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Beyond B-splines: exponential pseudo-splines and subdivision
schemes reproducing exponential polynomials
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Abstract

The main goal of this paper is to present some generalizations of polynomial B-splines, which include
exponential B-splines and the larger family of exponential pseudo-splines. We especially focus on their
connections to subdivision schemes. In addition, we generalize a well-known result on the approximation
order of exponential pseudo-splines, providing conditions to establish the approximation order of non-
stationary subdivision schemes reproducing spaces of exponential polynomial functions.
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1 Introduction
It is well known that B-splines form a basis for the space of polynomial splines and possess, in addition to other nice properties,
minimal support with respect to a given degree and smoothness (see, e.g., the celebrated book [22]). They are employed in
many contexts, including approximation theory, numerical differentiation and integration, signal and image processing. Also,
they provide an effective way for constructing curves and surfaces from a given set of control points, thus finding applications in
computer-aided design and computer graphics.

The special case of cardinal B-splines, i.e. B-splines with uniformly spaced knots, is widely exploited within the framework of
multiresolution, multilevel and subdivision techniques. We recall that all cardinal B-splines of order N (degree N −1) with simple
integer knots t i = i, i ∈ Z, are shifted copies of the one supported in [0, N], say BN . A classical way to define BN is through de
Boor’s recurrence formula [22]

Bn(t) =
t

n− 1
Bn−1(t) +

n− t
n− 1

Bn−1(t − 1), t ∈ R, n= 2, . . . , N ,

with B1 = χ[0,1] being the characteristic function of the unit interval. Cardinal B-splines can also be defined through a convolution
approach, namely by

Bn(t) = (Bn−1 ∗ B1)(t), t ∈ R, n= 2, . . . , N ,

and also with the help of the Green’s function of differential operators [50]. Indeed, denoting by DN the N -th order differential
operator and by ρ the corresponding Green’s function satisfying DN (ρ(t)) = δt,0, where δt,0 is the Dirac delta function, the
cardinal B-spline of order N can be defined as

BN (t) =∆
N (ρ(t)) , t ∈ R,

where ∆ denotes the discrete difference operator ∆ f = f − f (· − 1).
It is well known (see again [22]) that the functions of the family {BN (· − i), i ∈ Z} have very nice properties such as compact

support of width N , non-negativity, CN−2 regularity and partition of unity property, just to mention the most important ones.
Nevertheless, in spite of these nice properties, B-splines have several drawbacks. Firstly, they provide a low approximation order
which means that, whenever we use them to approximate a function from a certain space, a pre-processing of the data is necessary.
Secondly, they are not suitable for approximating causal exponentials, which play a fundamental role for example in classical
system theory [50]. Thirdly, their use for modeling manifolds with arbitrary topology is conceptually complex and extremely
expensive. Last, but not least, they are not able to exactly reproduce geometries like conic sections which appear very often,
e.g., in geometric modeling, biomedical imaging or isogeometric analysis. Figure 1 illustrates several conic sections appearing in
different application contexts (in this regard see, e.g., [1, 34, 49]).

In the last two decades, several generalizations of B-splines have been proposed with the aim of overcoming their limitations.
The most popular one is certainly given by non-uniform rational B-splines, also called NURBS [43]. A NURBS curve is a linear
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Figure 1: Conic section geometries appearing in different contexts.

combination of rational basis functions, expressed as a ratio of B-splines associated to non-uniform knot sequences. Its definition
involves additional parameters (or weights), which have to be properly handled. Unfortunately, the rational nature of NURBS
makes them unpleasant with respect to differentiation and integration. Moreover, though they allow for exact description of conic
sections, not all transcendental curves can be reproduced by NURBS, and the modeling of manifolds with arbitrary topology is
still rather complicated.

An attractive alternative to NURBS is given by the so-called generalized B-splines [38, 48]. While classical B-splines are
piecewise polynomial functions, generalized B-splines are piecewise functions with function segments in more general spaces.
With a suitable selection of such spaces (typically including trigonometric or hyperbolic functions), generalized B-splines can
allow exact representation of polynomial curves, conic sections or transcendental curves. Generalized B-splines also possess
all fundamental properties of polynomial B-splines shared by NURBS, e.g., recurrence relations, minimal support, local linear
independence, knot-insertion or degree elevation, but behave in the same way as B-splines with respect to differentiation and
integration [4].

A special instance of generalized B-splines with integer knots is given by exponential B-splines, which have recently received an
increasing attention [10, 24, 25, 37, 44, 45, 46, 47]. Besides their classical applications in geometric modeling and approximation
theory, uniform exponential B-splines are indeed very useful in signal processing [49, 50] and in isogeometric analysis [34].

Another interesting generalization of B-splines, which has emerged recently, is given by pseudo-splines [16, 26, 27, 28, 29]
and, more generally, by exponential pseudo-splines [14]. Exponential pseudo-splines form a rich family of basis functions meeting
various demands for balancing approximation power, regularity, support size, interpolation and reproduction capabilities. Pseudo-
splines have been used, for example, for generating tight wavelet frames to be used as multiresolution analysis techniques in
signal and image processing, as discussed in [28].

A common feature shared by B-splines, exponential B-splines and pseudo-splines is the fact that they are basic limit functions
of subdivision schemes (either of stationary or of non-stationary nature). Subdivision schemes are simple and efficient iterative
procedures for generating functions or curves, from a given set of data points. The subdivision framework provides, in addition, a
tool for addressing problems connected to the evaluation of such splines, for the characterization of their reproduction properties
and the computation of their approximation order [3, 6, 8, 11, 13, 15, 18, 20, 21, 32, 36, 40, 41, 42]. With respect to the latter
point, one of our goals is to provide a new result on the approximation order of general classes of subdivision schemes which
include exponential pseudo-splines.

This paper is organized as follows. In Section 2 we describe the refinement properties of cardinal B-splines and the
corresponding subdivision algorithms. Then the subdivision approach is presented as a general discrete tool for generating
refinable basis functions. In Section 3, we present cardinal exponential B-splines and pseudo-splines from the perspective of
their refinability properties and associated subdivision schemes. Finally, in the last section, we provide a new result on the
approximation order of non-stationary subdivision schemes reproducing certain classes of exponential polynomial functions.

2 Cardinal B-splines and subdivision schemes
This section recalls the connection between cardinal B-splines and subdivision schemes (see subsection 2.1). The subdivision
approach is then presented as a general discrete tool for generating refinable basis functions and cardinal B-splines in particular
(see subsection 2.2).
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Figure 2: Graphical representation of the refinability property of the cardinal cubic B-spline B4.

2.1 A subdivision approach to cardinal B-splines

An important property of cardinal (polynomial) B-splines BN of order N > 0 is their refinability, i.e., the fact that they can be
written as linear combinations of shifts of dilated versions of themselves

BN =
N
∑

j=0

aN ; j BN (2 · − j) (1)

with weights

aN ; j =
1

2N−1

�

N
j

�

, j = 0, . . . , N .

In the refinement equation (1), the finite sequence aN = {aN ; j : j = 0, . . . , N} represents the refinement mask of BN . For example,
for the cubic B-spline the refinement mask is given by a4 = {

1
8 , 1

2 , 3
4 , 1

2 , 1
8 }, and the corresponding refinability property is depicted

in Figure 2.
A useful consequence of (1) is the possibility of deriving an iterative algorithm for the computation of cardinal B-splines at

dyadic points. In the cubic case, for instance, the evaluation of (1) at the variable values 1,2, 3 yields
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Hence the non-zero values of cardinal B-splines at integer knots can be obtained by solving an eigenvector-eigenvalue problem
for a matrix determined only by the refinement coefficients. Once B4(k), k = 1, 2, 3, are known, it is simple to compute the values
of the order-4 cardinal B-spline at half-integers as

B4

� ·
2

�

=
1
8

B4 +
1
2

B4(· − 1) +
3
4

B4(· − 2) +
1
2

B4(· − 3) +
1
8

B4(· − 4),

and similarly for the other values at all dyadic points.
Let us now denote with s a polynomial spline of order N and with f [k] = { f [k]j , j ∈ Z} ∈ `(Z) the coefficient sequence

connected to its representation in the space spanned by {BN (2k · −i) : i ∈ Z}, i.e.

s =
∑

j∈Z

f [k]j BN (2
k · − j).

Using (1), for a fixed integer k ≥ 0, we are able to write s as

s =
∑

j∈Z

f [k]j BN (2
k · − j) =

∑

j∈Z

f [k]j

∑

i∈Z

aN ;i BN (2
k+1 · −2 j − i)

=
∑

j∈Z

f [k]j

∑

i∈Z

aN ;i−2 j BN (2
k+1 · −i) =

∑

i∈Z

f [k+1]
i BN (2

k+1 · −i)

with
f [k+1]
i =

∑

j∈Z

aN ;i−2 j f [k]j , i ∈ Z, k ≥ 0. (2)

Since the support of BN (2k·) shrinks as k increases, for k large enough the coefficient sequence f [k] is a good discrete representation
of the spline s.

More generally, starting with any initial sequence of points f [0] ∈ `(Z), the computation of denser and denser sequences of
points can be described in terms of the repeated application of a linear operator SaN

: `(Z)→ `(Z) whose action is described by

f [k+1]
i = (SaN

f [k])i =
∑

j∈Z

aN ;i−2 j f [k]j , i ∈ Z. (3)
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Figure 3: A B-spline function as a subdivision limit.

The resulting procedure f [k+1] = SaN
f [k], k ≥ 0, defines the so-called subdivision scheme for polynomial splines of order-N [31].

The corresponding linear operator SaN
is called the subdivision operator.

Since (3) splits into two different subdivision rules


















f [k+1]
2i =

∑

j∈Z

aN ;2 j f [k]i− j ,

f [k+1]
2i+1 =

∑

j∈Z

aN ;2 j+1 f [k]i− j ,
i ∈ Z, k ≥ 0,

the subdivision scheme is said to be binary. Note that subdivision schemes of different arity can also be considered (see, for
example, [16, 33]).

The limit of (3), as k goes to infinity, is the order-N polynomial spline associated to the initial control points f [0], and is often
denoted by S∞aN

f [0] to stress its connection with the subdivision operator SaN
.

When the subdivision scheme is applied to the starting sequence δ = {δi,0 : i ∈ Z}, as in Figure 3, the limit is exactly the
order-N cardinal B-spline basis function, also called the basic limit function of the subdivision scheme.

2.2 Subdivision schemes and their basic limit functions

The subdivision idea presented in the case of B-splines can be generalized to define other types of refinable basis functions, not
necessarily of piecewise polynomial nature.

A subdivision scheme is identified by a sequence of subdivision operators {Sa[k] : k ≥ 0}, each based on the mask sequence
a[k] = {a[k]i ∈ R : i ∈ Z}, usually assumed to be finite (see [5, 31]). The subdivision scheme consists of the iterative application of
such operators as follows:







Input: {Sa[k] , k ≥ 0}, f [0] ∈ `(Z)
For k ≥ 0

f [k+1] = Sa[k] f
[k]

and it is therefore simply denoted by {Sa[k] , k ≥ 0}. In the special situation where the mask does not depend on the level, i.e.
a[k] = a, for every k, and the same operator Sa is applied at each step, the scheme is said to be stationary and denoted by Sa. In
the other case, it is said a non-stationary or level-dependent scheme (see [5, 31]).

For a subdivision scheme identified by the subdivision operators {Sa[k] : k ≥ `}, `≥ 0, the following definition of convergence
can be given.

Definition 2.1. For any ` ≥ 0, the subdivision scheme {Sa[k] : k ≥ `} applied to the initial data f [`] ∈ `∞(Z) is (uniformly)
convergent if there exists a function g f [`] ∈ C(R), g f [`] 6= 0, such that

lim
k→+∞

sup
i∈Z
|g f [`](2

−(k+`)i)− f [k+`]i |= 0.

Moreover, the scheme {Sa[k] , k ≥ `} is C L−convergent if g f [`] ∈ C L(R).

In case of convergence, all the schemes based on the operator sequences {Sa[k] : k ≥ `}, ` ≥ 0 (based on masks a[k] of
finite length) define compactly supported basic limit functions φ[`], ` ≥ 0, associated to the initial sequence δ = {δi,0, i ∈ Z},
hereinafter called the δ-sequence. Even if in most cases these functions are not defined analytically, they are all related through
the so called level-dependent refinement equations

φ[`] =
∑

i∈Z

a[`]i φ
[`+1](2 · −i), `≥ 0.

In the stationary case, the latter ones reduce to a standard refinement equation, involving only one basic limit function,

φ =
∑

i∈Z

aiφ(2 · −i).

An important role for the analysis of subdivision schemes is played by the symbols of the subdivision masks. The symbol of a
finitely supported sequence a is defined as the Laurent polynomial

a(z) =
∑

i∈Z

ai z i , z ∈ C \ {0}. (4)
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A stationary scheme is identified by the symbol of its subdivision mask, while a non-stationary scheme by the sequence of mask
symbols {a[k](z) : k ≥ 0}. Many of the properties of a subdivision scheme and of its basic limit functions (e.g., regularity, symmetry,
reproduction properties) can be checked using algebraic conditions on the subdivision symbols [5, 31].

3 Cardinal exponential B-splines and pseudo-splines
Non-stationary subdivision schemes can be efficiently used to define a useful generalization of cardinal B-splines, namely cardinal
exponential B-splines. The latter ones turn out to be a “perfect” basis for the space of exponential splines. Let us start by defining
the space of exponential polynomials, the space of exponential splines and one of their corresponding bases.

Definition 3.1. Let n ∈ N and let Γ = {(θ1,τ1), . . . , (θn,τn)} with θi ∈ R∪ iR, θi 6= θ j for i 6= j, and τi ∈ N, i = 1, . . . , n. The
corresponding space of exponential polynomials is defined by

EPΓ = span{ t ri eθi t , ri = 0, . . . ,τi − 1, i = 1, . . . , n} .

Note that for each i = 1, . . . , n, τi denotes the multiplicity of the value θi .

The set EPΓ is a linear space of dimension N =
n
∑

`=1

τ` whose elements belong to the null space of the differential operator

LΓ = (D− θ1 I)τ1 ◦ · · · ◦ (D− θn I)τn , with D the first derivative operator. Polynomials of order N , belonging to the space PN , are
special instances of exponential polynomials, corresponding to the case Γ = {(0, N)}, so that PN ⊆ EPΓ .

Example 3.1. For θ ∈ R∪ iR, consider Γ = {(0, 1), (θ , 2), (−θ , 2)}, whose corresponding space of exponential polynomials is of
dimension N = 5 and given by

EPΓ = span{1, eθ t , e−θ t , teθ t , te−θ t}.

For θ = 0, θ = is and θ = s, EPΓ reduces to (see [44])

span{1, t, t2, t3, t4},
span{1, cos(st), sin(st), t cos(st), t sin(st)},
span{1, cosh(st), sinh(st), t cosh(st), t sinh(st)}.

The space of exponential splines, denoted as S(EPΓ ), is the space of piecewise functions with pieces belonging to EPΓ . It can
be represented in terms of the basis of cardinal exponential B-splines. To define them we follow the approach in [50], which
makes use of the Green’s functions of differential operators. Consider the first order differential operator Dθ = D− θ I and its
corresponding Green’s function ρθ (t) = eθ t 1+(t). Take a discretization of Dθ , say ∆θ f = f − eθ f (· − 1). Then the order-one
(discontinuous) cardinal exponential B-spline, supported in [0,1], is

B1,{(θ ,1)}(t) =∆θ (ρθ (t)) = ρθ (t)− eθρθ (t − 1), t ∈ [0,1].

For Γ = {(θ1,τ1), . . . , (θn,τn)}, higher order cardinal exponential B-splines are defined via convolution of order-one factors

B1,{(θi ,1)}(t) = ρθi
(t)− eθiρθi

(t − 1),

that is as
BN ,Γ = B1,{(θ1 ,1)} ∗ · · · ∗ B1,{(θ1 ,1)}

︸ ︷︷ ︸

τ1−times

∗ · · · ∗ B1,{(θn ,1)} ∗ · · · ∗ B1,{(θn ,1)}
︸ ︷︷ ︸

τn−times

.

Cardinal exponential B-splines BN ,Γ share many important properties with B-splines. In particular, order-N cardinal exponential
B-splines are non-negative, have support [0, N], are CN−2-convergent and have the shortest possible support for the given
smoothness [10]. Moreover, shifted copies of BN ,Γ are linearly independent, see [10]. Finally, they can be defined via level-
dependent subdivision schemes by direct construction of the corresponding subdivision symbols as follows.

Proposition 3.1. Let n ∈ N and Γ = {(θ1,τ1), . . . , (θn,τn)} with θi ∈ R∪ iR, θi 6= θ j for i 6= j, and τi ∈ N, i = 1, . . . , n. Then the
Laurent polynomials

B[k]N ,Γ (z) = F [k]N

n
∏

`=1

(1+ e
θ`

2k+1 z)τ` , k ≥ 0,

with N =
n
∑

`=1

τ` and F [k]N ∈ R, are the symbols associated to a convergent subdivision scheme whose basic limit function is the cardinal

exponential B-spline BN ,Γ of order N.

The parameters F [k]N ∈ R, k ≥ 0, play the role of normalization factors (for details see [14, 35]).
When Γ = {(0, N)} the symbol B[k]N ,Γ (z) reduces to the symbol of the order-N (degree N − 1) polynomial B-spline given by

BN (z) =
1

2N−1 (1+ z)N , and this is exactly the limit of B[k]N ,Γ (z) as k→ +∞. In fact, exponential B-spline and B-spline subdivision
schemes are asymptotically similar in the sense that will be specified in Section 4 (Definition 4.1).
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Figure 4: From lower to taller functions: basic limit functions for the space EPΓ = span{1, t, eθ t , e−θ t}with θ ∈ {i, 3i, 5i, 7i} (left), θ ∈ {3, 2.5, 2, 0}
(right), obtained from the initial data set represented by a dashed line.
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Figure 5: From lower to taller functions: basic limit functions for the space EPΓ = span{eθ t , e−θ t , teθ t , te−θ t} with θ ∈ {i, 3i, 5i, 7i} (left),
θ ∈ {3,2.5, 2,0} (right), obtained from the initial data set represented by a dashed line.

Example 3.2. Consider the cardinal exponential B-splines for the space EPΓ = span{1, t, eθ t , e−θ t}, with θ ∈ R∪ iR. They can
be generated from the δ-sequence applying the subdivision scheme specified by the subdivision rules (see [2])

f [k+1]
2i =

1
4(v[k] + 1)

f [k]i−1 +
1+ 2v[k]

2(v[k] + 1)
f [k]i +

1
4(v[k] + 1)

f [k]i+1

f [k+1]
2i+1 = 1

2 f [k]i + 1
2 f [k]i+1 ,

where

v[k] =
1
2

�

ei θ

2k+1 + e−i θ

2k+1

�

=

√

√1+ v[k−1]

2
, k ≥ 0, v[−1] = cos(θ )> −1.

The free parameter v[−1] slightly influences the final shape of the exponential B-spline as shown in Figure 4.

Example 3.3. We now change the exponential-polynomial space and consider EPΓ = span{eθ t , e−θ t , teθ t , te−θ t}, with θ ∈ R∪ iR.
The corresponding exponential B-spline is obtained from the δ-sequence via the subdivision rules (see [14])

f [k+1]
2i =

1
2(v[k] + 1)2

f [k]i−1 +
4(v[k])2 + 2
2(v[k] + 1)2

f [k]i +
1

2(v[k] + 1)2
f [k]i+1

f [k+1]
2i+1 =

2v[k]

(v[k] + 1)2
f [k]i +

2v[k]

(v[k] + 1)2
f [k]i+1 ,

where

v[k] =
1
2

�

ei θ

2k+1 + e−i θ

2k+1

�

=

√

√1+ v[k−1]

2
, k ≥ 0, v[−1] = cos(θ )> −1.

The influence of the parameter v[−1] on the final shape of the exponential B-spline is illustrated in Figure 5.

As already mentioned, one of the main drawbacks of both polynomial and exponential B-splines is that they have low
approximation order. It means that, if used to approximate a set of data, a pre-processing of the data is necessary. From the point
of view of subdivision, the formal definition of approximation order [23, 39] is given as follows.

Definition 3.2. Let γ ∈ N, f ∈ Cγ(R) with ‖ f (`)‖∞ <∞, ` = 0, . . . ,γ. A convergent subdivision scheme {Sa[k] : k ≥ 0} is said to
have approximation order γ if the limit function g f [0] obtained from f [0] = { f (ih) : i ∈ Z}, h ∈ R+, satisfies

‖g f [0] − f ‖L∞(R) ≤ C f hγ,

with C f a positive constant depending only on f .

Dolomites Research Notes on Approximation ISSN 2035-6803



Conti · Cotronei · Romani 37

Figure 6: Limits of a reproducing subdivision scheme (outer/red lines) and a generating subdivision scheme (inner/blue lines) obtained from
the initial data set represented by a dashed line.

To be able to compute γ in Definition 3.2, we rely on the fact that the approximation order of any subdivision scheme is closely
connected with its generation/reproduction properties [29]. The latter concepts are explained in detail in [18] and recalled in
Definition 3.3. Loosely speaking we can say that the higher is the number of exponential polynomials reproduced, the higher is
the approximation order of the scheme [19].

Definition 3.3. Let
�

t[0]i = i + p : p ∈ R, i ∈ Z
	

be a non-decreasing parameter sequence. A convergent subdivision scheme

{Sa[k] : k ≥ 0} generates EPΓ if for all initial sequences f [0] =
�

f
�

t[0]i

�

: i ∈ Z
	

, f ∈ EPΓ ,

lim
k→+∞

Sa[k]Sa[k−1] · · ·Sa[0] f
[0] ∈ EPΓ .

Moreover, {Sa[k] : k ≥ 0} reproduces EPΓ if
lim

k→+∞
Sa[k]Sa[k−1] · · ·Sa[0] f

[0] = f .

To better understand the difference between generation and reproduction we can refer to Figure 6, where the limits of a
subdivision scheme generating exponential-polynomials and a subdivision scheme reproducing exponential-polynomials are
plotted in different colors, for the initial data set represented by the dashed line.

In order to increase the approximation order of a subdivision scheme (hence, of its basic limit function), the above discussion
can lead to the idea of constructing a subdivision scheme reproducing as many exponential polynomials as possible. Unfortunately,
the higher is the number of exponential polynomials reproduced, the bigger is the size of the support of the corresponding basic
limit functions. It has been recently shown that the most effective way to increase the approximation order of B-splines is to
construct the family of pseudo-splines [26, 27, 28, 29]. Indeed, pseudo-splines give a wide range of choices of refinable functions
that meet various demands for balancing approximation order, length of the support and also regularity. They are a family of
compactly supported refinable basic limit functions of stationary subdivision schemes not defined analytically. Since the first
members of the family of pseudo-splines are cardinal B-splines, they can be also seen as a generalization of B-splines.

By enforcing exponential polynomial reproduction in a purely algebraic way, pseudo-splines as well as their non-stationary
generalizations, given by exponential pseudo-splines [14], can be constructed in a general subdivision setting. Indeed, for the
class of convergent and non-singular subdivision schemes (providing a zero limit if and only if the starting sequence is the zero
sequence), reproduction of exponential polynomials is equivalent to the following set of algebraic conditions on the corresponding
subdivision symbols (see [9] and [18]).

Theorem 3.2. Let Γ = {(θ1,τ1), . . . , (θn,τn)} be defined as in Definition 3.1 and let z[k]
`
= e

−θ`
2k+1 , `= 1, . . . , n, k ≥ 0. A convergent

and non-singular subdivision scheme {Sa[k] : k ≥ 0} generates EPΓ if and only if

d r a[k](−z[k]
`
)

dz r
= 0, r = 0, . . . ,τ` − 1, `= 1, . . . , n, k ≥ 0. (5)

The subdivision scheme reproduces EPΓ , with respect to the parameters t[k]i =
i + p
2k

, p ∈ R, i ∈ Z, if and only if, in addition to (5),

d r a[k](z[k]
`
)

dz r
= 2

�

z[k]
`

�p−r
r−1
∏

q=0

(p− q), r = 0, . . . ,τ` − 1, `= 1, . . . , n, k ≥ 0.

Theorem 3.2 is the algebraic tool to be used for increasing the approximation order of exponential B-splines, by defining the
family of exponential pseudo-splines. Referring to [14], their definition can be briefly summarized as follows.

Definition 3.4. Let Γ = {(θ1,τ1), . . . (θn,τn)} be defined as in Definition 3.1 and let Γ̃ = {(θ1, τ̃1), . . . , (θ`, τ̃`)} with τ̃i ≤ τi for
all i = 1, . . . ,` and ` ≤ n. The exponential pseudo-spline is defined as the basic limit function of a convergent non-stationary
subdivision scheme {Sa[k] , k ≥ 0} with symbols

a[k]
N , L̃
(z) = B[k]N ,Γ (z) c[k]

L̃,Γ̃
(z), k ≥ 0 with N =

n
∑

i=1

τi , L̃ =
∑̀

i=1

τ̃i ,

Dolomites Research Notes on Approximation ISSN 2035-6803



Conti · Cotronei · Romani 38

-3 -2 -1 0 1 2 3

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

-0.5

0

0.5

1

1.5

Figure 7: Basic limit functions of the extreme members of two different families of exponential pseudo-splines obtained from the initial data set
represented by a dashed line.

where the Laurent polynomials c[k]
L̃,Γ̃
(z) are univocally identified by B[k]N ,Γ (z), L̃, Γ̃ , and constructed as specified in [14].

As proved in [14], the non-stationary subdivision scheme with symbols in Definition 3.4, generates exponential polynomials
in EPΓ , reproduces exponential polynomials in EPΓ̃ and has minimal support. A complete family of exponential pseudo-splines is
identified by taking Γ̃ of dimension L̃ ranging from 1 to N , so that the approximation order L̃ ranges between 1 and N . When
L̃ = 1, exponential pseudo-splines associated with Γ and Γ̃ ⊆ Γ , reduce to cardinal exponential B-splines. But, except for this
case, all other exponential pseudo-splines are neither piecewise exponential polynomials nor analytically defined functions. It
can be observed that the first and the last members of the family are opposite extreme cases: exponential B-splines have high
smoothness and short support, but provide a rather poor approximation order. In contrast, the limit functions corresponding
to the case L̃ = N are interpolatory subdivision schemes with optimal approximation order but lower smoothness and larger
supports. A plot of the basic limit functions of these two extreme cases for the families of exponential pseudo-splines a[k]

N , L̃
(z)

obtained from B[k]N ,Γ (z) =
(z + z−1 + 2v[k])ρ

22ρ−1(v[k])ρ
with ρ = 2 (left), ρ = 3 (right) and Γ = {(i,ρ), (−i,ρ)} are given in Figure 7 together

with the initial data set used in the subdivision procedure.

4 Approximation order of non-stationary subdivision schemes
The aim of this section is to provide some new results for determining the approximation order of non-stationary subdivision
schemes [19, 42]. To this purpose we need to recall the notions of asymptotical equivalence [30] and asymptotical similarity
[7, 12] and to provide known results related to non-stationary {Sa[k] : k ≥ 0} and to stationary Sa schemes. We always assume
that the corresponding masks {a[k] : k ≥ 0} and a have the same finite support.

Definition 4.1. The subdivision schemes {Sa[k] : k ≥ 0} and Sa, with supp(a[k]) = supp(a), for k ≥ 0, are said to be

i) asymptotically equivalent if
∞
∑

k=0

‖a[k] − a‖∞ <∞;

ii) asymptotically similar if lim
k→+∞

‖a[k] − a‖∞ = 0.

The following result from [30] links the basic limit functions of asymptotically equivalent non-stationary and stationary
schemes.

Proposition 4.1. Let {Sa[k] : k ≥ 0} be a convergent, non-stationary subdivision scheme with basic limit functions {φ[k] : k ≥ 0} and
let Sa be a convergent, stationary subdivision scheme with basic limit function φ. If there exists C > 0 such that ‖a[k]−a‖∞ ≤ C 2−νk,
with ν ∈ N, then there exists eC > 0 such that

‖φ[k] −φ‖∞ ≤ eC 2−νk.

As a consequence of Proposition 4.1, in view of the fact that φ is bounded, we obtain that {φ[k] : k ≥ 0} is uniformly bounded
independently of k, i.e. there exists a positive constant M such that ‖φ[k]‖∞ ≤ M , for all k ≥ 0.

We continue by recalling from [19] a theorem that estimates the approximation order of a non-stationary subdivision scheme
{Sa[k] : k ≥ 0} which reproduces exponential polynomials in EPΓ and is asymptotically similar to a stationary one, in case the
initial data are sampled from a function f in the Sobolev space W N

∞(R) (which is the space of all functions in L∞(R) with l-th
derivative in L∞(R) for all l = 0, . . . , N). For the sake of simplicity, from now on we will write the N -dimensional space EPΓ
as the space generated by the N functions ϕ0, . . . ,ϕN−1, where each ϕi(t), i = 0, . . . , N − 1, corresponds to some exponential
polynomial t ri eθi t , as in Definition 3.1, and we will drop the subscript Γ .

Theorem 4.2. [19, Theorem 21] Let EP = span{ϕ0, . . . ,ϕN−1} be an N-dimensional space of exponential polynomials and {Sa[k] :
k ≥ 0} a convergent non-stationary subdivision scheme. Assume that:

(i) {Sa[k] : k ≥ 0} reproduces EP and is asymptotically similar to a convergent, stationary subdivision scheme Sa with stable basic
limit function of Hölder continuity α ∈ (0, 1);
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(ii) the initial data are of the form f [m] = { f [m]i = f (2−mi), i ∈ Z} for some fixed integer m≥ 0 and for some function f ∈W N
∞(R),

and that g f [m] is the limit of the scheme for such initial data;

(iii) the Wronskian matrix W =
�

ϕ(r)s (0)

r!
: r, s = 0, . . . , N − 1

�

is invertible.

Then

‖g f [m] − f ‖L∞(R) ≤ C f 2−Nm, m≥ 0,

where C f > 0 is a constant depending only on f .

We point out that this result limits the approximation order of a non-stationary subdivision scheme to be equal to the number
of exponential polynomials reproduced. We next prove that the approximation order can be higher. Indeed we show that it
coincides with the minimum between the approximation order of the asymptotically equivalent stationary scheme and the sum
N + ν of the number N of reproduced exponential polynomials and the rate ν of convergence of the sequence of level-dependent
masks.

Theorem 4.3. Let EP = span{ϕ0, . . . ,ϕN−1} be an N-dimensional space of exponential polynomials. Let Sa and {Sa[k] : k ≥ 0} be
convergent, respectively stationary and non-stationary, subdivision schemes. Assume that:

(i) Sa reproduces polynomials up to degree M − 1, with M ≥ N;

(ii) {Sa[k] : k ≥ 0} reproduces EP;

(iii) the subdivision masks {a[k] : k ≥ 0} and a satisfy ‖a[k] − a‖∞ ≤ C 2−νk for some ν ∈ N;

(iv) the Wronskian matrix W =
�

ϕ(r)s (0)

r!
: r, s = 0, . . . , N − 1

�

is invertible;

(v) the initial data are of the form f [m] = { f [m]i = f (2−mi) : i ∈ Z}, for some fixed integer m≥ 0 and for some function f ∈W M
∞(R).

Then

‖g f [m] − f ‖L∞(R) ≤ C f 2−σm, σ =min(N + ν, M), m≥ 0,

with C f a positive constant depending only on f .

Proof. The proof generalizes the proof of [19, Theorem 21]. The idea is to fix x in R and to employ another auxiliary function ψ
defined as

ψ=
N−1
∑

n=0

dnϕn(· − x),

where the coefficient vector d = (dn : n= 0, . . . , N − 1) is obtained by solving the linear system

ψ(r)(x) = f (r)(x), r = 0, . . . , N − 1. (6)

In matrix form (6) reads as
W dT = f T with f = ( f (r)(x), r = 0, . . . , N − 1)T .

The non-singularity of this linear system is guaranteed by the assumption (iv). Clearly, the function ψ belongs to the space EPΓ .
Then, since the non-stationary scheme {Sa[k] : k ≥ 0} reproduces such functions, we obtain the identity

ψ=
∑

i∈Z

φ[m](2m · −i)ψ(2−mi), (7)

with {φ[m] : m ≥ 0} denoting the basic limit functions of the non-stationary scheme. By hypothesis, f [m]i = f (2−mi) for i ∈ Z.
Thus, using the expression of g f [m] in terms of basic limit functions, we estimate the difference f − g f [m] . By the construction of
ψ in (6), f (x) =ψ(x). Then

f (x)− g f [m](x) =ψ(x)−
∑

i∈Z

φ[m](2m x − i) f (2−mi)

=
∑

i∈Z

φ[m](2m x − i)
�

ψ(2−mi)− f (2−mi)
�

.

Now, let Th =
M−1
∑

`=0

(· − x)`
h(`)(x)
`!

be the Taylor polynomial of degree (M −1) of a function h ∈W M
∞(R) around x , and consider the

Taylor expansions Tψ and Tf of both the functions ψ and f around x . Using the Lagrange remainder formulas of such expansions,
we get

(ψ− f )(2−mi) =
M−1
∑

r=0

(2−mi − x)r

r!
(ψ− f )(r)(x) +

(2−mi − x)M

M !
(ψ− f )(M)(ξi),

for some ξi between x and i2−m.
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Due to the conditions ψ(r)(x) = f (r)(x), for r = 0, . . . , N − 1, N ≤ M , we have that

f (x)− g f [m](x) =
∑

i∈Z

φ[m](2m x − i)
M−1
∑

r=N

(2−mi − x)r

r!
(ψ− f )(r)(x)

+
∑

i∈Z

φ[m](2m x − i)
(2−mi − x)M

M !
(ψ− f )(M)(ξi),

for some ξi between x and i2−m. Therefore,

| f (x)− g f [m](x)| ≤
1
N !

M−1
∑

r=N

�

�

�

∑

i∈Z

φ[m](2m x − i) (2−mi − x)r
�

�

�

�

|ψ(r)(x)|+ | f (r)(x)|
�

+
1

M !

�

�

�

∑

i∈Z

φ[m](2m x − i) (2−mi − x)M
�

�

�

�

|ψ(M)(ξi)|+ | f (M)(ξi)|
�

.

Since f ∈W M
∞(R) and |ψ(M)(ξi)|, |ψ(r)(x)|, r = N , . . . , M − 1, are bounded, we conclude that

| f (x)− g f [m](x)| ≤
C
N !

�

M−1
∑

r=N

�

�

�

∑

i∈Z

φ[m](2m x − i) (2−mi − x)r
�

�

�

+
�

�

�

∑

i∈Z

φ[m](2m x − i) (2−mi − x)M
�

�

�

�

.

The boundedness of the derivatives above follows by a Taylor expansion argument (with respect to x) applied to ψ combined
with equation (7) which guarantees, due to the boundedness of φ[m], that ψ is also bounded. Next, we know by assumption that
φ reproduces PM−1, that is

∑

i∈Z

(2−mi − x)rφ(2m y − i) = (y − x)r , 0≤ r ≤ M − 1,

which implies
∑

i∈Z

φ(2m x − i) (2−mi − x)r = 0, N ≤ r ≤ M − 1.

Then, writing φ[m] as (φ[m] −φ) +φ,
�

�

�

∑

i∈Z

φ[m](2m x − i) (2−mi − x)r
�

�

�≤ 2−mr
∑

i∈Z

�

�

�φ[m](2m x − i)−φ(2m x − i)
�

�

� |i − 2m x |r .

Now, using asymptotical equivalence and the result in [30] we have
�

�

�φ[m](2m x − i)−φ(2m x − i)
�

�

�≤ C2−νm,

and due to the fact that, from Proposition 4.1, φ[m] is compactly supported and uniformly bounded independently of m, we arrive
at

| f (x)− g f [m](x)| ≤ C12−(N+ν)m + C22−Mm,

which concludes the proof.

5 Conclusion
This paper discusses several generalizations of polynomial B-splines, including exponential B-splines and the larger family
of exponential pseudo-splines, with emphasis on their connections to level-dependent subdivision schemes. In addition, it
provides conditions to establish the approximation order of non-stationary subdivision schemes reproducing spaces of exponential
polynomial functions.

All the discussion relates to the univariate case even though similar results could be considered in the multivariate case.
However, while a very recent notion of bivariate pseudo-splines is presented in [17], to the best of our knowledge, no notion of
multivariate exponential pseudo-splines is yet available making any multivariate extension certainly more complex.
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