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Single-Anchor Localization and Orientation
Performance Limits using Massive Arrays:

MIMO vs. Beamforming
Anna Guerra, Member, IEEE, Francesco Guidi, Member, IEEE, Davide Dardari Senior Member, IEEE

Abstract—In next generation of cellular networks, it is desir-
able to use single access points both for communication and local-
ization. This could be made possible thanks to the combination
of femtocells, mm-wave communications and massive antenna
arrays and would overcome the problem of having an over-sized
infrastructure for positioning which is, nowadays, the bottleneck
for the widespread diffusion of indoor localization systems. In
this context, our paper aims at investigating the localization
and orientation performance limits employing massive arrays
both at the access point (AP) and mobile side. To this end, we
first asymptotically demonstrate the tightness of the Cramér-
Rao bound (CRB) in the massive array regime and that the effect
of multipath can be made negligible even for practical values
of SNR levels. Successively, we propose a comparison between
two different transmitter configurations, namely MIMO where
orthogonal waveforms are sent, and beamforming, which takes
advantage of highly correlated waveforms and directive array
patterns. We also consider random weighting as a trade-off
between the diversity gain of MIMO and the high directivity
guaranteed by the beamforming. CRB results show the interplay
between diversity and beamforming gain as well as the benefits
achievable by varying the number of antennas in terms of
localization accuracy and multipath mitigation.

Index Terms—Position and Orientation Error Bound, Massive
array, Asymptotic Fisher Information Analysis, Direct Localiza-
tion.

I. INTRODUCTION

Different technologies have been proposed for fifth gen-
eration (5G) and beyond 5G (B5G) wireless communication
networks to meet the ever-increasing traffic demand [1].
Among them, large-scale antenna arrays at base stations (BSs)
or access points (APs) allow to smartly direct the power
flux towards intended users, and millimeter-wave (mm-wave)
communication takes advantage of a less crowded and larger
spectrum [2], [3]. Apart from communication-oriented applica-
tions, it is expected that, thanks to these technologies, the pos-
sibility of accurately locating personal devices, even in Global
Positioning System (GPS)-denied environments, will undergo
a considerable improvement in terms of performance [4]–[6].
In this context, the same AP used for communication can be
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also exploited as a single-anchor node, i.e., a node whose
position is a-priori known from an estimation perspective, able
to infer the positions of the mobiles with an unprecedented
localization accuracy. Furthermore, the adoption of arrays at
the transmitter (Tx) (mobile) and receiver (Rx) (AP) will allow
to estimate the user’s orientation with a precision higher than
that provided by compass and gyroscopes, enabling applica-
tions such as augmented reality or simultaneous localization
and mapping (SLAM) [7]–[10].

Contrarily to traditional localization scenarios, where ded-
icated multiple anchor nodes are necessary to allow classic
triangulation/multilateration techniques [11], the possibility to
centralize both communication and localization capabilities
in a single multi-antenna AP can be envisioned with the
advantage of drastically decreasing the overall system com-
plexity and cost. Moreover, when moving up in frequencies,
not only APs but also mobiles can adopt massive arrays, thus
increasing even more the performance given the potential huge
set of measurements available [12], [13]. In such a scenario, it
becomes of great interest to understand the fundamental limits
on localization error using a single anchor node and exploiting
the potentialities of massive arrays.

Concerning the ultimate localization performance evalua-
tion, a rich literature has been produced for the analysis
of multiple anchor systems (see for example [14]–[16]). In
these works, the authors usually consider a 2D multiple-
anchor localization scenario where measurements come from
multiple widely distributed single-antenna anchors. A common
approach followed in the literature is that of adopting a 2-step
method in which the position is estimated from time-of-arrival
(TOA), angle-of-arrival (AOA) and angle-of-departure (AOD)
instead of being directly inferred from the received signals
[5], [14], [15]. These approaches do not ensure the derived
bounds represent a fundamental limit over any possible posi-
tion estimator; in fact, as stated by the information processing

inequality in information theory [17], estimation performed by
processing intermediate parameters (e.g., TOA-AOA-AOD) is
in general sub-optimum.

In addition, in the current state-of-the-art, there are neither
studies comparing different array configurations and archi-
tectures (e.g., multiple-input multiple-output (MIMO), beam-
forming) nor asymptotic investigations in the massive array

regime to study the effect of multipath and the tightness of the
CRB. Recent results [5] and [16] exploit the typical channel
sparsity at mm-wave and the higher angular resolution using
large arrays to resolve and mitigate multipath components,
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even though such results cannot be extended in general to
lower frequencies.

In this paper, we adopt a direct single-anchor localization
approach in which the Tx position and orientation are directly
inferred from the received signals [12], [18]. Differently from
[5], [16], [19], the aim of our work is to compare different mas-
sive array signal processing schemes at the Tx, i.e. beamform-
ing and MIMO, and to provide a useful tool for system design
in terms of position and orientation performance. Throughout
this analysis, the trade-off between the signal-to-noise ratio
(SNR) enhancement obtained via beamforming (where the
transmitted signals are fully correlated to form a main directive
beam) and the diversity gain obtained using orthogonal signals
at Tx side (e.g., MIMO) is highlighted. The idea of using
random weighting, i.e., arrays in which beamforming weights
are randomly chosen, is also put forth and its performance
is compared to that of classical beamforming and MIMO
solutions. Beamforming non-idealities [20], [21] and phase
synchronization uncertainty [16], [22] are also taken into
account in the analysis. In our previous works [19], [23],
some preliminary results on positioning accuracy considering
only beamforming strategies have been presented, whereas the
MIMO configuration and the multipath were not considered.

Then, contrarily to several papers where authors assume to
work in high SNR regime with a lower number of array an-
tennas (for example, [5], [9], [14]–[16]), here we demonstrate
through an ambiguity function (AF) analysis [24], the tightness
of the CRB independently from the array configuration and the
operating SNR, provided that a large number of antennas is
involved (massive-array regime). This turns to be an important
result derived using massive arrays for localization purposes.
Finally, using the same asymptotic analysis, we demonstrate
that the use of massive arrays drastically reduces the interfer-
ence due to multipath components (MPCs) in a similar way
as interference acts in massive MIMO communications [25].

To sum up, the main contributions of this work can be
summarized as follows:

• Derivation of the theoretical performance limits on the
localization and orientation error for different array con-
figurations in a single-anchor scenario;

• Proposal of a signal model valid for any antenna array ge-
ometry, configuration (i.e., MIMO, phased, timed arrays),
and frequency band. As a case study, in the numerical
results we focus on mm-wave massive arrays due to their
attractiveness in 5G and B5G applications;

• Introduction of a low-complexity random weighting ap-
proach, i.e., randomly chosen beamforming weights, and
analysis of its performance compared to that of classical
beamforming and MIMO solutions;

• Investigation of the CRB tightness in massive array
regime (i.e., massively increasing the number of antennas)
for any SNR condition;

• Analysis of the trade-off between SNR enhancement
obtained via beamforming and diversity gain of MIMO
considering the impact of different types of uncertainties
as, for example, the MPCs, beamforming weights and
synchronization residual mismatch;
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Fig. 1. Array geometric configuration in free-space.

• Demonstration that in the massive array regime the effect
of multipath can be made negligible on average regardless
the SNR condition.

The rest of the paper is organized as follows. Sec. II describes
the geometry of the localization system. Sec. III introduces the
signal model taking into account different array configurations.
In Sec. IV the localization performance limits are derived.
Sec. V analyzes the asymptotic conditions for which the CRB
can be considered a tight bound. Sec. VI compact formulas for
an ideal free-space case are derived. The multipath impact on
localization performance is investigated in Sec. VII. Finally,
Sec. VIII presents the results and Sec. IX concludes the work.

Notation: Lower case and capital letters in bold denote
vectors and matrices, respectively. The subscripts [·]T, [·]∗ and
[·]H indicate the transpose, the conjugate and the Hermitian
operators. ∥·∥2 is the Euclidean norm, A ≽ B indicates that
the matrix A−B is non-negative definite, and diag (·) repre-
sents the diagonal operator. The subscripts (·)t and (·)r refer
to quantities related to the Tx and Rx array, respectively. (·)FS

indicates the free-space scenario. F (·) denotes the Fourier
transform operation, U (a, b) a uniform distribution in the
interval [a, b], and CN

(
µ,σ2

)
a circular complex symmetric

Gaussian distribution with mean µ and variance σ2.

II. ANTENNA ARRAY GEOMETRIC CONFIGURATION

We consider a 3D localization scenario, as the one reported
in Fig. 1, consisting of a single AP acting as reference Rx
node equipped with a Nrx-antenna array, and a Tx mobile
terminal with a Ntx-antenna array. In the rest of the manuscript,
the different antenna array configurations refer to the Tx
array, whereas the ultimate localization performance limits are
evaluated at the Rx side.

The aim of the localization is to directly infer the position
of the Tx centroid pt = [xt

0, y
t
0, z

t
0]

T = [x, y, z]T and its
orientation ϑt = [ϑt,ϕt]T when the Rx centroid position
pr = [xr

0, y
r
0, z

r
0]

T = [0, 0, 0]T and its orientation ϑr = [ϑr,ϕr]T

are known.1

1Without loss of generality, the Rx is assumed located at the origin of the
coordinates system.
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Throughout the paper, we designate with:

• Fixed orientation: the specific geometric configuration
with the Tx and the Rx parallel to each other (i.e.,
ϑt = ϑr = [0, 0]T);

• Averaged orientation: the geometric configuration in
which a different 3D Rx array orientation (i.e., ϑr =
[ϑr, ϕr]T) is generated at each Monte Carlo iteration, and
the CRB is computed as the average over all the partial
CRB results computed at each cycle. In this case, the Tx
orientation is fixed to ϑt = [0, 0]T.

With reference to Fig. 1, pt
i (ϑ

t) = [xt
i, yt

i, zt
i]

T
indicates

the position of the ith transmitting antenna relative to the Tx
geometric center and dependent on the Tx orientation, and
pr
m(ϑr) = [xr

m, yr
m, zr

m]T the position of the mth receiving
antenna relative to the Rx geometric center. Considering
spherical coordinates, we have pn = ρn R (ϑ) dT (θn), with
n = 1, . . . , N being the generic antenna index and N the
total number of array antennas either at the Tx or Rx side.
The direction cosine is

d (θ) = [sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)] (1)

while ρn = ∥pn(ϑ)−p∥2 and θn = [θn,φn]
T

are the distance
and angle between the considered antenna from the correspon-
dent array centroid (whose position is here indicated as p). The
rotational matrix R(ϑ) is given by R(ϑ) = Rz(ϕ)Rx(ϑ),
where Rz(ϕ) and Rx(ϑ) define the counter-clockwise rotation
around the z-axis and the clockwise rotation around the
x-axis, respectively. Finally θ1 = [θ1,φ1]

T
designates the

angle of incidence between arrays centroids (direct path) and
θ0 = [θ0,φ0]

T
represents the intended steering direction when

applied.

The diameter D of the transmitting and receiving arrays
is assumed much smaller than the inter-array distance d =
∥pr − pt∥2, i.e., D ≪ d. Note that this hypothesis is especially
verified at mm-wave where the array dimensions are very
small thanks to the reduced wavelength [20]. Moreover the
arrays are supposed to be sufficiently far from the surrounding
scatterers, thus obtaining identical angles of incidence for both
direct and MPCs at each antenna element.

In our scenario, we take L MPCs into consideration
as nuisance parameters in the localization process, i.e., no
relationship between MPCs characteristics and position is
available. Thus, we assume that the first path always ex-
periences a line-of-sight (LOS) propagation condition. For
what the MPCs parameters are concerned, we follow the
same notation introduced in [16]. In particular, let θt

l =
[θt

l,φ
t
l]

T = [θ1 +∆θt
l,φ1 +∆φt

l]
T

and θr
l = [θr

l,φ
r
l]

T =
[θ1 +∆θr

l,φ1 +∆φr
l]

T
, with l = 1, 2, . . . , L , indicate the an-

gles of departure from the transmitting array and of incidence
at the Rx side of the lth path, respectively. The angular biases
[∆θt

l,∆φt
l]

T
and [∆θr

l,∆φr
l]

T
are the displacement with respect

to the direct path at the Tx and Rx side. Note that for the direct
path it holds [∆θt

1,∆φt
1]

T = [∆θr
1,∆φr

1]
T = [0, 0]T.

Let τ1 ! ∥pr − pt∥2/c = d/c and τim1 ! ∥pr
m − pt

i∥2/c
being the propagation delay related to the direct path between
the transmitting and receiving centroids and between the ith
and mth antenna, respectively, where c is the speed of light.

Considering the multipath, the lth propagation delay between
array centroids is defined as τl = τ1 + ∆τl where ∆τl is
the non-negative delay bias of the lth path, with ∆τ1 = 0.
According to the geometric assumption previously described,
the TOA and amplitude between each couple of transmitting
and receiving antennas can be expressed using the following
two approximations [16]

τiml ≈ τl + τ t
i(θ

t
l,ϑ

t)− τ r
m(θr

l,ϑ
r), aiml ≈ al (2)

where aiml is the amplitude of the lth path between the mth
receiving and the ith transmitting antenna, and τ r

m(θr
l,ϑ

r) and
τ t
i(θ

t
l,ϑ

t) are the Rx and Tx inter-antenna propagation delays,
respectively, that are shown in Fig. 1 and are defined as

τn(θl,ϑ) =
1

c
d (θl) pn (ϑ) , n = 1, . . . , N . (3)

A. Special Case: Planar Array Geometry

Planar arrays appear to be the most suitable when consid-
ering the integration of massive arrays in portable devices
or in small spaces [13]. For this reason, in addition to the
general analysis valid for any geometry (i.e., any antennas
spatial deployment), some compact specialized equations will
be derived in Sec. VI for squared arrays of area A = d2antN
with the antennas equally spaced of dant. In this case, if the
array lies on the XZ-plane, the antenna coordinates are

pn (ϑ)=[xn, 0, zn]
T=R (ϑ)[nx dant, 0, nz dant]

T
(4)

where nx = nz = −
√
N−1
2 ,−

√
N−3
2 , . . . ,

√
N−1
2 are the

antenna indexes along the x and z axis, respectively.

III. ANTENNA ARRAY SCHEMES AND SIGNAL MODEL

In this section, different types of antenna array schemes
are analyzed starting from a unified signal model with the
purpose to highlight their impact on localization. In the rest
of the manuscript, we refer to the following definitions:

• Beamforming: At the Tx side, the signals at each antenna
branch are weighted in order to form a beam pointing
towards the Rx node. This means that the same signal
passes through a network of time delay line (TDL) and/or
phase shifters (PSs) whose weights permit to align all
the signals in the desired direction, as in Fig. 2-(a,b).
Moreover, we suppose that the beamsteering at the Tx is
done to exactly point towards the Rx;

• MIMO: The transmitted signals are orthogonal to each
other (see Fig. 2-(c)) and, therefore, there is not the
formation of a main beam at the Tx side. Nevertheless,
the orthogonality is kept over the channel and the Rx is
able to distinguish among the transmitted waveforms and
to retrieve location-related information;

• Random Weighting: The Tx array configuration is consti-
tuted of only PSs whose weights are randomly chosen, as
shown in Fig. 2-(d). Hence, this approach maintains the
same low-complexity of beamforming but without beam
formation.

Consequently, the difference between beamforming and
MIMO regards only the transmitted signals. Contrarily, at the
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S(f)S(f)S(f)
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1
µt
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1
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i
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iµt
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i
υi
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Ntx
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Fig. 2. From the left to the right: Phased, timed, MIMO and random weighting array schemes.

Rx, which is the anchor node for localization, the CRB is
computed by considering the signals collected at each antenna
branch regardless the Rx architecture itself.

A. Transmitted Signal Model

The transmitted signal at the ith antenna is denoted with
gi(t) = ℜ

{
si(t) ej2πfct

}
, where si(t) represents the equiva-

lent low-pass signal and fc the carrier frequency. We consider
a constraint on the total transmitted energy Etot which is
uniformly allocated among antennas, where E =Etot/Ntx =∫
|si(t)|2dt, i = 1, 2, . . . , Ntx, represents the normalized en-

ergy at each antenna element. We introduce the Fourier trans-
form of si(t) as Si(f) = F {si(t)}, with F {·} denoting the
Fourier transform operation in a suitable observation interval
containing the signal support. For further convenience, the
vector s(f) = [S1(f), . . . , SNtx(f)]

T
contains all the baseband

transmitted signals. In the following, the signal model for each
array configuration will be further detailed with reference to
Fig. 2.

1) Timed and phased arrays: In multi-antenna systems,
beamforming is obtained by applying a progressive time delay
at each array element so that the emitted signals result summed
up coherently towards the intended steering direction. Consid-
ering the signal bandwidth W , when the condition W ≪ fc

holds, this process can be well approximated using only PSs
(the corresponding array structure is denoted as phased array).
On the contrary, when W ≈ fc, phase shifts are no longer
sufficient to align all the signals. As a consequence, to avoid
beamsteering2 degradation (e.g., squinting effect), timed arrays
consisting of PSs and TDLs must be introduced.

Given these array schemes, the transmitted signal is the
same for all transmitting antennas, i.e., si(t) = s(t) =√
E p(t) ∀i = 1, . . . , Ntx, with p(t) being the unitary energy

normalized version of s(t), and beamforming weights are
applied to each branch of the array to focus the power flux in
a precise direction in space. Specifically, when no quantization
errors are present in the weights, the beamforming matrix is

B (f, θ0) = diag (ω1, ω2, . . . , ωi, . . . ωNtx) . (5)

The ith beamforming weight is ωi = bi(f) bc
i , with bi(f) =

ej2πfτ
t
i(θ0) and bc

i = ejµ
t
i(θ0), where µt

i(θ0) = 2πfcτ t
i(θ0) and

τ t
i(θ0) are the transmitting steering phase and delay related

to the ith PS and TDL of the array, respectively. The main

2The terms beamsteering and beamforming are here used as synonymous.

difference between phased and timed array is the way in
which the beamsteering process is performed: in the former,
only PSs are present (i.e., τ t

i(θ0) = 0 ∀i = 1, . . . , Ntx

(refer to Fig. 2-(a)) while, in the latter, TDLs and PSs are
both employed to counteract the beamsquinting effect caused
by a larger W/fc ratio (see Fig. 2-(b)). Nevertheless, some
technological issues could induce errors in the beamforming
vector. Firstly, when digitally controlled PSs are used in place
of their high-resolution analog counterparts, the presence of
quantization errors has to be accounted for [7]. As shown in
[20], where some massive arrays prototypes working in the
X- and V-bands have been proposed, PSs can be realized
by simply adopting switches, or by rotating patch antennas.
Therefore, continuous phase shifts ranging from 0◦ to 360◦ are
not realizable in practice and the quantization errors generated
by the discretization of phases should be taken into account
when considering real arrays.

Secondly, synchronization between the Tx and the Rx is
required to estimate the position. There are several techniques
to accomplish this task [26], [27], with the two-way ranging
being one of the most used. Unfortunately due to several
factors such as clock drift, a residual synchronization error,
affecting both the delay and the phase, is always present and
it is accounted by the term ϵs in our model. This mismatch
can be also used to model the non-perfect Tx-Rx phase
coherence, which is particularly challenging to attain when
moving up in frequencies. In the other way round, a significant
synchronization error could vanish the advantages of having
a coherent processing. In the presence of such non-perfect
weights and synchronization error, a matrix accounting for all
the non-idealities is introduced in the form

Q(f) = e−j 2π (f+fc)ϵ
s

diag (ς1, ς2, . . . , ςi, . . . , ςNtx) (6)

where ςi takes into account the ith beamforming weight

quantization error, i.e., ςi = ej(2πf∆τ t
i+δt

i) with δt
i being the

phase error and ∆τ t
i the TDL error. For further convenience,

let indicate with ω̃i = b̃i(f) b̃c
i the quantized weights, with

b̃i(f) = ej2πf(τ
t
i(θ0)+∆τ t

i) and b̃c
i = ej(µ

t
i(θ0)+δt

i). After the
beamforming process, the signal at each antenna element can
be written as Q(f)B(f, θ0) s(f).

2) MIMO arrays: Contrarily to timed and phased arrays
which perform accurate beamforming, MIMO arrays take
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advantage of the diversity gain3 provided by multiple or-
thogonal waveforms [28], [29] (see Fig. 2-(c)). To make the
Rx able to discriminate the signal components coming from
each single transmitting antenna, orthogonal waveforms are
typically adopted [29], [30]. As an example, in [29] a class
of signals (i.e., frequency spread signals) are demonstrated to
maintain orthogonality for time delays and frequency Doppler
shifts. This comes at the expense of a large bandwidth or
long symbol duration time and of a higher complexity. In
MIMO arrays, the normalized baseband transmitted signals
are indicated with Pi(f) = F {pi(t)} = 1√

E
F {si(t)}, where∫

|pi(t)|2dt = 1, i = 1, 2, . . . , Ntx. We consider orthogonal
waveforms, such that the correlation function

Rp

(
∆τ (l,k)ij

)
=

∫

W

Pi(f)P
∗
j (f) e

−j2πf∆τ
(l,k)
ij df (7)

is 0 when i ≠ j and ≠ 0 otherwise, ∀ l, k = 1, . . . , L,

and where ∆τ (l,k)ij = τiml − τjmk with m = 1, . . . , Nrx

and i, j = 1, . . . , Ntx. The possibility to provide orthogonal
waveforms permits to increase the diversity gain, as it will be
detailed in the next sections, but it requires a greater bandwidth
demand and a more complex Tx structure. In MIMO, the
matrix in (5) is an identity matrix B (f, θ0) = B = INtx

and, in the presence of synchronization error, (6) becomes
Q(f) = e−j2π(f+fc)ϵ

s

INtx .
3) Random Weighting: To avoid the complexity of MIMO,

we propose a strategy relying on the same structure of phased
arrays, i.e., with only PSs at each antenna branch (see Fig. 2-
(d)), with the fundamental difference that the value assigned
to each PS is randomly chosen but known at the receiver. The
beamforming matrix in (5) becomes

B (f, θ0)= B= diag
(
ej υ1 , ej υ2 , . . . , ej υi , . . . , ej υNtx

)
(8)

with υi ∼ U (0, 2π). Note that in this configuration the matrix
in (8) does not depend on the frequency and on the steering
direction, thus resulting in an array pattern with a random
shape [19], [23]. In the simplest implementation, random
weighting could be realized using switches as discrete PSs
randomly changing their status [20]. An important aspect is
that, for both MIMO and random weighting, the rank of B is
maximum and equal to Ntx.

B. Received Signal Model

In this section, a general framework for the received signal
model is illustrated. The received signals are collected in
a vector r(f) = [R1(f), . . . , Rm(f), . . . , RNrx(f)]

T
, where

Rm(f) = F {rm(t)} is evaluated in Tobs and rm(t) is the
received signal at the mth receiving antenna. Specifically, the
received signal vector can be written as

r(f) =
L∑

l=1

ar(f, θr
l,ϑ

r) c(f, τl)A
t(f, θt

l,ϑ
t) (9)

×Q(f)B(f, θ0) s(f) + n(f) = x(f) + n(f)

3Differently from communications, here we denote with “diversity gain”
the possibility at the Rx side to distinguish among the transmitted signals (for
example, in frequency domain) and, thus, to collect Ntx × Nrx independent
measurements, thanks to the orthogonality between the waveforms.

where the Rx and Tx direction matrices are given by

ar(f, θr
l) =

[
ej γ

r
1 , . . . , ej γ

r
Nrx

]T

At(f, θt
l,ϑ

t)=diag
(
e−j γ t

1 , . . . , e−j γ t
Ntx

)
(10)

with γn = 2π (f + fc) τn (θl,ϑ). c(f, τl) = cl 11×Ntx is
the 1 × Ntx channel vector whose generic element is cl =
al e−j2π(f+fc)τl = αl e−j2πfτl . Specifically, the dominant
LOS component related to direct path (i.e., l = 1) is considered
deterministic while, for l > 1, αl ∼ CN

(
0,σ2

l

)
is a circularly

symmetric Gaussian random variable (RV) statistically mod-
elling the lth MPC [31].

Finally, x(f) = [X1(f), . . . , Xm(f), . . . , XNrx(f)]
T

is the set of useful received signals and n(f) =
[N1(f), . . . , Nm(f), . . . , NNrx(f)]

T
is the noise vector

with Nm(f) = F {nm(t)} and nm(t) ∼ CN
(
0,σ2

n

)

with σ2
n = N0 W being N0 the single-side noise power

spectral density (PSD). For further convenience, define
νt = Etot/N0 = νNtx, with ν = E/N0. The SNR of the
useful component (direct path) at each receiving antenna
element is SNR = NtxSNR1, where SNR1 = (a1)

2 ν
represents the SNR component related to the direct path
between a generic couple of Tx-Rx antenna elements.

IV. POSITION AND ORIENTATION ERROR BOUND

The aim of the estimation is to infer the position pt of the
Tx (e.g., mobile) and its orientation ϑt at the Rx side (e.g.,
the AP) starting from the set of received waveforms r(f).

The unknown parameters vector is defined as

ψ = [qT, κT, ϵs]T = [ψnr, ψr]
T

(11)

where the parameters of interest are collected in

q =

{[
(pt)T , (ϑt)T

]T

orientation-unaware

pt orientation-aware
. (12)

As emerged from (12), we will discern among two different
cases based on the knowledge or not of the orientation: the
orientation-unaware case indicates the situation in which the
Tx orientation is not known at Rx while the orientation-aware

case is the opposite situation in which the orientation is exactly
known at the Rx side and it can be removed from the unknown
parameter vector. It will be clear from the results that only
MIMO can deal with the orientation-unawareness situation;
while beamforming fails in jointly estimating both parameters.

The multipath parameters are stacked in
κ = [κT

1,κ
T

2, . . . ,κ
T

l , . . . ,κ
T

L]
T
, with κ1 = [a1]

T
and

κl =
[
αℜ
l , αℑ

l

]T
for l > 1. The terms αℜ

l = ℜ {αl}
and αℑ

l = ℑ {αl} indicate the real and imaginary part
of the complex channel coefficient [22]. In this context,
the MPCs and the residual synchronization error, i.e.,
ψr = [κT

2, . . . , κ
T

L, ϵ
s]T, represent nuisance parameters when

evaluating the ultimate performance of the estimator and,
thus, a statistical a-priori information of these parameters
is available. Differently, ψnr = [qT, a1]

T
are treated as

deterministic (no a-priori information available).
In turns, this means that the multipath is not useful for

retrieving the Tx position, as instead assumed in [5], [9] where
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the MPCs characteristics (i.e., delay, direction of arrival) bring
useful location-related information. In fact, here we suppose
that the multipath presents only random components that are
uncorrelated with the Tx position. Consequently, if the LOS
component is present together with MPCs, it is demonstrated
in [15] that the CRB on the position is (negatively) affected
only by the first-contiguous MPC cluster. Finally, we model
the synchronization error as Gaussian zero-mean RV with
standard deviation σ2

ϵ [22], [32]–[34].

The performance of any unbiased estimator ψ̂ = ψ̂ (r (f))
can be bounded by the CRB defined as [35]

Er,ψr

{[
ψ̂ −ψ

] [
ψ̂ −ψ

]T}
≽ J−1

ψ = CRB (ψ) (13)

where Jψ is the Bayesian Fisher Information Matrix (FIM)
defined as

Jψ ! −Er,ψr

{
∇2
ψψ ln f (r,ψr)

}
= Jd

ψ + J
p
ψ

=

⎡

⎣
Jd
qq

Jd
qκ Jd

qϵs

Jd
κq Jd

κκ+J
p
κκ Jd

κϵs

Jd
ϵsq Jd

ϵsκ Jd
ϵsϵs+J

p
ϵsϵs

⎤

⎦=
[

A C

CH D

]
. (14)

The symbol ∇2
ψψ =

(
∂2/∂ψ∂ψ

)
denotes the second partial

derivatives with respect to the elements in ψ and

Jd
ψ = −Er,ψr

{
∇2
ψψ ln f (r|ψr)

}
(15)

J
p
ψ = −Eψr

{
∇2
ψψ ln f (ψr)

}
(16)

are the FIMs related to data (Jd
ψ) and to the a-priori statistical

information on the parameters (J
p
ψ). Since the observations

at each receiving antenna element are independent, the log-
likelihood function (ln f (r|ψr)) can be written as

ln f (r|ψr) ∝ − 1

N0

Nrx∑

m=1

∫

W

|Rm(f)−Xm(f)|2 df . (17)

Moreover, based on the statistical information of ψr, it is
possible to derive the a-priori probability density function of
parameters ψr whose expression is reported in Appendix A.
All FIMs are reported in details in Appendixes A and B.

Finally, by using the Schur complement, the CRB expres-
sion related to the localization and orientation estimation error
can be easily derived as

CRB (q) =
(
A−C D−1 CH

)−1
. (18)

Notably, (18) is a general bound valid for different setup
(MIMO, timed, phased and random weighting arrays) and
accounting for signal weights quantization effects, synchro-
nization mismatch and multipath. Compact expressions can
be derived from (18) for the specific geometric case described
in Sec. II-A to get insights on the key parameters affecting the
performance as will be done in Sec. VI.

Nevertheless, it is well known that the CRB is a meaningful
metric only when the global ambiguities in (17) are negligible
[35] and, hence, it must be carefully used when comparing
different configurations. Such a condition is satisfied when
operating at high SNR (asymptotic SNR regime) but, unfortu-
nately, the required high SNRs cannot be in general obtained,
especially at high frequencies. Therefore, in the following
section, we demonstrate that the global ambiguities can be

made negligible without imposing the SNR to be very large,
but by letting the antenna array being massive (massive array

regime). In particular, we aim to show that, under random
Rx array orientations, the number of geometric configurations
in which the ambiguities are not negligible vanishes as the
number of receiving antennas increases.

V. CRB TIGHTNESS IN MASSIVE ARRAY REGIME

Traditionally used in radar systems [24], the AF is a
powerful tool to investigate the presence of ambiguities and it
can be derived from the maximum likelihood (ML) function
discarding the thermal noise component. Let define the AF,
normalized with respect to Ntx and Nrx, as

AF (p, p̃) =

∣∣∣∣∣
Tobs

Ntx Nrx

∫

W

xH(f,p)x(f, p̃) df

∣∣∣∣∣

2

(19)

where p is the true Tx position, p̃ is the test position, x

the useful signal vector reported in (9) and Tobs indicates
a suitable observation interval containing the signal support.
Asymptotically for Nrx → ∞ (massive array regime) and
considering different Rx orientations, for the weak law of the
large numbers [36], we can write

AF (p, p̃)
P−→

∣∣∣∣∣
Tobs

Ntx Nrx

∫

W

E [xH(f,p)x(f, p̃)] df

∣∣∣∣∣

2

(20)

where the operator
P−→ indicates the convergence in probability.

In the following, we will consider the free-space and the
multipath cases, separately, in order to show how the sidelobes
of the AF behave in the massive array regime. The analysis
in non-massive array regime is considered in Sec. VIII.

A. Free-space Scenario

Here we focus our attention on the free-space scenario (i.e.,
l = k = 1). In this case, the expectation term in (20) becomes

1

Ntx Nrx
E [xH(f,p)x(f, p̃)] ∝ 1

Ntx Nrx
E [H(p, p̃)] (21)

where E [H(p, p̃)] is a Ntx×Ntx matrix whose generic element
is given by

E [H(p, p̃)]i,j = |a1|2 e−j2π(f+fc)∆τ1(p,p̃)ω̃i ω̃
∗
j ejΨ

(1,1)
ij (p,p̃)

×
Nrx∑

m=1

E

[
ejΨ

(1,1)
m (p,p̃,ϑr)

]
=

{
|a1|2Nrx e

jΨ(1,1)
ij (p,p̃) p = p̃

0 otherwise

(22)

with ∆τ1(p, p̃) = τ1(p) − τ1(p̃), Ψ
(1,1)
ij (p, p̃) = γ t

i(p,ϑ
t)−

γ t
j(p̃,ϑ

t) and Ψ(1,1)
m (p, p̃,ϑr) = −γr

m(p,ϑr) + γr
m(p̃,ϑr)

which depends on the Rx array orientation. Note that

Ψ(1,1)
m (p, p̃,ϑr) = 0 for p = p̃ regardless the Rx orien-

tation. On the other side, when p ≠ p̃, in the presence
of a large number of antenna elements (Nrx → ∞) and
considering random Rx orientations, the inter-antenna phase
terms Ψm(p, p̃,ϑr) can be modeled as independent RVs
uniformly distributed in [0, 2π). In fact, different geometric
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configurations permit to span all the angles especially when
large arrays are considered.4

This means that the percentage of geometrical configura-
tions of the Rx for which the ambiguities are not negligible
vanishes as Nrx increases (i.e., AF(p, p̃) → 0 when p ≠ p̃).
In other words, the conditions that permit to operate in the
non-ambiguity region are twofold: the first is to increase the
SNR (high-SNR regime) by keeping the number of antennas
fixed, whereas the second fixes the SNR (even not extremely
large) and lets the number of antennas grow.

B. Multipath Scenario

We now investigate if the CRB still remains a meaningful
metric in the presence of multipath. To this end, we consider
the AF by putting in evidence the multipath contribution as

AF (p, p̃) =

∣∣∣∣∣ ξ
∫

W

xH(f,p)x(f, p̃) df

∣∣∣∣∣

2

=

∣∣∣∣∣ξ
∫

W

(x1(f,p)+ xl>1(f,p))
H (x1(f, p̃)+xl>1(f, p̃)) df

∣∣∣∣∣

2

=

∣∣∣∣∣

∫

W

fAWGN (p, p̃)

Ntx Nrx
+

fMP (p, p̃)

NtxNrx
df

∣∣∣∣∣

2

(23)

where ξ = Tobs

Ntx Nrx
, x1(f,p) and xl>1(f,p) indicate the

expected received noise-free signal due to the direct path
and multipath, respectively. Given the expression in (23),
the following asymptotic analysis aims at verifying that the
number of times the multipath impacts on the AF shape is
negligible compared to the number of times it has not an
effect at all, provided that the number of Rx antennas goes
to infinity and that random array orientations are considered.
More precisely, recalling the weak law of the large numbers,
it is

fMP (p, p̃)

NtxNrx

P−−→ 1

Ntx Nrx
E [fMP (p, p̃)] (24)

where we aim at testing if the right-hand side of (24) is 0 for
p ≠ p̃, meaning that AF sidelobes depending on multipath
disappear when Nrx is large and random orientations are
considered. The expectation argument in (24) is given by

E [fMP (p, p̃)] = E
[
xH
l>1(f,p)x1(f, p̃)

]

+ E
[
xH
1 (f,p)xl>1(f, p̃)

]
+E

[
xH
l>1(f,p)xl>1(f, p̃)

]
. (25)

Treating separately the terms in (25), we have

E
[
xH
1 (f,p)xl>1(f, p̃)

]
=

∑

mij

L∑

k=2

α∗
1 αk Si(f)S

∗
j (f) ω̃i ω̃

∗
j

× e−j2πfτk e−j Ψ(1,k)
ij (p,p̃)

E

[
ejΨ

(1,k)
m (p,p̃)

]
= 0 ∀p̃ (26)

where
∑

mij =
∑Nrx

m=1

∑Ntx

i=1

∑Ntx

j=1, Ψ(1,k)
m (p, p̃) =

−γm(θ1,ϑr)+γm(θk,ϑr), Ψ(1,k)
ij =−γi(θ1(p))+γj(θk(p̃)),

and E

[
e−j Ψ(1,k)

m (p,p̃)
]
= 0 as the phases are assumed uni-

formly distributed between 0 and 2 π. Similar considerations

4The goodness of the fitting with a uniform distribution has been validated
through simulations.

are valid for E
[
xH
l>1(f,p)x1(f, p̃)

]
. Finally, consider the last

term in (25)

E
[
xH
l>1(f,p)xl>1(f, p̃)

]
=

∑

mij

L∑

l=2

L∑

k=2

Si(f)Sj(f) ω̃i ω̃
∗
j

× e−j Ψ(l,k)
ij (p,p̃)αl α

∗
k e

−j2πf∆τlk E

[
e−jΨ(l,k)

m (p,p̃)
]

(27)

where ∆τlk = τl − τk , Ψ(l,k)
m (p, p̃) = γr

m(θl,p,ϑr) −
γr
m(θk, p̃,ϑr), Ψ(l,k)

ij (p, p̃) = γ t
i(θl,p) − γ t

i(θk, p̃). In this
case, since it holds

E

[
e−j Ψ(l,k)

m (p,p̃)
]
=

=

⎧
⎪⎪⎨

⎪⎪⎩

0 if l ≠ k, ∀p̃
1 if l = k, p = p̃

E

[
e−j Ψ(l,l)

m (p,p̃)
]
= 0 if l = k, p ≠ p̃ ,

(28)

it follows that (27) is equal to 0 for p ≠ p̃, i.e,. in all those
cases where a global ambiguity can arise.

The obtained result shows that the global ambiguities due
to the multipath are, on average, negligible. Nevertheless, the
effect of multipath still remains in the correspondence of the
true peak of the AF, i.e., that for p = p̃, as reported in
(28) for l = k. Consequently, even if we can state that the
CRB is a valid metric in establishing the ultimate performance
provided that Nrx is sufficiently large, the effect of multipath
on the localization accuracy necessitates to be investigated.
Before investigating such performance through simulations,
next section will provide some insights on the performance
limits in some specific scenarios.

VI. FREE-SPACE LOCALIZATION BOUND

This section provides an example on how the general CRB
expression (18) can be simplified in absence of beamforming
weights errors and MPCs. Specifically, in free-space condi-
tions, (14) can be reduced to

Jd
ψ = Jψ =

[
Jqq Jqa1

Ja1q Ja1a1

]
=

[
J FS
qq 0

0 Ja1a1

]
(29)

where its elements are reported in Appendix B and where the
superscript d is omitted as in this case all the parameters are
deterministic. For readability convenience, we report here the
expression of the FIM related to the localization parameters,
that is

Jqa qb = 8 π2 ν a21
∑

mij

ℜ
{
b̃c
ij ξ

(1,1)
ij χ(1,1)

ij (2)
}

×∇qa (τim1)∇qb (τjm1) (30)

where qa and qb represent two generic elements in the vector
{x, y, z, ϑt, ϕt}, and

χ(1,1)
ij (2)=

∫

W

b̃ij(f) (f+fc)
2e−j2πf∆τ

(1,1)
ij Pi(f)P

∗
j (f) df (31)

with ∆τ (1,1)ij = τim1−τjm1, ξ(1,1)ij = e−j2πfc∆τ
(1,1)
ij , b̃ij(f) =

b̃i(f) b̃∗j (f), and b̃c
ij = b̃c

i

(
b̃c
j

)∗
. In (30), the derivatives

translate the TOA and direction-of-arrival (DOA) in position
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and orientation information. In particular, for the position we
have

∇p (τim1) = ∇p (τ1) +
∇p (θ1)

c

[
pt
i

(
ϑt
)
− pr

m (ϑr)
]

(32)

where ∇p (τ1) highlights the dependence of the position from
the direct path TOA and

∇p (θ1) =∇p(θ1)∇θ1(d (θ1)) +∇p (φ1)∇φ1 (d (θ1)) (33)

includes the dependence of the position from the DOA. Finally,
for what the orientation information is regarded, we have

∇ϑt(τim1)=∇ϑt(τ t
i

(
θ1,ϑ

t
)
)=

1

c
d (θ1)∇ϑt

(
pt
i

(
ϑt
))

. (34)

By further analyzing (30), one can notice the dependence
of the FIM from the beamforming weights given by the
coefficients b̃c

ij and b̃ij(f).
Starting from (29)-(30), it can be easily found that for beam-
forming and MIMO it is

CRB
FS (q) =

(
JFS
qq

)−1
=

(
J̆FS
qq

G
)−1

(35)

where we have separated the effect of signal design J̆FS
qq

,
i.e., that related to (31), from that of the geometry G, i.e.,
that related to (32)-(34). The matrix G provides, through
derivatives, the relationship between the TOA at each Tx-Rx
antenna element couple and the Tx position and orientation. In
Appendix C, this matrix is evaluated, considering the planar
array geometry. Specifically for timed arrays, we have

J̆FS
qq

= 8π2
SNR1

(
β2+f2

c

)
, G =

∑

mij

∇qq(τim1, τjm1) (36)

where ∇qq (τim1, τjm1) is a 5 × 5 matrix whose entries
are given by ∇qa (τim1)∇qb (τjm1), and β is the baseband
effective bandwidth of p(t). Similarly, for MIMO arrays, it is
possible to find

J̆FS
qq

= 8π2
SNR1

(
β2
i +f2

c

)
, G =

∑

mi

∇qq(τim1, τim1) (37)

where
∑

mi =
∑Nrx

m=1

∑Ntx

i=1 and β2
i = β2

Ntx
is the squared

baseband effective bandwidth of pi(t).

A. Special Case: Planar Arrays and Fixed Tx Orientation

To improve the comprehension of (35)-(37) and to pro-
vide some insights on how the number of transmitting and
receiving antennas can impact the performance, two particular
cases of planar MIMO and timed arrays are discussed.5 The
planar array configuration has been described in Sec. II-A.
More specifically, here we consider both arrays lying on the
XZ-plane and being located one in front of the other with
pr = [0, 0, 0]T and pt = [0, y, 0]T, with y > 0, so that d= y
and, consequently, τ1 = y/c. Thus, we account for a fixed
Tx and Rx orientation, i.e., ϑt = ϑr = [0, 0]T. Note that the
overall CRB analysis is still valid for any orientation.

5When using the planar 2D array, two possible specular solutions exist in
the 3D space. Such ambiguity cannot be solved by simply starting from one-
shot single antenna measurements. To that purpose, several possible methods
have been already proposed to discriminate between ambiguous solutions,
spanning from data fusion to Bayesian filtering [11], [26], [37], [38].

Moreover, we assume for now a free-space propagation con-
dition so that θt

1 = θr
1 = θ1 = [θ1,φ1]

T =
[
π
2 ,−

π
2

]T
and

d(θ1) = [0, −1, 0]. Consequently, it is possible to formulate
the inter-antenna propagation delay as

τn(θ1,ϑ) = −dant

c
(nx sin (ϕ) + nz cos (ϕ) sin (ϑ)) (38)

where n = 1, . . . , N is the antenna index while nx = nz =
−

√
N−1
2 , . . . ,

√
N−1
2 are the indexes along the x− and z−axis,

respectively, and N indicates the number of antennas (either
at the Tx and Rx). Note that, when it is ϑr = ϑt = [0, 0]T, the
inter-antenna delays are zeros, i.e. τ r

m(θ1,ϑr) = τ t
i(θ1,ϑ

t) =
0 ∀m, i, as the antennas are aligned to the array centroids, thus
the incident wave impinges simultaneously at all the antennas.

1) Planar MIMO Array: For the planar geometric con-
figuration and in the orientation-unaware case, the diagonal
elements in the position and orientation CRB matrix derived
starting from (35)-(37), are given by

CRB (x) = CRB (z) = CRB0
12

S (Nrx − 1)

CRB (y) =
CRB0

Nrx

CRB
(
ϑt
)
=CRB

(
ϕt
)
=CRB0

12 (Ntx +Nrx − 2)

Arx (Ntx − 1)(Nrx − 1)
(39)

where CRB0 = c2/
(
8π2 SNR

(
β2
i + f2

c

))
is the CRB of the

ranging error one would obtain using only one antenna radiat-
ing an energy equal to Etot = Ntx E, and S = Ar/y2 represents
the ratio between the Rx array area and the squared Tx-Rx
distance. Note that CRB0 depends on the carrier frequency fc,6

on the shape of the pulse through β2
i , on the received SNR, and

it does not depend on the number of transmitting antennas. The
analytical derivation is reported in Appendix C. From (39), it
is possible to remark that the CRB of the estimation error
in the y-coordinate is inversely proportional to the number
of the receiving antenna elements accounting for the number
of independent measurements available at the Rx. Regarding
the other two coordinates, a key parameter on the estimation
accuracy is S which is related to the ratio between the
dimension of the Rx array and the distance between the arrays:
as this ratio becomes smaller (i.e., as the distance between
the arrays becomes larger with respect to the array size), the
positioning accuracy degrades. From (39) it is also possible to
notice that the accuracy in estimating the orientation depends
both on the transmitting and receiving antennas. Specifically
both Ntx and Nrx must be greater than 1 to make the orientation
possible whereas, for the positioning, only the number of
receiving elements must be > 1. Moreover, non-zero off-

6As we consider a coherent processing, the Rx is capable of retrieving the
carrier phase of the incoming signal, evidenced by observing the presence of
fc in the expression of CRB0. The non-coherent case can be obtained by
simply setting fc = 0 and by taking into account only the baseband effective
bandwidth. Non-perfect coherent processing can be taken into account through
the synchronization error ϵs.
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diagonal elements remark a correlation between the error on
the estimation of position and orientation. Specifically we have

CRB
(
z,ϑt

)
= CRB

(
ϑt, z

)
= CRB

(
x,ϕt

)

= CRB
(
ϕt, x

)
= CRB0

12

S y (1−Nrx)
. (40)

Contrarily in the orientation aware case, it can be found

CRB (x) = CRB (z) = CRB0
12

S (Ntx +Nrx − 2)

CRB (y) =
CRB0

Nrx
. (41)

Note that when passing from the condition of orientation-

unawareness to that of orientation-awareness, the positioning
accuracy increases thanks to the additional information pro-
vided. In fact, the CRB on the x− and z− coordinates now
depends also on the number of transmitting antennas.

2) Planar Timed Array: Differently from MIMO, here in
the orientation-unaware case, the equivalent FIM for position
and orientation is singular, meaning that it is not possible to
jointly localize and determine the orientation using beamform-
ing strategies.

If the Tx orientation is a known parameter (orientation

aware case) and, thus, it is discarded from the estimation
parameters vector, the elements of the position CRB matrix
result from (57)

CRB (x) = CRB (z) = CRB0
12

S

1

Ntx (Nrx − 1)

CRB (y) =
CRB0

Ntx Nrx
. (42)

From (42) it is possible to remark that the CRB of the
estimation error in the y-coordinate is inversely proportional
to Ntx and Nrx. In fact, the Ntx term accounts for the SNR
enhancement due to the beamforming process while Nrx for
the number of independent measurements available at the Rx
(receiver diversity). Note that when Nrx = 1, the localization
along the x and z axes is not possible (only ranging in the y
direction), as for MIMO.

More details related to the derivation of (42) are reported
in Appendix C.

VII. MULTIPATH EFFECT ON LOCALIZATION ACCURACY

Once verified that the CRB is still a meaningful metric in
presence of multipath (refer to Sec. V-B), we now investigate
its impact on the localization performance for the considered
scenario. In [15], it is demonstrated that only the information
related to the first-contiguous cluster, i.e. the set of MPCs
overlapped to the first path, is relevant from a localization
perspective in the asymptotic SNR regime. Here we show that
under the asymptotic massive antenna regime, all the MPCs
can be made negligible, included those belonging to the first-
contiguous cluster. The FIM in presence of multipath can be
written as follows

Jψ =

[
Jqq Jqκ

Jκq Jκκ

]
(43)

where Jκκ contains also the a-priori information on MPCs
statistics reported in Appendix A. Consequently, the CRB for
the multipath scenario can be formulated as

CRB (q) =
(
Jqq − Jqκ J

−1
κκ Jκq

)−1
(44)

where all multipath information is gathered in Jqκ J
−1
κκ Jκq.

Considering the average over different Rx orientations and for
large values of Nrx, it is possible to show that the number of
configurations where the multipath impacts the localization
performance compared to the number of configurations in
which it does not influence the accuracy is negligible regard-
less the chosen array architecture. Considering (44), for the
weak law of the large numbers (i.e., for Nrx → ∞), it holds

1

NrxNtx
Jqκ

P−−→ 1

NrxNtx
E [Jqκ] (45)

where in the following we aim at demonstrating that the right-
hand side goes to zero: 1

NrxNtx
E [Jqκ] = 0.

In the presence of a large number of antenna elements and
considering random Rx orientations, the inter-antenna phase
terms can be modeled as RVs uniformly distributed in [0, 2π).
Under this assumption, we have

E [Jq a1 ] = Jq a1 = 0

E

[
Jq αℜ

k

]
=

− 4 π a1 ν
∑

mij

ℑ
{
b̃c
ij E

[
ξ(k,1)ij χ(k,1)

ij (1)
]}

∇q (τjm1) = 0

E

[
Jq αℑ

k

]
=

− 4 π a1 ν
∑

mij

ℜ
{
b̃c
ij E

[
ξ(k,1)ij χ(k,1)

ij (1)
]}

∇q (τjm1) = 0

(46)

where E

[
ξ(k,1)ij χ(k,1)

ij (1)
]
∝ E[e−j2π(f+fc)(∆τ r

m(θ1,θk))] = 0

and with ∆τ r
m(θ1, θk) = τ r

m(θ1,ϑr)− τ r
m(θk,ϑr). Similarly,

it is straightforward to prove that the expectation of Jκq is
zero.

The result in (45) leads to the important conclusion that
letting the antennas array be massive, i.e., large Nrx, makes
negligible the set of geometric configurations significantly
impacted by MPCs, and the performance converges to that
of the free-space case. As a consequence, the CRB converges
to the CRB averaged over the RX orientations for massive
antenna arrays.

VIII. NUMERICAL RESULTS

In this section, numerical results are reported considering
different array configurations, multipath conditions and array
non-idealities. Even though the signal model developed in this
paper as well as the CRB derivation are valid for any frequency
and bandwidth, here we focus our attention on mm-wave bands
as an interesting case study for 5G/B5G scenarios thanks to the
possibility to pack, in a small size, a larger number of antennas
compared to what could be done at microwave bands.

For what the spatial deployment of the antennas is regarded,
planar arrays are considered as they represent the most con-
ventional structure to be integrated in APs and mobiles [13].
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We recall that with fixed orientation we indicate the array
configuration with the Tx and the Rx parallel to each other
(i.e., the same described in Secs. II-A and VI-A), while with
averaged orientation the geometric configuration in which, for
each Monte Carlo iteration, a different 3D Rx array orientation
is generated. If not otherwise indicated, the performance is
shown for the orientation-aware case. In addition, we indicate
with Q the presence of quantization errors, with S the presence
of a residual synchronization error and with O the orientation-

unaware case.

Before analyzing MIMO and beamforming localization per-
formance, it is necessary to ensure that the comparison based
on CRB can be considered fair in terms of SNR working
regimes when operating with non-massive arrays. To easy the
reading, this analysis is reported in Appendix D.

A. System Configuration

We consider a scenario with a single AP equipped with
a massive array, with the centroid placed in pr = [0, 0, 0]T,
and a transmitting array antenna whose centroid is located in
pt = [0, 5, 0]T (d = 5m). As in the mathematical model, the
Rx has a perfect knowledge of the Tx steering direction, and
the results are obtained for fc = 60GHz and W=1GHz in
free-space and multipath conditions. Root raised cosine (RRC)
transmitted pulses centered at frequency fc = 60GHz and
roll-off factor of 0.6 are adopted. A receiver noise figure of
NF = 4 dB and a fixed transmitted power of Pt = 10mW are
considered [39].

The performance is evaluated in terms of Position Error
Bound (PEB) and Orientation Error Bound (OEB) defined as

PEB =
√

tr (CRB (pt)), OEB =
√

tr (CRB (ϑt)) (47)

and averaged over Ncycle = 500 Monte Carlo iterations.

For each cycle, a different 3D Rx array orientation, i.e.,
ϑr = [ϑr, ϕr]T, and multipath scenario are generated. Specifi-
cally, when operating at mm-wave frequencies, the paths time-
of-arrival distributions can be described by a Poisson process
and the inter-arrival times by an exponential probability den-
sity function [21], [40]. The arrival rate of paths is set to
4 [1/ns] while the azimuth and elevation AOA are modeled as
uniformly distributed between (0, 2π] and (0,π], respectively.
The array antennas are spaced apart of dant = λL/2, where
λL = c/fL and fL = fc −W/2. When present, the quantiza-
tion errors of PSs are δt

i ∼ U (−π/4,π/4) while the errors on
TDLs are ∆τ t

i ∼ U (0, dant/c). The standard deviation of the
synchronization error is set to σϵ = 1 ns.

B. Results

The results have been obtained as a function of: Ntx and Nrx;
the array configuration (i.e. timed, phased, random, MIMO);
the presence and absence of array beamforming; the residual
synchronization error; and the multipath overlapping effect.

1) Results in free-space:

a) Impact of Ntx: Figure 3 reports the PEB performance
as a function of Ntx and of the Rx orientation in free-
space. MIMO, timed and phased arrays are compared in the
orientation-aware case when the number of receiving antennas
is kept fixed to Nrx = 25.

It can be observed that MIMO outperforms timed and
phased arrays on average since it relies on different transmitted
waveforms. On the contrary, as described in Sec. VI, arrays
operating beamforming exhibit a better performance when the
orientation is kept fixed. This is due to the fact that beam-
forming strategies fail in preserving the same accuracy for any
geometric configuration (i.e., for any orientation). Contrarily,
thanks to the diversity gain characterizing MIMO arrays,
Rx orientations have a less significant effect on positioning
accuracy.

For what the beamforming arrays are concerned, it can be
observed that, as expected, timed and phased arrays have the
same performance for W/fc ≪ 1. Notably, phased arrays are
the best candidate for narrowband systems where beamsteering
operation can be accurately performed without the need to
compensate for time delays. The impact of the fractional
bandwidth on the timed/phased array performance has been
investigated in [23]. Another important outcome from Fig. 3
is that array quantization errors, once characterized, slightly
affect the localization performance. This implies that we can
rely on simple array structures without severely affecting
the performance. Finally, with Ntx ≥ 25, the performance
improvement becomes less important if a sufficiently high Nrx

is considered. This implies that Ntx can be relaxed to shrink
the array dimensions and to enable the integration on portable
devices [13]. Consequently, in the following, the number of
transmitting antennas will be fixed to Ntx = 25.

b) Impact of Nrx: In Fig. 4, the PEB performance is
reported for both orientation-aware and -unaware cases as a
function of Nrx in free-space propagation condition, Ntx = 25
and fixed Tx and Rx orientation ϑt = ϑr = [0, 0]T. Results,
obtained using (39), (41) and (42), reveal that arrays perform-
ing beamforming outperform MIMO for the particular steering
and geometric configuration conditions chosen, as already
observed in Fig. 3. We ascribe the effect to an increased SNR
in the considered direction. Nevertheless, with single-beam
beamforming, orientation estimation is not always possible
and, thus, the FIM results to be singular.

Figure 5 shows the average PEB performance when the Rx
orientation randomly changes at each Monte Carlo iteration.
For this analysis, we consider also random weighting, quanti-
zation errors as well as synchronization mismatch between the
Tx and the Rx. As in Figs. 3-4, the performance of timed and
phased arrays coincide due to the narrow fractional bandwidth
(i.e., W/fc ≈ 0.016). Differently from Fig. 4, in Fig. 5
MIMO achieves a higher positioning accuracy with respect to
arrays employing beamforming strategies due to the fact that
results are averaged over different Rx orientations. In fact, with
MIMO, a reduction in the received SNR is experienced, but
the number of independent measurements is maximized (i.e.,
Ntx Nrx).

For what random weighting arrays are regarded, they share
the structure simplicity of phased arrays but they neither
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Fig. 3. PEB vs. Ntx, Nrx = 25 and orientation aware.
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Fig. 4. PEB vs. Nrx, Ntx = 25 and fixed Rx orientations.

perform beamforming nor achieve the diversity gain of MIMO,
and thus, the positioning accuracy results degraded with re-
spect to other structures. Nevertheless, if the requirement on
the localization accuracy is not so stringent, they could be an
interesting option to guarantee both a sub-centimeter position-
ing accuracy (e.g., for Nrx = 50 and Ntx = 25, PEB ≈ 7mm)
and an easy implementation in future devices operating at
mm-wave frequencies. Note that when the Tx orientation is
one of the parameters to be estimated (orientation-unaware

case), only MIMO presents a non-singular FIM. Obviously,
in this case, given the reduced information available at the
Rx side, the positioning accuracy worsen with respect to
the orientation-aware case. In all configurations, the residual
synchronization error significantly degrades the localization
performance. In [41] solutions to avoid synchronization are
proposed. Figure 6 reports the OEB as a function of Nrx. In
this case, only the performance of MIMO is present because of
the singularity problem arising in timed, phased and random
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Fig. 5. PEB vs. Nrx, Ntx = 25 and averaged Rx orientation.
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Fig. 6. OEB vs. Nrx, Ntx = 25.

weighting arrays. An interesting result is that, in this case, the
synchronization error does not impact the orientation accuracy.

c) Grid results: Figure 7 reports the PEB results for the
orientation-aware case when the mobile moves in a grid of
points spaced of 0.5m considering phased (Fig. 7-top) and
MIMO (Fig. 7-bottom) arrays, respectively. We considered a
3D indoor scenario of 10 × 10× 3m3 where the mobile and
the AP centroids are at the same height. The Rx, equipped
with Nrx = 100 antennas, is placed in pr = [0, 0, 0]T with
orientation changing at each Monte Carlo iteration. On the
other side, the mobile array is equipped with Ntx = 25
elements and its orientation and its steering direction are fixed
to ϑt = [0, 0]T and to the broadside direction, respectively. Grid
results confirm that MIMO arrays localization performance
does not depend on the Rx orientation and on mobile position
in space but only on the distance between the Tx and the Rx.
Indeed, from Fig. 7, it can be seen that if the steering angle is
fixed, the localization accuracy is higher in a privileged direc-



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 12

 

 

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

0

0.005

0.01

0.015

0.02

0.025

0.03

x [m]

y
[m

]

 

 

−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

18

20

0

0.005

0.01

0.015

0.02

0.025

0.03

x [m]

y
[m

]

Fig. 7. Phased (top) and MIMO (bottom) array PEB [m], Nrx = 100,
Ntx = 25 and averaged receiver orientations.

tion in space corresponding to the best geometric configuration
conditions.

2) Multipath scenario: Figure 8 investigates the multipath
effect by analysing the PEB and OEB averaged over different
Rx orientations and as a function of the number of MPCs
for phased and MIMO arrays. We consider the statistical
multipath parameters described in Sec. IV.7 As foreseen in
the asymptotic analysis in Sec. VII, when increasing Nrx, the
MPCs effect becomes negligible and the performance tends to
coincide with that obtained in free-space (L = 1). Moreover, it
is possible to remark that phased arrays are more sensitive to
multipath with respect to MIMO, especially when the number
of receiving antennas is small. In fact, for phased arrays at
least 25 antennas are necessary to make the MPCs negligible.

IX. CONCLUSION

In this paper, we have considered an appealing scenario
for 5G/B5G applications where a single-anchor localization
exploiting massive arrays has been put forth. The theoretical
localization performance has been evaluated by deriving the
position and orientation CRB for different array configurations

7Note that the sparsity of the MPCs plays an additional role in the low
impact of the multipath.
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Fig. 8. PEB and OEB vs. Nrx in multipath propagation scenario, Ntx = 25,
averaged receiver orientation. Diamond marked lines refer to phased array,
circle marked lines to MIMO, and square marked lines to MIMO orientation
unaware. Note that most plots are overlapped.

(i.e., MIMO vs. beamforming). Phase quantization, residual
synchronization mismatch, and multipath have been consid-
ered as nuisance parameters in the estimation process.

From analytical and simulation results, the main achieve-
ments emerged in this paper can be summarized as follows:

• We show through an asymptotic analysis (i.e., massive

array regime Nrx → ∞) that the considered CRB is a
tight bound regardless the propagation condition and the
array configuration.

• Thanks to the diversity gain exploitable for retrieving
positioning information, MIMO outperforms beamform-
ing in terms of localization and orientation performance
when averaging over different geometric configurations.
Nevertheless, the beamforming is desirable to maximize
the SNR towards a specific direction in specific geometric
configurations.

• Quantization errors slightly impact the localization per-
formance and, thus, the array design requirements can
be relaxed in favor of a lower complexity. The same
considerations can be drawn when using the proposed
random weighting method. Contrarily, a synchronization
mismatch between the Tx and the Rx, affecting both
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the delay and phase retrieval, significantly degrades the
positioning performance.

• The adoption of massive antenna arrays makes the po-
sitioning insensitive to multipath for most of geometric
configurations regardless the SNR regime. We demon-
strated such point through an asymptotic analysis valid
for Nrx → ∞. This is true even when the number of
antennas is not extremely high (i.e., Ntx, Nrx > 20) for
relatively high SNR regime.

APPENDIX A

Considering the subset of random parameters ψr =
[κT

2, . . . , κ
T

L, ϵ
s]T =

[
αℜ T, αℑ T, ϵs

]T
, and treating them as

independent RVs we can write ln (f(ψr)) = ln
(
f(αℜ T)

)
+

ln
(
f(αℑ T)

)
+ ln (f(ϵs)) . Therefore, the elements of the a-

priori FIM are

Jp
ϵsϵs =

1

σ2
ϵ

, Jp

αℜ
k
αℜ

l

= Jp

αℑ
k
αℑ

l

=

{
1
σ2
l

if l = k

0 if l ≠ k .
(48)

APPENDIX B

In this Appendix we derive the elements of the data FIM
reported in (15). To accomplish this task, we introduce the
following quantities

χ(l,k)
ij (p)=

∫

W

b̃ij(f) (f + fc)
pe−j2πf∆τ

(l,k)
ij Pi(f)P

∗
j (f)df

Rp
ij(∆τ) =

∫

W

b̃ij(f) e
−j2πf∆τ Pi(f)P

∗
j (f) df

Rp̈
ij(∆τ) =

∫

W

b̃ij(f) f
2e−j2πf∆τ Pi(f)P

∗
j (f) df (49)

where ∆τ (l,k)ij = τiml−τjmk, b̃ij(f) = b̃i(f) b̃∗j (f), and b̃c
ij =

b̃c
i

(
b̃c
j

)∗
. The elements of Jd

qq
can be expressed as in (30).

The elements of Jd
κκ are

Ja1 a1 =2 ν
∑

mij

ℜ
{
b̃c
ij ξ

(1,1)
ij Rp

ij

(
∆τ (1,1)ij

)}

Jαℜ
k
a1
=JH

a1 αℜ
k
= 2 ν

∑

mij

ℜ
{
b̃c
ij ξ

(1,k)
ij Rp

ij

(
∆τ (1,k)ij

)}

Jαℑ
k
a1
=JH

a1 αℑ
k
= 2 ν

∑

mij

ℑ
{
b̃c
ij ξ

(1,k)
ij Rp

ij

(
∆τ (1,k)ij

)}

Jαℜ
k
αℜ

l
=Jαℑ

k
αℑ

l
=2 ν

∑

mij

ℜ
{
b̃c
ij ξ

(l,k)
ij Rp

ij

(
∆τ (l,k)ij

)}

Jαℑ
k
αℜ

l
=JH

αℜ
l
αℑ

k
= 2 ν

∑

mij

ℑ
{
b̃c
ij ξ

(l,k)
ij Rp

ij

(
∆τ (l,k)ij

)}

(50)

where ξ(1,k)ij = e−j2πfc(τim1+ϵs+τ r
m(θk)−τ t

j(θk)) and ξ(l,k)ij =

e−j2πfc(−τ r
m(θl)+τ r

m(θk)+τ t
i(θl)−τ t

j(θk)). The elements of Jd
qκ

are

Jq a1 = 4 π a1 ν
∑

mij

ℑ
{
b̃c
ij ξ

(1,1)
ij χ(1,1)

ij (1)
}
∇q (τjm1) = 0

Jq αℜ
k
= −4 π a1 ν

∑

mij

ℑ
{
b̃c
ij ξ

(k,1)
ij χ(k,1)

ij (1)
}
∇q (τjm1)

Jq αℑ
k
= −4 π a1 ν

∑

mij

ℜ
{
b̃c
ij ξ

(k,1)
ij χ(k,1)

ij (1)
}
∇q (τjm1)

where ξ(k,1)ij = e−j2πfc(−τjm1−ϵs−τ r
m(θk)+τ t

i(θk)). Now, if we
consider the presence of a residual synchronization error, the
FIM Jd

ϵs ϵs is

Jϵs ϵs = 8 π2 ν ℜ

⎧
⎨

⎩
∑

mij

b̃c
ij

[
a21 ξ

(1,1)
ij χ(1,1)

ij (2) + (51)

L∑

k=2

σ2
l R

p̈
ij

(
∆τ (k,k)ij

)
e−j2πfc(τ t

i(θk)−τ t
j(θk))

]}

.

Finally, the elements of Jd
κϵs and Jd

qϵs are

Ja1 ϵs = 4 π a1 ν
∑

mij

ℑ
{
b̃c
ij ξ

(1,1)
ij χ(1,1)

ij (1)
}

(52)

Jαℜ
k
ϵs = 4 π a1 ν

∑

mij

ℑ
{
b̃c
ij ξ

(1,k)
ij χ(1,k)

ij (1)
}

Jαℑ
k
ϵs = 4 π a1 ν

∑

mij

ℜ
{
b̃c
ij ξ

(1,k)
ij χ(1,k)

ij (1)
}

Jqϵs = 8 π2 ν a21
∑

mij

ℜ
{
b̃c
ij ξ

(1,1)
ij χ(1,1)

ij (2)
}
∇q (τjm1) .

APPENDIX C

In this Appendix we specialize the expression of the
symmetric matrix G reported in (35)-(37). To this end, we
explicit the geometric relationship relating the TOA between
each Tx-Rx antennas couple and the considered localization
parameter, i.e., ∇qa qb(τiml, τjml) = ∇qa(τiml)∇qb(τjml). For
the particular antenna configuration chosen and described in
Sec. II-A, in which the array antennas are spaced of dant, and
considering ϑt = [0, 0]T, we can compute a simplified version
of (32)-(34). Specifically, it is possible to obtain:

∇p (τim1) =
1

c
[c∇p (τ1) + dant ((ix −mx)∇p(φ1)

+(mz − iz)∇p(θ1))] (53)

∇ϑt (τim1) = −dant

c
iz , ∇ϕt (τim1) = −dant

c
ix (54)

with mx = mz = −
√
Nrx−1
2 ,−

√
Nrx−1
2 + 1, . . . ,

√
Nrx−1
2 and

ix = iz = jx = jz = −
√
Ntx−1
2 ,−

√
Ntx−1
2 + 1, . . . ,

√
Ntx−1
2 .

From (53)-(54), it is straightforward to derive (55). Then,
by considering the summations present in G, it is possible
to obtain the CRB matrices for MIMO and timed arrays,
respectively, as in (56)-(57) where S = Ar/y2.

APPENDIX D

In this Appendix we consider the AF as defined in (19).
The AF for the position coordinates shows a main peak in
correspondence of the true Tx position and secondary sidelobe
peaks relative to “wrong” positions. An ambiguity problem
arises when one of these sidelobes overcomes or becomes
comparable to the main beam due to noise. Consequently,
to determine whether ambiguities are negligible in the non-
massive array case, we have derived a threshold on the noise
standard deviation to keep the ambiguity probability fixed to
a desired low value.
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∇qq(τim1, τjm1)=
d2ant

(c y)2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(mx − ix) (mx − jx)
y

dant
(mx − ix) (mx − ix)(jz −mz) y (ix −mx) jz . . . y (ix −mx) jx

. . . y2

d2ant

y
dant

(jz −mz) −
y2

dant
jz −

y2

dant
jx

. . . . . . (iz −mz) (jz −mz) y (mz − iz) jz y (mz − iz) jx

. . . . . . . . . y2izjz y2izjx

. . . . . . . . . . . . y2ixjx

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(55)

CRB (q)=
c2

8π2 Ntx SNR1
(

β2
i + f2

c

)

1

S

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

12
(Nrx−1) 0 0 0 12

y(1−Nrx)

0 S
Nrx

0 0 0

0 0 12
(Nrx−1)

12
y (1−Nrx)

0

0 0 12
y (1−Nrx)

12 (Nrx+Ntx−2)
y2 (Ntx−1) (Nrx−1)

0
12

y(1−Nrx)
0 0 0 12 (Nrx+Ntx−2)

y2 (Ntx−1) (Nrx−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(56)

CRB
(

p
t
)

=
c2

8π2 Ntx SNR1 (β2 + f2
c )

1

S
diag

(

12

Ntx(Nrx − 1)
,

S

Ntx Nrx
,

12

Ntx(Nrx − 1)

)

(57)

TABLE I
MIMO vs. BEAMFORMING COMPARISON

MIMO/Timed Nrx γ [dB] σthr [mV] σsim [mV]
MIMO 4 -36.9 0.062 0.022
MIMO 36 -32.1 0.187 0.022
MIMO 100 -29.9 0.313 0.022
Phased 4 -33.5 0.136 0.022
Phased 36 -28.7 0.406 0.022
Phased 100 -26.5 0.677 0.022

By comparing the threshold obtained with the value used
in the numerical results, we can demonstrate that we operate
at a high SNR regime where the CRB is tight even if a non-
massive array is adopted. To this end, we define the ambiguity

probability as PA = 1
2 erfc

(
γ√
4σ2

n

)
where σn is the noise

standard deviation and γ is the gap between the main lobe of
the AF and the highest secondary sidelobe [35]. Then, given
a certain gap γ, it is possible to compute the noise threshold
as σthr =

γ
2

1
erfc−1(2P∗

A )
.

In Table D, we report the obtained simulation results. We
have considered the Tx moving in a grid of points spaced
apart of 0.2m in a cube of dimension 8 × 8 × 8m3. The
target ambiguity probability has been fixed to 10−2. The gap
γ has been set to the minimum side-lobe level considering the
three spatial coordinates (that is, to the worst case scenario)
and σsim represents the noise standard deviation used in the
numerical results of the paper. As reported in Table I, in all
the tested configurations the noise standard deviation used in
the numerical results is always much lower than the threshold
σthr above that the ambiguity effect is not anymore negligible,
hence meaning that the CRB can be a meaningful metric for
the considered scenario.
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