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Abstract

We develop the Blooming Tree Algorithm, a new technique that uses spectroscopic redshift data alone to identify
the substructures and the surrounding groups of galaxy clusters, along with their member galaxies. Based on the
estimated binding energy of galaxy pairs, the algorithm builds a binary tree that hierarchically arranges all of the
galaxies in the field of view. The algorithm searches for buds, corresponding to gravitational potential minima on
the binary tree branches; for each bud, the algorithm combines the number of galaxies, their velocity dispersion,
and their average pairwise distance into a parameter that discriminates between the buds that do not correspond to
any substructure or group, and thus eventually die, and the buds that correspond to substructures and groups, and
thus bloom into the identified structures. We test our new algorithm with a sample of 300 mock redshift surveys of
clusters in different dynamical states; the clusters are extracted from a large cosmological N-body simulation of a
ΛCDM model. We limit our analysis to substructures and surrounding groups identified in the simulation with
mass larger than 1013 h−1Me. With mock redshift surveys with 200 galaxies within 6 h−1 Mpc from the cluster
center, the technique recovers 80% of the real substructures and 60% of the surrounding groups; in 57% of the
identified structures, at least 60% of the member galaxies of the substructures and groups belong to the same real
structure. These results improve by roughly a factor of two the performance of the best substructure identification
algorithm currently available, the σ plateau algorithm, and suggest that our Blooming Tree Algorithm can be an
invaluable tool for detecting substructures of galaxy clusters and investigating their complex dynamics.

Key words: galaxies: clusters: general – large-scale structure of universe – methods: numerical – methods:
statistical

1. Introduction

According to the standard cold dark matter (CDM)
paradigm, large cosmic structures form by merging of smaller
structures (Colberg et al. 1999, 2005). In this hierarchical
universe, galaxy clusters form at later times, and, at the present
time, some clusters are still accreting mass by merging. A clear
signature of this process is the presence of substructures in the
galaxy density distribution, in the X-ray and radio emission, or
in the dark matter distribution inferred from gravitational
lensing (e.g., Yu et al. 2016, and references therein). Therefore,
investigating the properties of substructures can constrain the
models of structure formation and evolution (Geller &
Beers 1982; Mohr et al. 1996; Natarajan et al. 2007; Okabe
et al. 2014; Mohammed et al. 2016; Yu et al. 2016), the
connection between galaxy properties and environment (e.g.,
Hwang et al. 2012; Pranger et al. 2013; Agulli et al. 2016;
Utsumi et al. 2016; Oguri et al. 2018), and even the nature of
dark matter (e.g., Harvey et al. 2015; Kummer et al. 2018;
Robertson et al. 2017).

Identifying dynamically distinct substructures in galaxy
clusters is not a trivial task. Most methods identify substruc-
tures in the galaxy density distribution based on spectroscopic
data (see Yu et al. 2015 for a brief review). Among these
methods, those relying on the hierarchical clustering analysis
appear to be particularly efficient.

The hierarchical clustering analysis is a general statistical
method. It is designed to partition a system into optimally

homogeneous subgroups on the basis of empirical measures of
similarity (see Everitt et al. 2011 for a detailed description).
Materne (1978) first applied a hierarchical clustering analysis to
astronomical data to identify groups of galaxies. Serna &
Gerbal (1996) introduced the pairwise binding energy to link
galaxies in the field of view (FoV) of a cluster and arrange
them in a binary tree. Building a binary tree is a standard
method to quantify the hierarchical structures of the entire
system. This approach does not rely on any morphological
assumption or dynamical state, and it is thus suitable for
analyzing dynamically complex self-gravitating systems, like
galaxy clusters.
In 1997, Diaferio & Geller (1997) introduced the caustic

method to estimate the mass profile of galaxy clusters in their
outer regions, where the dynamical equilibrium assumption
does not necessarily hold. In the detailed illustration of the
algorithm of the caustic method, where galaxies are arranged in
a binary tree, similar to the procedure suggested by Serna &
Gerbal (1996), Diaferio (1999) first proposed the identification
of a σ plateau on the main branch of the tree to locate the
cluster and return a list of cluster members and cluster
substructures. Serra et al. (2011) provide detailed and complete
statistical tests of the caustic technique and propose a refined
and more robust version of this σ plateau algorithm.
The efficiency of the σ plateau algorithm to identify the

cluster substructures in N-body simulations is shown in Yu
et al. (2015), who emphasize a unique feature of this algorithm:
unlike other methods for the identification of substructures with
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spectroscopic data, like the Dressler & Shectman (DS) method
(Dressler & Shectman 1988; Solanes et al. 1999; Knebe &
Müller 2000; Aguerri & Sánchez-Janssen 2010; Dressler
et al. 2013) or the KMM (Bird 1994; Colless & Dunn 1996;
Barmby & Huchra 1998) or DEDICA (Pisani 1996; Ramella
et al. 2007) algorithms, the σ plateau algorithm gives an
unambiguous association of galaxies to individual substruc-
tures; it thus enables the estimation of the substructure
properties, like size, velocity dispersion, and mass.

With this feature available, we can apply the strictest
criterion for comparing the substructures identified in three
dimensions in an N-body simulation with the substructures
identified in redshift space: in mock redshift surveys with 200
galaxies within 3R200 from the cluster center, where R200 is the
usual radius of the sphere whose average density is 200 times
the critical density of the universe, the σ plateau algorithm
recovers ∼30%–50% of the real substructures, depending on
the mass and the dynamical state of the cluster (Yu et al. 2015).
This performance is unprecedented. The algorithm was
successfully applied to the galaxy distribution in the FoV of
the cluster A85 (Yu et al. 2016): it provided a unique
understanding of the complex dynamics of this cluster when
combined with the bulk motions of the intracluster medium in
different regions, as inferred by the redshift measurements
derived by X-ray spectroscopy.

Despite its very good performance, the σ plateau algorithm
actually overlooks the crucial fact that cluster substructures can
have widely different velocity dispersions. Here, we present the
Blooming Tree Algorithm, a new algorithm that takes this fact
into account and thus represents a significant improvement over
the σ plateau algorithm. We show how this more sophisticated
algorithm substantially doubles the substructure identification
efficiency. In addition, the Blooming Tree Algorithm returns
the list of the groups in the cluster outskirts along with their
members. This feature provides a fundamental tool that enables
a quantitative investigation of the merging and accretion
history of galaxy clusters (Rines et al. 2001; Lemze et al. 2013;
De Boni et al. 2016).

In Section 2, we describe the cosmological N-body
simulation and the mock redshift surveys of the galaxy cluster
fields we use to test the method. We describe the Blooming
Tree Algorithm and its results in Sections 3 and 4, respectively.
In Section 5 we compare the performance of our new technique
with the σ plateau algorithm. We conclude in Section 6.

2. The Mock Redshift Catalogs of Simulated Clusters

We use the Coupled Dark Energy Cosmological Simulations
(Baldi 2012), the largest set to date of N-body simulations that
model the interaction between a dark energy scalar field and the
CDM fluid. Here, we only consider the simulation of the
standard ΛCDM model with fiducial WMAP7 parameters
(Komatsu et al. 2011). The simulated volume is a cube of
1 comoving h−1 Gpc on a side (h=H0/100 km s−1 Mpc−1 is
the dimensionless Hubble constant), containing 10243 CDM
particles with mass 5.84×1010 h−1Me and the same number
of baryonic particles with mass 1.17×1010 h−1Me. We only
consider the dark matter particles: we assume that, in the real
universe, galaxies are unbiased tracers of the velocity field of
the dark matter particles. In fact, both N-body simulations (e.g.,
Diaferio et al. 2001; Diemand et al. 2004; Gill et al. 2004,
2005) and observations (e.g., Rines et al. 2008, 2016) indicate

that any velocity bias between galaxies and dark matter is
smaller than 10%.
Halos are identified with the friends-of-friends (FoF) algorithm

(Huchra & Geller 1982; Davis et al. 1985), which links particles
with distances less than the linking length lFoF to form a group. We
adopt the standard linking length lFoF=0.2 lmean, with lmean the
mean interparticle separation, corresponding to the overdensity at
virialization δv=ρ/ρb=185 (Audit et al. 1998), with ρb the mean
background density. In this procedure, the FoF halos are identified
using the CDM particles as primary tracers and then linking
baryonic particles to the group of their closest CDM neighbor.
We also identify the 3D substructures of the halos in the

simulations with SUBFIND (Springel et al. 2001), whose
algorithm is based on the overdensity and the gravitational
binding energy of the particles (see Baldi 2012 for further
details). With the mass of a 3D substructure we always indicate
its total mass, namely the sum of the mass of the particles (both
CDM and baryons) that are gravitationally bound to that
substructure as identified by SUBFIND.
We consider a sample of 100 FoF halos at redshift z=0

within the mass range 1014–1015 h−1Me with the aim of
covering the variety of dynamical states; specifically, we
consider 50 “merging” halos and 50 “normal” halos. We
choose the 50 merging halos whose mass is closest to
5×1014 h−1Me and that contain a substructure whose mass
is at least half the mass of the halo core, where the core is the
SUBFIND substructure whose center coincides with the halo
center. Among the remaining halos in 1014–1015 h−1Me, we
select the 50 normal halos whose mass is closest to
5×1014 h−1 Me and that are not merging halos. The masses
of our 100 halos are in the range (4.17–6.39)×1014 h−1Me,
with a median mass 4.93×1014 h−1Me.
We locate each halo at the center of the simulation box,

exploiting the periodic boundary conditions. To mimic the
observation of real clusters, we assign the celestial coordinates
(α, δ)=(6h, 0°) and a redshift distance cz=36,000 kms−1 to
the halo center. Around the halo, we consider a rectangular
prism enclosing the volume corresponding to a solid angle that at
the halo distance ensures we cover a square area 12 h−1Mpc
wide. The volume is centered on the halo, and it is 140 h−1Mpc
deep. The resulting FoV is 1°.6×1°.6. For each halo, we apply
this procedure to three orthogonal directions. Since the halos are
generally not spherically symmetric, for our statistical purposes
we can consider these three catalogs as independent mock
clusters. So we obtain 300 mock redshift catalogs.
The observational volumes we extract from the simulation

typically contain ∼6×104 particles. To get the number of
particles close to a realistic number of observable galaxies, we
randomly sample the dark matter particles until we obtain a given
number of particles Nc within a sphere of radius 6 h−1Mpc from
the halo center, corresponding to ∼5R200 for the halos of our
sample. This procedure yields mock catalogs with different
numbers of total particles N. To explore the effect of particle
sampling, we build catalogs with Nc=(50, 100, 150, 200, 250,
300). Additionally, we only retain particles in the mock catalogs
whose redshift is within ±4000kms−1 from the halo redshift.
By randomly sampling the dark matter particles, the number

of members of a 3D substructure in the mock catalog can be
substantially reduced or even vanish. We only consider 3D
substructures that have at least 10 particles appearing in the
FoV. An example is shown in Figure 1. It is a mock catalog
with Nc=100 and N=304.

2
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The properties of our mock catalogs are listed in Table 1.
The third to fifth columns list the medians and percentile ranges
of the number of particles N in the FoV as a function of Nc.
These mock redshift surveys are comparable to recent large
galaxy surveys of clusters and their surroundings, such as CIRS
(Rines & Diaferio 2006) and HeCS (Rines et al. 2013). The
seventh column is the total number of 3D substructures nsub,
with at least 10 member particles in the FoV and with mass
larger than 1013 h−1Me. This threshold is the minimum 3D
substructure mass set by the number of luminous galaxies that
can be detected in current typical surveys: a 1013 h−1Me

substructure is expected to contain a handful of galaxies
brighter than 1010 h−1 Le at most. Table 1 also lists the total
number of halos ncl and the total number of groups ngrp, namely
the 3D halos found by the FoF algorithm, that surround each
individual central halo. As expected, the number of 3D
surrounding groups appearing in the FoV increases with
increasing Nc, whereas the number of 3D substructures appears
to be less sensitive to Nc. Hereafter we refer to the halo at the
center of the FoV as the cluster and to the particles in the FoV
as the galaxies.

The Blooming Tree Algorithm identifies three different
kinds of structures: (1) substructures, (2) cores, and (3)
surrounding groups. The substructures only contain main
cluster members, namely the galaxies linked by the FoF
algorithm; the core is the substructure that contains the cluster
center; the surrounding groups are structures containing
galaxies that are not members of the main cluster. Below we

generically indicate any of these three kinds of structures as
structures, unless specified otherwise.

3. The Blooming Tree Algorithm

3.1. Tree Construction

According to hierarchical clustering models, clusters of
galaxies form by the aggregation of smaller systems accreting
from the surrounding region. To a good approximation,
galaxies are collisionless objects during cluster merging, and
the transfer of mechanical energy to galaxy internal degrees of
freedom is negligible. If the 3D binding energy can be fairly
represented by their projected values, we can infer the internal
structures of a cluster based on a hierarchical clustering
analysis, where we adopt the galaxy projected binding energy
as the similarity. Although the 3D and projected binding
energies of an individual pair might be largely discrepant from
each other, these two quantities in a sample of pairs are
strongly correlated, supporting our adoption of the projected
binding energy in the hierarchical clustering analysis.8

Figure 1. The upper panel shows the distribution of the 3D substructures and
the surrounding groups of a merging halo on the plane of the sky. The axis
labels show both the projected celestial coordinates R.A. and decl., in radiants,
and the comoving coordinates in the N-body simulation. The blue solid dots
show the particles in the halo core at the center of the FoV (sub 0 in the inserted
legend). The red solid dots show the members of the largest 3D substructure
that identifies this halo as a merging halo (sub 1 in the legend). The colored
open circles show the members of the surrounding groups, as listed in the
inserted legend. The remaining black points show the remaining particles in the
FoV. The lower panel provides a 3D perspective of the system. We overplot a
box with dimensions 14×14×60 h−3 Mpc3.

Table 1
Number of Particles N and Structures in the FoV

Nc Type N ncl nsub ngrp
10% 50% 90%

50 Normal 127 176 257 150 21 233
Merging 128 173 268 150 133 274

Total 128 176 264 300 154 507

100 Normal 250 362 502 150 48 532
Merging 258 364 523 150 185 550

Total 256 364 515 300 233 1082

150 Normal 400 527 747 150 73 821
Merging 397 526 800 150 217 855

Total 399 527 776 300 290 1676

200 Normal 522 709 1004 150 83 1090
Merging 506 717 1048 150 244 1144

Total 515 716 1010 300 327 2234

250 Normal 653 882 1279 150 82 1357
Merging 649 889 1268 150 255 1391

Total 649 886 1279 300 337 2748

300 Normal 795 1044 1571 150 102 1592
Merging 783 1066 1528 150 276 1595

Total 795 1063 1562 300 378 3187

8 Nonparametric statistical tests between the 3D binding energy of individual
galaxy pairs in our simulation and their 2D binding energy estimated with
Equation (1) demonstrate that the correlation between the two quantities is
strong: for our sample of ∼1.4×107 pairs, we find the Spearman and Kendall
rank correlation coefficients r=0.50 and τ=0.46, respectively, which have a
probability P<10−30 to appear for an uncorrelated sample. These coefficients
increase to r=0.79 and τ=0.62, again with probability P<10−30, if we
limit the sample to bound pairs, namely pairs with negative 3D binding energy.
To find a probability P>10−30, we need to take a random subsample of less
than 100 pairs: for a subsample of 36 pairs, we find P=4×10−8 and
P=4×10−9 for the Spearman and Kendall correlation coefficients,
respectively, showing that the correlation remains robust even for relatively
small pair samples.

3
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We perform the hierarchical clustering analysis by building a
binary tree as follows (see Diaferio 1999 and Serra et al. 2011
for further details):

i. Initially each galaxy is a group gα.
ii. The binding energy E Emin ij=ab { }, where Eij is a

projected binding energy between the galaxy i gÎ a and
the galaxy j gÎ b, is the similarity associated with each
group pair gα, gβ. The projected binding energy is
estimated with the equation

E G
m m

R

m m

m m

1

2
, 1ij

i j

p

i j

i j

2= - +
+

P ( )

where Rp is the pair projected separation, Π is the line-of-
sight velocity difference, and mi=mj=1012 h−1Me is
the typical total mass of a luminous galaxy.9

iii. The two groups with the smallest binding energy Eαβ are
replaced with a single group gγ, and the total number of
groups is decreased by one.

iv. The procedure is repeated from step (ii) until only one
group is left.

At this stage, all of the galaxies, now the leaves, are arranged
in a binary tree that quantifies their hierarchical relationship.
When plotting the dendrogram representing the binary tree
(Figure 2, top panel), the node index, namely the similarity, or
the binding energy in our case, is adopted as the quantity
shown on the vertical axis (Serna & Gerbal 1996). However, in
our case, the vertical axis can show more information when a
different quantity is displayed.

Here we choose to show the velocity dispersion of each
node, estimated with all of the leaves hanging from that node,
because it is a physical property directly related to the depth of
the gravitational potential well of a bound structure. The
velocity dispersion of the nodes is not always a monotonic
function when walking from the root to the leaves; therefore,
unlike the projected binding energy, displaying the velocity
dispersion on the y axis of the dendrogram might produce
branches that intersect each other, as shown in the bottom panel
of Figure 2. However, this choice is more advantageous
than displaying the similarity, because it generally separates
different bound structures more clearly.

The dendrograms shown in Figure 2 correspond to the
merging cluster in the FoV shown in Figure 1: the member
galaxies of the core (in blue) and of the main substructure
(in red) are mainly separated into two branches. However, due
to projection effects, the members of the same structure are not
always close to each other on the dendrogram. Surrounding
groups (with green, yellow, cyan, and magenta circles in
Figure 1) also appear as distinct branches of the binary tree.
The goal of the next step of our Blooming Tree Algorithm is to
identify the branches corresponding to these structures.

Incidentally, we remark here that in the language of the
standard cluster analysis (e.g., Everitt et al. 2011; Hennig
et al. 2015), our binary tree construction is based on a
single-linkage hierarchical algorithm. Being based on an
estimate of the pairwise gravitational binding energy of

galaxies, which is the fundamental physical quantity for
identifying gravitational structures, our approach is the best
physically motivated method and compensates for known
shortcomings of the single-linkage method, like the tendency of
connecting independent structures, similar to the standard
friends-of-friends algorithm (Huchra & Geller 1982). The
physical interpretation of the linkage in other standard
agglomerative methods, less prone to this shortcoming, would
necessarily be, in this context, more vague and questionable.

3.2. Buds: Binding Energy Minima

Substructures hang from different nodes of separated
branches. They may have different velocity dispersions and
different binding energies because they have different masses.
The identification of these structures requires the identification
of the proper branches of the binary tree.
To locate the minima of the gravitational potential wells, we

consider the binding energy of all of the leaves. An example is
shown in the lower inset in the bottom panel of Figure 2. This
binding energy shows deep minima corresponding to real
structures and fluctuations mostly caused by chance align-
ments. To suppress this noise, we smooth the profile with a box
filter that is five leaves wide. The blue solid curve in the inset
shows the smoothed profile. We call buds the local minima of
this smoothed binding energy profile. Smoothing algorithms
more sophisticated than the box filter are clearly possible, but
they are unnecessary for our only purpose here of finding the
buds from the local minima of the binding energy curve.
The buds identify the branches that will be searched for the
identification of the real structures, as illustrated in the
next step.

3.3. Branch Searching and Blooming Buds

Let us consider the dendrogram in the bottom panel of
Figure 2, where the vertical axis shows the velocity dispersion
of each tree node, and let us walk from the leaves to the root on
a given branch by moving from one node to its parent node.
Being a binary tree, this path implies adding a leaf at each step.
We see that the velocity dispersions of the nodes on the same
branch either are basically unaffected by the step toward the
root or vary substantially. In other words, when moving from
the leaves to the root, the velocity dispersion on a given branch
does not generally grow smoothly, but it shows either sudden
jumps or plateaus. These plateaus indicate the presence of
structures. The original version of the σ plateau algorithm
identifies one single plateau on the main branch of the tree and
isolates the cluster and its substructures (Diaferio 1999; Serra
et al. 2011; Yu et al. 2015). In systems with complex dynamics,
the single plateau might not actually be flat or there might
be several plateaus. Identifying a single plateau is thus not
obvious: a too-large threshold may erroneously associate
distinct substructures into a single substructure, whereas a
too-small threshold may separate an individual substructure
into smaller clumps.
Here, we implement a new algorithm that combines three

pieces of information that are missing from the original version
of the σ plateau algorithm: the line-of-sight velocity dispersion
σv of the leaves hanging from a node, the number n of these
leaves, and the distribution of the leaves on the sky; σv and n
are combined in the average velocity dispersion σv/n, because,
when two branches corresponding to two distinct structures

9 At this stage, we refrain from including different masses for galaxies of
different luminosity to avoid the introduction of additional degrees of freedom:
the mass-to-light ratio depends on the galaxy morphological type and
luminosity, which, in turn, depends on the fixed angular aperture generally
used for the photometric measurement; therefore, including the connection
between the measured luminosity and the galaxy mass requires a nonnegligible
number of parameters.

4
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with similar σv and n merge, the branch of the combined
structure has σv comparable to the original structures, but σv/n
is reduced by a factor of ∼2. Therefore, the relation σv versus
node index is roughly flat, whereas the relation σv/n versus
node index shows a rapid decrease. We also take the
distribution of the galaxies on the sky into account, because
this piece of information is crucial to identifying a real 3D
structure, as we show below.

To implement these three diagnostics, we consider the mass
of a system estimated with the virial theorem

M R
R

G

4

3

3
, 2v v v c

v v3
2

p d r a
s

= = ( )

where Rv is the virial radius, the average density of the system
is δv times the critical density ρc=3H2/8πG, with H the

Figure 2. Two dendrograms illustrating the binary tree of the merging cluster shown in Figure 1 with 304 galaxies in the FoV. The galaxies are the leaves of the tree at
the bottom of each dendrogram. All galaxies belonging to different structures are shown with different colors, with the same color code as in Figure 1. In the top panel,
the y axis of the dendrogram displays the node index: larger indexes indicate less bound branches. In the bottom panel, the y axis of the dendrogram displays the node
velocity dispersion. The black dots, one for each leaf, in the lower inset in the bottom panel show the binding energy profile of the binary tree: the blue solid curve is
obtained by smoothing the profile with a five-leaf-wide box filter; the red dots show the local minima, or buds, whereas the horizontal solid black line indicates a
binding energy equal to zero.
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Hubble parameter, and α is a numerical factor of order unity
that depends on the mass distribution within the system;
hereafter, we neglect this constant, because it is irrelevant for
our purpose. All self-gravitating systems in dynamical
equilibrium thus satisfy the relation

R
G H

4

9 6
, 3v

v
v c

vs
p d r

d
= = ( )

unlike random associations of unrelated galaxies. The trend of
σv/Rv against the node number will thus show a discontinuity
when walking on the binary tree from a bound structure to a
region containing unrelated galaxies. As a robust estimate of
Rv, we use the 2D average distance davg=2 Rv/n

1/2, with

d
x x y y

n n 1
, 4

i j i j i j
avg

2 2

=
S - + -

-

¹ ( ) ( )

( )
( )

where xi,j and yi,j are the Cartesian coordinates of the galaxies i
and j on the plane of the sky.

By replacing Rv in Equation (3) with davg and dropping the
factor 2, which is irrelevant for our purpose, we finally adopt
the following quantity to identify the structures:

n d
km s Mpc . 5v

1 2
avg

1 1h
s

= - - ( )

Figure 3 shows the typical trends of some of the quantities
defined above with the node index; σv and davg have been
arbitrarily rescaled to fit into the plot. The figure shows that all
three quantities, the velocity dispersion σv, the galaxy number
n, and the average distance davg, increase when the branch
includes more galaxies. In passing, we note that σv has an upper
limit, outside the range shown in Figure 3, because we limit the
redshift range of the sample to ±4000kms−1. Also, a small
davg makes η very large for compact systems.

When, by walking along a branch corresponding to a real
structure, we start including interloping galaxies, the increased
number of galaxies and the increased average distance are not
compensated for by a proportional increase of σv: η will thus
abruptly decrease with the node index. This downward jump of
η can be used as a diagnostic for the identification of the
structures. However, the amount of the decrease can substan-
tially vary from case to case, depending on physical conditions,

like local density, richness, and mass of the structure, and
observational constraints, like completeness and survey
density. A more suitable diagnostic is Δη, the difference
between the value of ηsub associated with the structure and the
value of ηbck associated with background region surrounding
the structure.
We define ηsub as the value of η for each 3D structure with at

least 10 galaxies in the FoV, and ηbck as the value of η of the
region centered on each 3D structure and extending to a
projected radius R5, which is five times larger than the radius of
the structure, estimated by the radius of the smallest circle
enclosing the structure on the plane of the sky. To estimate
ηbck, we use Equation (5), where now n is the number of
galaxies within the circle of radius R5 and σv is their velocity
dispersion. This definition of ηbck quantifies how the value of
η of a 3D structure is affected by the inclusion of galaxies
appearing in the surrounding area projected on the sky, which
are likely to be unbound to the structure. This definition is more
appropriate than, for example, choosing a random area in the
FoV in the neighborhood of the structure, because the galaxy
distribution is highly inhomogeneous on these cosmic scales,
and the probability of selecting another structure in the random
field is not negligible; the value of ηbck would thus be not
representative of a random sample of unrelated galaxies.
Figure 4 shows that the distribution of ηsub, the blue open

histogram, is rather flat and mostly extends beyond ηsub=100;
on the contrary, most ηbck, the open red histogram, tend to be
closer to zero because davg increases more rapidly than n and
σv. The distribution of Δη=ηsub−ηbck, the solid histogram,
qualitatively resembles the distribution of ηsub.
The three panels in Figure 4 show the distributions of ηsub,

ηbck, and Δη for three values of the Nc member galaxies in the
cluster, to mimic different densities of the redshift survey. The
value of Nc slightly affects these distributions: the 10th, 50th,
and 90th percentiles of the ηsub distributions are (160, 298,
574), (139, 297, 600), and (127, 288, 608) for Nc=100, 200,
and 300, respectively; similarly, the percentiles for the ηbck
distributions are (32, 66, 227), (24, 70, 260), and (21, 73, 286),

Figure 3. Node properties of one branch (grp 0, green) of the binary tree of
Figure 2 from the leaves to the root; davg and σv are rescaled to fit into the plot.
The blue square indicates the key node where we cut the branch.

Figure 4. The distribution of ηsub from all 3D structures with at least 10
particles (open blue histogram), the distribution of ηbck from the region
centered on each structure and extending to a radius five times larger than the
radius of the 3D structure (open red histogram), and the distribution of
Δη=ηsub−ηbck (solid cyan histogram). The vertical line indicates our
threshold Δη=100. Each panel is for a different number Nc of member
galaxies in the cluster, as indicated in each panel.
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and for Δη are (103, 213, 415), (89, 195, 404), and (69, 183,
400). To filter out random associations of unrelated galaxies
and identify the list of structure candidates, we adopt a
threshold for Δη. In Section 4.1, we define the success rate and
completeness of the sample of 2D structures identified with the
Blooming Tree Algorithm; we show how these two quantities
vary with the threshold Δη. For Δη=100, which is close to
the 10th percentile of the Δη distribution, the completeness is
maximized. We thus choose this threshold for our following
analysis. We have also tested that other values of this threshold,
in the range Δη=(50,120), leave our results substantially
unaffected.

Given the similarity of the trends of 1/davg and η shown in
Figure 3, we might believe that the same argument used for
η could be applied to 1/davg, and that davg, rather than η, could
be used as a diagnostic. This is not the case, however, because
the two parameters σv and n, contained in η, partly balance the
variation of davg with different densities of the redshift survey
and different densities of the system itself: davg varies from
compact to loose groups, which are both real systems, and it is
different in the center and in the outer regions of clusters.
Therefore, a single threshold on davg, or Δdavg, is unable,
unlike Δη, to identify structures in different environments and
with different observational constraints.

To identify the 2D structures from the redshift data alone, the
algorithm proceeds as follows: we explore all branches
showing a bud or a local minimum of the binding energy
profile. We compute Δη along each branch from the leaves to
the root, and we label as a key node the node before the last
downward variation larger than the threshold Δη=100. The
key node from which at least six galaxies hang and no other
key node hangs identifies a 2D structure: in other words, the
bud associated with the branch containing this key node
becomes a flower, and our tree blooms.

Figure 5 shows an example of this binary tree analysis for
the same system shown in Figure 1. The corresponding

distribution on the sky of the identified structures is shown in
Figure 6: visually, the rich substructures and groups appear to
be recovered at the proper position and with their proper size.
In the next section, we compare the properties of the 2D
structures with the 3D structures and provide a statistical
analysis of the performance of our structure identification
method.

4. Performance of the Blooming Tree Algorithm

4.1. Success Rate and Completeness

The results shown in this subsection are for the full sample
of 50 merging clusters and 50 normal clusters projected along
three orthogonal lines of sight and sampled with six different
values of Nc for a total number of (50+50)×3×6=1800
mock catalogs. We show the dependence of these results on the
cluster dynamical state and on the FoV sampling in Section 4.2.
To quantify whether a 2D structure corresponds to a 3D

structure, we make a one-to-one comparison between the
members of the 2D structures identified with the Blooming
Tree Algorithm and the members of the 3D structures identified
with SUBFIND. The possibility of this one-to-one comparison
is unique to the σ plateau algorithm and the Blooming Tree
Algorithm. A single 2D structure may contain members
belonging to different 3D structures or none.
For each 2D structure, we compute

f
n

n

mem mem
, 63D

3D 2D

2D
=

Î( ) ( )

where n2D is the total number of members of the 2D structure,
and n mem mem3D 2DÎ( ) is the largest number of particles,
among the n2D members of the 2D structure, that are also
members of a single 3D structure with n3D members.
The upper panel of Figure 7 shows the differential

(histogram) and cumulative (solid line) distributions of f3D.

Figure 5. Dendrogram displayed with the velocity dispersion of every node on the y axis. All branches having a bud, or a local minimum of the binding energy, are
labeled with blue triangles at the bottom of the panel. All key nodes found with the Δη threshold, which have bloomed, are highlighted with red dots. The stems of
their member leaves are indicated with different colors.
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The initial value of the cumulative distribution is 0.41, and
we thus see that 59% of the 2D structures contain at least one
member of a 3D structure. The vertical line shows the value
f3D=0.6 and crosses the cumulative distribution at the value
0.68, implying that 32% of the 2D structures have f3D>0.6.
The median of f3D is 0.38. When f3D>0.6, we assume that a
2D structure is successfully associated with a 3D structure. We
thus define the 2D structures with f3D>0.6 as successful2D
structures. It can happen that different 2D structures contain
members of the same 3D structure. This event occurs for 4% of
the 2D structures. In these cases, we take the 2D structure
containing the largest number of the 3D structure members as
the possible match to the 3D structure.

We also compute

q
n

n

mem mem
73D

3D 2D

3D
=

Î( ) ( )

to quantify to what extent a 3D structure is included in a 2D
structure: in fact, q3D is the ratio between the largest number of
particles, among the n2D members of the 2D structure, that are
also members of a single 3D structure with n3D members, and
n3D itself. Therefore, unlike f3D, q3D keeps the information on
those 3D structures that are mostly or fully contained in a 2D
structure, even if the 2D structure is not successful. These 2D
structures might contain too many interlopers or might be too
composite to be considered successful 2D structures; however,
they still contain a substantial fraction of a 3D structure, and
they have thus succeeded in locating its presence. The lower
panel of Figure 7 shows the differential (histogram) and
cumulative (solid line) distributions of q3D: by looking at the
values of the cumulative distribution indicated on the right
vertical axis, we see that 5.9% of the 2D structures contain
complete 3D structures, 11.9% of the 2D structures contain
more than 90% of the members of a single 3D structure, and
36.0% of the 2D structures have q3D larger than 0.6. According
to Equation (7), when q3D>0.6, more than 60% of the
members of the 3D structure are included in the 2D structure.

According to our definitions, a one-to-one correspondence
between a 2D structure and a 3D structure occurs when the
conditions f3D>0.6 and q3D>0.6 are satisfied at the same
time on the same pair of 2D and 3D structures. This combined

condition occurs for 52% and 61% of the successful 2D
structures for the normal and merger cluster samples,
respectively. The remaining fraction of successful 2D struc-
tures, with q3D<0.6, are almost exclusively associated with
the cluster cores: 39% and 25% for the normal and merger
cluster samples, respectively. In principle, a one-to-one
correspondence would also be guaranteed when f3D>0.5 and
q3D>0.5. However, we prefer to adopt those more restrictive
thresholds to suppress the effect of noise around the 0.5 value
of the thresholds.
To quantify the performance of our Blooming Tree

Algorithm, we define the success rate and the completeness
of the 2D structure sample. The success rate is the ratio
between the number of successful 2D structures and the total
number of 2D structures:

f
Success Rate

No. of 2D structures with 0.6

Total no. of 2D structures
. 83D=

>
( )

To estimate the completeness, we only consider the successful
2D structures ( f3D>0.6). Each successful 2D structure has an
associated 3D structure. The completeness is the ratio between
the number of these identified 3D structures and the total
number of 3D structures in the FoV:

Completeness
No. of identified 3D structures

Total no. of 3D structures
. 9= ( )

Figure 8 shows the success rate as a function of n2D, the
number of members of the 2D structures (solid line), and the
distributions of n2D (histogram). The success rate, namely
the probability that a 2D structure identifies a 3D structure,
clearly is proportional to n2D in the range n2D80. The success
rate flattens out, on average, at larger n2D. We remove those 2D
structures that are unlikely to correspond to 3D structures by
setting a lower limit to n2D. We adopt the threshold n2D=10:
according to Figure 8, for n2D�10, the success rate is always
larger than 30%.
With the definitions of success rate and completeness at

hand, we can now show how these two quantities vary with the

Figure 6. Distribution on the sky of the 2D structures identified with the
Blooming Tree Algorithm. The color code is the same as in Figure 5.

Figure 7. The upper panel shows the distribution of f3D, the largest fraction
of the total number of members of a 2D structure that are also members of a
single 3D structure. The red solid line is the cumulative distribution function,
whose value is shown on the right vertical axis. The lower panel shows the
distribution and the cumulative distribution function of q3D. In both panels, we
omit the bar corresponding to a ratio f3D or q3D smaller than 0.02 for clarity, but
its value can be read from the cumulative profile: it is 0.41 for f3D and 0.45 for
q3D. The black vertical line indicates our threshold 0.6.
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value of the threshold adopted for Δη (Section 3.3). By
increasing the threshold Δη, the Blooming Tree Algorithm
identifies a decreasing number of 2D structures, whose
probability of being successful 2D structures increases. At
the same time, the number of members of the 2D structures n2D
decreases. The combination of these two effects makes the
completeness peak at Δη∼100 for Nc>150, as shown in the
top panel of Figure 9. On the contrary, the number of 2D
structures decreases with Δη more rapidly than the number of
successful 2D structures; it follows that the success rate
monotonically increases withΔη, as shown in the bottom panel
of Figure 9. The two panels show that the successful rate
increases at the expense of the completeness. We thus adopt the
threshold Δη=100, which maximizes the completeness for
Nc>150. The Blooming Tree Algorithm appears to be robust
against the value of this threshold: we have tested that the
results presented in this work for Δη=100 remain substan-
tially unaffected by adopting Δη in the range (50, 120), where
50 and 120 maximize the completeness for Nc=50 and
Nc=300, respectively.

4.2. 2D versus 3D Structures

We now illustrate the performance of our Blooming Tree
Algorithm in identifying the 3D structures present in the FoV.

Table 2 lists the success rate and the completeness for our
two cluster samples for different Nc, the number of galaxies
within a sphere of 6h−1 Mpc from the cluster center; N2D is the
average number of structures in the FoVs in addition to the
cluster. For completeness, we distinguish between substruc-
tures, cores, and surrounding groups. For a typical density of
the redshift survey Nc=200 (e.g., Rines & Diaferio 2006;
Rines et al. 2013), Table 2 shows, for example, that the
Blooming Tree Algorithm recovers 79.6% of the real
substructures and 59.8% of the surrounding groups.

Figure 10 shows the success rate against Nc for successful
2D structures ( f3D>0.6) and for 2D structures with f3D>0.3.
In this latter case, the success rate is the ratio between the
number of 2D structures with f3D>0.3 and the total number of
2D structures. Figure 10 also shows the completeness for 3D

structures associated with 2D structures with f3D>0.6 or
f3D>0.3.
The success rate decreases in dense FoVs (larger Nc) because

of the increasing number of chance alignments. On the
contrary, the completeness basically is independent of Nc,
except for the poorest fields with Nc=50, where the smaller
number of galaxies in the FoV reduces the probability of
identifying the structures. These results show that structures are
satisfactorily identified in dense fields with roughly 100–150
galaxies within 6 h−1 Mpc and within 4000 kms−1 from the
cluster center: somewhat counterintuitively, increasing the
number of galaxies does not increase the completeness and
might actually decrease the success rate.
This result cannot be considered a shortcoming of the

Blooming Tree Algorithm tout court: gravity is an infinite
range force, and the definition of the borders of a 3D structure
is debatable. The trend of the success rate with Nc also indicates
that, in the presence of dense redshift surveys, the Blooming
Tree Algorithm is more generous than the 3D structure
identification algorithm in finding structures and assigning
members to them. However, the Blooming Tree Algorithm also
returns a completeness that is independent of Nc when
Nc>100, demonstrating the quite relevant ability of the
Blooming Tree Algorithm to recover the 3D structures
independently of the redshift survey density.

Figure 8. The cyan solid histogram shows the distribution of n2D of the
successful 2D structures, those with f3D>0.6. The solid red line shows the
success rate, the ratio between the number of successful 2D structures and
the total number of 2D structures as a function of n2D of the 2D structures. The
15 2D structures with more than 130 members, which represent 0.2% of the
total sample, are not shown for clarity.

Figure 9. Completeness and success rate as a function of the threshold Δη.
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Figure 11 shows the success rate and the completeness for
the merging and normal clusters separately. The success rate
drops with increasing Nc in both samples, whereas the
completeness is almost unaffected by Nc. In merging systems,
the galaxy distribution is more clumpy than in normal clusters.
Therefore, in merging systems, the Blooming Tree Algorithm
appears to be more effective, and the completeness in this
sample is systematically larger than in normal clusters. The

structures that contribute to the larger completeness in merging
clusters are the surrounding groups, as shown in Figure 12.
Figure 12, in fact, shows the completeness against Nc of

different types of structures in the two cluster samples: cores,
substructures, and surrounding groups. In dense FoVs, the
cluster cores are the easiest structures to identify, especially in
normal clusters. Substructures require a trade-off between
sufficiently dense FoVs, to enable their correct identification,
and sufficiently sparse FoVs, to minimize the interloper
contamination. Although the surrounding groups are the most
frequent structures in dense FoVs, they show the smallest
completeness (∼50%): they are looser systems and are easily
affected by interloper contamination.
Figure 13 shows the completeness as a function of the mass

of the 3D structure: massive structures with more bound
members and deeper gravitational wells are more easily
detected. Figure 13 shows that, in principle, we could improve
the completeness of our structure sample by simply dropping
the less massive structures. In the less dense FoVs (Nc=100
and Nc=200), the smallest mass bin is systematically larger
than the second smallest mass bin: this effect is due to the fact

Table 2
Success Rate and Completeness (Δη=100)

Nc Cluster N2D Success Completeness (%)

rate (%) tot core subs groups

50 Normal 0.6 75.0 27.6 28.7 29.1 25.5
Merging 1.0 63.1 31.3 21.5 25.9 40.9

Total 0.8 67.5 29.7 25.2 27.2 33.6

100 Normal 2.3 68.8 54.3 80.7 76.0 40.7
Merging 3.3 67.1 58.5 66.0 59.8 57.0

Total 2.8 67.8 56.6 73.3 65.6 48.8

150 Normal 3.5 65.2 53.9 92.0 77.7 43.6
Merging 5.8 61.0 68.5 90.0 77.7 61.9

Total 4.7 62.6 61.9 91.0 77.7 52.8

200 Normal 5.5 57.6 58.8 96.7 79.9 52.0
Merging 8.4 56.0 71.4 90.7 79.4 67.2

Total 7.0 56.6 65.7 93.7 79.6 59.8

250 Normal 7.1 54.2 58.8 98.7 85.8 51.3
Merging 10.6 52.3 72.0 94.0 81.3 67.7

Total 8.8 53.1 65.9 96.3 83.0 59.6

300 Normal 8.9 49.7 58.8 99.3 84.8 52.7
Merging 13.1 48.7 71.9 96.7 82.5 67.7

Total 11.0 49.1 65.9 98.0 83.3 60.3

Figure 10. Success rate (blue dots) and completeness (red squares) against Nc.
The blue lines show the success rate for the 2D structures with f3D>0.6 (solid
line) and with f3D>0.3 (dashed line). The red lines show completeness for the
3D structures associated with the 2D structures with f3D>0.6 (solid line) and
with f3D>0.3 (dashed line). The blue (red) bars at the bottom show the total
number of 3D (2D) structures. The larger number of 2D structures indicates
that some 2D structures are spurious; in other words, they do not correspond to
any 3D structure, and the relative number of these spurious 2D structures is
smallest when Nc=150.

Figure 11. Success rate (blue dots) and completeness (red squares) for the
merging (solid lines) and normal (dashed lines) clusters separately.

Figure 12. Completeness of different types of structures: cluster cores (blue
dots), substructures (cyan squares), and surrounding groups (green triangles).
Solid (dashed) lines are for normal (merging) clusters.
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that we remove all 3D structures with less than 10 member
galaxies from the sample of the 3D structures, as we mention in
Section 2. In fact, in the densest FoV (Nc=300), this
phenomenon disappears.

4.3. Discussion

From Table 2 and Figure 10, we see that if we reduce the
success threshold to f3D>0.3 (Figure 7), the success rate
increases from a value between 49% and 68% to a value
between 60% and 82%, and the completeness increases from a
value between 30% and 66% to a value between 36% and 80%.

In addition, to be conservative, we only consider 3D
structures with more than 10 particles in the fields (see
Section 2). However, there are many 2D structures corresp-
onding to small 3D structures with at least five particles;
unfortunately, these small 3D structures are too small to
increase f3D to 0.6 and thus to make the 2D structure successful.
Nevertheless, if we take them into account, the spurious 2D
structures, namely 2D structures that do not contain any 3D
structure members, will be reduced from the current 30%–15%.

Finally, all of these results on the success rate and
completeness of our Blooming Tree Algorithm are based on
the SUBFIND substructure-detecting algorithm, which is only
one of the many halo-finding methods adopted in N-body
simulations. As tested by Knebe et al. (2013), different halo-
finding methods can give different numbers of structures with
a mass scatter up to 20%. Therefore, our strict one-to-one
comparison results are certainly affected by the reference
algorithm we adopt in the 3D simulation. Especially in the
central part, many 2D structures turn out to be failures,
because the 3D halo finder algorithm associates those particles
with the central core. However, these 2D structures might well
be dynamically distinct from the core. These aspects require
different analyses that go beyond the scope of the present
paper.

The above discussion clearly shows that our astrophysical
problem of identifying 3D structures from the three phase-
space coordinates accessible to observations cannot be
straightforwardly equated to the standard problems of cluster-
ing and classification problems described in the classical
literature of cluster analysis (e.g., Everitt et al. 2011; Hennig
et al. 2015). In particular, because of the numerous possible

definitions of the 3D structures and the successful 2D
structures, optimization methods based on a minimization or
maximization of a single numerical quantity cannot be adopted.
Similarly, adopting classical tools, like the receiver operating
characteristic (ROC) curve and the area under curve (AUC)
statistic to quantify the algorithm efficiency, is unfeasible,
because some of the standard quantities used for their estimate,
like the number of true negative elements of the data set,
cannot be defined in our problem.

5. Comparison with the σ Plateau Algorithm

We now compare our Blooming Tree Algorithm for the
identification of structures with the σ plateau algorithm. We
will first illustrate the differences on a representative case, and
we will then consider the statistical properties of a large cluster
sample.

5.1. A Representative Case

We consider a massive cluster with M200=8.66×
1014 h−1Me, with 722 galaxies in the square FoV of size equal
to 3R200; 200 out of these 722 galaxies are cluster members.
The weak point of the σ plateau algorithm is its difficulty in
identifying structures with widely different velocity dispersions
(Yu et al. 2015). A massive cluster like the one we choose here
provides structures with different mass and size and provides thus
a good test for the performance of the two algorithms.
There are four 3D substructures, including the cluster core,

and seven 3D surrounding groups in the FoV, as shown in
Figure 14. The distribution of these structures in the binary tree,
shown in Figure 15 with different colors, indicates that the

Figure 13. Completeness against the 3D structure mass for different Nc.

Figure 14. Distribution of the 3D structures in the FoV of a massive cluster
with 722 particles. In the top panel, the projected celestial coordinates are in
radiants; comoving coordinates in the N-body simulation are also shown. The
solid dots show the members of the structures with different colors; the core
particles are in blue. The open circles show the members of the surrounding
groups. The bottom panel provides a 3D view within a box with dimensions
14×14×60 h−3 Mpc3. Group 6 (open green circles) is outside this box.
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member galaxies of these structures tend to appear on the same
branch of the tree; however, their velocity dispersions are in
the range ∼200–1000 kms−1. As mentioned above, this large
velocity dispersion range is the main challenge for the σ plateau
algorithm.

According to the σ plateau algorithm (Yu et al. 2015), by
walking on the main branch of the tree, we determine the
σ plateau shown in Figure 16. The large range of velocity
dispersions, which is a consequence of the complex dynamics
of clusters like this one, prevents the plateau from being flat.
Therefore, locating the second threshold in this kind of system
becomes rather ambiguous.

Nevertheless, the results of the σ plateau algorithm, shown in
the top panel of Figure 17, are satisfying. The algorithm

Figure 15. Binary tree of the simulated massive cluster with 722 particles in the FoV shown in Figure 14. The inset at the bottom shows the binding energy profile.
The colors indicate the real members of the different 3D structures, according to Figure 14.

Figure 16. Velocity dispersion of the leaves of each node along the main
branch of the binary tree shown in Figure 15. The blue square and the red
triangle are the first and second threshold, respectively. The curve in between
is the σ plateau, whose position generally corresponds to the peak of the
distribution of node numbers with similar velocity dispersion shown in the
right panel. This peak does not stand out clearly here because of the existence
of other plateaus.

Figure 17. Sky diagrams of structures identified by the σ plateau algorithm (top
panel) and the Blooming Tree Algorithm (bottom panel). Galaxies with the
same color belong to the same 2D structure. The galaxies in the bottom panel
are colored according to colors of the binary tree in Figure 18.
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recovers two substructures out of four and six surrounding
groups out of seven. The first 2D substructure (2Dsub 0) is the
cluster core, whereas the second 2D substructure (2Dsub 1)
includes the 3D substructure 3Dsub 2; however, it does not
satisfy the f3D>0.6 criterion and cannot be considered a
successful 2D substructure. The remaining 3D substructures,
3Dsub 1 and 3Dsub 3, remain unidentified, because they are
located in the cluster center and the method is unable to
separate them from the core. This result is a consequence of the
fact that the σ plateau algorithm cuts the binary tree with a
single velocity dispersion threshold and can thus only identify
structures whose velocity dispersion is close to this threshold: if
a substructure has a small number of members, it cannot
generate a significant plateau, it is not recognized by the
algorithm as a distinct structure, and it will thus be included in
a larger system.

Figure 18 and the bottom panel of Figure 17 show the
results of our Blooming Tree Algorithm, based on tracing all
tree branches rather than the main branch alone. The two solid
lines in Figure 18 indicate the two thresholds of the σ plateau
approach. The new algorithm is able to pick up structures
with different velocity dispersions. It recovers all four
substructures; it also recovers five out of the seven 3D
surrounding groups.

The 2D substructure 2Dsub 0, which identifies the cluster
core, has a velocity dispersion corresponding to the second
threshold of the σ plateau. With the first key node below the σ
plateau, the algorithm can identify the 2D substructure 2Dsub
2: it includes the 3D substructure 3Dsub 1 that was unidentified
by the σ plateau algorithm. Finally, the 2D substructure
2Dsub 4 includes the 3D substructure 3Dsub 3, and the 2D
substructure 2Dsub 8 includes the 3D substructure 3Dsub 2.

All of the 2D structures identified by the Blooming Tree
Algorithm are located at positions consistent with the
corresponding 3D structures. However, only four groups,
2Dgrp 1, 2Dgrp 3, 2Dgrp 5, and 2Dgrp 6, out of five satisfy the

f3D>0.6 criterion. All three 2D substructures other than the
core (the 2D substructure 2Dsub 1) are contaminated by core
members and fail the f3D>0.6 criterion. Therefore, even when
the 2D and 3D structures share the same position on the sky,
this strict criterion on f3D does not allow the association of the
2D structure to the corresponding 3D structure, and the 2D
structure is classified as spurious. This example shows that the
f3D>0.6 criterion guarantees a robust identification of the 3D
structures, but it returns a lower limit to the performance of our
algorithms for the identification of structures.

5.2. Performance on Two Cluster Samples

We analyze the two samples of simulated clusters used
in Yu et al. (2015) with both algorithms. The two samples
are a massive sample (M15) containing 150 mock redshift
surveys, with M200 ranging from 0.86×1015 h−1Me to
3.4×1015 h−1Me, and a less massive sample (M14) with
the same number of clusters, with mass ranging from
0.95×1014 h−1Me to 1.1×1014 h−1Me. Each cluster is
sampled with a given number of galaxies within 3 R200:
Nc=(100, 200, 300).
Figure 19 shows the results of this analysis. It shows the

average number of 2D structures per cluster as a function of Nc.
The left and right bars are for the σ plateau algorithm and the
Blooming Tree Algorithm, respectively. The Blooming Tree
Algorithm identifies five to ten times more structures than the σ
plateau algorithm, with more structures identified in the M14
sample. In fact, because of our strategy for the mock catalog
creation (see Yu et al. 2015), the fields of the M14 clusters are
denser than the M15 fields, and detecting 2D structures is more
likely. The two algorithms identify a comparable number of
substructures (blue sectors of the bars), whereas the Blooming
Tree Algorithm is more efficient at separating the cores into
distinct structures (cyan sectors of the bars). The Blooming

Figure 18. Dendrogram with the node velocity dispersion on the vertical axis. The blue triangles at the bottom show the buds, the binding energy minima that identify
the branches that need to be searched. The red dots show the blooms, all of the key nodes found with the Δη threshold, that identify the 2D structures. The stems of
their member leaves are shown with different colors. The structure indexes shown on the plot are sorted according to decreasing number of members. The two
horizontal black solid lines are the thresholds of the σ plateau algorithm.
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Tree Algorithm also identifies the surrounding groups (purple
sectors), which are not included in the σ plateau analysis.

The red sectors show the false detections, the 2D structures
with f3D<0.6: for the Blooming Tree Algorithm, they
represent ∼56%–62% of the 2D structures in the massive
clusters, depending on Nc, and ∼67%–77% of the 2D structures
in the less massive clusters. The σ plateau algorithm has a
substantially comparable performance, but on a substantially
smaller number of 2D structures: those fractions become
∼40%–70% and ∼60%, respectively. These fractions would
clearly decrease by adopting a weaker criterion than f3D>0.6.
The representative case illustrated in Section 5.1 shows that this
criterion might indeed be too strict.

The Blooming Tree Algorithm improves the completeness of
the σ plateau algorithm by roughly a factor of three. In the M14
sample, the Blooming Tree Algorithm identifies 68% of the
cluster substructures and cores, compared to 25% of the σ
plateau. In the M15 sample, the improvement is even more
dramatic, with a completeness of 77% for the Blooming Tree
Algorithm and 5%–20% for the σ plateau.

Overall, the M15 sample has larger success rates than M14,
because in massive clusters, cores and substructures are more
massive and are thus easier to identify. In addition, the fields of
the M14 clusters are denser than the M15 fields, and the
probability of detecting 2D structures that do not correspond to
any 3D substructure increases.

As mentioned above, the origin of the different performances
between the two algorithms is the wide distribution of the
velocity dispersions of the structures. Figure 20 shows the
distributions of the velocity dispersions of the three kinds of
structures in our combined sample of 50 normal clusters and 50
merging clusters: cores (red open histogram), substructures
(blue open histogram), and surrounding groups (magenta open
histograms). Unlike the σ plateau algorithm, which searches the
main branch alone and only relies on the velocity dispersion of
the leaves on the main branch, the Blooming Tree Algorithm

searches all tree branches and combines three quantities,
velocity dispersion, richness, and size of each node, into the
physically motivated quantity η (Equation (5)) to define the
identification criterion Δη>100 (discussed in Sections 3.3
and 4.1). By this deeper analysis of the physical properties of
the branches of the binary tree, the Blooming Tree Algorithm
can identify structures with largely different velocity disper-
sions, as shown by the solid histograms in Figure 20. This
feature does not belong to the σ plateau algorithm, as shown in
Figure14 of Yu et al. (2015).

6. Conclusion

We present the Blooming Tree Algorithm, a new algorithm
for the detection of cluster substructures and surrounding
groups with optical spectroscopic data. The Blooming Tree
Algorithm is a substantial improvement over our previous
procedure, the σ plateau algorithm, whose performance is
described in Yu et al. (2015).
Both algorithms first arrange the galaxies in the FoV in a

binary tree according to the estimate of the binding energy of
each galaxy pair, and they search for structures associated with
the individual branches of the tree. Neither algorithm thus
requires an assumption on the geometry of the systems, on their
velocity field or on their dynamical state, or an initial guess of
the position and size of the structures to identify.
The Blooming Tree Algorithm improves over the σ plateau

algorithm because it searches all branches of the binary tree and
relies on a physically motivated combination of velocity
dispersion, richness, and size of the candidate structures to
identify them. Unlike the σ plateau algorithm, which only
searches the main branch alone and relies on the velocity
dispersion alone, these improvements enable the Blooming
Tree Algorithm to identify structures with widely different
velocity dispersions and to increase substantially the efficiency
of the structure identification. It also enables the Blooming Tree
Algorithm to identify easily the galaxy groups present in the

Figure 20. Distributions of the velocity dispersions of different types of
structures in the combined sample of 50 normal clusters and 50 merging
clusters: cores of clusters (red open histogram), substructures (blue open
histogram), and surrounding groups (magenta open histogram). The solid
histograms are the 3D structures identified by the successful 2D structures with
f3D>0.6 according to the Blooming Tree Algorithm in the 300 mock catalogs
created by projecting each cluster along three orthogonal lines of sight: core of
clusters (magenta), substructures (cyan), and surrounding groups (green).

Figure 19. Average number of 2D structures per cluster as a function of Nc: left
(right) panels are for the M15 (M14) sample, and left (right) bars are for the σ
plateau algorithm (Blooming Tree Algorithm). The blue part of each bar shows
the 2D substructures associated with 3D substructures ( f3D>0.6); the cyan
part shows the 2D structures associated with 3D cores ( f3D>0.6); the red part
shows the spurious 2D structures ( f3D<0.6). The purple part shows the 2D
groups associated with 3D groups ( f3D>0.6): they are missing in the left bars
because the 3D groups were not included in the σ plateau analysis of Yu
et al. (2015).
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cluster outskirts. This ability is relevant for the quantitative
investigation of the merging and accretion history of galaxy
clusters (Rines et al. 2001; Lemze et al. 2013; De Boni
et al. 2016).

Because both methods are based on the arrangement of the
galaxies in a hierarchical binary tree, the identified structures
are naturally nested into each other, and by walking on the tree
branches, we can actually separate each individual structure
into smaller and smaller dynamically distinct substructures.
The binary tree also easily returns a list of the members of the
identified structures, a piece of information that is necessary to
estimate the properties of the structures, like velocity disper-
sion, size, and mass.

We test the Blooming Tree Algorithm on 300 mock redshift
surveys of 100 clusters of mass ∼5×1014 h−1Me extracted
from an N-body simulation of a ΛCDM model. We consider 50
merging clusters, whose most massive substructure other than
the cluster core has a mass at least half the mass of the core,
which is the substructure whose center coincides with the
cluster center. We also consider 50 normal clusters, where that
condition is not verified. We also explore mock surveys of
different density by varying the number Nc of galaxies within a
sphere of radius 6h−1 Mpc from the cluster center in the range
Nc=[50–300]. We only consider substructures and surround-
ing groups with mass larger than 1013 h−1Me.

A substantial fraction of the 3D structures are correctly
identified by the Blooming Tree Algorithm. Disregarding the
case Nc=50, which returns too-sparse redshift surveys, the
completeness of the substructure catalogs is ∼80% for both
the normal and merging clusters. A large completeness is also
obtained for the surrounding groups, with ∼50% and ∼60% for
the normal and merging clusters, respectively.

The completeness is almost independent of Nc, provided that
Nc>50. The density of the redshift survey affects the number
of spurious structures, because with a larger number of galaxies
in the FoV, the probability of detecting false structures
increases. In fact, when increasing Nc from 50 to 300, the
success rate, the fraction of 2D structures that correspond to
real 3D structures, drops from 75% to 50% for the normal
clusters, and from 63% to 49% for the merging clusters.

These results are rather impressive, because the clusters are
extracted from the N-body simulation without any particular
criterion in addition to the mass of the cluster and of the largest
substructure.

When considering substructures, surrounding groups,
and cluster cores, the Blooming Tree Algorithm has an
overall completeness of ∼60% and a success rate in the range
∼50%–70%, substantially larger than the completeness and
success rate of the σ plateau algorithm. This latter algorithm has
a completeness ∼30%–50% and a success rate ∼15%–20%,
depending on the mass and the dynamical state of the cluster (Yu
et al. 2015).

Clearly, for each galaxy, we can only measure three phase-
space coordinates out of six, and the estimate of the binding
energy of each pair of galaxies, on which the Blooming Tree
Algorithm is based, can be heavily affected by projection effects.
In addition, the galaxy peculiar velocities are unknown, and the
redshift difference entirely contributes to the estimated kinetic
energy of the galaxy pair. Nevertheless, the good performance of
the Blooming Tree Algorithm shows that these limitations little
affect the identification procedure and that this algorithm is a
powerful tool to identify the substructures of clusters and their

surrounding groups when dense redshift surveys of clusters, like
CIRS (Rines & Diaferio 2006) and HeCS (Rines et al. 2013), are
available. The Blooming Tree Algorithm can thus be a powerful
tool to infer the merging history of clusters, investigate their
dynamics, and constrain their formation models (Yu et al. 2016).
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