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ABSTRACT
We present a new module of the parallel N-Body code P-GADGET3 for cosmological simulations
of light bosonic non-thermal dark matter, often referred to as Fuzzy Dark Matter (FDM). The
dynamics of the FDM features a highly non-linear Quantum Potential (QP) that suppresses
the growth of structures at small scales. Most of the previous attempts of FDM simulations
either evolved suppressed initial conditions, completely neglecting the dynamical effects of
QP throughout cosmic evolution, or resorted to numerically challenging full-wave solvers.
The code provides an interesting alternative, following the FDM evolution without impairing
the overall performance. This is done by computing the QP acceleration through the Smoothed
Particle Hydrodynamics (SPH) routines, with improved schemes to ensure precise and stable
derivatives. As an extension of the P-GADGET3 code, it inherits all the additional physics modules
implemented up to date, opening a wide range of possibilities to constrain FDM models and
explore its degeneracies with other physical phenomena. Simulations are compared with
analytical predictions and results of other codes, validating the QP as a crucial player in
structure formation at small scales.
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1 I N T RO D U C T I O N

According to the currently accepted standard cosmological scenario
– known as the �CDM model – about 80 per cent of the matter
content of the universe is in the form of Cold and collisionless Dark
Matter particles (CDM), whose contribution to the gravitational
instability of density perturbations drives the formation of present
cosmic structures stemmed from the tiny primordial fluctuations
observed in the Cosmic Microwave Background (CMB, see, e.g.
Ade et al. 2016).

The success of the �CDM model has been significantly sup-
ported over the past decades by the development and continuous
improvement of numerical techniques, that allowed us to simulate
the evolution of cosmic structures in an expanding universe from
the well understood linear domain, constrained by CMB observa-
tions, down to the highly non-linear regime that characterizes the
present-day density field at small scales. In this respect, large and
sophisticated cosmological N-body simulations – as well as their
hydrodynamical extensions accounting for the complex astrophys-
ical processes, related to the subdominant baryonic matter compo-
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nent – have undeniably become an essential tool in contemporary
astrophysics and cosmology.

Although the existence of dark matter is a solid outcome of a
large number of independent observations – as e.g. the inner dy-
namics of galaxy clusters (Zwicky 1937; Clowe et al. 2006), the
rotation curves of spiral galaxies (Rubin, Ford & Thonnard 1980;
Bosma 1981; Persic, Salucci & Stel 1996), the strong gravitational
lensing of individual massive objects (Koopmans & Treu 2003)
as well as the weak gravitational lensing arising from the large-
scale matter distribution (Mateo 1998; Heymans et al. 2013; Planck
Collaboration et al. 2015; Hildebrandt et al. 2017), the angular
power spectrum of CMB temperature anisotropies (as observed e.g.
from WMAP and Planck Komatsu et al. 2011; Planck Collabora-
tion et al. 2016, respectively), the clustering of luminous galaxies
(see, e.g. Bel et al. 2014; Alam et al. 2017), the large-scale velocity
field (Bahcall & Fan 1998), and the abundance of massive clusters
(Kashlinsky 1998) – and despite most of the proposed alternatives
based on ad-hoc modifications of gravity (such as Modified New-
tonian Dynamics and its variants, see, e.g. Milgrom 1983; Sanders
& McGaugh 2002; Bekenstein 2004) having been recently ruled
out (Chesler & Loeb 2017) by the implications of the gravitational
wave event GW170817 (Abbott et al. 2017), the fundamental nature
of dark matter is far from being understood and consistent direct or
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indirect detections of plausible dark matter particle candidates have
been eluding our attempts so far.

The lack of a positive result in the decades-long hunt for dark
matter particles is now starting to undermine the popularity of the
most massive candidates, like Weakly Interactive Massive Parti-
cles (WIMPs) arising in supersymmetric extensions of the standard
model of particle physics (as e.g. the neutralino), hence providing
motivations to explore alternative scenarios often characterized by
lighter particle species (see, e.g. Bertone, Hooper & Silk 2005, for
an excellent review on Dark Matter particle candidates).

Furthermore, it is still highly debated whether the apparent fail-
ures of CDM models at scales � 10 kpc – as given e.g. by the
cusp-core problem (Oh et al. 2011), the missing satellite problem
(Klypin et al. 1999), the too-big-to-fail problem (Boylan-Kolchin,
Bullock & Kaplinghat 2012) – may be related to an imperfect bary-
onic physics implementation in numerical simulations (see, e.g.
Maccio et al. 2012; Brooks et al. 2013), to an intrinsic diversity of
properties related to the formation history and local environment
of each individual dark matter halo (Oman et al. 2015), or ulti-
mately to the fundamental nature of the dark matter particle (see,
e.g. Kaplinghat, Knox & Turner 2000; Spergel & Steinhardt 2000;
Rocha et al. 2013; Medvedev 2014).

One intriguing solution to these problems might involve an ex-
tremely light non-thermal boson acting as dark matter, whose de-
Broglie wavelength arising from its fundamental quantum nature
would be relevant at cosmological scales (see, e.g. Marsh & Fer-
reira 2010; Hui et al. 2017). The lightness and quantum behaviour
of such bosonic dark matter particles could simultaneously explain
their elusiveness and alleviate tensions at small scales (see, e.g.
Marsh & Pop 2015). This type of dark matter has been generically
termed Fuzzy Dark Matter (FDM hereafter, see Hu, Barkana &
Gruzinov 2000) and several particles that fit in this description have
been proposed in the literature, the most popular class being Ultra
Light Axions (ULAs, Marsh 2016).

With the next generation of cosmological surveys (as e.g. Euclid,
LSST, SKA, see Amendola et al. 2013; Ivezic et al. 2008; Blake
et al. 2004, respectively) starting to take data in the near future,
holding the promise to pinpoint with unprecedented precision the
parameters involved in the �CDM model and to detect even ex-
tremely feeble signals of deviations from the standard cosmology,
the urge for more accurate predictions on the expected signatures
of alternative scenarios is now a high priority for the community.
In this respect, developing numerical tools for cosmological simu-
lations of alternative dark matter candidates represents a necessary
step to provide such predictions.

In this paper, we present a modification of the cosmological N-
Body and hydrodynamical code P-GADGET3 – a non-public extension
of the public GADGET2 code (Springel 2005) – to simulate the non-
linear evolution of FDM scenarios featuring light boson fields as
dark matter particles.

In these models, the dynamics of FDM particles is influenced
– besides gravity – by an additional Quantum Potential that we
are able to compute exploiting the Smoothed Particle Hydrody-
namic routines (as suggested by e.g. Marsh 2015; Mocz & Succi
2015) already implemented in P-GADGET3 for standard hydrody-
namical simulations. This method allows us to keep track of the
Quantum Potential effects into the non-linear regime of structure
formation while keeping under control the overall computational
performances, which makes the code more suitable for large cos-
mological simulations compared to other methods resorting on full
quantum wave solvers (such as the grid-based algorithms presented
in Schive, Tsai & Chiueh 2010).

Our implementation is flexible enough to easily include models
with dark matter self-interaction and allows multiple dark matter
species, either fuzzy or not. However, in this work, we focus on the
case of a single FDM component accounting for the total dark mat-
ter budget. We discuss and compare the results of our algorithm to
analytical solutions and to the recent results of other similar codes,
in order to point out the reliability of our algorithm, its overall per-
formance, as well as the predicted effect of the Quantum Potential
on the statistical and structural properties of cosmic structures.

The paper is organized as follows: in Section 2, we briefly de-
scribe the Axion Dark Matter models under consideration, providing
all the basic equations that enter our numerical implementation, and
reviewing the physical dynamics of light bosonic fields (see Section
2.1). We then present the implementation of such equations into the
code (see Section 2.2). In Section 3, we analyse the results of a
series of tests for idealized setups having known analytical solu-
tions as well as for cosmological simulations (see Section 4), and
we present the overall performance of our code (see Section 4.3).
Finally, in Section 5, we draw our conclusions.

2 T H E O RY A N D A L G O R I T H M

In this section, we recall the dynamics of a light bosonic field
and its formulation in terms of an effective fluid, by introducing
the corresponding hydrodynamic equations, and we present the
implementation strategy we used in the code to solve for such
equations, based on the Smoothed Particle Hydrodynamics (SPH)
approach.

2.1 Dynamics

Let φ̂ be a bosonic field evolving accordingly to the Gross–
Pitaevskii–Poisson equation (Gross 1961; Pitaevskii 1961)

i� ∂t φ̂ = − �2

m2
χ

∇2φ̂ + mχ�φ̂ + λ
(
φ̂†φ̂

)
φ̂, (1)

where � is the Newtonian gravitational potential, and λ and mχ

represent the self-interaction coupling constant and typical mass of
the field, respectively.

In order to describe the dynamics of such field in terms of fluid
equations, we use the Madelung form (Madelung 1927)

φ̂ =
√

ρ

mχ
ei θ

� , (2)

where ρ is the fluid density and θ is related to the fluid velocity as
v = ∇θ/mχ . Extending this approach to the case of an expanding
universe – in a comoving frame with a and H = ȧ/a being the
usual cosmological scale factor and Hubble parameter, respectively
– we recover the well known Madelung equations, consisting in the
continuity equation

ρ̇ + 3Hρ + 1

a
∇ · (ρv) = 0 (3)

and a modified Navier–Stokes equation

v̇ + 1

a
(v · ∇) v = −∇�

a
+ ∇P

aρ
+ ∇Q

a3
, (4)

where three distinct sources of particle acceleration appear: the
gravitational potential �, a pressure-like term P accounting for the
self-interaction of the field, and an additional potential Q.

The gravitational potential � satisfies the usual Poisson equation

∇2� = 4πGa2ρb δ, (5)
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where δ = (ρ − ρb)/ρb is the density contrast with respect to the
background field density ρb (Peebles 1980).

The self-interaction term P can be regarded as a pressure and,
in principle, can be generalized with a parametric equation of state
P = P(ρ) to take into account self-interactions of different forms.
In the case of quartic self-interaction, as in equation (1), it reads
P = λρ2/2mχ .

The potential Q has the form of

Q = �2

2m2
χ

∇2√ρ√
ρ

= �2

2m2
χ

(∇2ρ

2ρ
− |∇ρ|2

4ρ2

)
(6)

and we acknowledge its use in the literature since the 1950s as
Quantum Potential (QP) (Bohm 1952). In recent applications in
cosmology, it has been expressed sometimes as a pressure tensor

∇Q = 1

ρ
∇PQ = �2

2m2
χ

1

ρ
∇
(ρ

4
∇ ⊗ ∇ ln ρ

)
(7)

and hence addressed as Quantum Pressure (see, e.g. Mocz & Succi
2015). In this work, we prefer the former potential terminology,
given its uninvolvement with classical thermal interactions. We find
necessary, indeed, to stress that this potential has neither links with
temperature nor any classical thermodynamics origin. Its mathe-
matical form and physical behaviour are related to a self-organizing
process and are connected to basic principles of quantum informa-
tion and occupation of states (Boehmer & Harko 2007).

The set of equations (3)–(5) has a stable solution for δ = � =
|v| = 0 which can be perturbed assuming δ, �, |v| � 1 in order
to end up with a new set of linearized equations. The resulting
equations can be combined in the density contrast time evolution
reading

δ̈ + 2Hδ̇ +
(

�2k4

4m2
χa4

+ c2
s k

2

a2
− 4πGρb

a3

)
δ = 0, (8)

where δ(x, t) has been decomposed in Fourier modes δke
ik·x and

c2
s = ∂ρP (ρ)|ρb

is the sound speed of the fluid (Chavanis 2012).
Our implementation (see below) is able to simulate models with

any given self-interaction encoded in P(ρ) as a parametrized input.
However, in this paper, we restrict our focus only on the effects
of the QP and leave the exploration of self-interacting models for
future work. We therefore consider λ = 0, thus P = cs = 0, hereafter.

A perturbed stable solution of equation (8), is given by a density
contrast with mode

kQ(a) =
(

16πGρba
3m2

χ

�2

)1/4

a1/4 (9)

and corresponding wavelength λQ = 2π/kQ, representing a quantum
version of the Jeans wavenumber and Jean length, respectively.

Given the cosmological scale factors a(t) at each time t, the
wavelengths λQ represent the scale at which gravity is perfectly
balanced by the QP, dividing a region of gravitational collapsing
instability (λ > λQ) from a region of expansion (for λ < λQ) due to
the net repulsive effect of the QP ( Woo & Chiueh 2009; Chavanis
2012).

The general solution of equation (8) can be expressed as a linear
combination of a growing mode D+(k, a) and a decaying mode
D−(k, a) that have the form

D+(x) = [(
3 − x2

)
cos x + 3 x sin x

]
/x2

D−(x) = [(
3 − x2

)
sin x − 3 x cos x

]
/x2,

(10)

where we defined the parameter x(k, a) = √
6 k2/k2

Q(a). The linear
solution, therefore, predicts a suppression of structures in the density
field on small scales – i.e. for k � kQ – in which both the growing
and decaying mode oscillate in time, effectively halting density
perturbation evolution. At large scales – i.e. for k � kQ – the standard
linear evolution D+ ∝ a and D− ∝ a−2/3 of CDM is recovered thus
allowing density perturbation growth (Hu et al. 2000).

The presence of an oscillating regime gives rise to a cutoff of
the small-scale density power spectrum similar to what happens
for Warm Dark Matter particle candidates (Bode, Ostriker & Turok
2001). However, the mechanisms generating such effects in the two
cases have a completely different origin, resulting in a different
shape of the respective transfer functions.

Since the quantum Jeans wavenumber kQ(a)∝ a1/4 increases with
time as from equation (9), we expect oscillating modes to eventually
start growing, each at a different redshift, as they are passed by the
quantum Jeans scale. While, in the linear approximation, the fastest
possible growth for density perturbation of equation (10) is the one
that characterizes the largest scales D+ ∝ a – making it impossible
for the intermediate suppressed scales to catch up with the largest
ones – in the non-linear regime, we expect a faster growth for
the intermediate and small scales at low redshift, allowing such
restoring effect.

Therefore, it is necessary to resort to numerical techniques to
investigate the detailed integrated effects of these scenarios, and to
develop suitable codes to perform N-Body hydrodynamical simula-
tions that could follow their evolution deep into the fully non-linear
regime.

2.2 Implementation

The AX-GADGET code we developed relies on SPH techniques – al-
ready partly implemented in P-GADGET3 – to solve for the QP, com-
puted for each fluid particle through local summation algorithms
using equation (6), and adopt it as additional source of accelera-
tion in the Navier–Stokes equation, as suggested by Mocz & Succi
(2015) and Marsh (2015). To this end, we have equipped dark mat-
ter particles in AX-GADGET with an additional data structure to store
the necessary quantities that are relevant for the fluid representation
of the FDM and similar to the one already in place for gas particles.
As for the native SPH implementation of P-GADGET3 , the exchange
between CPUs of such additional layer of data for local particles
is optimized to guarantee high memory efficiency in the domain
decomposition.

SPH provides us with a numerical strategy to approximate contin-
uous fields with sums over neighbouring particles. In such approx-
imations, the deviation of numerical results from the exact solution
depends on several factors, related in particular to the intrinsic lim-
itations of a Lagrangian particle description of fluids, where shocks
and strong interface interactions tend to be smoothed out or underes-
timated. However, the flexibility of the method allows to rearrange
the specific form of the SPH machinery such that equivalent an-
alytical problems can be implemented into flavours of the basic
algorithms with different levels of numerical accuracy, as detailed
below.

The basic concept behind the SPH approach resides in expressing
the value of a given observable O at the position of particle i as the
sums of its value over NN(i) neighbouring particles

Oi =
∑

j∈NN(i)

mj

Oj

ρj

Wij (11)
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weighted on mass mj, density ρ j, and a window function Wij – some-
times referred to as kernel function – which can take many possible
functional forms. Consequently, the derivative of the observable can
be applied to the window function as

∇Oi =
∑

j∈NN(i)

mj

Oj

ρj

∇Wij , (12)

which, however, does not guarantee that ∇O vanishes for constant
values of O.

Therefore, to ensure that the overall derivative vanishes in the
case of Oj → Oi ∀j ∈ NN(i), we consider a differentiable function

 such that

∇O = 1



[∇ (
 O) − O ∇ 
] (13)

is translated in the SPH algorithm as

∇Oi =
∑

j∈NN(i)

mj

Oj − Oi

ρj


j


i

∇Wij , (14)

where the difference of equation (14) with respect to equation (12)
fulfills the condition of null derivative in the case of a constant
field, regardless of the form of the function 
. In the literature,

 = 1, 
 = ρ, and 
 = √

ρ are the most common choices (see,
e.g Monaghan 2005). For the different forms of 
, the derivative of
the density field then takes the form

∇ρi =
∑

j∈NN(i)

mj∇Wij

(
ρj − ρi

)⎧⎨⎩
1/ρi for 
 = 1
1/ρj for 
 = ρ

1/
√

ρiρj for 
 = √
ρ.

(15)

We noticed that 
 = √
ρ performs better with respect to the other

two possibilities in cosmological simulations, where it is not un-
common to find fluid particles with neighbours with quite different
density, for example in collapsing regions. Indeed, 
 = 1 or 
 = ρ

may lead to high and non-symmetrical i � j correction factors that
are more sensitive to noise and less likely to disappear in the sum,
while 
 = √

ρ translates to a more stable algorithm, which makes
it our preferred choice. Nevertheless, the 
 functional forms can
be selected upon compilation in our code, so that the final choice is
left open.

Even if the first derivative in the form of equation (12) is quite
common in the literature, there is no general consensus about the
SPH form of the Laplacian.

A straightforward and standard approach consists in applying
directly the operator to the window function

∇2Oi =
∑

j∈NN(i)

mj

Oj

ρj

∇2Wij , (16)

but, in general, such a simple implementation leads to unstable
results that are very sensitive to irregularities in the particle distri-
bution, mainly due to the steepness of the second derivative of the
kernel function.

For the cases under investigation in this work, results obtained
with this implementation for the computation of the QP led us
to unsatisfying results. In fact, without resorting to any kind of
functional correction, the contribution of the Laplacian term ∇2ρ/ρ
to the QP in equation (6) was negligible compared to |∇ log ρ|2 and
thus positive contributions to the QP were underestimated.

A solution to this problem can be derived employing the same
approach described above for the first derivative to improve equation
(16), expanding through product derivatives the Laplacian operator

Figure 1. Quantum Potential residuals obtained with different algorithms
for a 3D Gaussian density distribution. The results displayed are derived
with the Laplacian scheme (LSPH) of equations (16)–(18) and with the à la
Brookshaw (BSPH) scheme of equations (19) and (20), both presented with
and without derivative corrections.

as

∇2O = 1




[∇2(
 O) − O ∇2
 − 2 ∇O · ∇

]

(17)

thereby obtaining the correction

∇2Oi =
∑

j∈NN(i)

mj

Oj − Oi

ρj


j


i

∇2Wij − 2


i

∇Oi · ∇
i, (18)

where 
 was chosen coherently with the density correction (for
a comparison between different algorithms see Colin, Egli & Lin
2006).

A widely used alternative to approximate the Laplacian relies
on the symmetry properties of the window function and was first
described in Brookshaw (1985)

∇2Oi = −2
∑

j∈NN(i)

mj

Oj − Oi

ρj

rij · ∇Wij

|rij |2 (19)

being one of the most common strategies due to its computational
efficiency deriving from the direct dependence on the first derivative
of the kernel (see, e.g. Cleary & Monaghan 1999; Jubelgas, Springel
& Dolag 2004; Szewc, Pozorski & Minier 2012). It is easy to see
that, using equation (17), an improved version of such scheme reads

∇2Oi = −2
∑

j∈NN(i)

mj

Oj − Oi

ρj


j


i

rij · ∇Wij

|rij |2 − 2


i

∇Oi · ∇
i,(20)

which, apart from the window function dependence, shares a similar
structure and the same computational cost with equation (18).

The numerical errors of each specific algorithm are linked to the
numerical instabilities that may arise from the consecutive deriva-
tives of the window function and the compensation of derivative
residuals. To determine which scheme was the most suitable for
this work, we investigated different representations of the density
gradient and Laplacian.

In Fig. 1 are shown the QP residuals with respect to the analytical
results obtained for a 3D Gaussian density distribution – described
in detail in Section 3.2 – with different schemes. Both the standard
and corrected version of the Laplacian implementation (LSPH and
in the figure) of equations (16)–(18) and of the à la Brookshaw
implementation (BSPH in the figure) of equations (19) and (20) are
shown. There is undeniable improvement provided by the correction
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of the derivatives. Once corrected, the two approaches produce a
similar result – due to their analogous structure – that follow well
the analytic result, in particular the Laplacian algorithm approaches
it from below while the other tends to overestimate it.

We hereafter adopt as our preferred algorithm the corrected
Laplacian version of equation (18) as it statistically performs bet-
ter and, as for the 
 function, the other scheme can be selected
upon compilation of the code. We further discuss and motivate our
choices, providing some comparisons and analytical tests, in Sec-
tion 3.

The window function used in the code is the cubic B-Spline
routinely employed in P-GADGET3 SPH simulations:

W (r, h)= 8

πh3

⎧⎨
⎩

1−6 (r/h)2+6 (r/h)3 if 0 < r/h≤1/2
2 (1−r/h)3 if 1/2<r/h<1
0 otherwise

(21)

with r and h being the distance between particles and the smoothing
length, respectively. We denote Wij = W (rij = |rj − ri |, hi). Other
higher order functionals are implemented in P-GADGET3 as the quintic
B-Splines or the C4 and C6 Wendland functions (Wendland 1995)
which, however, require a higher number of neighbours to be taken
into account (see, e.g. for comparison between window functions
Dehnen & Aly 2012). We find no critical variation in accuracy for
the calculation of the QP and its derivative when different window
functions are used.

Following the standard SPH approach, the value of the single-
particle smoothing length hi is varied at each timestep to satisfy the
condition

4

3
πh3

i ρi =
∑

j∈NN(i)

mj = M (22)

such that its corresponding sphere encloses enough neighbours
NN(i) to match a given amount of mass M. With h let free to vary,
the condition above can be enforced through a Lagrangian multi-
plier and h-derivatives enter the equations, as described in Springel
& Hernquist (2002). For a general presentation, we describe such
contribution to the QP as factors f (the detailed derivation can be
found in Appendix A).

Given that the quantum acceleration ∇Q is proportional to a
third-order derivative of the density field, it is impossible to build an
iterative SPH algorithm with less than three cycles over all particles.
Therefore, our implementation can be schematically summarized by
three cycles of computation. The first one for the density:

ρi =
∑

j∈NN(i)

mjWij , (23)

the second one for its gradient and Laplacian:

∇ρi =
∑

j∈NN(i)

mj∇Wij

ρj − ρi√
ρiρj

(24)

∇2ρi =
∑

j∈NN(i)

mj∇2Wij

ρj − ρi√
ρiρj

− |∇ρi |2
ρi

, (25)

and the third one to build, using equation (6), the QP contribution
to acceleration:

∇Qi = �2

2m2
χ

∑
j∈NN(i)

mj

fjρj

∇Wij

(
∇2ρj

2ρj

− |∇ρj |2
4ρ2

j

)
. (26)

It would be perfectly legitimate, however, to choose different
ways to break down the derivatives into lower order sums on neigh-
bouring particles following the SPH prescriptions. Regardless of the

specific formulation chosen, the algorithm should always be tested
against known analytical solutions, in order not to trade better per-
formances off for worse results. In the next section, we present a
series of basic tests of our FDM implementation showing that the
original SPH formulation results in a very poor accuracy of the nu-
merical solution for the QP, while our improved strategy provides
much better results.

3 C O D E VA L I DAT I O N

In this section, we test the accuracy of the algorithm described in
the previous section by comparing, for some particular density dis-
tributions, the solution of the QP obtained from our implementation
to the analytic one. We also compare our improved SPH scheme
for spatial derivatives with the results obtained through the standard
SPH implementation of P-GADGET3 .

To this end, we have tailored the matter density distribution in
our tests, both in one and three dimensions, to match some specific
analytical forms by rearranging the spatial distribution of particles
while keeping their individual mass constant, which implies a local
variation of the SPH smoothing length from particle to particle
as it normally happens in standard astrophysical and cosmological
application of the SPH method. The spatial degrees of freedom
not relevant for the test distributions are uniformly randomized in
order to average out their contribution to Q. In Fig. 2, we display
four maps representing the matter density distribution and the QP
spatial distribution for the first two analytical tests considered – a
1D hyperbolic tangent front and a 3D Gaussian matter distribution
– and described in detail in the following subsections.

The results obtained using a standard SPH algorithm through the
original formulation of equation (16) and our modified implemen-
tation of equation (18) are presented to emphasize the importance
of derivative corrections in the algorithm.

To be thorough, and to assess the impact of variable smoothing
length on the accuracy of the solution, we also show a comparison
with results obtained from a homogeneous distribution of particles
with spatially variable mass that reproduce the same overall density
distribution.

The test simulations feature 2563 particles in an L = 10 Mpc
non-periodic box. Initial conditions, built accordingly to each test,
are read by the code and a snapshot with QP information is instantly
produced.

Finally, our last test focuses on the dynamical evolution of a
self-gravitating system, in which the balance between the opposite
effects of the gravitational and quantum potentials lead to a stable
solution and the formation of a solitonic core.

3.1 1D Density front

As a first analytical test, we consider the case of a 1D density front
described by a hyperbolic tangent in the form of

ρ(x, σ, c) = ρ0

(
c + 1 − tanh

x

σ

)
, (27)

where σ defines the sharpness of the front while c is used to
parametrize the the density contrast at the left of the front with
respect to a background density on its right.

For such a density profile, the QP has the analytical form

Q(x, σ, c) = − �2

8m2σ 2

1 − t2

(c + 1 − t)2

[
1 − 4t (c + 1) + 3t2

]
(28)

expressed in terms of t(x, σ ) = tanh x
σ

.
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Figure 2. Matter density and Quantum Potential maps obtained for the two analytical density distributions considered for code validation: a 1D hyperbolic
tangent front along the x-axis (left-hand panels) and a 3D Gaussian (right-hand panels) distribution.

Figure 3. Density profile (top row), Density gradient (mid row), and Quantum Potential (bottom row) obtained for the same hyperbolic tangent front density
distribution along the x-axis. On the left-hand column, we show results obtained when the density distribution is built by changing the mass of particles set on
a regular grid, while in the center and right-hand columns we show the case of keeping the mass constant and rearranging the spatial distribution of particles,
using either the original P-GADGET3 SPH scheme or our improved implementation, respectively.
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Figure 4. Quantum Potential map at z= 5 of an FDM cosmological sim-
ulation with mχ = 10−22 eV/c2 in a 15 Mpc/h side box. The potential is
contrasted with its mean value to emphasize spatial distribution, therefore
expressed in dimensionless units.

In Fig. 3, we show the profile for the density, its gradient, and the
QP as computed for such density distribution in different setups: a
regular grid configuration of particles with variable mass (left-hand
panels) and a spatial rearrangement of constant mass particles, the
latter analysed with and without the derivative correction described
in Section 2.2 above (center and right-hand panels, respectively).
In particular, the distribution used has the form of equation (27)
centred at 5 Mpc, with σ = 500 kpc and a background parameter
c = 1.

First of all, we notice how the idealized setup with a regular grid
of particles with variable mass provides the most accurate solution
for all quantities. This is not surprising, and reflects an intrinsic limi-
tation of the SPH algorithm in the computation of spatial derivatives
for situations where the density distribution features steep gradients
and consequently neighbouring particles have significantly different
smoothing lengths. By keeping particles on a fixed grid and chang-
ing their mass – still basing the computation of the SPH smoothing
length on a desired number of neighbour particles – we obtained
identical smoothing lengths for all particles.

Secondly, it is easy to see that our correction of the derivative
scheme has a positive impact on the QP computation which gets
closer to the idealized variable mass system.

As one can see in the plots, the QP resulting from a 1D hyperbolic
tangent front features a negative peak on the most dense side and
a positive one towards the less dense region. This corresponds to
positive and negative accelerations on the two sides, respectively,
implying that the QP tends to push matter towards the region of steep
density variation. Such behaviour has interesting consequences, in
particular for cosmological structure formation. More specifically,
this modulation of the QP may show up in cosmic walls and fil-
aments, where the local matter distribution can be represented by
a 1D (cartesian or radial, respectively) density front. In order to
provide a direct evidence of such effect, we show in Fig. 4 a map of
the QP contrast (i.e. the relative difference of the QP to the average
QP) at redshift z = 5 from a cosmological simulation of Axion Dark
Matter performed with AX-GADGET for an Axion mass of mχ = 10−22

eV/c2, where negative and positive regions for the QP are marked
in blue and red, respectively. As one can see from the figure, the
QP follows the underlying cosmic web of collapsed structures, and

shows negative wells corresponding to the most dense regions while
approaching zero in voids, as expected. It is also clearly visible how
positive regions surround structures – filaments and walls in partic-
ular – that separate voids, confirming the analytical result obtained
above.

3.2 3D Gaussian distribution

To idealize a spherical collapsed system, we used as pivotal test a
3D Gaussian overdensity that we parametrized as

ρ(r, σ, c) = ρ0

(
c + e−r2/2σ 2

)
, (29)

where σ is the standard deviation of the distribution and c is linked
to the relative density of the Gaussian perturbation with respect to
the background average.

For c → 0, representing the Gaussian density distribution in
vacuum space, Q(x, σ , 0) collapse into a parabolic function that
diverges at infinite distance. This implies an unphysical limit in
which distant particles have infinite acceleration (proportional to
∇Q).

In fact, using equation (6), the QP functional form is

Q(r, σ, c) = �2

4m2σ 2
χ

[
−3 + r2

2σ 2
(2 − χ )

]
, (30)

where we introduced the dimensionless variable χ (r,
σ ) = (1 + c exp (r2/2σ 2))−1.

As soon as c becomes different from zero, the divergence of the
QP is cured and a positive peak appears outside the central negative
well, similarly to the previous case, before the function decays to
zero at larger distances. The acceleration

∇Q(r, σ, c) = �2

4m2σ 3
χ

[
5 − 4χ − r2

σ 2
(1 − χ )2

]
r
σ

(31)

is therefore directed outwards in the central overdensity region and
inwards in a small shell in the outskirts of the overdensity.

This non-linear behaviour in a simple Gaussian distribution is
emblematic of how the QP is hardly representable with other effec-
tive functionals such as, for example, a polythropic function Q∝ ργ

typical of pressure-like components that would feature a monotonic
behaviour (i.e. with an acceleration with fixed sign) whatever its
specific form.

In Fig. 5, we display the density profile, its gradient, and the re-
sulting QP for the 3D Gaussian distribution of equation (29) around
the center of a 10 Mpc non-periodic box, with σ = 500 kpc and a
background parameter c = 1.

As the figure shows, the role of our derivative correction is rele-
vant, since the standard SPH approach results in an overestimation
of the depth of the central well lacking of positive peaks surround-
ing it. From the numerical point of view, our analysis suggests that
the main source of error comes from a substantial underestima-
tion of the Laplacian, since it is the only term bearing a positive
contribution.

Recently, another implementation for FDM from an independent
group (Zhang et al. 2016) considered a similar test, finding the
opposite behaviour, namely that the interaction induced by the QP
between two particles is attractive below a certain distance and
repulsive elsewhere. Clearly, such a solution would bound particles
that are close enough to each other and was claimed by Zhang
et al. to reflect the phenomenon of Bose–Einstein condensation.
However, it is our opinion that the attractive behaviour found by the
latter could be actually due to a mis-calculation in the discretization
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Figure 5. Density profile (top row), Density gradient (mid row), and Quantum Potential (bottom row) obtained for the same 3D Gaussian density distribution.
On the left-hand column. we show results obtained when the density distribution is built by changing the mass of particles set on a regular grid, while in the
center and right-hand columns, we show the case of keeping the mass constant and rearranging the spatial distribution of particles, using either the original
P-GADGET3 SPH scheme or our improved implementation, respectively.

of the SPH algorithm. We provide a more detailed demonstration
of this argument and a comment on the results of Zhang et al. in
Appendix B below.

3.3 Solitonic core

The last test we present features the dynamical evolution of an
analytical distribution, in order to test the correctness of our imple-
mentation of FDM dynamics over time. The starting point is again
a 3D Gaussian distribution

ρ(r, σ ) = ρ0 e−r2/2σ 2
, (32)

which is left free to evolve under the influence of both gravitational
and quantum potential, in a non-cosmological setup.

The stable solution of the density distribution for this system –
representing a solitonic solution – has no analytical form but can be
expressed in an approximated form as

ρ(r, σ )
t→∞−−−→ ρ(r, rc) = ρc

[
1 + αr2/r2

c

]−8
, (33)

where the parameter α = 82 − 1 is defined such that the radius
rc is the radius at which the density is halved with respect to the
central peak ρc satisfying ρ(r = rc) = ρc/2 (see, e.g. Guzman &
Urena-Lopez 2006; Schive, Chiueh & Broadhurst 2014; Marsh &
Pop 2015).

We choose a non-periodic box of 10 Mpc side length, with a
Gaussian distribution with σ = 500 kpc and a mass mχ = 10−26

eV/c2 for the FDM bosonic field.
In Fig. 6 is shown the relaxed radial density distribution obtained

for such a setup, which is consistent with the approximated solitonic
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Figure 6. Stable density distribution obtained by letting a 3D Gaussian
distribution relax over time under the combined effect of gravitational and
quantum potentials. The numerical result matches the solitonic core func-
tional form of equation (33), in which parameter rc is represented by the
vertical dashed line.

functional form of equation (33) with rc represented by the vertical
dashed line. In this idealized test, we added an artificial velocity-
dependent friction in order to let the system settle in its ground state
more gracefully and achieve stability.

This last test is in line with the theoretical predictions and numer-
ical results in literature, assessing that the QP can indeed support the
formation of stable and cored structures (Schive et al. 2014; Marsh
& Pop 2015). In a cosmological setup, since the scale of equivalence
between the two potentials λQ evolves in time, such solitonic cores
are expected to be found only at the center of small and dense dark
matter haloes which had enough time to relax dynamically.

Therefore, by comparing our results with both analytical predic-
tions and numerical results in the literature (see, e.g. Woo & Chiueh
2009; Mocz et al. 2018) for static and evolving systems, we feel
confident that the algorithm implemented in AX-GADGET can be con-
sidered accurate and robust, and we now move on to test the effects
of FDM with our modified code on more realistic cosmological
setups.

4 C O S M O L O G I C A L S I M U L AT I O N S

In this section. we discuss the results of a series of cosmological
test simulations, to understand the effects of the QP on the overall
dynamics of FDM and its role in the evolution of the large-scale
structures of the Universe.

Even though AX-GADGET allows for any possible mixture of CDM
and FDM particles sharing the overall matter budget of the Universe,
as well as for different possible self-interaction mechanisms as
described in Section 2.2, we restrict our tests to the effects of the
QP alone for a single FDM component accounting for the total dark
matter density and leave the exploration of more complex models
for future work.

The dynamical effect induced by the QP during cosmic evolution
is investigated and compared to the result of the widely-adopted
approximation consisting in imposing the predicted suppression of
small-scale perturbations – as computed by linear codes such as e.g.
AXION-CAMB (Hlozek et al. 2015) – in the initial conditions only. The
details regarding each simulation are listed in Table 1.

In order to highlight the effects of the QP on structure formation
and – more importantly – the ability of AX-Gadget to correctly
follow FDM dynamics, we choose a mass of the FDM boson field
mχ � 10−22 eV/c2. A single FDM component with such low mass is
disfavoured by linear studies (Hlozek et al. 2015) and by numerical
simulations based on a suppressed initial density power (Iršič et al.
2017). However, in this work, we are mostly interested in testing
our code in the case of a strong QP effect in order to emphasize
observable consequences of FDM on cosmological evolution and
numerically stress the code.

In these simulations, we are not able to see the formation of
interference patterns or solitonic cores – as in section 3.3 – since we
are not able to probe such high-resolution effects. With much higher
resolution future simulations, we plan to investigate the ability of
our SPH scheme to capture such small-scale characteristic FDM
footprint and large-scale structures at the same time, as has been
done with other grid-based codes in the literature (Schive et al.
2014; Mocz et al. 2018).

4.1 Quantum potential effects on dynamics

To isolate the impact of the QP on the dynamics and on the evolu-
tion of large-scale structures, we first performed two simulations –
termed CIC1000 and CIC+QP1000 in Table 1 – evolved with CDM
and FDM dynamics (i.e. with standard P-GADGET3 and AX-GADGET,
respectively) but starting from the same initial conditions. There-
fore, any difference in the dynamical evolution between the two
runs is the result of the QP acceleration contribution exclusively.
The initial power spectrum used for the initial particle configura-
tion is that of �CDM, specifically the Eisenstein and Hu spectrum
(Eisenstein & Hu 1998), in order to avoid additional effects arising
from the suppression that a light non-thermal boson field would
imply (Hu et al. 2000).

Since the initial conditions that we adopt feature a higher power
of density perturbations at small scales than FDM would allow, we
set the starting time of the simulation at a very high redshift z= 999
in order to allow sufficient time for the system to adjust. Such an
approach has been already employed to quantify the QP effects on
structure formation for full-wave solver codes (see, e.g. Woo &
Chiueh 2009) and our tests therefore allow for a direct comparison
with these previous works.

In Fig. 7, we display maps of the density field (left column), the QP
(central column), and the gravitational potential (right column) of
the CIC+QP1000 simulation at different redshifts. At high redshift,
the density contrast is still very small, and the QP is strongly af-
fecting scales k � 1h/Mpc throughout the simulation box – thereby
counteracting gravitational instability at these scales – while the
gravitational potential wells start to induce matter collapse on larger
scales. As the system evolves, dark matter starts to accrete on seed
overdensities under the effect of gravity and eventually collapses
into structures while drifting away from low-density regions, thus
inducing the QP to intensify in the infalling regions – actively coun-
teracting matter accretion – and to weaken its action elsewhere. At
lower redshifts, the scale at which the QP is still able to contrast the
gravitational potential reduces – because of the redshift dependence
of the associated Jeans scale of equation (9) – and its distribution
follows the dark matter structures shaped by the gravitational po-
tential.

In Fig. 8, we show the matter power spectra of both simulations (in
the upper panel) and their ratio (in the lower panel). It appears clear
from the evolution of the power spectra that the QP dynamically
suppresses the power at small scales, as expected. Both the intensity
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Table 1. Summary of the simulations presented in this work and their properties.

Model
Initial

Contitions QP
mχ

[10−22eV/c2] N particles
Boxsize
[Mpc3]

Mass
resolution
[106M
] zstart zend

Time [h on
1024 CPU]

CIC1000 Standard × – 2563 10 5.110 999 0.5 –

CIC+QP1000
Standard

√
1/

√
2 2563 10 5.110 999 0.5 –

CIC Standard × – 5123 15 2.156 99 3 6.98
CIC+QP Standard

√
1 5123 15 2.156 99 3 38.09

FIC Suppressed × – 5123 15 2.156 99 3 7.29
FIC+QP Suppressed

√
1 5123 15 2.156 99 3 38.27

and the scale of this suppression are redshift dependent and the
evolution of the system can be split in three main phases. In the first
phase, at high redshifts (up to z ∼ 19), the QP fluctuations dominate
over the gravitational potential at small scales,resulting in a strong
suppression of the initial power spectrum.

As the system evolves, it enters a second phase (from z ∼ 19 to
z ∼ 3 in our plots) where the action range of the QP gets smaller and
smaller (as described by its characteristic length kQ in equation (9))
and it is no longer able to counteract the gravitational potential on
larger scales. Structures begin to form at scales larger than kQ as the
gravitational instability induces matter collapse, thereby increasing
density gradients in the collapsing regions and consequently inten-
sifying the repulsive action of the QP in the central parts of the
forming halos.

Such a first dramatic rearrangement of the initial conditions fol-
lowed by a smoother evolution, in line with what is found in Woo &
Chiueh (2009), is due to the fact that the CDM initial conditions are
not an equilibrium solution in the presence of QP, so that the system
suddenly rearranges to recover an equilibrium setup. Unfortunately,
the significant difference in resolution between our runs and those
of Woo & Chiueh prevents a detailed quantitative comparison of
this sharp transition between the two studies.

Finally, at even lower redshifts (from z∼ 3 onward), gravity has
shaped the large-scale structures and both potentials - effectively
acting one against the other - follow the matter distribution and
relax to an equilibrium state.

The suppression of the power spectrum – displayed in Fig. 8 –
shows no dramatic change in slope while it shifts towards lower and
lower scales, suggesting that the evolution of perturbations is mostly
due to the dynamical balance at all scales of the two potentials as
the universe expands and the quantum Jeans length shrinks.

As a test of the dynamical evolution of the system in the
N-body simulation, we can compare our results with with the
linear prediction for k1/2, which is defined as the scale satisfy-
ing PFDM(k1/2)/PCDM(k1/2) − 1 = −50 per cent (see, e.g. Hu et al.
2000). In the bottom panel of Fig. 8, the vertical dashed lines rep-
resent k1/2 for each redshift.

In the first phases of the simulation – when the system quickly
shocks from the non-equilibrium configuration of the initial condi-
tions – the linear prediction is far from being realised, while in the
last phase, when sufficient time has been allowed for the system
to settle to the new equilibrium configuration, we progressively ap-
proach the linear result as the Universe evolves to the present epoch.
Such an asymptotic recovery of the linear predictions at low red-
shifts represents a successful test for our QP implementation: given
enough time, the QP is able to prevent structure formation at small
scales – even when CDM initial conditions are used – effectively
suppressing the matter power spectrum as we would expect from

theory. Nonetheless, we stress here that we do not expect to recover
exactly the predicted value of k1/2 at low redshift as the latter was
computed within a linear approximation while our implementation
is able to follow the evolution of structures under the joint effects
of gravity and of the QP down to the fully non-linear regime. The
differences between the linear results and our non-linear treatment
is discussed in detail below.

4.2 Quantum potential and initial conditions

As shown in the previous subsection, comparing the evolution of
CDM initial conditions with and without accounting for QP in the
dynamics provides a clear example of the QP effect on structure
formation and evolution, namely a repulsive contribution to accel-
eration within collapsed structures that counteracts the attractive
pull of gravity. However, such a setup is not a realistic representa-
tion of structure formation within the FDM framework, for which
a suppression of the density perturbations power at small scales
would already be in place at arbitrarily high redshifts, and therefore
should be already accounted for in the initial conditions setup (see
again Hu et al. 2000).

A lower small-scale power translates automatically into a late-
time shortage of low-mass structures, so different works (see, e.g.
Schive et al. 2016; Armengaud et al. 2017; Iršič et al. 2017) have
been suggesting that it might be appropriate – under some circum-
stances – to completely neglect the effects of the QP in the dynamics
of the simulations and simply account for the FDM phenomenology
through a cutoff in the initial conditions power spectrum, similarly
to what happens for the case of Warm Dark Matter scenarios (see,
e.g. Bode et al. 2001). However, a proper validation of such an
approach has not yet been performed in sufficient detail, and a
quantitative assessment of the impact of the QP in the dynamics
of structure formation on top of a cutoff in the primordial power
spectrum has to be made in order to allow fully accurate predictions
of the non-linear FDM footprints.

To this end, in order to investigate the relative impact on structure
formation of the two approaches, we performed a second set of four
simulations – termed CIC, CIC+QP, FIC, FIC+QP – representing
four combinations obtained from both suppressed (FIC) and non-
suppressed (CIC) initial conditions evolved either with (+QP) or
without the QP in the dynamics, as listed in Table 1.

Obviously, the CIC run corresponds to a standard �CDM simu-
lation while FIC+QP represents the closest setup to the real FDM
model, including the effects of the QP both in the initial conditions
and in the subsequent dynamical evolution of structures.

As already pointed out in Section 2.1, the matter power spectrum
to be taken into account in building the initial conditions for FDM
simulations features a mass- and redshift-dependent cutoff, at a scale
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Figure 7. Maps of a 500 kpc/h slice of the density field (left-hand column), the Quantum Potential (centre column), and the gravitational potential (right-hand
column) of the FDM simulation, at different redshifts. Observables are contrasted with mean values to emphasize spatial distribution, therefore expressed in
dimensionless units.
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Figure 8. Top: Dimensionless matter power spectra of simulations with
QP (solid) and without QP (dashed), both evolved from z = 999 CDM ini-
tial condition, labelled redshift-wise. Bottom: Relative difference of matter
power spectra between the simulations. The vertical dashed lines represents
the k1/2 coming from linear theory defined as the scale at which the predicted
power spectrum suppression is 50 per cent.

given by equation (9). In order to set up the FIC initial conditions, we
resorted on the publicly available and widely used code AXIONCAMB

(Hlozek et al. 2015), a modified version of the public code CAMB

(Lewis, Challinor & Lasenby 2000), to compute the suppressed
power spectrum at the starting redshift of our simulations, z = 99.

In Fig. 9, we display the relative difference of the matter power
spectrum in the four simulations with respect to the reference CIC
run. As one can see from the plots, the four simulations are paired
at the starting time in the two different initial conditions FIC and
CIC (top-left-hand panel of Fig. 9), and immediately decouple un-
der the effect of the QP (top-right-hand panel). The small-scale
overdensities are either disrupted (for the CIC+QP case) or frozen
(for the FIC+QP case) by the QP and this results in a drop of the
power spectrum compared to the corresponding runs without QP.
At lower redshifts, the maximum suppression with respect to the
reference CIC run is obtained for the FIC+QP simulation, which
features an additional ≈5 − 10 per cent suppression (depending on
the redshifts) at small scales compared to the FIC case where the
suppression is only imprinted in the initial conditions. This result
seems to suggest that the approximate treatment of neglecting the
QP in the dynamical evolution of a suppressed primordial matter
power spectrum – that has been widely employed in the literature
(see, e.g. Schive et al. 2016; Armengaud et al. 2017; Iršič et al.
2017) – may not be sufficient for precise quantitative assessments
of the observational features of FDM and generalised Axion Dark
Matter models.

Since the range of action of the QP is characterized by typi-
cal length kQ(z, m) (see equation 9), we do expect that for some
range of redshifts and masses the overall linear effect of QP can
indeed be accurately encoded in the initial conditions. However,

our results suggest that the QP induce a suppression at redshift-
dependent scales whose integrated effect cannot be overlooked, at
least for scales � 1 Mpc/h. Neglecting the QP action in the dynam-
ics may result in an overestimation of power as large as 10 per cent
at scales ≈300 kpc at z = 3. Therefore, we do conclude that ac-
curate simulations consistently including the QP in the dynamical
evolution of cosmic structures are necessary to place fully reliable
constraints on the parameter space of FDM and Axion Dark Matter
models.

Our results are in stark contrast with the previous findings of
Veltmaat & Niemeyer (2016), who found that the matter power
spectrum obtained from simulations with suppressed initial condi-
tions (performed with an adaptive mesh refinement code for FDM
cosmology) is enhanced at small scales by the action of the QP
rather than being further suppressed. Even if the QP can indeed
be attractive in small regions of space around overdensities – as
discussed in Section 3 – we find that the overall integrated effect on
the density field is always opposite to gravity – therefore to matter
gravitational collapse – thus resulting in a suppression of small-
scale power whose intensity may be amplified by using already
suppressed initial conditions rather than being overturned by it.

In Fig. 10, we provide a visual comparison of the large-scale
matter distribution in our four test simulations by showing maps
of the density field at redshift z= 3 for the four runs. It is evident
how most of the low-mass structures that appear in the CIC setup
are absent in the other simulations. Both the suppression imprinted
in the initial conditions and the one resulting from the QP effect
alone are able to wipe out inhomogeneities and prevent dark matter
from accreting on small-scale structures, the former being more
effective than the latter in this regard. However, the combined effect
of suppressed initial conditions and of QP acting on the dynamics of
dark matter particles in the simulation FIC+QP – which corresponds
to the most realistic and self-consistent setup for FDM – is found to
provide the strongest impact on the abundance of low-mass objects.

4.3 Performance

In this section, we briefly describe the overall performance of AX-
GADGET for the cosmological runs described above, and we compare
it to a standard CDM simulation performed with the unmodified
version of P-GADGET3 .

The SPH implementation that computes the QP and its contri-
bution to particle acceleration with three cycles on all the FDM
particles has been built analogously to the extremely optimized
baryonic one, in order to spread the computation and memory load
across the CPUs. Therefore, AX-GADGET should perform in a similar
way to a hydrodynamical simulation with no CDM particles. As a
consequence, the overhead compared to a collisionless CDM-only
simulation is still significant, but definitely much weaker compared
to grid-based FDM full-wave solvers (such as e.g. Schive et al.
2010).

In Fig. 11, we show the CPU time and the overhead for the
CIC, CIC+QP, FIC, and FIC+QP simulations, paired with respect
to initial conditions to highlight the additional computational load
of the QP computation. Contributions of the routines of gravity
solver are presented, along with SPH routines devolved to the bare
computation of the density derivatives, the QP acceleration acting
on particles, and the respective imbalance between CPUs.

As we can see, starting from CDM initial conditions (left-hand
panel) results in an overhead of a factor of ∼3 right from the
beginning of the simulation in the case when the QP is included.
This is due to extra work – needed to compute the QP – arising from
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Figure 9. Relative difference between matter power spectra between CIC, CIC+QP, FIC, and FIC+QP simulations and the reference CIC setup, corresponding
to standard �CDM.

the reaction to the out of equilibrium configuration provided in the
initial conditions. As one can see from the figure, this overhead
only weakly grows during the remainder of the simulation up to a
total factor of ∼5 at z = 3. When FDM initial conditions are used
(right-hand panel), the overburden is indeed less pronounced in the
early phases of the evolution whereas the final computational time
is a factor ∼5 larger than the case without QP also in this case.

We find that the major contribution to CPU time is the one as-
sociated to the imbalance between CPUs in the SPH calculation –
namely SPH density imbalance and SPH acceleration imbalance –
while the time spent for the bare SPH calculation – SPH density and
SPH acceleration – make up for less than 20 per cent of the total
time of the simulation.

Therefore, we conclude that given the relatively low overhead
obtained for simulations starting from suppressed initial conditions,
the inclusion of the QP in the dynamics implemented in AX-GADGET –
as would be required from theory – does not affect dramatically the
performance and the feasibility of large cosmological simulations
while contributing with important physical information.

5 C O N C L U S I O N S

We have presented an extension of the massively parallel N-
body code P-GADGET3 for non-linear simulations of Fuzzy and
Axion dark matter cosmologies based on the solution of the dy-
namic Schrödinger equation in the Madelung formulation through

Smoothed Particle Hydrodynamics techniques. Our code, which we
called AX-GADGET, shares the same general structure of P-GADGET3
thereby inheriting its scalability and load–balance efficiency, as well
as the wealth of additional implementations – ranging from sophis-
ticated algorithms for radiative gas physics to Dark Energy and
Modified Gravity modules – that have been included in P-GADGET3
over the past years.

More specifically, our implementation of Fuzzy Dark Matter is
based on the solution of the associated Quantum Potential (see
equation 6) via a series of spatial derivatives of the density field
computed from each simulation particle through the standard SPH
kernel. Nonetheless, the higher order of spatial derivatives com-
pared to standard SPH simulations that is required to compute the
Quantum Potential acceleration (third-order derivatives of the den-
sity field compared to the first-order derivatives required for stan-
dard hydrodynamical forces) results in a very poor accuracy of the
solver if the standard approach of P-GADGET3 for the computation of
spatial gradients is recursively employed. To overcome this prob-
lem, we have explored alternative methods to compute higher order
derivatives based on a regularization of each first-order derivative
in regions of constant density (equation 14).

This improved scheme provides much more accurate and stable
results for the computation of the Quantum Potential and of its
associated acceleration, as we demonstrated through a series of tests
for density distributions with a known Quantum Potential analytical
solution.
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Figure 10. Density distribution of four simulations starting from standard initial conditions (top) or suppressed with AXIONCAMB (bottom) and evolved with
(right) or without (left) Quantum Potential effects.

Figure 11. CPU time spent as a function of the scale factor a for the simulation with QP (solid lines) and without it (dashed lines) starting from CDM (left)
and FDM (right) initial conditions. The total CPU time is plotted together with the tree-gravity and SPH routines for density and QP acceleration contributions
– and relative imbalance between CPUs –. The bottom panels show the overhead for each contribution, as defined by timesolid/timedashed.
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First of all, we investigated a one-dimensional density front de-
scribed by a hyperbolic tangent shape in a three-dimensional box,
realised either by changing the mass of tracer particles set on a
regular cartesian grid or by moving particles of constant mass to re-
produce the desired density distribution. In both cases, the standard
SPH approach recovers with excellent accuracy the input density,
but for the latter it fails in capturing faithfully the shape of the as-
sociated Quantum Potential. On the contrary, our improved scheme
provides a much more accurate solution thereby giving rise to a
better representation of the resulting acceleration.

Secondly, we tested the code on a density distribution that more
closely resembles the situation of a collapsing dark matter halo
in cosmological simulations, namely a three-dimensional Gaussian
density profile, placed at the centre of a non-periodic box, again
realized both by an individual mass change for a regular grid of
particles and by moving around particles of equal mass. Also in
this case, the standard SPH approach perfectly recovers the input
density, but fails to reproduce accurately the Quantum Potential for
an inhomogeneous distribution of equal mass particles. Again, our
improved scheme shows much better convergence to the expected
analytical solution.

Based on the success of these analytical tests, we moved to ap-
ply our algorithm to more realistic cosmological setups. As a first
test, we investigated the impact of the Quantum Potential by run-
ning two simulations with identical initial conditions, generated for
a standard Cold Dark Matter power spectrum, at very high red-
shift (zi = 999), with and without the contribution of the Quantum
Potential. This test showed a sudden re-arrangement of particles
right at the start of the simulation when the Quantum Potential is
included, resulting in a strong suppression of the density power
spectrum at the smallest scales probed by our box compared to
the standard case. This is due to having set the system – in the
case with Quantum Potential – out of its equilibrium configuration
by using a Cold Dark Matter power spectrum to generate the initial
conditions. After this first phase of dramatic evolution, however, the
system finds its new equilibrium configuration and starts evolving in
a more relaxed way, slowly restoring small-scale perturbations dur-
ing the cosmological evolution. Most importantly, the evolution is
found to recover the theoretically expected linear suppression of the
matter power spectrum at intermediate and low redshifts, thereby
providing a positive test for the stability and the accuracy of our
algorithm.

Then, we moved to compare the impact of the Quantum Potential
to the effect of introducing its associated small-scale power sup-
pression in the initial conditions, which has been claimed in the
literature to be a sufficient and much cheaper approach to structure
formation in Fuzzy Dark Matter cosmologies. To this end, we ran
four cosmological simulations starting from a lower initial redshift
zi= 99, two of which starting from standard Cold Dark Matter initial
conditions, while the other two starting from a random realization
of a suppressed matter power spectrum according to the linear pre-
dictions for a given Fuzzy Dark Matter particle mass. For each of
these two initial setups, we then evolved the simulations either with
or without including the Quantum Potential.

This further test showed that indeed including the Quantum Po-
tential in the dynamics provides a qualitatively similar suppression
of the matter power spectrum as one would get from just evolving
linearly suppressed initial conditions. However, when both are in-
cluded in the same simulation – which represents the most consistent
setup for the evolution of the system – the resulting matter power
spectrum at low redshifts shows an additional suppression of about
5–10 per cent compared to the case with no Quantum Potential. This

result demonstrates that a proper implementation of the Quantum
Potential in the dynamics is necessary for precision cosmology, and
in particular for accurate predictions aimed to place constraints on
the Fuzzy Dark Matter particle mass. Furthermore, one can expect
that such additional suppression would result in more pronounced
effects at the level of the structural properties of dark matter halos,
which we did not investigate in this work but that will be discussed
in a forthcoming paper.

Finally, we have shown that the overall performance of AX-
GADGET does not make high-resolution cosmological simulations
prohibitive, with an overhead compared to standard collisionless
simulations of a factor of 5−6, thereby having a moderate increase
of the computational cost compared to standard SPH simulations.

To conclude, we have presented the AX-GADGET code featuring
an efficient and accurate implementation of the Quantum Potential
that characterizes Fuzzy Dark Matter models and in particular Ultra
Light Axion particles as candidates for the cosmological budget
of dark matter. We have described the algorithm implemented in
the code, the strategies we adopted to improve its accuracy com-
pared to standard SPH techniques, and shown tests for analytical
density distributions. We have also employed the code for realistic
cosmological simulations, showing that a consistent treatment of
the Quantum Potential in the dynamical evolution of the system
is necessary to account for the full suppression of power at small
scales that represents the most prominent observational feature of
Fuzzy Dark Matter scenarios.
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A P P E N D I X A : VA RY I N G S M O OT H I N G
L E N G T H

In order to preserve energy and entropy conservation of the algo-
rithms – at least in the appropriate limits – it is imperative to take
into account the terms arising from the variation of the smooth-
ing length h required to satisfy equation (22). To do so, we follow
the approach described in Springel & Hernquist (2002), where La-
grangian multipliers are introduced to keep track of h-derivative
terms.

Let us consider a generic Lagrangian for an FDM N-body en-
semble with the form

L(q, q̇) =
N∑

i=0

1

2
mi |ṙi |2 − mi

Pi

ρi
2 (A1)

+ �
2

2m2
χ
mi

∇2√
ρi√

ρi
+ λi(Viρi − M)

expressed in terms of the variables qi = (ri , hi) and where the
different terms represent the kinetic energy, the self-interaction be-
tween particles – described through a pressure function P – and the
QP contribution. The last term enforces equation (22) through N
Lagrangian multipliers λ.

The set of equations of motion linked to the multipliers, one for
every j particle in the ensemble, results in

λj = (1 − 1

fj

)
mj

Vj

[
Pj

ρ2
j

− �2

m2
χ

∂ρj

(
∇2√ρj√

ρj

)]
, (A2)

where we defined the parameters f as

fj =
(

1 + h

3ρj

∂hρj

)
(A3)

that we use in the text (notice that our definition of f in the inverse
with respect to the one in Springel & Hernquist 2002). Substituting
the Lagrangian multipliers, the set of equations of motion related to
the positions r can be expressed as

mi r̈i = −
N∑

j=0

mj

fj

Pj

ρ2
j

∇ρj + �2

2m2
χ

mj

fj

∇
(

∇2√ρj√
ρj

)
, (A4)

which then can be implemented through SPH algorithms. To sum-
marize, the adaptive adjustment of the smoothing lengths of each
single particle contributes to particle accelerations through terms
involving h-derivatives that can be expressed as f factors in the SPH
neighbours summation.

APPENDI X B: QUANTUM POTENTI AL I N TH E
CASE OF A GAUSSI AN KERNEL

Zhang et al. (2016) have recently presented a technique to approxi-
mate the particle–particle interaction induced by the QP in N-Body
simulations. Even if their technique to describe fluid interactions
is not explicitly derived from SPH, they share the same idea of
approximating the real density field at particle positions with dis-
crete sums over a small particle ensemble enclosed in an effective
volume.
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The authors start from a continuous FDM Lagrangian in the non-
interacting case, reading

L(q, q̇) = 1

2

∫
ρ|ṙ|2dx3 − �2

2m2
χ

∫
|∇√

ρ|2dx3, (B1)

where we recognize the kinetic and the QP terms.
To discretize the equation above, they approximate the integrals

with sums on fluid particles j which are mathematically represented
with a Gaussian kernel. The volumes Vj, therefore, represent the
typical volume occupied by each particle linked to the mass and
the smoothing length hj of the kernel used. The two terms in the
Lagrangian in the discretized form read∫

ρ|v|2dx3 → ∑
j ρj |vj |2Vj (B2)

∫
|∇√

ρ|2dx3 → ∑
j |∇√

ρj |2Vj .

In Zhang et al. (2016), while the discretization of equation (B2)
is carried out correctly, the same cannot be said for the equation of
motion derived from them. As a matter of fact, the particle volumes
Vj – that by definition correspond to the ratio between the mass
and the density mj/ρ j – are not taken into account correctly in
the derivation of the QP discretized term, effectively setting that
∇Vj = 0. The authors choose to treat the particle volumes Vj as
constants, thus effectively choosing a single smoothing length for
all the particles, introducing a correction factorBj to account for the
specific volume occupied by the particle. The Bj factors are fitted
a posteriori, ending up being proportional to the smoothing length

cube, as one would expect from equation (22). However, the authors

neglect the volume derivatives arising from Bj which translates in
the lack of the density term in the denominator in the very definition
of equation (6).

Using Gaussian kernel functions with smoothing lenghts h such
that

ρi ∝
∑

j∈NN(i)

mj

(2πh2
j )3/2

e
−r2

ij
/h2

j (B3)

the QP contribution to acceleration between two particles i and j at
a distance r with this wrong approach is

r̈ |QP = �2

2m2
χ

Vj

mi

∇ (|∇√
ρj |2

) = �2

2m2
χ

mj

mi

r
h4

j

(
1 − 2

r2

h2
j

)
(B4)

whereas the right one including the volume derivative is

r̈ |QP = �2

2m2
χ

1

mi

∇ (|∇√
ρj |2 Vj

) = �2

2m2
χ

mj

mi

r
h4

j

(B5)

The different regimes originated by the change in sign of the
quantum interaction are, therefore, a fictitious effect given by an
error in the discretization scheme.

The counter-intuitive attractive behaviour at small distance found
by the authors does not match the physical description of the pro-
cess, as we know that the QP would repel two free point-like par-
ticles – recovered from the equations above in the limit of h → 0
– irrespectively from their separation and thus always opposite to
gravity.
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