale sequences, in Section 4 as main application
we will prove a multiplicity result for equation (2). We will argue by contradiction as
in [23]; in particular, with the help of some special groups of isometries, we will restrict
the functional E to some special subspaces and we will assume that the Palais-Smale
condition fails: the action of the groups and the boundedness of the energy will lead to
a contradiction. Therefore, a standard application of the minimax argument will give
us the following result

Theorem 1.2. There exist infinitely many solutions of (3) (or equivalently of (2)),
distinct from the standard bubbles.

Moreover, depending on the choice of the group of isometries, the existence of sign
changing solutions can be shown as well. In this setting, we recall the paper [22], where
the existence of infinitely many sign changing solutions was proven for the standard
CR-Yamabe equation on the sphere (here k = 1), by following the idea of Ding [5]
combined with the action of the group of isometries generated by the Reeb vector field
of the standard sphere. Moreover, recently in [15], under a technical assumption on the
range of the parameter k, the author proved the existence of a number of sequences of
sign-changing solutions of equation (2), whose elements have mutually different nodal
properties. The proof is based again on Ding’s approach and on a iterative argument as
in [2], starting from the result in [22] (the assumption on k makes the iteration works
fine). Also, in his Remark 3.2, the author wonders if his technical assumption could be
removed in order to gain the compactness of some Sobolev embeddings: it seems that
we can remove this assumption and still obtain existence of solutions.

Acknowledgement The second author aknowledge the financial support of the Seed
Grant of AURAK, No.: AAS/001/18, Critical Problems in the Sub-Elliptic Setting.
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2 Definitions and notation

We identify the Heisenberg group HN with CN×R ≃ R2N+1 with elements w = (z, t) =
(x+ iy, t) ≃ (x, y, t) ∈ RN × RN × R and group law

w · w′ = (z, t) · (z′, t′) = (z + z′, t+ t′ + 2Im(zz′)) ∀ w,w′ ∈ HN ,

where Im denotes the imaginary part of a complex number and zz′ is the standard
Hermitian inner product in CN . Left translations on HN are defined by

τ : HN → HN τw(w
′) = w · w′ ∀ w ∈ HN

and dilations are

δλ : HN → HN δλ(z, t) = (λz, λ2t) ∀ λ > 0.

The homogeneous dimension of HN with respect to δλ will be denoted by Q = 2N +2.
The natural distance that we will adopt in our setting is the Korányi distance, given
by

d((z, t), (z′, t′)) =
(
|z − z′|4 + (t− t′ − 2Im(zz′))2

) 1
4

and we denote by Bw
R the ball of center w and radius R > 0 defined by the distance d.

Moreover we denote by

θH = dt+ 2
N∑
j=1

(xidyi − yidxi)

the standard contact form on HN and by dvH the volume form associated to θH. The
canonical basis of left invariant vector fields on HN is given by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

∂

∂t
, j = 1, . . . , N.

and the sub-Laplacian operator associated to this Carnot structure is given by

∆b =
1

4

N∑
j=1

(
X2

j + Y 2
j

)
.

The Heisenberg group can be identified with the unit sphere in CN+1 minus a point
through the Cayley transform C : HN → S2N+1 \ {(0, . . . , 0,−1)} defined as follows

C(z, t) =
(

2z

1 + |z|2 + it
,
1− |z|2 − it

1 + |z|2 + it

)
.

On the unit sphere S2N+1 = {ζ ∈ CN+1 : |ζ| = 1} we consider the distance

d(ζ, η)2 = 2|1− ζη|, ζ, η ∈ CN+1
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and we denote by BR(ζ) ⊂ S2N+1 the ball of center ζ and radius R > 0. With this
definition of d, the relation between the distance of two points w = (z, t), w′ = (z′, t′)
in HN and the distance of their images C(w), C(w′) in S2N+1, is given by

d(C(w), C(w′)) = d(w,w′)

(
4

(1 + |z|2)2 + t2

) 1
4
(

4

(1 + |z′|2)2 + t′2

) 1
4

.

From this relation we deduce the following inclusions

C−1(BR(ζ)) ⊇ B
C−1(ζ)
R
2

for every R > 0 (4)

and
C−1(BR(N )) ⊆ B0

R for every 1 ≥ R > 0

whereN is the point (1, 0, . . . , 0) ∈ S2N+1. On S2N+1, we consider the standard contact
form

θS = i

N+1∑
j=1

(ζjdζj − ζjdζj),

and we denote by dvS the volume form associated to θS . The conformal sub-Laplacian
is then

A2 = −1

2

N+1∑
j=1

(TjT j + T jTj) +
N2

4

where Tj are the differential operators defined by

Tj =
∂

∂ζj
− ζj

N+1∑
k=1

ζk
∂

∂ζk
, j = 1, . . . , N + 1.

Let Hj,l be the space of harmonic polynomials on CN+1 homogeneous of degree j and
l in variables z and z respectively, restricted to S2N+1. The Hilbert space L2(S2N+1)
decomposes as L2(S2N+1) =

⊕
j,l≥0Hj,l and we denote by ymj,l an orthonormal basis

for the space Hj,l, in particular we require ymj,l to be eigenfunction for the conformal
sub-Laplacian A2. Then, the conformal sub-Laplacian acts on ymj,l as A2y

m
j,l = λjλly

m
j,l,

where λj = j + n
2 . Let us fix 0 < 2k < Q, and consider

u =
∑
j,l

dim(Hj,l)∑
m=1

cmj,l(u)y
m
j,l ∈ L2(S2N+1).

We define the operator

Aku =
∑
j,l

dim(Hj,l)∑
m=1

(λjλl)
k
2 cmj,l(u)y

m
j,l
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where dim(Hj,l) =
(j+N−1)!(l+N−1)!(j+l+N)

N !(N−1)!j!l! is the dimension ofHj,l. Moreover, we define
the Sobolev space

Hk(S2N+1) =
{
u ∈ L2(S2N+1) : Aku ∈ L2(S2N+1)

}
with inner product

⟨u, v⟩k =

∫
S2N+1

AkuAkv dvS

and norm

∥u∥k = ⟨u, u⟩
1
2
k =

∑
j,l

dim(Hj,l)∑
m=1

(λjλl)
k|cmj,l(u)|2

 1
2

.

We consider the intertwining operator A2k on S2N+1 defined, up to multiplicative
constants, by

Jac
Q+2k
2Q

τ (A2ku)◦τ = A2k

(
Jac

Q−2k
2Q

τ (u ◦ τ)
)

∀τ ∈ Aut(S2N+1), u ∈ C∞(S2N+1). (5)

Moreover from now on we endow Hk
(
S2N+1

)
with the inner product

⟨u, v⟩Hk =
∑
j,l

dim(Hj)∑
m=1

(λj(k))
2kcmj (u)cmj (v) =

∫
S2N+1

vA2ku dvS

with

λj(k) =
Γ
(
Q+2k

4 + j
)

Γ
(
Q−2k

4 + j
) , j = 0, 1, . . .

and norm ∥u∥Hk =
(∫

S2N+1 uA2ku dvS
) 1

2 which is equivalent to ∥u∥k. The dual of
Hk
(
S2N+1

)
will be denoted by H−k. In HN the symbol of the intertwining operators

is defined, up to a multiplicative constant, by

L2k = |2T |k
Γ
(
−∆b
|2T | +

1+k
2

)
Γ
(
−∆b
|2T | +

1−k
2

) ;
we choose the multiplicative constant to be equal 1 so that we recover L2 = −∆b and
L4 = (−∆b)

2 − T 2. Hereafter we consider only real valued functions. The quadratic
form associated to L2k will be denoted by a2k :

a2k (U) =

∫
HN

UL2kU dvH

and we define the space

Dk(HN ) =
{

U ∈ L
2Q

Q−2k (HN ) : a2k < +∞
}
.
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The operators A2k and L2k are related by the following identity

L2k

(
Λ

Q−2k
2Q

C (u ◦ C)
)

= Λ
Q+2k
2Q

C (A2ku) ◦ C ∀u ∈ Hk
(
S2N+1

)
(6)

where ΛC is twice the absolute value of the Jacobian determinant of the Cayley trans-
form

ΛC =
2Q

((1 + |z|2)2 + t2)N+1
.

We recall now the following sharp Sobolev inequality that was proved by Frank and
Lieb in [11] (∫

S2N+1

|u|
2Q

Q−2k dvS

)Q−2k
Q

≤ CS

∫
S2N+1

uA2ku dvS (7)

where

CS(k,N) =
Γ
(
N+1−k

2

)2
Γ
(
N+1+k

2

)2 (ω2N+12
2N+1N !)

− 2k
Q , (8)

ω2N+1 is the measure of S2N+1 and

p∗ =
2Q

Q− 2k

is the critical exponent. Indeed the embedding

Hk(S2N+1) ↪→ Lp∗(S2N+1) (9)

is continuous but not compact and this is due to the scale invariance of the norms,
induced by the action of the conformal group. Also, we will denote by p̄ = (p∗)′ = 2Q

Q+2k
and it follows from (9) that

Lp̄(S2N+1) ↪→ H−k(S2N+1).

For Ω ⊂ HN open and bounded we denote by Hk
0 (Ω) the closure of C

∞
0 (Ω) with respect

to the norm

∥U∥Hk
0 (Ω) =

(∫
Ω
UL2kU dvH

) 1
2

and it holds

Hk
0 (Ω) ↪→ Lp∗(Ω).

Optimizer functions for (7) are images through the Cayley transform of functions of

the type λ
2k−Q

2 ω ◦ δλ−1 ◦ τξ−1 where

ω(z, t) =
c(Q)

((1 + |z|2)2 + t2)
Q−2k

4

, (10)
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for a suitable positive constant c(Q) (see [11]). These functions satisfy the equation

L2kU = |U |p∗−2U on HN U ∈ Dk(HN ),

hence they are critical points for the energy functional EH defined on Dk(HN ) by

EH(U) =
1

2

∫
HN

UL2kU dvH − 1

p∗

∫
HN

|U |p∗ dvH .

In fact the functions ωλ,ξ = λ
2k−Q

2 ω ◦ δλ−1 ◦ τξ−1 are (the only) ground state solutions
of EH.

3 Classification of the Palais-Smale sequences

Let H be an Hilbert space, a sequence {xn}n∈N ⊆ H is called a Palais-Smale (PS) se-
quence for F ∈ C1(H,R) at level c if F (xn) → c and ∇F (xn) → 0. F is said to satisfy
the Palais-Smale condition if any (PS) sequence admits a converging subsequence.

Now, we begin the proof of our main result, that is Theorem 1.1.

Lemma 3.1. Every (PS) sequence un for E is bounded.

Proof. Let un be a (PS) sequence for E at level c i.e.

E(un) → c, dE(un) → 0 in H−k
(
S2N+1

)
.

Therefore we have

2c+ o(1) + o(1)∥un∥Hk ≥ 2E(un)− ⟨dE(un), un⟩

=

(
p∗ − 2

p∗

)∫
S2N+1

|un|p
∗
dvS ,

hence

∥un∥2Hk = 2E(un) +
2

p∗

∫
S2N+1

|un|p
∗
dvS

≤ 2c+ o(1) +
2

p∗ − 2
(2c+ o(1) + o(1)∥un∥Hk) .

It follows that un is bounded in Hk
(
S2N+1

)
.

The result above implies that, up to a subsequence, there exists a function u∞ ∈
Hk
(
S2N+1

)
such that

un ⇀ u∞ weakly in Hk
(
S2N+1

)
, (11)

un → u∞ strongly in Lp(S2N+1) for 1 ≤ p < p∗ . (12)
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Moreover, u∞ is a weak solution to (2). Indeed, since un is a (PS) sequence for E, for
any φ ∈ Hk

(
S2N+1

)
we have∫

S2N+1

φA2kun dvS =

∫
S2N+1

φ|un|p
∗−2un dvS + o(1)

as n → ∞, and by (12) and (11) we have respectively∫
S2N+1

φA2kun dvS →
∫
S2N+1

φA2ku∞ dvS∫
S2N+1

φ|un|p
∗−2un dvS →

∫
S2N+1

φ|u∞|p∗−2u∞ dvS

showing that u∞ weakly satisfies (2). We set vn = un−u∞, with this notation we have
the following

Lemma 3.2. The sequence vn is a (PS) sequence for E. More precisely, it holds

E(vn) = E(un)− E(u∞) + o(1)

and

dE(vn) → 0, in H−k
(
S2N+1

)
.

Proof. We have

2E(un) =

∫
S2N+1

(vn + u∞)A2k(vn + u∞) dvS − 2

p∗

∫
S2N+1

|vn + u∞|p∗ dvS

= 2E(vn) + 2E(u∞) + 2⟨dE(u∞), vn⟩+ 2

∫
S2N+1

|u∞|p∗−2u∞vn dvS+

+
2

p∗

∫
S2N+1

|vn|p
∗
+ |u∞|p∗ − |vn + u∞|p∗ dvS .

Since vn → 0 in Lp for every 1 ≤ p < p∗, we have
∫
S2N+1 |u∞|p∗−2u∞vn dvS = o(1) as

n → ∞; moreover dE(u∞) = 0 , so that it remains to show that the last integral in the
expression above goes to 0 as n → ∞. It is possible to choose a big enough positive
constant C such that

|Φn| :=
∣∣∣|vn + u∞|p∗ − |vn|p

∗ − |u∞|p∗
∣∣∣ ≤ C|vn|p

∗−1|u∞|+ C|vn||u∞|p∗−1.

Hence, by the Hölder inequality∫
S2N+1

|Φn| dvS =

∫
S2N+1\Mϵ

|Φn| dvS +

∫
Mϵ

|Φn| dvS

≤
∫
S2N+1\Mϵ

|Φn| dvS + C

(∫
Mϵ

|vn|p
∗
dvS

) p∗−1
p∗
(∫

Mϵ

|u∞|p∗ dvS

) 1
p∗

+ C

(∫
Mϵ

|u∞|p∗ dvS

) p∗−1
p∗
(∫

Mϵ

|vn|p
∗
dvS

) 1
p∗

.

9



Here Mϵ ⊂ S2N+1, defined for any ϵ > 0 by the Egorov theorem, is such that |S2N+1 \
Mϵ| < ϵ and vn converges to 0 uniformly on Mϵ. So that, the first integral in the
expression above converges to 0 as n → ∞, while the other two terms go to 0 as ϵ → 0,
uniformly in n. Therefore we get the desired energy estimate. Now we prove that for
any φ ∈ Hk

(
S2N+1

)
with ∥φ∥Hk(S2N+1) ≤ 1, it holds

⟨dE(vn), φ⟩ = o(1) as n → ∞.

We have

⟨dE(un), φ⟩ =
∫
S2N+1

φA2k(vn + u∞) dvS −
∫
S2N+1

|un|p
∗−2unφ dvS

= ⟨dE(vn), φ⟩+ ⟨dE(u∞), φ⟩+

−
∫
S2N+1

(
|un|p

∗−2un − |vn|p
∗−2vn − |u∞|p∗−2u∞

)
φ dvS .

Since ⟨dE(u∞), φ⟩ = 0 and ⟨dE(un), φ⟩ = o(1) as n → ∞, it remains to show that the
last integral in the equality above converges to 0 as n → ∞. Again, for a big enough
positive constant C we have

|Ψn| :=
∣∣∣|un|p∗−2un − |vn|p

∗−2vn − |u∞|p∗−2u∞

∣∣∣ ≤ C|vn|p
∗−2|u∞|+ C|vn||u∞|p∗−2

and by the Hölder inequality and Egorov theorem∣∣∣∣∫
S2N+1

Ψn|φ| dvS
∣∣∣∣ . ∫

S2N+1

|vn|p
∗−2|u∞||φ| dvS +

∫
S2N+1

|vn||u∞|p∗−2φ dvS

.
∥∥∥|vn|p∗−2|u∞|

∥∥∥
L

p∗
p∗−1

∥φ∥Lp∗ +
∥∥∥|vn||u∞|p∗−2

∥∥∥
L

p∗
p∗−1

∥φ∥Lp∗

.
∥∥∥|vn|p∗−2|u∞|

∥∥∥
L

p∗
p∗−1

+
∥∥∥|vn||u∞|p∗−2

∥∥∥
L

p∗
p∗−1

.
∥∥∥|vn|p∗−2|u∞|

∥∥∥
L

p∗
p∗−1 (S2N+1\Mϵ)

+
∥∥∥|vn||u∞|p∗−2

∥∥∥
L

p∗
p∗−1 (S2N+1\Mϵ)

+
∥∥∥|vn|p∗−2|u∞|

∥∥∥
L

p∗
p∗−1 (Mϵ)

+
∥∥∥|vn||u∞|p∗−2

∥∥∥
L

p∗
p∗−1 (Mϵ)

= o(1) as n → ∞ and ϵ → 0, uniformly in n.

This concludes the proof.

Lemma 3.3. Let un be a (PS) sequence at level c < k
QC

− Q
2k

S , then un converges strongly

to 0 in Hk
(
S2N+1

)
. Here CS is the Sobolev constant defined in (8).

Proof. By the Sobolev inequality (7), we have ∥un∥p
∗

Lp∗ ≤ C
p∗
2

S ∥un∥p
∗

Hk , so that

o(1) =

∫
S2N+1

unA2kun dvS −
∫
S2N+1

|un|p
∗
dvS

≥ ∥un∥2Hk

(
1− C

p∗
2

S ∥un∥p
∗−2

Hk

)
.

10



Now, following the argument given in Lemma 3.1, we notice that the choice of c in the
statement implies

∥un∥2Hk ≤ p∗

p∗ − 2
2c+ o(1)

< C
− Q

2k
S + o(1).

This, for n big enough, ensures the positivity of the factor 1−C
p∗
2

S ∥un∥p
∗−2

Hk , concluding
the proof.

Hereafter we assume the (PS) sequence (un)n∈N converges weakly to 0 in Hk
(
S2N+1

)
and strongly in Lp(S2N+1) for 1 ≤ p < p∗. Moreover, since we want to investigate the
behavior of (un) when the (PS) condition is not satisfied, we will assume that un does
not converge strongly to 0 in Hk

(
S2N+1

)
. For any ϵ0 > 0, we define

Σϵ0 =

{
ζ ∈ S2N+1 : lim inf

r→0
lim inf
n→∞

∫
Br(ζ)

|un|p
∗
dvS ≥ ϵ0

}
.

In the sequel we will need to localize our equation, therefore we will use some com-
mutator estimates. For a given k ∈ (0, Q2 ), we define the 3-commutator CommL2k(·, ·)
by

CommL2k(u, v) = Comm(u, v) = L2k(uv)− uL2k(v)− vL2k(u),

and we let Rs denote the Riesz potential on HN (see Appendix). Then the following
Lemma [20] holds

Lemma (commutator estimates). Let 0 < 2k < Q and ϵ > 0. Given τ1 and τ2
in (max{0, 2k − 1}, 2k] such that τ1 + τ2 > 2k, there exists L ∈ N, sj,1 ∈ (0, τ1),
sj,2 ∈ (0, τ2), for j = 1, · · · , L, satisfying τ1 + τ2 − sj,1 − sj,2 − 2k ∈ [0, ϵ) such that

|Comm(u, v)| .
L∑

j=1

Rτ1+τ2−sj,1−sj,2−2k

(
Rsj,1 |Lτ1u|Rsj,2 |Lτ2v|

)
. (13)

Next, we state the first Lemma characterizing the concentration set:

Lemma 3.4. There exists ϵ0 > 0 such that if ζ0 /∈ Σϵ0, then for a small enough r > 0,
we have un → 0 in Hk (Br(ζ0)).

Proof. Suppose by contradiction that for every ϵ > 0 there exists ζ0 /∈ Σϵ such that un
does not converges to 0 in Hk (Br(ζ0)) for every r > 0. Notice that ζ0 /∈ Σϵ implies the
existence of a radius r > 0 such that∫

B2r(ζ0)
|un|p

∗
dvS < ϵ. (14)

Since un is a (PS) sequence, there exists a sequence δn ∈ H−k
(
S2N+1

)
converging to 0

in H−k
(
S2N+1

)
, such that

A2k(un) = |un|p
∗−2un + δn.

11



Since we want to localize around ζ0, we consider the Cayley transform C where we set
the north pole as ζ0. We notice that for any couple of functions u, v it holds

A2k(uv) = Λ
− 1

p̄

C [L2k(Λ
1
p∗
C (uv) ◦ C)] ◦ C−1

and

L2k(Λ
1
p∗
C (uv) ◦ C) = v ◦ CL2k(Λ

1
p∗
C u ◦ C) + Λ

1
p∗
C u ◦ CL2k(v ◦ C) + Comm(Λ

1
p∗
C u ◦ C, v ◦ C).

We go back now to our Palais-Smale sequence and we compute

A2k(ηun) = ηA2k(un) + l.o.t.

= η|un|p
∗−2un + ηδn + l.o.t.

Here η is a smooth cut off function with supp(η) ⊆ B2r(ζ0) and η ≡ 1 on Br(ζ0). So
we first estimate ∥l.o.t∥H−k . We have

|Comm(Λ
1
p∗
C un ◦ C, η ◦ C)| .

L∑
i=1

R2k−si−ti

(
Rti(L2k(Λ

1
p∗
C un ◦ C))Rsi(L2k(η ◦ C))

)
.

L∑
i=1

R2k−si−ti

(
Rti((ũn + δn) ◦ C)Rsi(L2k(η ◦ C))

)
(15)

where ũn = |Λ
1
p∗
C un|p

∗−2Λ
1
p∗
C un. Since the terms of the sumation above are similar in

nature we will give here the proof for a single term. Since ũn is bounded in Lp̄, we have
that Rt(ũn ◦ C) converges strongly to zero (up to a subsequence) in Lq

loc for
1
q > 1

p̄ −
t
Q .

So we fix R > 0 big enough. Then we have∥∥∥R2k−s−t

(
Rt(ũn ◦ C)χB0

R
Rs(L2k(η ◦ C))

)∥∥∥
Lp̄

. ∥Rt(ũn ◦ C)∥Lq(B0
R)∥L2k(η ◦ C)∥Lp ,

where 1
p̄ = 1

q +
1
p − 2k−t

Q . Hence∥∥∥R2k−s−t

(
Rt(ũn ◦ C)χB0

R
Rs(L2k(η ◦ C))

)∥∥∥
Lp̄

→ 0.

Outside B0
R, we have that

χHN\B0
R
Rs(L2k(η ◦ C))(x) . 1

|x|Q+2k−s
.

Thus, ∥∥∥R2k−s−t

(
Rt(ũn ◦ C)χHN\B0

R
Rs(L2k(η ◦ C))

)∥∥∥
Lp̄

. ∥ũn ◦ C∥Lp̄
1

RQ+2k−s−t

and since
∥ũn ◦ C∥Lp̄ . ∥un∥p

∗−1

Lp∗ ≤ C,

12



by letting first n → ∞ then R → ∞ we get∥∥∥∥Λ 1
p̄

CH
L2k
k (Λ

1
p∗
C un ◦ C, η ◦ C) ◦ C−1

∥∥∥∥
H−k

= o(1).

Now we move to estimating the term Λ
1
p∗−

1
p̄

C unL2k(η ◦ C) ◦ C−1. Indeed, we have

∥Λ
1
p∗
C unL2k(η ◦ C) ◦ C−1∥Lp̄ . ∥un∥L2∥Λ

1
p∗
C L2k(η ◦ C) ◦ C−1∥

L
Q
k

and since un → 0 in L2 we have that

∥Λ
1
p∗
C unL2k(η ◦ C) ◦ C−1∥Lp̄ = o(1).

Therefore, we have that ∥l.o.t∥H−k = o(1). By the sub-elliptic regularity estimates we
find

∥η|un|∥Hk(Br(ζ0))
.
∥∥∥η|un|p∗−2un + ηδn

∥∥∥
H−k(Br(ζ0))

+ ∥l.o.t∥H−k(Br(ζ0))

.
∥∥∥η|un|p∗−2un

∥∥∥
H−k(Br(ζ0))

+ ∥ηδn∥H−k(Br(ζ0))
+ o(1).

(16)

We estimate the first term in the inequality above as follows∥∥∥η|un|p∗−2un

∥∥∥
H−k(Br(ζ0))

.
∥∥∥η|un|p∗−2un

∥∥∥
L

2Q
Q+2k (Br(ζ0))

. ∥un∥
4k

Q−2k

Lp∗ (Br(ζ0))
∥ηun∥Lp∗ (Br(ζ0))

. ∥un∥
4k

Q−2k

Lp∗ (Br(ζ0))
∥ηun∥Hk(Br(ζ0))

.

Substituting the estimates above in (16) and using (14), we find

∥ηun∥Hk(Br(ζ0))
. ∥un∥

4k
Q−2k

Lp∗ (Br(ζ0))
∥ηun∥Hk(Br(ζ0))

+ o(1)

. ϵ
2k
Q ∥ηun∥Hk(Br(ζ0))

+ o(1).

Now, we choose ϵ small enough to have ∥ηun∥Hk(Br(ζ0))
→ 0, leading to a contradiction

to our assumptions.

Given r > 0, We can define now the concentration function

Qn(r) = sup
ζ∈S2N+1

∫
Br(ζ)

|un|p
∗
dvS .

Since we are assuming that un does not satisfies the (PS) condition, the Lemma above
ensures the existence of a small enough ϵ0 > 0 such that Σϵ0 ̸= ∅. Thus, for any fixed

13



ϵ0
3 > ϵ > 0, there exist a sequence of points ζn ∈ S2N+1 and a sequence of radii Rn → 0
such that

Qn(Rn) =

∫
BRn (ζn)

|un|p
∗
dvS = ϵ. (17)

Up to a subsequence, we can assume that ζn → ζ0 ∈ S2N+1 as n → ∞. Again, we fix a
coordinate system in CN+1 so that ζ0 = (0, . . . , 0, 1) and denote by −ζ0 = (0, . . . , 0,−1)
the antipodal point of ζ0. We set

Ω = C−1(B1(ζ0)) ⊂ HN .

Clearly, for n big all the balls C−1(BRn(ζn)) will be contained in Ω. Hence, by means
of the map C−1, the problem of characterizing (PS) sequences can be studied in HN ,
where the points wn = C−1(ζn) accumulate at the point 0 = C−1(ζ0) in the interior of
the domain Ω. Also, we define the map

ρn : HN → S2N+1 \ {−ζ0}, ρn(w) = C ◦ τwn ◦ δRn(w)

and the functions

Un = Λ
Q−2k
2Q

ρn un ◦ ρn,
here Λρn is twice the absolute value of the Jacobian determinant of the map ρn. Also
we define the inverse map σn = ρ−1

n . From now on we denote the preimage of a ball
BRRn(ζn) ⊂ S2N+1 with respect to the function ρn by

Bn
R = ρ−1

n (BRRn(ζn)) .

Notice that, for n big, we can always assume ζn ∈ B 1
2
(ζ0), hence Bn

R is well defined and

C−1(BRRn(ζn)) ⊂ Ω for every RRn < 1
2 . Recalling the relation between L2k and A2k

expressed in (6), we have∫
Bn
R

UnL2kUn dvH =

∫
BRRn (ζn)

unA2kun dvS ,∫
Bn
R

|Un|p
∗
dvH =

∫
BRRn (ζn)

|un|p
∗
dvS .

(18)

In the sequel we will make use of the following relation obtained from inclusions (4)

Bn
R = ρ−1

n (BRnR(ζn)) ⊃ δR−1
n

◦ τw−1
n

(
Bwn

RnR
2

)
= B0

R
2

.

Also, we will use the notation

B0
R = C−1(BR(ζ0)).

Lemma 3.5. Let us set Fn = L2kUn − |Un|p
∗−2Un, then for every R > 0

sup
{
⟨Fn, F ⟩H−k,Hk : supp(F ) ⊂ B0

R, F ∈ Hk
0 (B

0
R), ∥F∥Hk ≤ 1

}
→ 0

i.e.
Fn → 0 in H−k

loc

(
HN
)
.
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Proof. Let us consider n big enough to have (6Rn)
−1 ≥ R, and F ∈ Hk

0 (B
0
R) such that

supp(F ) ⊂ B0
R and ∥F∥Hk ≤ 1. We have

⟨Fn, F ⟩H−k,Hk =

∫
B0

(6Rn)−1

F
(
L2kUn − |Un|p

∗−2Un

)
dvH

≤
∫
Bn
(3Rn)−1

F
(
L2kUn − |Un|p

∗−2Un

)
dvH

=

∫
Bn
(3Rn)−1

Λ
Q+2k
2Q

ρn F
(
A2kun − |un|p

∗−2un

)
◦ ρn dvH

=

∫
B 1

3
(ζn)

(
Λ
−Q−2k

2Q
ρn F

)
◦ σn

(
A2kun − |un|p

∗−2un

)
dvS .

On the other hand, recalling (6), we find∥∥∥∥(Λ−Q−2k
2Q

ρn F

)
◦ σn

∥∥∥∥
Hk

=

∫
S2N+1

Λ−1
ρn (FL2kF ) ◦ σn dvS

=

∫
HN

FL2kF dvH ≤ C,

thus ⟨Fn, F ⟩H−k,Hk → 0.

Lemma 3.6. For ϵ > 0 small enough in (17), there exists U∞ ∈ Dk(HN ) such that
Un → U∞ in Hk

loc

(
HN
)
and

L2kU∞ = |U∞|p∗−2U∞ on HN .

Proof. The sequence Un is bounded in Hk
loc

(
HN
)
, hence there exists U∞ such that, up

to subsequence, Un ⇀ U∞ weakly in in Hk
loc

(
HN
)
and Un → U∞ strongly in Lp

loc(H
N )

for 1 ≤ p < p∗. From (18) we deduce

lim sup
n→∞

∫
Bn
R

|Un|p
∗
dvH ≤ sup

n∈N

∫
S2N+1

|un|p
∗
dvS < ∞ (19)

so that U∞ ∈ Lp∗(HN ). Moreover, by the same argument given after the proof of
Lemma 3.1, we have that U∞ satisfies (3), hence∫

HN

U∞L2kU∞ dvH < ∞. (20)

It follows that U∞ ∈ Dk(HN ).
In virtue of Lemma 3.2, we replace Un by Un−U∞ so that, from now to the end of the
proof, we can assume U∞ = 0. By (17) we have∫

Bn
1

|Un|p
∗
dvH =

∫
BRn (ζn)

|un|p
∗
dvS = ϵ. (21)
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Let β ∈ C∞
0 , such that supp(β) ⊂ Bn

1 then

∥βUn∥Hk . ∥L2k(βUn)∥H−k + ∥βUn∥L2 . (22)

Again, we use the fact that

L2k(βUn) = βL2k(Un) + UnL2k(β) + Comm(Un, β)

= βL2k(Un) + l.o.t.

So first, we have that

UnL2k(β) = UnχB0
R
L2k(β) + UnχHN\B0

R
L2k(β) .

Therefore,

∥UnL2k(β)∥Lp̄ . ∥Un∥L2(B0
R)∥L2k(β)∥

L
Q
k
+ ∥Un∥Lp∗∥χHN\B0

R
L2k(β)∥

L
Q
2k

. ∥Un∥L2(B0
R) +

1

RQ
∥Un∥Lp∗ .

Since Un → 0 in L2
loc and ∥Un∥Lp∗ is bounded, if we let n → ∞ and then R → ∞, we

have that ∥UnL2k(β)∥Lp̄ = o(1). Next, we move to the term Comm(β, Un). Again, we
have that from Lemma (commutator estimates),

|Comm(β, Un)| .
L∑

j=1

R2k−sj,1−sj,2

(
Rsj,1 |L2k(Un)|Rsj,2 |L2k(β)|

)
.

So we consider one term of the form R2k−s−t

(
Rt|L2k(Un)|Rs|L2k(β)|

)
(x). Using the

same splitting as in (15), we have that

∥Comm(β, Un)∥H−k = o(1),

and thus ∥l.o.t∥H−k = o(1). Clearly ∥βUn∥L2 → 0, and by Lemma 3.5 we know that
Fn → 0 in H−k

loc

(
HN
)
, hence, we have

∥L2k(βUn)∥H−k ≤ ∥βL2kUn + l.o.t.∥H−k

≤
∥∥∥β (|Un|p

∗−2Un + Fn

)∥∥∥
H−k

+ o(1)

≤
∥∥∥β|Un|p

∗−2Un

∥∥∥
H−k

+ o(1).

Therefore
∥βUn∥Hk .

∥∥∥β|Un|p
∗−2Un

∥∥∥
H−k

+ o(1)

and
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∥βUn∥Hk .
∥∥∥β|Un|p

∗−2Un

∥∥∥
Lp̄(Bn

1 )
+ o(1)

.
(∫

Bn
1

|Un|p
∗
dvH

) 2k
Q

∥βUn∥Lp∗(Bn
1 )

+ o(1)

. ϵ
2k
Q ∥βUn∥Lp∗(Bn

1 )
+ o(1)

= o(1)

as n → ∞.

From the Lemma above and (21), it follows∫
B0
1

|U∞|p∗ dvH = ϵ,

hence U∞ ̸= 0 is a solution to (3). We consider a cut off function γ such that γ ≡ 1 on
B0

1
4

, supp(γ) ⊂ B0
1
2

, and we define β = γ ◦ C−1. In virtue of the inclusions

C−1(B 1
4
(ζ0)) ⊆ B0

1
4

⊆ C−1(B 1
2
(ζ0)) ⊆ B0

1
2

,

the function β is a cut off function such that β ≡ 1 on B 1
4
(ζ0) and supp(β) ⊂ B1(ζ0),

moreover for n big enough we have

supp(β ◦ ρn) = supp(γ ◦ τwn ◦ δRn) ⊆ Bwn

(2Rn)−1 ⊆ B0
R−1

n
,

β ◦ ρn ≡ 1 on B0
(6Rn)−1 .

We set

vn = Λ
Q−2k
2Q

σn βU∞ ◦ σn (23)

where Λσn is half the absolute value of the Jacobian determinant of σn, and consider

un = un − vn .

For clarity sake, we recall here the definition of un with respect to Un

un = Λ
Q−2k
2Q

σn Un ◦ σn.

We have then

Lemma 3.7. After taking a subsequence if necessary, we have

un ⇀ 0 weakly in Hk
(
S2N+1

)
.
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Proof. Since we have already proved that un ⇀ 0, it suffices to show that vn ⇀ 0
weakly in Hk

(
S2N+1

)
. On the other hand, vn is bounded in Hk

(
S2N+1

)
so that, after

taking a subsequence if necessary, it converges to some limit; hence we only need to
prove that the distributional limit is zero, i.e. it suffices to prove that for f ∈ C∞ it
holds ∫

S2N+1

vnf dvS → 0.

Let us fix R > 0. We estimate the integral above, first on BRnR(ζn) and then on the
exterior domain S2N+1 \BRnR(ζn), we have∣∣∣∣∣

∫
BRnR(ζn)

vnf dvS

∣∣∣∣∣ =
∣∣∣∣∣
∫
BRnR(ζn)

Λ
Q−2k
2Q

σn fβU∞ ◦ σn dvS

∣∣∣∣∣
=

∣∣∣∣∣
∫
Bn
R

Λ
Q+2k
2Q

ρn U∞(fβ) ◦ ρn dvH

∣∣∣∣∣
≤ CR

Q+2k
2

n ∥f∥∞∥ΛC∥
Q+2k
2Q

∞

∫
Bn
R

|U∞| dvH .

On the exterior domain, for n big enough we find∣∣∣∣∣
∫
S2N+1\BRnR(ζn)

vnf dvS

∣∣∣∣∣ =
∣∣∣∣∣
∫
B1(ζ0)\BRnR(ζn)

Λ
Q−2k
2Q

σn fβU∞ ◦ σn dvS

∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
Bn

2R−1
n

\Bn
R

Λ
Q+2k
2Q

ρn U∞(fβ) ◦ ρn dvH

∣∣∣∣∣∣
≤ CR

Q+2k
2

n ∥f∥∞∥ΛC∥
Q+2k
2Q

∞

∫
B0

2R−1
n

\B0
R
2

|U∞| dvH .

≤ C∥f∥∞∥ΛC∥
Q+2k
2Q

∞

∫
B0

2R−1
n

\B0
R
2

|U∞|p∗ dvH

 1
p∗

.

Then, the thesis follow letting n → ∞ and then R → ∞ in the following estimate∣∣∣∣∫
S2N+1

vnf dvS

∣∣∣∣ . ∥f∥∞∥ΛC∥
Q+2k
2Q

∞ R
Q+2k

2
n

∫
Bn
R

|U∞| dvH

+ ∥f∥∞∥ΛC∥
Q+2k
2Q

∞ ∥U∞∥
Lp∗

(
B0

2R−1
n

\B0
R
2

) .

Lemma 3.8. We have

dE(vn) → 0 in H−k
(
S2N+1

)
and dE(un) → 0 in H−k

(
S2N+1

)
.
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Proof. Let f ∈ Hk
(
S2N+1

)
and fn = A2kvn − |vn|p

∗−2vn. First we notice that

A2k(vn) =

(
Λ
− 1

p̄
ρn L2k(Λ

1
p∗
ρn vn ◦ ρn)

)
◦ σn

=

(
Λ
− 1

p̄
ρn L2k(β ◦ ρnU∞)

)
◦ σn . (24)

Thus, we get,∫
S2N+1

fnf dvS =

∫
S2N+1

f
(
A2k(vn)− |vn|p

∗−2vn

)
dvS

=

∫
HN

Λ
1
p∗
ρn f ◦ ρnL2k(β ◦ ρnU∞) dvH −

∫
S2N+1

f |vn|p
∗−2vn dvS .

Now notice that∫
HN

Λ
1
p∗
ρn f ◦ ρnL2k(β ◦ ρnU∞) dvH =

∫
HN

Λ
1
p∗
ρn f ◦ ρnU∞L2k(β ◦ ρn) dvH

+

∫
HN

Λ
1
p∗
ρn (fβ) ◦ ρnL2k(U∞) dvH

+

∫
HN

Λ
1
p∗
ρn f ◦ ρnComm(U∞, β ◦ ρn) dvH

=

∫
S2N+1

fβ(Λ
− 1

p̄
ρn |U∞|p∗−2U∞) ◦ σn dvS

+

∫
HN

Λ
1
p∗
ρn f ◦ ρnU∞L2k(β ◦ ρn) dvH

+

∫
HN

Λ
1
p∗
ρn f ◦ ρnComm(U∞, β ◦ ρn) dvH .

Therefore, we have that∫
S2N+1

fnf dvS =

∫
HN

Λ
1
p∗
ρn f ◦ ρnU∞L2k(β ◦ ρn) dvH

+

∫
HN

Λ
1
p∗
ρn f ◦ ρnComm(U∞, β ◦ ρn) dvH

+

∫
S2N+1

f
(
β − βp∗−1

)(
Λ
− 1

p̄
ρn |U∞|p∗−2U∞

)
◦ σn dvS

= I1 + I2 + I3.

We estimate each of the three terms above separately. But first, we notice that

∥L2k(β ◦ ρn)∥Lp = R
2k−Q

p
n ∥L2k(γ)∥Lp .
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In particular, if p > Q
2k , then ∥L2k(β ◦ ρn)∥Lp → 0. Now we have, for R > 1,

|I1| =
∣∣∣∣∫

HN

Λ
1
p∗
ρn f ◦ ρnU∞L2k(β ◦ ρn) dvH

∣∣∣∣
≤ ∥Λ

1
p∗
ρn f ◦ ρn∥Lp∗∥U∞L2k(β ◦ ρn)∥Lp̄

≤ ∥f∥Hk

(
∥U∞∥Lq∥L2k(β ◦ ρn)∥Lp(B0

R) + ∥U∞∥Lp∗ (HN\B0
R)∥L2k(β ◦ ρn)∥

L
Q
2k

)
,

where 1
p + 1

q = 1
p̄ . Taking p > Q

2k , we have for R fixed that

∥U∞∥Lq(B0
R)∥L2k(β ◦ ρn)∥Lp → 0 as n → ∞ .

On the other hand, we have that

∥U∞∥Lp∗ (HN\B0
R)∥L2k(β ◦ ρn)∥

L
Q
2k

= ∥U∞∥Lp∗ (HN\B0
R)∥L2k(γ)∥

L
Q
2k

→ 0 as R → ∞ .

Hence
|I1| = o(1)∥f∥Hk .

We move now to the term I2. First, we recall the following estimate for the Riesz
potentials:

∥R2k−s−t(Rt(u)Rs(v))∥Lp . ∥u∥Lq1∥v∥Lq2 ,

for 1
p = 1

q1
+ 1

q2
− 2k

Q . In particular we have from Lemma (commutator estimates) and
the previous estimates,

∥Comm(U∞, β ◦ ρn)∥Lp̄ . ∥Up∗−1
∞ ∥Lq(B0

R)∥L2k(β ◦ ρn)∥Lp

+ ∥Up∗−1
∞ ∥Lp̄(HN\B0

R)∥L2k(β ◦ ρn)∥
L

Q
2k

. ∥U∞∥p
∗−1

Lq(p∗−1)(B0
R)
∥L2k(β ◦ ρn)∥Lp

+ ∥U∞∥p
∗−1

Lp∗ (HN\B0
R)
∥L2k(γ)∥

L
Q
2k

where 1
p̄ = 1

p + 1
q − 2k

Q . Hence, taking p > 2k
Q and letting first n → 0 then R → ∞, we

have that
∥Comm(U∞, β ◦ ρn)∥Lp̄ = o(1). (25)

In particular,

|I2| ≤ ∥f∥Hk∥Comm(U∞, β ◦ ρn)∥Lp̄ = o(1)∥f∥Hk as n → ∞.

Now we estimate the term I3.

|I3| .
∥∥∥(β − βp∗−1) ◦ ρn|U∞|p∗−2U∞

∥∥∥
Lp̄(HN )

∥f∥Hk

but U∞ ∈ Dk(HN ) and∥∥∥(β − βp∗−1) ◦ ρn|U∞|p∗−2U∞

∥∥∥
Lp̄(HN )

≤ C ∥U∞∥
Q+2k
Q−2k

Lp∗
(
B0

2R−1
n

\B0
(8Rn)−1

)
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so that
|I3| ≤ o(1) ∥f∥Hk .

Hence we have proved that fn → 0 in H−k
(
S2N+1

)
. Now we turn to dE(un). Again,

we consider f ∈ Hk
(
S2N+1

)
and compute

⟨dE(un), f⟩ = ⟨dE(un), f⟩ − ⟨dE(vn), f⟩

+

∫
S2N+1

(
|un|p

∗−2un − |vn|p
∗−2vn − |un|p

∗−2un

)
f dvS .

We notice that, since dE(un) and dE(vn) converge to zero in H−k
(
S2N+1

)
, it suffices

to show

An = |un|p
∗−2un − |vn|p

∗−2vn − |un|p
∗−2un → 0 in H−k

(
S2N+1

)
. (26)

In order to prove (26), we will show ∥An∥Lp̄(S2N+1) → 0. Let us fix R > 0. First we

want to and obtain an estimate for An in the exterior domain Dn = S2N+1 \BRRn(ζn)
and then we will move to the interior of the ball BRRn(ζn). We write un = un + vn in
the definition of An and we notice that for a big enough positive constant C we have

|An| =
∣∣∣|un + vn|p

∗−2(un + vn)− |un|p
∗−2un − |vn|p

∗−2vn

∣∣∣
≤ C

(
|un|p

∗−2|vn|+ |vn|p
∗−2|un|

)
.

Hence, by the Hölder inequality and recalling that supp(β ◦ρn) ⊆ B0
2R−1

n
and B0

R
2

⊆ Bn
R,

we have

∥An∥Lp̄(Dn)
.
(∥∥∥|un|p∗−2vn

∥∥∥
Lp̄(Dn)

+
∥∥∥un|vn|p∗−2

∥∥∥
Lp̄(Dn)

)
.
(
∥un∥

4k
Q−2k

Lp∗ (Dn)
∥vn∥Lp∗ (Dn)

+ ∥un∥Lp∗ (Dn)
∥vn∥

4k
Q−2k

Lp∗ (Dn)

)
. ∥un∥

4k
Q−2k

Lp∗ (S2N+1)
∥U∞∥

Lp∗
(
B0

2R−1
n

\B0
R
2

)

+ ∥un∥Lp∗ (S2N+1) ∥U∞∥
4k

Q−2k

Lp∗
(
B0

2R−1
n

\B0
R
2

)
= o(1),
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as R → ∞, uniformly in n. Similarly, in the interior of the ball BRRn(ζn) we find

∥An∥Lp̄(BRRn (ζn))
.
(∥∥∥|un|p∗−2vn

∥∥∥
Lp̄(BRRn (ζn))

+
∥∥∥un|vn|p∗−2

∥∥∥
Lp̄(BRRn (ζn))

)
. ∥un∥

4k
Q−2k

Lp∗ (BRRn (ζn))
∥vn∥Lp∗ (BRRn (ζn))

+ ∥un∥Lp∗ (BRRn (ζn))
∥vn∥

4k
Q−2k

Lp∗ (BRRn (ζn))

. ∥Un − (β ◦ ρn)U∞∥
4k

Q−2k

Lp∗(Bn
R)

∥(β ◦ ρn)U∞∥Lp∗(Bn
R)

+ ∥Un − (β ◦ ρn)U∞∥Lp∗(Bn
R)

∥(β ◦ ρn)U∞∥
4k

Q−2k

Lp∗(Bn
R)

.

Therefore, recalling the fact that Un → U∞ in Hk
loc

(
HN
)
, we finally obtain∫

BRRn (ζn)
|An|p̄ dvS → 0

as desired.

Lemma 3.9. We have the following energy estimate

E(un) = E(un)− EH(U∞) + o(1).

Proof. We compute

E(un) =
1

2

(∫
S2N+1

unA2kun dvS +

∫
S2N+1

vnA2kvn dvS − 2

∫
S2N+1

unA2kvn dvS

)
− 1

p∗

∫
S2N+1

|un|p
∗
dvS .

(27)

Let us estimate the second term in the identity above∫
S2N+1

vnA2kvn dvS =

∫
HN

β ◦ ρnU∞L2k(β ◦ ρnU∞) dvH

=

∫
HN

β2 ◦ ρnU∞L2kU∞ dvH +

∫
HN

β ◦ ρnU2
∞L2k(β ◦ ρn) dvH

+

∫
HN

β ◦ ρnU∞Comm(U∞, β ◦ ρn) dvH

= I1 + I2 + I3.

Clearly,

I1 =

∫
HN

U∞L2kU∞ dvH + o(1)
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and using the same argument as in Lemma 3.6,

|I2| =
∣∣∣∣∫

HN

β ◦ ρnU2
∞L2k(β ◦ ρn) dvH

∣∣∣∣
. ∥U2

∞∥Lq(B0
R)∥L2k(β ◦ ρn)∥Lp + ∥U2

∞∥
L

Q
Q−2k (HN\B0

R)
∥L2k(β ◦ ρn)∥

L
Q
2k

. ∥U∞∥2L2q(B0
R)∥L2k(β ◦ ρn)∥Lp + ∥U∞∥2

Lp∗ (HN\B0
R)
∥L2k(γ)∥

L
Q
2k

for 1
p + 1

q = 1, taking p > Q
2k and letting n → ∞ then R → ∞, we have that

I2 = o(1),

as n → ∞. Now for I3, using (25), we have

|I3| . ∥U∞∥Lp∗∥Comm(U∞, β ◦ ρn)∥Lp̄ = o(1).

Combining the estimates of I1, I2 and I3, we find∫
S2N+1

vnA2kvn dvS =

∫
HN

U∞L2kU∞ dvH + o(1) . (28)

Now we estimate the third term in (27)∫
S2N+1

unA2kvn dvS =

∫
HN

UnL2k(β ◦ ρnU∞) dvH

=

∫
HN

β ◦ ρnUnL2kU∞ dvH +

∫
HN

UnU∞L2k(β ◦ ρn) dvH

+

∫
HN

UnComm(U∞, β ◦ ρn) dvH

= I4 + I5 + I6.

Let us fix R > 0 and define Bn = B0
2R−1

n
\B0

R. For n big enough to have β ◦ ρn ≡ 1 on

B0
(6Rn)−1 ⊃ B0

R, we get

I4 =

∫
B0

R

UnL2kU∞ dvH +

∫
Bn

β ◦ ρnUnL2kU∞ dvH ,

and we estimate the second term in the identity above by∣∣∣∣∫
Bn

β ◦ ρnUnL2kU∞ dvH

∣∣∣∣ ≤ C ∥Un∥
Lp∗

(
B0

2R−1
n

) ∥L2kU∞∥Lp̄(Bn)
= o(1) ,

as R → ∞ uniformly in n. Hence, since Un → U∞ in Hk
loc

(
HN
)

I4 =

∫
B0

R

U∞L2kU∞ dvH + o(1).
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Let us turn the attention to I5

|I5| =
∣∣∣∣∫

HN

UnU∞L2k(β ◦ ρn) dvH
∣∣∣∣

. ∥Un∥Lp∗

(
∥U∞∥Lq(BR)∥L2k(β ◦ ρn)∥Lp + ∥U∞∥Lp∗ (HN\B0

R)∥L2k(γ)∥
L

Q
2k

)
,

where 1
p + 1

q = 1
p̄ . Once again, if we take p > Q

2k , and let n → ∞ then R → ∞ we get

I5 = o(1).

Also,

|I6| ≤ ∥Un∥Lp∗∥Comm(U∞, β ◦ ρn)∥Lp̄ = o(1) .

Combining the estimates for I4, I5 and I6 we get∫
S2N+1

unA2kvn dvS =

∫
B0

R

U∞L2kU∞ dvH + o(1) . (29)

We consider now the last term in (27). We are going to show that∫
S2N+1

|un|p
∗
dvS =

∫
S2N+1

|un|p
∗
dvS −

∫
HN

|U∞|p∗ dvH + o(1) as n → ∞. (30)

Hence, using (28), (29) and (30) to estimate the right hand side of (27) we get

E(un) = E(un)− EH(U∞) + o(1) ,

as desired. Before proving (30) we make a few observations. Let us fix R > 0 and define
Dn = S2N+1 \BRRn(ζn). First, we notice that for n big enough to have β ◦ ρn ≡ 1 on
B0

R we find ∫
BRRn (ζn)

|un|p
∗
dvS =

∫
Bn
R

|Un − U∞|p∗ dvH = o(1) , (31)

as n → ∞, since by Lemma 3.6 Un → U∞ in Hk
loc

(
HN
)
. Also,∫

Dn

|vn|p
∗
dvS =

∫
B0

2R−1
n

\Bn
R

|β ◦ ρnU∞|p∗ dvH ≤ C

∫
HN\B0

R
2

|U∞|p∗ dvH = o(1) , (32)

as R → ∞ uniformly in n. Moreover∫
Dn

|un|p
∗
dvS =

∫
Dn

|un|p
∗
dvS −

∫
Dn

|vn|p
∗
dvS + o(1) , (33)

as R → ∞ uniformly in n. Indeed, for a suitable constant C, independent of n we have∫
Dn

∣∣∣|un|p∗ − |un|p
∗ − |vn|p

∗
∣∣∣ dvS ≤ C

∫
Dn

|un|p
∗−1|vn| dvS + C

∫
Dn

|vn|p
∗−1|un| dvS ,
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but ∫
Dn

|un|p
∗−1|vn| dvS =

∫
HN\Bn

R

|Un − β ◦ ρnU∞|p∗−1|β ◦ ρnU∞| dvH

.
∫
Bn

|Un − β ◦ ρnU∞|p∗−1|U∞| dvH

. ∥Un − β ◦ ρnU∞∥
Q+2k
Q−2k

Lp∗ (Bn)
∥U∞∥Lp∗ (Bn)

. ∥U∞∥Lp∗ (Bn)

= o(1) ,

as R → ∞ uniformly in n. Similarly∫
Dn

|vn|p
∗−1|un| dvS .

∫
HN\B0

R

|β ◦ ρnU∞|p∗−1|Un − β ◦ ρnU∞| dvH

. ∥U∞∥
Q+2k
Q−2k

Lp∗ (Bn)
∥Un − β ◦ ρnU∞∥Lp∗ (Bn)

. ∥U∞∥Lp∗ (Bn)

= o(1) ,

as R → ∞ uniformly in n, proving (33). We are ready now to prove (30):∫
S2N+1

|un|p
∗
dvS =

∫
BRRn (ζn)

|un|p
∗
dvS +

∫
Dn

|un|p
∗
dvS

(31)
=

∫
Dn

|un|p
∗
dvS + o(1)

(33)
=

∫
Dn

|un|p
∗
dvS −

∫
Dn

|vn|p
∗
dvS + o(1)

(32)
=

∫
Dn

|un|p
∗
dvS + o(1)

=

∫
S2N+1

|un|p
∗
dvS −

∫
BRRn (ζn)

|un|p
∗
dvS + o(1)

=

∫
S2N+1

|un|p
∗
dvS −

∫
Bn
R

|Un|p
∗
dvH + o(1).

Now, recalling that
∫
Bn
R
|Un|p

∗
dvH →

∫
B0
R
|U∞|p∗ dvH for any R as n → ∞ we finally

get (30).

Remark 3.1. Let ω be defined by (10). Let us explicitly recall that the functions

ωλ,ξ = λ
2k−Q

2 ω ◦ δλ−1 ◦ τξ−1 , λ > 0, ξ ∈ HN ,

are solutions to (3) which have all the same energy

CE := EH(ωλ,ξ) =
k

Q
C

− Q
2k

S > 0, ∀λ > 0 and ξ ∈ HN .
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where CS is the Sobolev constant in (8). In particular they are the only ones with this
energy ([11]).

Now we conclude the proof of the main result.

Proof of Theorem 1.1 . We define

u1n := un − u∞

and by Lemma 3.2 we have

E(u1n) = E(un)− E(u∞) + o(1) .

By the procedure described above, we find a sequence of points ζ1n converging to a
concentration point ζ1 ∈ S2N+1, a sequence of radii R1

n converging to zero, a solution
U1
∞ to equation (3) and a sequence v1n defined as in (23); therefore we set:

u2n := u1n − v1n = un − u∞ − v1n .

By Lemma 3.9, we get

E(u2n) = E(u1n)− EH(U
1
∞) + o(1) = E(un)− E(u∞)− EH(U

1
∞) + o(1).

Now we iteratively apply this procedure obtaining

umn = un − u∞ −
m−1∑
l=1

vln

and

E(umn ) = E(un)− E(u∞)−
m−1∑
l=1

EH(U
l
∞) + o(1) .

Since EH(U
l
∞) ≥ CE for every l = 1 . . .m, we stop the process when c −mCE < CE .

Indeed, by Lemma 3.3, (PS) sequences at levels strictly below k
QC

− Q
2k

S converge strongly

in Hk
(
S2N+1

)
, and this concludes the proof.

4 Existence of infinitely many solutions

In this section we will prove the existence of infinitely many solutions of (3) proceeding
as in [23]. The key idea is to find a suitable subspace of the space of variations for the
functional we are interested in, on which it is straightforward to perform the following
minimax argument by Ambrosetti and Rabinowitz (see [1, Theorems 3.13 and 3.14]).

Lemma 4.1. Let X be a closed infinite dimensional subspace of Hk
(
S2N+1

)
. Assume

that E|X , the restriction of E on X, satisfies the Palais-Smale compactness condition
on X. Then, there exists a sequence un of critical points for E|X such that∫

S2N+1

|un|p
∗
dvS → ∞ as n → ∞.

26



Let us start by fixing some notations. We denote by O(2N + 2), the group of (2N +
2)× (2N + 2) orthogonal matrices, and

U(N + 1) = {g ∈ O(2N + 2) : gJ = Jg},

where

J =

(
0 −IN+1

IN+1 0

)
.

Since the elements of U(N + 1) define isometries on S2N+1 and A2k is an intertwining
operator (i.e. satisfies (5)), it follows that the functional E is invariant under the action
of U(N + 1):

E(u) = E(u ◦ g), for all g ∈ U(N + 1) , (34)

(for a detailed proof see for instance [15]). For a subgroup G of U(N + 1) we define

XG =
{
u ∈ Hk

(
S2N+1

)
: u ◦ g = u, ∀g ∈ G

}
.

Lemma 4.2. Let G be a subgroup of U(N + 1) such that for any ζ0 ∈ S2N+1 the G-
orbit of ζ0 has at least one accumulation point. Then, E|XG

, the restriction of E to
XG, satisfies the Palais-Smale condition.

Proof. Let un be a (PS) sequence for E|XG
at level c. By contradiction, we suppose

that un does not admit a converging subsequence in XG. Hence, by the classification
of (PS) sequence given in Theorem 1.1, we deduce that the set of concentration points

Θ = {ζ l ∈ S2N+1 : 1 ≤ l ≤ m}

is discrete, finite and non-empty. Here we have adopted the same notation used in
Theorem 1.1. Let ζ0 ∈ Θ. Then, since the (PS) sequence un is invariant under the
action of G, if gi with i = 1, . . . , j, are j fixed elements in G, we have that also ζi = giζ0
are concentration points belonging to Θ. Again, by Theorem 1.1 and recalling Remark
3.1 we have

c = lim
n→∞

E(un) = E(u∞) +

j∑
i=1

EHN (U i
∞) ≥ E(u∞) + j

k

Q
C

− Q
2k

S . (35)

On the other hand, by assumption, the G-orbit of ζ0 has an accumulation point, there-
fore Θ contains infinitely many concentration points of the type ζi = giζ0. Hence, letting
j → +∞ in (35) we reach a contradiction.

We recall that quite a few examples of infinite dimensional subgroups of U(N + 1)
satisfying hypotheses of Lemma 4.2 are provided in [23] and [15]. Now we prove our
result:

Proof of Theorem 1.2 . Let G be a subgroup of U(N + 1) such that XG is an infinite
dimensional vector space and suppose that for each ζ0 ∈ S2N+1 the G-orbit of ζ0
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contains at least one accumulation point. By Lemma 4.2, E|XG
satisfies the Palais-

Smale condition, therefore Lemma 4.1 allows to perform a minimax argument ensuring
the existence of a sequence of critical points un in XG for E|XG

such that∫
S2N+1

|un|p
∗
dvS → ∞ as n → ∞. (36)

Now, since the functional E is invariant under the action of G, by the Principle of
Symmetric Criticality (see [24]), we have that any critical point of E|XG

is also a

critical point for E. Moreover, to each un, solution to (2), corresponds a solution

Un = Λ
1
p∗
C un ◦ C to (3) and (36) implies∫

HN

UnL2kUn dvH =

∫
HN

Λ
1
p∗
C un ◦ CL2k

(
Λ

1
p∗
C un ◦ C

)
dvH

=

∫
S2N+1

unA2kun dvS

=

∫
S2N+1

|un|p
∗
dvS → ∞ as n → ∞.

But all the solutions to (3) of the type ωλ,ξ have the same energy k
QC

− Q
2k

S (see Remark
3.1), consequently∫

HN

ωλ,ξL2kωλ,ξ dvH =

(
1

2
− 1

p∗

)−1

EH(ωλ,ξ) =

(
1

2
− 1

p∗

)−1 k

Q
C

− Q
2k

S .

So, it is clear that in the sequence Un (and hence in the sequence un) there are infinitely
many solutions of (3) (or equivalently of (2)), distinct from ωλ,ξ.

A Appendix

We recall here some definitions and properties for the Riesz potentials on Carnot groups.
So let G be a Carnot group of homogeneous dimension Q and ∆b its sub-Laplacian,
then we have

Theorem A.1 ([11]). Let 0 < α < Q and consider h(t, x) the fundamental solution of
the operator −∆b +

∂
∂t , then the integral

Rα(x) =
1

Γ(α2 )

∫ ∞

0
t
α
2
−1h(t, x)dt

converges absolutely and it satisfies the following properties:

• Rα is a kernel of type α. In particular it is homogeneous of degree α−Q

• R2 is the fundamental solution of −∆b

• Rα ∗Rβ = Rα+β for α and β > 0 and α+ β < Q.

28



• For f ∈ Lp(G) and 1 < p < ∞, we have that

(−∆b)
−α

2 f = f ∗Rα.

In this paper, we used the convention

Rαf := (−∆b)
−α

2 f = f ∗Rα.

From the integral form of Rα one has

Rα(x) ≈ |x|−Q+α

and ρ(x) := (Rα(x))
1

α−Q defines a G-homogeneous norm, smooth away from the ori-
gin and it induces a quasi-distance that is equivalent to the left-invariant Carnot-
Caratheodory distance. In a similar way, one can define the function R̃α, introduced
in [8], for α < 0 and α ̸∈ {0,−2,−4, . . . } by

R̃α(x) =
α
2

Γ(α2 )

∫ ∞

0
t
α
2
−1h(t, x)dt

Again, it is easy to see that R̃α is G-homogeneous of degree α−Q and

R̃α(x) ≈ |x|α−Q.

Using this function, it is possible to define another representation for the fractional
sub-Laplacian, which we use in the proofs of our results.

Theorem A.2 ([8]). If u is a Schwartz function on G, then for 0 < α < 2 one has

(−∆b)
α
2 u(x) = PV

∫
G
(u(y)− u(x))R̃−α(y

−1x)dy

Using classical interpolation (or what is it called λ-kernel estimates in [9]) one has for
0 < α < Q,

∥Rαu∥p . ∥u∥q, (37)

for 1
p = 1

q − α
Q and 1 < q < ∞. In the case of the Heisenberg group one in fact has

more explicit computations for the operator L2k (see [27]). In fact, one can replace Rα

by the expected Green’s function of L2k that is

G2k(x) = cn,k
1

|x|Q−2k

and R̃−α by the kernel

K2k = c̃n,k
1

|x|Q+2k
.

The integral representation formula holds also for the operator L2k in our results, with
R̃−2k replaced by K2k.
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