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ABSTRACT

On the race toward exascale supercomputing systems are facing im-

all, power and energy consumption fueled by the end of Dennard’s

scaling start to show their impact on limiting supercomputers peak

In this paper we present and describe a new methodology based

power and aggregation of them for fast analysis and visualization.

We propose a turn-key system which uses MQTT communication

technology to measure and control power and performance. This

methodology is shown as an integrated feature of the D.A.V.I.D.E.

supercomputing machine.
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1 INTRODUCTION

On the race toward exascale performance, supercomputers have

become power and energy limited. Until June 2016, every new most

powerful supercomputer in the world (1st in the Top500 list [1]) has

marked an increasing in its power consumption. In 2013 Tianhe-2

reached 17.8 MW of IT peak power consumption, which becomes

24 MW when considering also the cooling power [2]. This has set

the record for the power consumption of a single supercomputer

installation, reaching the practical limit in power provisioning of

20 MW. Today’s most powerful supercomputer (TaihuLight) con-

sumes 15.4 MW underlining the fact that performance increase is

supercomputers are power limited.

The Green500 list ranks the 500 most powerful supercomputers

Point Operations per Second per Watt) [3]. From the Green500

perspective Sunway TaihuLight is ranked 20th with an energy-

design based on the NVIDIA Tesla P100 [4] accelerator card, which

can reach up to 13.7 TFlops in double precision with 300 W of

thermal design power (TDP).

in-class hardware components, supercomputing systems require to

applications workloads. Moreover, fast monitoring sampling fre-

quencies are crucial to correlate energy and power measurements

with application phases [5]. This must be achieved while seamlessly

monitoring the performance metrics of the computing nodes that

are executing the application. At the same time optimizing the en-

tire supercomputer power consumption requires the aggregation

in time and space of a large set ofinformation coming from job

scheduler, user requirements, and computing resources. Clearly,

doing this online and at large scales, without being intrusive and

causing performance loss, is problematic.

In this paper we present a novel approach toward performance

and power monitoring of supercomputers. Our solution combines

measurements, with a scalable data collection backbone based on

best-in class open-source big data framework and a lightweight

communication protocol. This approach is implemented as part of

the D.A.V.I.D.E. (Development for an Added Value Infrastructure

Designed in Europe) computing system [6].

The paper is organized as follows. Section 2 outlines prior works.

Section 3 presents D.A.V.I.D.E. Section 4 describes the power mon-

itoring extensions. Finally, Section 5 presents the experimental

results.

2 RELATED WORKS

(Baseboard Management Controller) via IPMI interface. However,

this mechanism is characterized by a slow sampling rate (seconds),

no time-stamping, and does not allow an accurate energy account-

ing [7].



To overcome these problems, [7] proposes HDEEM, which al-

lows power sampling up to 1 KS/s (kilo Samples per second) and

accurate energy accounting, thanks to an extension of the BMC

data monitoring features and a dedicated FPGA placed on each

computing node. However, due to the use of the BMC as embedded

from closed design, and it is limited in memory storage. Moreover,

instantaneous readings are possible only at 1 S/s.

Works in [ 8] and [9] are based on low cost open hardware em-

bedded computers (Arduino Mega 2560 and the Beaglebone Black -

BBB - respectively) to read and collect power measurements. As [7],

both approaches provide sampling rate up to few kilo samples

per second. However, the measurements are provided via custom

interfaces, which cannot be easily integrated with other system

components. Moreover, [8] is unfeasible to be used in a large scale

HPC infrastructure.

3 D.A.V.I.D.E.

D.A.V.I.D.E. (Development for an Added Value Infrastructure De-

signed in Europe) [6] is an Energy Aware PetaFlops Class High

Performance Cluster, based on Power Architecture and coupled

with NVIDIA Tesla Pascal GPUs with NVLink. The innovative de-

sign of D.A.V.I.D.E. is based on OpenPOWER platform and is among

the harbingers of a new generation of HPC systems which deliver

high performance while being environmentally conscious. It is

built using best-in-class components plus custom hardware and an

innovative middleware system software.

mance of 990 TFlops and an estimated power consumption ofless
than 2 Kwatt per node. Each node is a 2 Open Unit (OU) Open
Compute Project (OCP) form factor and hosts two IBM POWER8
Processors with NVIDIA NVLink and four Tesla P100 data center
GPUs, with the intra-node communication layout optimized for
best performance.

The system is ranked #440 in TOP500 and #18 in GREEN500 in
the November 2017 list.

Following a short description of the main system elements.
The ComputeNode is derived from IBMPOWER8 System S822LC,

with two IBM POWER8 with NVlink and four NVIDIA Tesla P100
HSXM direct liquid cooled. It uses Open Rack Enclosure with in-

mance of 22TFlops and a power consumption ofless than 2 KW.
Each node hosts four NVIDIA Tesla P100 HSMX2, with NVLink

(FP64) performance, 10.6 TFlops of single precision (FP32) perfor-
mance, 21.2 TFlops of halfâĂŘprecision (FP16) performance. The
NVLink implementation in NVIDIA Tesla P100 supports up to four

bidirectional bandwidth of 160 Gbyte/s (A single link supports up
to 40 Gbyte/s of bidirectional bandwidth.).

The Liquid Cooling is based on direct hot-water cooling (27oC )
for CPUs and GPUs. Each rack has an independent liquid/liquid or
liquid/air heat exchanger unit with redundant pumps. The system

has internal pumps on GPUs. Each Rack has its Coolant Distribution
Unit (CDU). Finally the compute nodes are connected to the heat
exchanger through pipes and a side bar for water distribution.

A key feature of D.A.V.I.D.E. is an innovative technology to

monitoring and capping the power consumption of each node and of
the whole system, using data from several components (processors,
memory, GPUs, fans). This is described in the next section.

4 POWER MONITORING EXTENSIONS

The Power monitoring extensions consist of a set of agents running
outside the computing components of the nodes, but tightly coupled
with them. These agents monitor the power consumption of each
computing node at the plug as well as performance and utilization
metrics. Themonitored values are exchanged to a data management
backbone, through a communication layer based on the open-source
MQTT (MQ Telemetry Transport) protocol.

4.1 The Communication Layer

The power management and monitoring framework takes advan-
tage of the MQTT protocol which implements the publish-subscribe

(ii) The "subscriber", which subscribes to appropriate topics. (iii)
The "broker", which (a) receives data from publishers, (b) makes
topics available to subscribers, (c) delivers data to subscribers. The
MQTT communication works as follow. The publisher agent sends
some data with a certain topic as a protocol parameter, the topic
is generated and available to the broker. Any subscriber listening
to that topic will receive the associated data as soon as the broker
receives them. Collector agents have the role of "publishers" in this
scenario.

4.2 The Power Monitoring Agent

The power monitoring agents allow to measuring the power con-
sumption of the several HPC nodes at the power source level as
well as measuring its internal component performance. From the
hardware point of view, they are composed by (i) a power sens-
ing module, which contains the sensors for measuring current and
voltage, and (ii) an embedded monitoring board, which sample, pre-
process and send data via MQTT to the framework data collection
backbone. The power sensing module is placed between the busbar
and the DC-DC converters (that supply all the processing and elec-
trical components within the node). The current is measured with a
current mirror connected to a shunt resistor, while the voltage with
a voltage divider. We use an open hardware platform as embedded
monitoring board, namely the Beaglebone Black. The optimized
software running on the BBB, exploits the built-in ADC (connected
to the shunt resistor and the voltage divider) to sampling data with
Watt precision at 50 kS/s, which is 50x faster than best state-of-

conversion from 12-bit integer to Ampere, Volt and Watt), and then
sent to the data collection backbone on 2 MQTT topics, at 1 ms and
1 s.

In the following sections, we refer to this software component
as Node Power Monitoring Daemon. Thanks to the Network Time



Protocol (NTP) and the Precision Time Protocol (PTP - which is

supported in hardware on the Beaglebone Black), the power moni-

toring data can be synchronized up to microsecond scale [10].

For an out-of-band monitoring of the nodes performance we use

the IBM Amester commands, which exploit the IPMI interface to

the OpenPOWER POWER8 on-chip controller (OCC), to get OCC

sensor readings. The IPMI Amester commands are sent to the OCC,

through the board management controller (BMC), using a python

script. The python script executes on the embedded monitoring

board (BBB). We will refer to this SW component in the following

sections as theOCC Daemon. The received data are then sent to

the MQTT backbone to be processed by Examon. To increase the

spatial and time granularity (at which data are exposed to Examon),

mands. These commands use an ad-hoc internal format to increase

the sampling speed up to 10x as well as integral readings (average

of the metrics in between two cosecutive samples) to avoid aliasing

problems. Moreover, we implemented the NTP algorithm to syn-

chronize the OCC sensor readings with the BMC and take reliable

timestamps.

4.3 The Data Collection Backbone

The monitoring framework provides a mechanism to store metrics

mainly for visualization and analysis of historical data. We use a

distributed and scalable time series database (KairosDB) that is built

on top of a NoSQL database (Apache Cassandra) as back-end. A

vide a bridge between the MQTT protocol and the KairosDB data

insertion mechanism. The bridge leverages the particular MQTT

topics structure of the monitoring framework, to automatically

form the KairosDB insertion statement. This gives a twofold ad-

since it is reduced to a string parsing operation per message; sec-

ondly, it makes easy to form the database query starting only from

the knowledge of the matching MQTT topic. All these services

execute in containers in the frontend nodes, without stealing com-

puting resources from the cluster. In addition to these data handling

services, frontend nodes execute a plugin for collecting the power

sensors data from the AMESTER sensors, which allows to extract

the power consumption of the internal components. The metrics

stored in the database are visualized in real time using a web-based

tools, namely Grafana [11]. Grafana is an open-source project aimed

to provide a web based environment oriented to build and manage

general purpose monitoring dashboards. It supports many time-

series databases as back-ends including KairosDB.

5 EXPERIMENTAL RESULTS

This section focuses on the experimental results of the D.A.V.I.D.E.

the load of the monitoring framework in terms of monitored and

processed metrics per second, as well as the load of the computing

resources running the monitoring framework. We recall that the

entire monitoring framework described in the paper is out-of-band

and do not executes in the computing resources. The second set of

results shows the performance and quality of the monitored data

Source Total Cluster Samples/s

IPMI Sensors 801

OCC Sensors 1089

Node Power Monitoring 45k
Table 1: Number ofmetrics density (Samples/s) for the entire

D.A.V.I.D.E cluster.

Component RAM Usage #Processes CPU% (Avg/Peak)

Monitoring Node (Container)

Cassandra 12GB 171 25/300

Kairosdb 4GB 117 190/600

Data Collection 4GB 470 450/1200

Grafana 512MB 52 0.01/0.02

Monitoring Agent (BeagleBone Black)

Node Power Monitoring Daemon 3 39/41

OCC Daemon 1 11/22

Table 2: Resource usage for the monitoring framework

(Monitoring Node and Agents). The monitoring node con-

tainers are executed in the management node. The monitor-

ing agents are executed on each Beaglebone Black placed on

each node. The CPU% represents the sum of the core usage

in percentage.

in terms of visual insights in a series of Linpack runs on the 45

D.A.V.I.D.E. nodes.

5.1 Monitoring Framework Load

Table 1 reports the volume of metrics monitored in real-time on the

entire cluster and received by the data collection backbone. From

the table we can notice that the gross of the collected metrics comes

surements. Indeed, the monitoring framework reports the power

consumption of each node continuously at 1 KS/s speed. In addi-

tion the system monitors 89 IPMI metrics per node every 5s, and

performance, physical metrics, etc.). As reported in Table 1, this

corresponds to an overall volume of 801 and 1089 Samples/s, for

IPMI and OCC, respectively.

Table 2 reports the resource usage for the monitoring frame-

work. The monitoring node container (running on the manage-

ment node) involves Cassandra, KairosDB, Data Collection (Broker,

data pre-processing, IPMI publisher) and Grafana. The Monitoring

Agent (running on the BeagleBone Black) involves the node power

monitoring daemon, which reads and transmits the node power

consumption at 1s and 1ms, and the OCC Daemon which reads all

the sensors from the OCC of the computing nodes.

The table shows the Beaglebone Black has enough resources

for taking care of reading and publishing to the MQTT broker the

and publishing all the OCC metrics for the node. Moreover, the

management node, which features 16 physical POWER8 cores, has

enough power to collect all the monitored data in real-time, pre-



and visualize them. As the Table 2 shows, the hardware resources

needed by the monitoring framework are limited on average to 7

cores and 21 GBs of memory.

5.2 Monitoring Framework Visual Insights

In this section we will report a set of snapshot of the Grafana front

end, which is used to visualize the collected data during a set of

Linpack runs. This helps to underline the importance and role of the

Daemon, and OCC and IPMI Daemon.

Figure 1 reports the power consumption of all D.A.V.I.D.E. nodes,

measured through the values transmitted by the Node Power Mon-

itoring Daemon, running on each power sensing module. These

values transmitted at 1 Hz are collected by the datamonitoring back-

bone and visualized via Grafana. The top plot reports all the node

power consumption stacked. This allows to visualize each node

contribution to the total node power consumption. The bottom plot

instead reports the power consumption for each node overlapped.

%). From the bottom

plot we can see that this is due by synchronous workload phases

good temporal resolution for node level power consumption, as it

already allows to see important patterns on the node and cluster

power consumption.

The answer is in Figure 2, which reports the power consumption

measured at 1 s and at 1 ms for all the D.A.V.I.D.E. nodes for a

shorten time windows. In particular, the top plot shows a time

window of 4 seconds, while the bottom plot a time window of 1 s,

only.

From these two plots, we can see that the node power consump-

tion at 1 ms unveils additional workload phases with more than

25%(500 W) of the total power variations in few milliseconds. As

a matter offact, the deployed monitoring framework allows to

easily inspect the power consumption oflarge scale systems up to

millisecond scales.

Finally, Figure 3 shows the capability of the proposed moni-

toring framework in terms of correlating the node power con-

sumption measurements with performance and architectural met-

rics, which are continuously acquired. The top plot reports (for

the same time window of previous plots) the power consumption

(davide37 - Fans:PWR_FAN, Memory:PWR_MEM, Cpus:PWR_P0,

GPUs:PWR_GPUs). These metrics are collected from the IPMI sen-

sors, and sent to the data collection backbone by the IPMI Daemon

running on the management node. We can notice from it that the

main power variations are caused by the GPUs power consumption

(PWR_GPUmetric). The bottom plot reports the overall node power

consumption measured by the Node Power Monitoring Daemon

in the BBB at both 1 s and 1 ms. It is visible that the power con-

sumption obtained from the single components (top plot) follows

the one reported by the Node Power Monitoring Daemon. Further

works will study the direct correlation with application phases of

6 FUTURE WORKS

In future works on D.A.V.I.D.E. we will expand the current infras-

cluster. This will be done by exploiting the depicted integrated mon-

itoring system with deep learning and edge-computing targeting

predictive maintenance and power management.

7 CONCLUSION

In this paper we presented a novel power and performance mon-

itoring framework integrated inside a 45 nodes supercomputer

based on IBM OpenPOWER and NVIDIA pascal accelerators. The

proposed approach is completely out-of-band and capable of mea-

suring, process and store the power consumption. We achieve that

and cluster architecture. The proposed approach is capable of un-

down up to millisecond scale. This is done with no impact on the

computing resource availability as the power monitoring is carried

out outside the computing nodes of the cluster.
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(a) Stacked power plot. One line for each node power consumption. Absolute value: cluster power consumption.

(b) Not Stacked power plot. One line for each node power consumption. Absolute value: node power consumption.

Figure 1: Grafana Snapshot on a time window of 23 minutes (18:27-18:50). Nodes power consumption measured @1s by the

Node Power Monitoring Daemon



(a) All cluster nodes power monitoring daemon. Zoom of 4 seconds. (Top) Topic at 1 s. (Bottom) Topic at 1 ms.

(b) All cluster nodes power monitoring daemon. Zoom of 1 seconds. Topic at 1 ms, only.

Figure 2: Grafana Snapshot on time windows of 4 seconds (18:30:40-18:30:44) and 1 seconds (18:30:41-18:30:42). Zoom and

comparison in between 1 s and 1 ms readings.For each subplot: top plot1 s; bottom plot1 ms.

Figure 3: Grafana Snapshot on time windows of 15 minutes (18:27-18:42). OCC and IPMI Daemon per component power mea-

surement (Top Plot) vs. Node Power Consumption Daemon (Bottom Plot).


