-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Archivio istituzionale della ricerca - Alma Mater Studiorum Universita di Bologna

This is the accepted manuscript of a conference paper published in:

Netti A., Galleguillos C., Kiziltan Z., Sirbu A., Babaoglu O. (2018) Heterogeneity-Aware
Resource Allocation in HPC Systems. In: Yokota R., Weiland M., Keyes D., Trinitis C.
(eds) High Performance Computing. ISC High Performance 2018. Lecture Notes in
Computer Science, vol 10876. Springer, Cham.

The final authenticated version is available online at: https://doi.org/10.1007/978-3-
319-92040-5 1

This version is subjected to Springer Nature terms for reuse that can be found at: https://www.springer.com/gp/open-
access/authors-rights/aam-terms-v1

https://core.ac.uk/display/226734771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Heterogeneity-aware Resource Allocation
in HPC Systems

Alessio Netti', Cristian Galleguillos!'2, Zeynep Kiziltan', Alina Sirbu®#, and
Ozalp Babaoglu®

! Department of Computer Science and Engineering, University of Bologna, Italy
{alessio.netti, zeynep.kiziltan, ozalp.babaoglu}@unibo.it
2 Escuela de Ing. Informética, Pontificia Universidad Catélica de Valparaiso, Chile
cristian.galleguillos.m@mail.pucv.cl
3 Department of Computer Science, University of Pisa, Italy
4 Science Division, New York University Abu Dhabi, United Arab Emirates
alina.sirbu@unipi.it

Abstract. In their march towards exascale performance, HPC systems
are becoming increasingly more heterogeneous in an effort to keep power
consumption at bay. Exploiting accelerators such as GPUs and MICs to-
gether with traditional processors to their fullest requires heterogeneous
HPC systems to employ intelligent job dispatchers that go beyond the
capabilities of those that have been developed for homogeneous systems.
In this paper, we propose three new heterogeneity-aware resource alloca-
tion algorithms suitable for building job dispatchers for any HPC system.
We use real workload traces extracted from the Eurora HPC system to
analyze the performance of our allocators when they are coupled with
different schedulers. Our experimental results show that significant im-
provements can be obtained in job response times and system throughput
over solutions developed for homogeneous systems. Our study also helps
to characterize the operating conditions in which heterogeneity-aware
resource allocation becomes crucial for heterogeneous HPC systems.

1 Introduction

Motivation. Modern scientific discovery is increasingly being driven by compu-
tation and High-Performance Computing (HPC) systems have come to play a
fundamental role as “instruments” not unlike the microscopes and telescopes of
the previous century [20]. Despite the enormous progress that has been achieved
in processor technologies, we are still far from considering many important prob-
lems “solvable” using a computational approach. These problems include turbu-
lence of fluids in finite domains, combustion hydrodynamics, computational bi-
ology, natural language understanding and modeling of the human brain [1]. Fu-
ture HPC systems will achieve the performance required to solve these problems
through a combination of faster processors and massive parallelism. Yet, a ho-
mogeneous parallelism employing millions of processor cores will result in power
requirements that are unsustainable. Thus, the parallelism has to be heteroge-
neous, employing specialized energy-efficient accelerator units such as GPUs and

MICs in addition to the traditional CPUs. In fact, among the top 100 HPCs of
the latest Top500 List® (updated on 06-2017), almost 30% are based on GPUs
and/or MICs.

Traditionally, HPC systems have been used to run compute-intensive jobs
requiring days or even weeks to complete their massive computations. There is
an increasing trend where HPC systems are being used to run “big data work-
loads” consisting of many shorter jobs performing data analytics as data is being
streamed from a monitored system [16, 17]. The ability to build predictive models
from streamed data opens up the possibility for acting on the predictions in real
time [15]. Turning this scenario into an effective “on-line control” mechanism
requires intelligent strategies to achieve elevated levels of system performance
with high throughput and low response times so that the predictive models built
from data analytics correspond to recent, rather than a distant, past states of
the monitored system.

The potential to fully exploit the raw computing potential of an HPC system
and deliver it to applications (jobs) is conditional on intelligent system software
making informed decisions to efficiently manage system resources. Among these
decisions, those made by a dispatcher regarding job executions are particularly
important for ensuring high levels of system performance. In an HPC system, the
scheduler component of a dispatcher selects which jobs to run next among those
currently in the wait queue; whereas the allocator component decides which re-
sources to allocate for running them. While the scheduling aspect of dispatching
has received considerable attention in the literature [5], the allocation problem
has been studied to a lesser extent. Intelligent allocation is particularly impor-
tant in heterogeneous systems where poor decisions can lead to poor resource
usage and consequently poor performance of critical applications [13].

Related Work. Resource allocation strategies used in many popular HPC work-
load management systems [14,22] can be characterized as variations of well-
known memory allocation heuristics such as First-Fit (FF) and Best-Fit (BF) [19].
In memory allocation, FF chooses the first block of memory that is large enough
to satisfy the request. In an analogous manner, an FF resource allocator chooses
the first resource among a list of available resources that satisfies a job’s request.
FF is primarily focused on satisfying a single job request without any regard
for global considerations of resource usage. A BF allocator, on the other hand,
chooses a resource, among a list of available resources, that is able to satisfy the
job’s request while leaving the smallest possible unused capacity.

These simple heuristics can be improved in several ways in an effort to utilize
resources more intelligently so as to improve job response times and system
throughput. In [3], a “lookahead” capability is added to BF, taking into account
the needs of other jobs in the queue. Specifically, resources are allocated to the
current job in a manner such that, if possible, enough resources remain available
for the largest job (requiring the largest amount of resources) in the queue. A
similar idea can be applied to scheduling where a backfilling scheduler [18] selects

® https://www.top500.org/

short, low-resource jobs to fill the gaps in resource usage left over after scheduling
larger jobs, even if the short jobs are not next in the queue. Large jobs that
cannot be scheduled are blocked and resources are reserved for them. Instead of
considering just one job at a time during the backfilling phase, multiple jobs can
be considered together so that resource usage is improved [18]. In [12], resource
allocation takes into account saturation of shared resources, such as memory
bandwidth, that can cause some jobs to take longer to complete. To make a
suitable allocation that does not reduce system throughput, penalties based on
memory bandwidth saturation are included in the FF allocation heuristic.

The main shortcoming of the allocation strategies described above is that
they were designed for a single resource type such as a CPU and do not consider
characteristics inherent to heterogeneous systems, including different resource
types or different configurations of the same resource type. This limitation can
lead to unbalanced usage and fragmentation of heterogeneous resources, and
cause undesirable delays. For instance, in [4], a dispatcher is presented for the
heterogeneous HPC system Furora [7] that has GPU co-processors in half of
its nodes and MIC co-processors in the other half. For allocation, however, the
dispatcher uses the simple BF heuristic, sorting the nodes by the total number
of available computing resources, making no distinction between CPUs, GPUs
or MICs. Consequently, with many jobs requesting just CPUs as processing
resources, a simple allocation of computing resources will result in unnecessary
delays for jobs that require GPUs or MICs in addition to CPUs.

In [23] multiple resources (CPU, bandwidth, memory) are considered and
bottleneck resources are identified to obtain fair resource allocation to users.
However, they do not consider systems with resources that are available only
on a subset of all the nodes, such as the GPUs and MICs that characterize
the systems we are analyzing. To the best of our knowledge, no previous work
focusing on resource allocation for heterogeneous HPC systems exists.

Contributions. In this paper, we present several resource allocation algorithms
for heterogeneous systems that adopt different strategies for minimizing wastage
of critical resources, and consequently, minimizing job delays. The algorithms
are based on simple heuristics that exhibit good performance with low compu-
tational overhead, and are general enough to be applied to any heterogeneous
HPC system where critical resources need to be managed efficiently. We eval-
uate our allocators when combined with a suite of different schedulers using a
workload trace collected from the Eurora HPC system. Our experimental results
show that significant improvements can be obtained in job response times and
system throughput compared to standard solutions like FF and BF. Our study
also helps to characterize the operating conditions in which heterogeneity-aware
resource allocation becomes crucial for heterogeneous HPC systems.

Organization. The rest of the paper is organized as follows. The next Sec-
tion briefly describes the Eurora HPC system, its workload datasets, and the
scheduling algorithms we used in conjunction with our allocators for dispatching

Average duration

Job class ‘ ‘ Share ‘ Count ‘
[hh:mm:ss]
All 100% 372320 00:16:08
CPU-based 22.8% 85046 00:47:36
MIC-based 0.7% 2500 00:56:28
GPU-based 76.4% 284774 00:06:23

Table 1. Frequency and average duration of all jobs and the three classes CPU-based,
MIC-based and GPU-based in the Eurora workload.

purposes. In Section 3 we introduce our allocation algorithms, while Section 4
presents our experimental evaluation results. Section 5 concludes the paper.

2 HPC System, Data and Job Dispatching

2.1 Eurora and the workload dataset

We evaluate our allocation strategies using workload data collected from the
Eurora HPC system [7]. Eurora is a hybrid installation hosted at Cineca®, the
largest datacenter in Italy, that uses a combination of CPUs, GPUs and MICs
to achieve very high energy efficiency. The system consists of 64 nodes, each
equipped with two octa-core CPUs (Intel Xeon E5) and two accelerators. Half of
the nodes have two GPUs as accelerators (Nvidia Tesla Kepler), while the other
half have two MICs (Intel Xeon Phi Knights Corner). The resulting system is
highly heterogeneous, making allocation of resources to jobs nontrivial.

The HPC workload, consisting of almost 400,000 jobs that were run on Eurora
during the time period April 2014 — August 2015, has been recorded as a trace
and made available by Cineca. For our study, we classify the jobs in the workload
based on their duration as short (under 1 hour), medium (between 1 and 5 hours)
and long (over 5 hours). Of all the jobs, 93.14% are short, 6.10% are medium
and 0.75% are long. Hence, the workload is quite varied from this point of view.
We further divide jobs into three classes based on the computing resources that
they require: CPU-based jobs use CPUs only, while MIC-based and GPU-based
jobs use MIC or GPU accelerators, respectively, in addition to CPUs. Table 1
shows statistics for each job class in the workload. We observe that GPU-based
jobs are the most numerous, followed by CPU-based jobs, while MIC-based jobs
are relatively few. In terms of duration, we observe that CPU-based jobs are on
average longer than GPU-based jobs, consuming significantly more resources.
This heterogeneity of job classes increases the difficulty of allocation decisions.
Since CPU-based jobs are longer, they may keep nodes that have accelerators
busy for longer periods, during which their accelerators are not available for
other jobs. Given that GPU-based jobs are the most frequent, this can cause
bottlenecks to form in the system, motivating the development of heterogeneity-
aware allocation algorithms to be described in the following sections.

% https://www.cineca.it/

2.2 Scheduling algorithms in job dispatching

In an HPC system, allocation goes hand in hand with scheduling in order to per-
form job dispatching. To test our allocation algorithms, we combined them with
four state-of-the-art scheduling algorithms: Shortest Job First (SJF), Fasy Back-
filling (EBF), Priority Rule-Based (PRB), and Constraint Programming Hybrid
(CPH). All these algorithms have been previously applied to Eurora workload
data in [11], where it was shown that accurate prediction of job duration can
improve scheduling performance. In the rest of this section we describe briefly
the schedulers employed.

SJF. At scheduling time, the SJF scheduler selects the shortest job among
all jobs in the queue to be scheduled first. The job is then passed to the allocator
to be granted the required resources. A predicted job duration is used as the job
length to establish an order.

EBF. This scheduling algorithm considers jobs in order of their arrival [21].
If there aren’t enough available resources in the system for a given job that has
been selected for scheduling, the job is blocked, and a reservation is made for it.
A reservation consists of a starting time (computed using the predicted duration
of running jobs) when enough resources are expected to become available to
start the blocked job. A set of resources, as determined by the allocator, is also
associated with the reservation and will be used for the blocked job at reservation
time. While the blocked job waits for its reserved resources to become available,
the algorithm will schedule shorter jobs that are expected to terminate before
the starting time of the reservation (again based on predicted duration), using
currently unused resources.

PRB. This algorithm sorts the set of jobs to be scheduled according to a
priority rule, running those with higher priority first [6]. In our work, we use
priority rules based on jobs’ urgency in leaving the queue, as introduced by
Borghesi et al. in [4]. To determine if a job could wait in the queue, the ratio
between the current waiting time and the expected waiting time of the job is
calculated. The expected waiting time is computed from data as the average
waiting time over a certain queue. As a tie breaker, the “job demand” is used,
which is the job’s combined resource requirements multiplied by the predicted
job duration.

CPH. One of the drawbacks of the aforementioned heuristic schedulers is
the limited exploration of the solution space. Recent results show that methods
based on constraint programming (CP) are able of outperforming traditional
PRB methods [2]. To increase scalability, Borghesi et al. introduce a hybrid
scheduler called CPH [4] combining CP and a heuristic algorithm, which we use
in this paper. CPH is composed of two phases. In the first phase jobs are sched-
uled using CP, minimizing the total job waiting time. At this stage, each resource
type is considered as a unique resource — CPU availability corresponds to the
sum of the available CPUs of all the computing nodes, memory availability cor-
responds to the sum of the memory availability of all the computing nodes, and
so on. Due to the problem’s complexity, the search is bound by a time limit; the
best solution found within the limit is the scheduling decision. The preliminary

schedule generated in the first stage may contain some inconsistencies because
of considering the available resources as a whole. The second phase performs
resource allocation according to a heuristic in which any inconsistencies are re-
moved. The specific heuristic being used depends on the allocator component
of the dispatcher. If a job can be mapped to a node then it will be dispatched,
otherwise it will be postponed.

2.3 Job duration prediction in job dispatching

An issue in simulating job dispatching strategies regards what information con-
tained in the workload can be used when making decisions. A specific case is
that of job durations. Since the workload data contains exact job durations, it is
tempting to use them in order to make dispatching decisions. However, in a real
system, exact job durations are not known in advance, so dispatching decisions
cannot be based on this knowledge. Here, we take this into account and use
instead predicted job durations, based on a very simple heuristic that was pro-
posed in [11] and exploits time locality of job durations for individual users that
was observed in the Eurora workload dataset. Specifically, it has been observed
that consecutive jobs by the same user tend to have similar durations, especially
when they have the same profile (job name, resources requested, queue, etc).
From time to time, a switch to a different duration is observed, which could
happen, for example, when the user changes input datasets or the algorithm
itself. Using this observation, the authors devise a set of rules to apply in order
to predict job durations. They record job profiles for users, and their last dura-
tions. When a new job arrives in the system, they look for a job with the same
or similar profile, and consider its duration to be also the duration of the new
job. If no past profile is similar enough, the predicted duration is the default
wall-time of the queue where the job is submitted. In case a match is found, the
predicted duration is capped by the maximum wall-time of the queue. Both de-
fault and maximum wall-time values of the queues are part of the configuration
of the dispatcher.

The mean absolute error (MAE) of this heuristic prediction with respect
to the real job duration on the Eurora workload dataset is shown to be 40
mins [11]. In the absence of any prediction, users supply dispatchers their own job
duration estimation, which is typically the maximum wall-time of the queue. In
the absence of even this information, the dispatchers use the default wall-time of
the queue. We will refer to this as the wall-time approach. The MAE of the wall-
time approach on the Eurora workload is 225 mins [11], which is dramatically
worse than that of the proposed prediction technique. The heuristic prediction
therefore shows an improvement of 82% over the wall-time approach. We shall
note that the time locality of job durations for individual users is not specific
to the Eurora workload. It can also be observed in other workload datasets to
which the same heuristic prediction can be applied. An example is the Gaia
workload dataset” of the University of Luxemburg. We calculated that the MAE

" http://www.cs.huji.ac.il/labs/parallel /workload /1_unilu_gaia/index.html

of the wall-time approach is 2918 mins, while it is 220 mins with our heuristic
prediction, showing an improvement of 93%. The notable improvement over the
Eurora dataset can be explained by the fact that the maximum wall-time values
in Gaia are higher than those of Eurora.

3 Allocation Algorithms

Here we describe the allocation algorithms that we designed and implemented for
heterogeneous HPC systems. We assume that a job is composed of multiple job
units (such as MPI processes), each having the same resource requirement. All
the algorithms are based on the all-requested-computers-available principle [21]:
when an allocator is invoked for job j, nodes in the system are searched sequen-
tially according to a specific order, and the largest number of job units of job j
are allocated while traversing the nodes. The allocation process ends when either
all job units have been allocated, in which case the allocation succeeds, or the list
of nodes is exhausted, in which case the allocation fails. The jobs are ordered as
specified by the scheduler, while the ordering criteria for the nodes is specific to
the allocator. Our algorithms provide custom criteria for node ordering, result-
ing in allocation strategies with different strengths. The algorithms are generic
and provide configuration parameters, hence they do not rely on any specific
system architecture and can be tuned suitably for any heterogenous system in
consideration. In the following, we call a resource type critical if careless usage
of the respective nodes may cause bottlenecks in the system.

Balanced heuristic. The main focus of this algorithm is to avoid the frag-
mentation of user-defined critical resource types, like accelerators, by limiting
and balancing the use of the respective nodes. The limiting effect is achieved by
pushing the nodes with critical resources towards the end of the list of available
nodes. In this way, by selecting nodes from the beginning of the list, jobs that do
not need critical resources will not block such resources. The balancing effect is
achieved by interleaving nodes having different types of critical resources, thus
not favoring any of them.

By default, the critical resource types for Eurora are MIC and GPU, but they
can be modified by the user based on the system architecture. The algorithm
works in two phases. First, all nodes in the system are collected in bins: there
is a bin for each critical resource type, and nodes are assigned to a specific bin
according to which of those they currently have available. If they do not have any,
they will be assigned to a special nul bin; conversely, they will be assigned to the
bin for which they have the maximum availability, if multiple critical resources
are present (note that in Eurora, a node has only one type of critical resource).
The bins are then combined in a final node list, which is built as follows: nodes
belonging to the nul bin, which do not have any critical resource, are placed at
the head. The rest of the list is built incrementally by picking a node from the
currently largest bin until they are all empty. An example of BALANCED node
ordering in a small system with 8 nodes can be seen in Figure 1.

1 2 3 4 5 6 7 8

Initial node ordering

3 4 5 6 1 7 2 8

Balanced node ordering COnul £ GPU CXJ MIC

Fig. 1. An example of BALANCED node ordering on a small system with 8 nodes, each
labeled with an ID and colored according to its corresponding bin.

This type of reasoning is expected to be beneficial in an architecture like
Eurora, where two continuous blocks of nodes have either GPU or MIC resources
and are thus prone to unbalanced node usage. The BALANCED allocator does
not consider the distribution of the resource requirements of jobs submitted to
the system, and assumes that all critical resource types are used uniformly. This
design choice ignores that some resources can become critical at runtime when
the distribution is heavily skewed towards a specific resource type, but at the
same time it increases the algorithm’s robustness against sudden bursts of jobs
requiring that specific resource. While BALANCED can be used in any system by
suitably defining the critical resource types that must be protected, it is most
effective on systems that are known to possess multiple critical resource types.

Weighted heuristic. This algorithm is more general than BALANCED as it
is able to detect the critical resources at runtime, as opposed to them being
statically defined by the user, and focuses on avoiding their wastage. It is based
on the popular BF heuristic, which at each allocation time sorts the nodes in
non-decreasing order with respect to the total amount of available resources.
BF can easily waste some resources as it does not distinguish between different
resource types. WEIGHTED is instead aware of heterogeneous resources and adds
lookahead features to allocation to increase the chance of success. For each job
during allocation, it sorts the nodes in non-decreasing order of their ranking. A
node is ranked based on the criticality of its resource types and their availability
after a potential allocation. Consequently, nodes with highly critical resource
types and nodes which will be providing high availability after allocation are
pushed towards the end of the list, in order to be protected against jobs that do
not need such resources, similar to what BALANCED does with nodes containing
user-defined critical resources.

More formally, for a job allocation, after the number of job units that fit
on a certain node is calculated, the impact of the allocation is defined for each
resource type to be the amount of resources still available in the node after such
allocation. We thus have, for each node ¢ and for each resource type k € r, an
impact value ¢mp; ;. The impact serves to measure the resource wastage after
allocation in the presence of multiple resource types. The ranking R; of a node

i is then computed by summing the imp; , of each resource type k available on
node i weighted by wy:

. Teqy * loady,
R; = Zwk * GMP; & wy = BT (1)
ker Pk

A weight wy, is computed at the system level and quantifies the level of criti-
cality of a certain resource type k using three parameters as in Equation 1. The
first parameter Teqy is the average amount requested for k£ by jobs in the queue.
A highly requested resource type is considered critical. This average is computed
over all jobs in the queue, weighted by the jobs’ duration prediction. Consider-
ing the job duration as well in the average is mostly a fairness consideration,
since most of our schedulers, like SJF, tend to favor shorter jobs. The second
parameter loady, is the load ratio for k, which is the ratio between the amount
of resources used at a certain time and the total resource capacity of the system
for k, assuming that resources assigned to jobs are always used fully [8]. A high
load ratio means low availability, which makes the resource type critical. The
loady, parameter, however, does not consider the total capacity capy which can
influence the criticality of k. We therefore use capy as a normalization factor.

With multiple factors assessing the criticality of resource types, WEIGHTED
is expected to perform well in many scenarios. WEIGHTED is thus more flexible
than BALANCED, even though it does not possess its interleaving capability.

Priority-Weighted heuristic. The WEIGHTED and BALANCED allocators are
expected to be most effective in different scenarios, with BALANCED performing
better in the presence of bursts of jobs requiring critical resources, and vice versa.
PRIORITY-WEIGHTED is a hybrid strategy, trying to combine the strengths of
both allocators in order to obtain optimal performance. This algorithm extends
WEIGHTED, by adding a new multiplicative parameter py to wy. Specifically, pg
acts as a bounded priority value, used only for user-defined critical resource types
like in BALANCED. For the other resource types, it is assumed to be always equal
to 1. Such a priority value is calculated at runtime in a simple way: starting with
the value 1, every time the allocation for a job requiring a critical resource type
k fails, its priority value py is increased by 1. Conversely, when the allocation
succeeds, pj is decreased by 1. If a job requires multiple critical resource types,
all the related py values are affected. The bound of py is user-defined and is set
to 10 by default.

This solution allows us to take into account the runtime criticality of re-
sources (like in WEIGHTED) and to protect user-defined critical resources (like
in BALANCED) in a rather dynamic way by adjusting to the system’s behav-
ior. Various other solutions were tried for pg, such as the average number of
allocation failures per job or per allocation time, or the number of jobs in the
queue for which allocation has previously failed. Out of all of these, our priority
mechanism emerged to be the best technique, despite its simplicity.

10

4 Experimental Results

In this section, we present the experimental results obtained by using the Eurora
workload dataset described in Section 2.1. All the data available for the Eurora
system has been considered in the experiments. Due to space limitations, we
cannot report tests performed on other systems.

4.1 Experimental setup

Simulation of the Eurora system along with job submission and job dispatching
were carried out using the open-source AccaSim HPC Simulator [10]. A total of
20 dispatchers were employed, which were obtained by combining the 4 schedul-
ing algorithms (SJF, EBF, PRB, CPH) described in Section 2 together with 5
allocation algorithms: the three described in Section 3 (B, W, P-W) together
with First-Fit (FF) and Best-Fit (BF). FF and BF are included solely for the
purpose of comparison. Interpreted in the context of Eurora, FF searches the
nodes with available resources in a static order, while BF sorts the nodes in non-
decreasing order of the amount of available resources. The experiments were
performed on a dedicated server with a 16-core Intel Xeon CPU and 8GB of
RAM, running Linux Ubuntu 16.04. All the dispatchers along with their source
code in Python are available on the AccaSim website.®

In the experiments, we evaluate dispatchers in terms of their impact on job
response times and system throughput, characterized by two metrics. The first
is the job slowdown, a common indicator for evaluating job scheduling algo-
rithms [9], which quantifies the effect of a dispatching method on the jobs them-
selves and is directly perceived also by the HPC users. The slowdown of a job j
is a normalized response time and is defined as slowdown; = (T ; + Ty ;)/Tr.;,
where T, ; and T;.; are the waiting time and duration of job j, respectively. A
job waiting more than its duration has a higher slowdown than a job waiting
less than its duration. The second metric is the queue size, which counts the
number of queued jobs at a certain dispatching time. This metric is a measure
of the effects of dispatching on the computing system itself. The lower these two
metrics are, the better job response times and system throughput are.

We also compared the dispatchers in terms of their resource utilization. The
metric we adopt for this purpose is the popular system load ratio [8] which
considers the ratio between the amount of used resources in the HPC system at
a certain time and its total resource capacity, assuming that resources assigned
to jobs are always used fully.

4.2 Results over the entire workload dataset

We first discuss the results obtained over the entire workload dataset. All the
dispatchers are run using three different job duration predictions: wall-time (W),
the data-driven prediction heuristic presented in Section 2 (D), and real duration

8 http://accasim.readthedocs.io/en/latest/

11

1254 — e)
c 1D
2 100 =z R
e
2 75 o <
3 LIS & 0 Q &
5 50 o b —
o>
S - ": <t 2 n
< 251 % © o
O):
0 ; 2 \ 7 AV 1 Ve ; NE
FF BF B w P-W
Allocator

Avg. Queue Size
52

FF BF B w P-W
Allocator

Fig. 2. Average slowdown and queue size results over the entire workload dataset using
the CPH scheduler and five different allocators with wall-time (W), data-driven (D)
and real duration (R) predictions for job durations.

(R). The purpose here is to assess the importance of using data-driven prediction
for response time and throughput of a dispatcher, with respect to crude predic-
tion (wall-time) and best prediction (real duration). Due to lack of space, we
here present only the results related to the CPH scheduler, as it is the best per-
forming among all and is highly representative of the behavior of the schedulers
in conjunction with the allocators in question.

Figure 2 shows the average slowdown over all jobs and average queue size
values over all dispatching times of the CPH scheduler for all available allo-
cators. We make two observations. First, across all allocators, the data-driven
job duration prediction has notable impact on job response times and system
throughput, leading to results better than using the wall-time. Therefore, in the
next sections we only present results using the data-driven job duration pre-
diction for all jobs. Second, we do not note substantial performance variations
among the various allocators. We believe that this could be due to certain time
periods in our workload where the corresponding data does not possess signifi-
cant characteristics for our study. For instance, there could be time periods in
which few jobs are submitted to the system, keeping it in a low utilization state,
or conversely periods in which large amounts of jobs are submitted, overloading
it. In either case, an allocator is not expected to enhance the job response times
and system throughput considerably.

4.3 Results over specific time periods

We now use only the data-driven prediction of job duration. We then restrict
our study to shorter time periods in the workload, such as months, to be able

12

Scheduler Allocator Best gain %
FF BF B w P-wW FF BF
s 4q|s qls 4q|s q s q s q s q
CPH 10 4 (10 4 7 4 8 4 7 4 [130% 0% [30% 0%
SJF 6 5 (16 5 |10 5 |10 5 [10 5 [|137% 0% [37% 0%
EBF 28 5 |28 5 |18 4 |20 4 20 4 1135% 20% |35% 20%
PRB 28 5 |28 5 |21 4 |22 4 |22 4 1125% 20% [25% 20%
(a) April 2015 dataset.
Scheduler Allocator Best gain %
FF BF B w P-W FF BF
s q| s ¢ s ql| s q s q s q s q
CPH 251 57271 55|238 63 |315 82| 254 70 || 5% -10%|12% -12%
SJF 1269 230(1270 229| 1266 233 (1276 218|1253 216|| 1% 6% | 1% 6%
PRB 1852 615(2023 640|1778 594|1829 627| 1910 599 | 4% 3% [12% 7%
EBF 3004 697|2563 7022197 619(2378 686| 2313 674 ((26% 11% [14% 12%

(b) April 2014 dataset.

Table 2. Average slowdown (s) and queue size (q) results for the April 2015 (a) and
April 2014 (b) datasets.

to understand the operating conditions in which we can benefit from the new
allocators. For this purpose, we extracted the results of the jobs that were sub-
mitted during a certain month after running the experiments once on the entire
workload. Thus, the months never start in an idle state but carry on from the
previous month, like in a real scenario.

Here we present some insights derived by analyzing data from four particular
months. These months are not only interesting due to their peak job submissions,
they are also representative in the sense that their job submission patterns and
the corresponding experimental results are found in other months as well (not
shown in the paper due to space reasons).

Tables 2 and 3 give the average slowdown (s) and queue size (q) of every
dispatcher (composed by a scheduler in the first column and an allocator in the
next 5 columns). For each scheduler, the best allocator result is indicated in
bold, in addition to the best gain obtained in percentage by the new allocators
compared to FF and BF. Figures 3 and 4 demonstrate instead job duration
distributions, for each job class as in Section 2.1, as well as job submission
patterns in terms of the total CPU core hours of the submitted jobs in every
30-minute time window of a day. Sudden spikes in the job submission patterns
are caused by the arrival of jobs that either have a high duration or require a
large amount of resources. We do not consider the distributions of the amount
of resources requested by jobs, as no significant differences across months have
been observed.

13

=
1)
1=}
=

=)

~

— CPU-based - 50.9%
GPU-based - 46.4%
10k -+++ MIC-based - 2.6%

1k
100 \’\A

1 V\/\a avas N ISTYTINEEE ™ VRN

0
0 10k 20k 30k 40k 50k 60k 70k 80k 12345678 9101112131415161718192021222324252627282930

Job Duration [s] Day of the month

(a) April 2015 dataset.

Number of Jobs
Submitted Core Hours
E N W os U oo N
*~ ® * & = = %

-
o
=}
~

=)

~

— CPU-based - 30.8%
GPU-based - 68.2%
-+ MIC-based - 0.9%

R NN}
~ & x ~ =

Number of Jobs
Submitted Core Hours
Now

-
~

i A o
0 10k 20k 30k 40k 50k 60k 70k 80k 12345678 9101112131415161718192021222324252627282930
Job Duration [s] Day of the month

(b) April 2014 dataset.

Fig. 3. Job duration distributions (left) and job submission patterns (right) for the
April 2015 (a) and April 2014 (b) datasets.

Allocation with moderate gains. We start with the workloads related to
April 2015 and April 2014 where the new allocators bring about relatively mod-
erate gains in response times and throughput with respect to FF and BF. This
can be immediately witnessed in Table 2. For the April 2015 dataset, while the
slowdown values are reduced between 20% to 37%, the queue size remains the
same with the two best-performing schedulers, CPH and SJF. In the case of the
April 2014 dataset, the gains in slowdown are between 1% and 26%, while the
queue size increases slightly with the best performing scheduler, CPH. Hence,
in all cases we witness an improvement in slowdown, however queue size values
improve only when not using the CPH scheduler.

Analyzing the characteristics of the workload in Figure 3, we can understand
the reason for having only moderate improvements. The April 2015 dataset con-
tains 3,740 jobs with few of them long (duration > 5h), while the majority are
short (duration < 1h) or medium (1 < duration < 5h). We would therefore
expect low slowdown and queue size values without the need of dedicated allo-
cators. Around half of the jobs in the workload require only CPU and memory,
which do not need heterogeneity-aware allocators. Moreover, the system is rarely
put under pressure, reducing the importance of complex dispatching algorithms.
The only exception is in the sudden burst towards the middle of the month, in
which over 8,000 core hours worth of jobs are submitted to the system in a very

14

Scheduler Allocator Best gain %
FF BF B W P-w FF BF

5 q 8 q 5 a 5 q 8 q 8 q 5 q

CPH 41 27 |42 28 |11 11|10 10| 8 8 |[80% 70% |81% T71%

SJF 34 28|29 23|19 20|23 19|14 14 |[58% 50% [50% 39%

PRB 43 24 |47 27|30 16 | 36 16 | 40 20 |[30% 33% |36% 40%

EBF 51 33 |48 34|39 19 |37 20|53 37 |[27% 39% [22% 41%
(a) September 2014 dataset.

Scheduler Allocator Best gain %
FF BF B AW P-W FF BF

S q S q S q S q S S q S q
CPH 8 7 7T 6|11 7|4 4 7 50% 42% [42% 33%

[S\]] e

PRB 20 13|22 14|14 10| 8 6 | 5 5% 6% |TT% 8%

EBF 22 15126 16 |21 15|14 10| 18 13 ||36% 33% [46% 37%

SJF 26 1732 2218 14|18 13|15 11 [|42% 35% [53% 50%
(b) August 2014 dataset.

Table 3. Average slowdown (s) and queue size (q) results for the September 2014 (a)
and August 2014 (b) datasets.

short time. This, however, overloads a small-scale HPC system like Eurora and
is hardly managed by any of the dispatchers.

April 2014 is instead a big dataset of 85,245 jobs, with many more medium
and long jobs compared to the April 2015 dataset. We would expect here high
slowdown and queue size values even with dedicated allocators. The share of jobs
requiring only CPU and memory resources is 30.8%, which is still high compared
to the 22.8% share for the entire workload, reducing the contribution of allocators
specifically designed for heterogeneous systems. In addition, job pressure on the
system is always high, with frequent bursts that amount to more than 1,000 core
hours. The main problem in this month seems to be the 5,000-hours burst at its
beginning: due to the large size of the workload, the early position of the burst
results in a cascade effect, severely delaying all subsequent jobs.

Allocation with high gains. We now discuss the datasets related to Septem-
ber 2014 and August 2014 for which significant improvements in response times
and throughput are observed, as can be seen in in Table 3. The gains in slow-
down and queue size reach up to 81% and 71% in the September 2014 dataset,
and up to 77% and 78% in the August 2014 dataset, respectively.

September 2014 is a big dataset of 77,786 jobs, while the August 2014 dataset
has medium size with 47,967 jobs. The two datasets, however, share common
traits that help understand the relevant results. As can be seen in Figure 4, both
datasets contain a high number of short and medium jobs. The number of long
jobs is neither low, as in the case of the April 2015 dataset, nor too high as in the
case of the April 2014 dataset. In addition, unlike the April 2015 and April 2014

15

100k

=)
~

— CPU-based - 11.2%
GPU-based - 87.8%
=+ MIC-based - 0.8%

~
~ ~ =

Number of Jobs
=

Submitted Core Hours
N oY 2 o9 o2

-
~

H R o
0 10k 20k 30k 40k 50k 60k 70k 80k 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Job Duration [s] Day of the month

(a) September 2014 dataset.

100k

=)
~

— CPU-based - 14.8%
GPU-based - 84.6%
10k -+++ MIC-based - 0.4%

v o
x~ x~ =

1k

IS
~ =

Number of Jobs

1004

Submitted Core Hours

Now
~

1041

-
~

A :

0 10k 20k 30k 40k 50k 60k 70k 80k 12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
Job Duration [s] Day of the month

(b) August 2014 dataset.

1

Fig. 4. Job duration distributions (left) and job submission patterns (right) for the
September 2014 (a) and August 2014 (b) datasets.

datasets, GPU-based jobs constitute the vast majority of the workload. All these
mean that we can expect considerable improvements in slowdown and queue size
values with allocators for heterogeneous systems. Finally, from Figure 4 we can
see that the September 2014 and August 2014 datasets are very bursty, much
like the April 2014 one. Yet in the case of the September 2014 and August 2014
datasets, the bursts are much tamer in intensity, corresponding to the normal
day-night usage cycles present in the HPC system. Moreover, unlike the April
2015 dataset, the system is often put under pressure, but such pressure is not as
high as in the April 2014 dataset.

Comparison of allocators. So far we have only studied the impact of the new
allocators B, W and P-W in response times and throughput with respect to FF
and BF in an heterogeneous system, but we did not contrast them. To do this, we
show in Figure 5 job submission patterns in the selected datasets, this time only
for GPU-based jobs. These plots do not show the job pressure on the system,
which we already illustrated in Figures 3 and 4, but rather demonstrate the
distribution of the jobs requiring accelerator resources over the workloads’ time
spans. Such resources are peculiar to heterogeneous systems and it is interesting
to see when the new allocators behave differently in the presence of jobs requiring
them. We are omitting the distributions for the April 2015 dataset due to its
small size and the small variance in the behavior among the various allocators.

16

2.5k 1.5k

1.25k

1k

750

500

Submitted Core Hours
Submitted Core Hours

250

0 [
12345678 9101112131415161718192021222324252627282930 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Day of the month Day of the month

(a) April 2014 dataset. (b) September 2014 dataset.

1.5k

1.25k

1k

750

500

Submitted Core Hours

250

0

12345 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23
Day of the month

(c) August 2014 dataset.

Fig. 5. Submission patterns of jobs requiring GPUs for the April 2014 (a), September
2014 (b) and August 2014 (c) datasets.

Intuitively, one may expect the W and P-W allocators to perform better than
B since they take into account several resource criticality parameters and can
adapt to different workload characteristics. However, as explained in Section 3,
the B allocator is more robust than W against sudden bursts of jobs requiring
critical resources, accelerators in this case, due to its simple nature: B always
tries to limit the use of nodes equipped with critical resources, even if they are not
actively needed or they are scarcely used by jobs, resulting in a fairly consistent
behavior. This is reflected in our results. As seen in Table 2, B is consistently
the best performer for the April 2014 dataset which contains several big bursts
of GPU-based jobs (Figure 5a). In the September 2014 dataset, some bursts of
GPU-based jobs are still present, though less intense compared to those of the
April 2014 dataset (Figure 5b). In this case, as shown in Table 3, the W or P-W
allocator performs better than B except when used with the PRB scheduler. In
the August 2014 dataset instead, where W and P-W are consistently the best
performers, GPU-based jobs are evenly distributed over most days of the month,
with very few bursts (Figure 5c¢).

Overall, B is more suited for extreme scenarios where critical resources must
be protected at all costs and at all times. Otherwise, W and P-W are the best
allocators. The gain offered by P-W over W is less clear. This can be attributed
to the fact that P-W is primarily an hybridization strategy between B and W,

17

and it can be better or worse than its constituting components depending on
the workload characteristics and the type of scheduler.

4.4 Resource utilization

We conclude our evaluation with the resource utilization results. In our analysis,
we first looked at the distribution of the fraction of used resources, as a function
of the fraction of used nodes in the system for all time points, separately for
each resource type and combined for all resource types. The results obtained
over the entire workload, as well on the four individual months are mainly ho-
mogeneous across all dispatchers and therefore are omitted here. This is still
good news because we can see that the new allocators can improve response
times and throughout without degrading resource utilization with respect to FF
and BF, resulting in the best overall compromise between system performance
and resource utilization. It is worth mentioning however a particular case when
considering the GPU resources for the September 2014 dataset. Looking at the
average distribution over all the nodes and all time points, referred to as system
load ratio previously, the best-performing scheduler CPH has an improvement of
5.95% when resources are allocated with W instead of BF. Similar improvements
are observed when CPH is used with B or P-W. This result may suggest that
heterogeneity-aware allocators can lead to better usage of critical resources.

5 Conclusions

We have presented three allocation algorithms suitable for heterogeneous HPC
systems aimed at intelligent management of critical, accelerator-like resources.
The algorithms are general enough to be applied to any heterogeneous HPC sys-
tem where critical resources need to be managed efficiently, they are based on
simple heuristics that exhibit good performance with low computational over-
head, and they can easily be integrated in live queueing systems (like PBS or
SLURM) as they do not rely on features beyond those found in common heuris-
tics (like Best-Fit). In order to assess their effectiveness, we modeled the Eurora
HPC system with the AccaSim simulator driven by a real workload trace ex-
tracted from the same system. We conducted extensive evaluation of our allo-
cators by coupling them with different scheduling algorithms and job duration
predictors. We observed up to 81% improvements in average job response times
and 78% in system throughput, compared to common solutions like First-Fit
and Best-Fit. Also, all of the state-of-the-art schedulers we considered together
with our allocators significantly benefited from our algorithms, while no degra-
dation in resource utilization was observed compared to First-Fit and Best-Fit,
thus confirming our algorithms as effective alternatives to them.

Although our study is based on a particular HPC system (Eurora) and its
workload, our results help us to characterize the operating conditions in which
heterogeneity-aware resource allocation becomes crucial for heterogeneous HPC
systems in general. A system may go through different workload types, ranging

18

from light loads with a small number of jobs requesting few critical resources,
to heavy loads with a high number of jobs requesting large amounts of critical
resources; and the majority of the jobs in the workload may range from being
short, occupying critical resources for short periods, to long, blocking the critical
resources for long periods of time. In addition, job submission patterns may
fluctuate, keeping the system under different amounts of pressure, ranging from
rare to heavy. We observed that protecting the critical resources is most useful
when (i) the workload contains a significant amount of long jobs requiring critical
resources, without dominating the workload; (ii) the system is under pressure
consistently without sudden peaks in job submission patterns.

As future work, we plan to test our allocation algorithms on data from dif-
ferent heterogeneous architectures. We are also interested in the performance on
a wider set of operating conditions, which can be tested also by employing a
synthetic workload generator. The algorithms can also be improved further. For
instance, allocating nodes fully may cause saturation of shared resources such
as memory, which could result in decreased system performance. We plan to
take this into account and allocate resources in a way that avoids saturation,
something which we do not consider at the moment.

Acknowledgements. We thank Dr. A. Bartolini, Prof. L. Benini, Prof. M.
Milano, Dr. M. Lombardi and the SCAI group at Cineca for providing access to
the Eurora data. We also thank the IT Center of the University of Pisa (Cen-
tro Interdipartimentale di Servizi e Ricerca) for providing access to computing
resources for simulations. A. Netti has been supported by a research fellowship
from the Oprecomp-Open Transprecision Computing project. C. Galleguillos has
been supported by Postgraduate Grant PUCV 2017. A. Sirbu has been partially
funded by the EU project SoBigData Research Infrastructure — Big Data and
Social Mining Ecosystem (grant agreement 654024).

References

1. Ashby, S., Beckman, P., Chen, J.; Colella, P., Collins, B., Crawford, D., et al.:
The opportunities and challenges of exascale computing. Summary Report of the
Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee pp.
1-77 (2010)

2. Bartolini, A., Borghesi, A., Bridi, T., Lombardi, M., Milano, M.: Proactive work-
load dispatching on the EURORA supercomputer. In: Proc. of CP 2014. LNCS,
vol. 8656, pp. 765-780. Springer (2014)

3. Bhattacharya, S., Tsai, W.: Lookahead processor allocation in mesh-connected
massively parallel multicomputer. In: Proc. of IPPS 1994. pp. 868-875. IEEE
1994

4.](_%orgl“?esi7 A., Collina, F., Lombardi, M., Milano, M., Benini, L.: Power capping in
high performance computing systems. In: Proc. of CP 2015. LNCS, vol. 9255, pp.
524-540. Springer (2015)

5. Bridi, T., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: A constraint
programming scheduler for heterogeneous high-performance computing machines.
IEEE Transactions on Parallel and Distributed Systems 27(10), 2781-2794 (2016)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

19

Buddhakulsomsiri, J., Kim, D.S.: Priority rule-based heuristic for multi-mode
resource-constrained project scheduling problems with resource vacations and ac-
tivity splitting. European Journal of Operational Research 178(2) (2007)
Cavazzoni, C.: Eurora: a european architecture toward exascale. In: Future HPC
Systems: the Challenges of Power-Constrained Performance. ACM (2012)
Emeras, J., Ruiz, C., Vincent, J.M., Richard, O.: Analysis of the jobs resource
utilization on a production system. In: Proc. of JSSPP 2013. LNCS, vol. 8429, pp.
1-21. Springer (2013)

Feitelson, D.G.: Metrics for parallel job scheduling and their convergence. In: Proc.
of JSSPP 2001. LNCS, vol. 2221, pp. 188-206. Springer (2001)

Galleguillos, C., Kiziltan, Z., Netti, A.: Accasim: an HPC simulator for workload
management. In: Proc. of CARLA 2017. Springer (2017)

Galleguillos, C., Sirbu, A., Kiziltan, Z., Babaoglu, O., Borghesi, A., Bridi, T.:
Data-driven job dispatching in HPC systems. In: Proc. of MOD 2017. Springer
(2017)

Guim, F., Rodero, 1., Corbalan, J.: The resource usage-aware backfilling. In: Proc.
of JSSPP 2009. LNCS, vol. 5798, pp. 59-79. Springer (2009)

Guim, F., Rodero, I., Corbalan, J., Parashar, M.: Enabling gpu and many-core
systems in heterogeneous hpc environments using memory considerations. In: Proc.
of HPCC 2010. pp. 146-155. IEEE (2010)

Henderson, R.L.: Job scheduling under the portable batch system. In: Proc. of
JSSPP 1995. pp. 279-294. Springer (1995), https://pbsworks.com

Hentenryck, P.V., Bent, R.: Online stochastic combinatorial optimization. The
MIT Press (2009)

Wasi-ur Rahman, M., Islam, N.S., Lu, X., Panda, D.K.D.: A comprehensive study
of mapreduce over lustre for intermediate data placement and shuffle strategies
on HPC clusters. IEEE Transactions on Parallel and Distributed Systems 28(3),
633-646 (2017)

Reuther, A., Byun, C., Arcand, W., Bestor, D., Bergeron, B., Hubbell, M., et al.:
Scalable system scheduling for HPC and big data. arXiv:1705.03102 (2017)
Shmueli, E., Feitelson, D.G.: Backfilling with lookahead to optimize the packing
of parallel jobs. Journal of Parallel and Distributed Computing 65(9), 1090-1107
(2005)

Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts, 9th Edition.
Wiley (2014)

Villa, O., Johnson, D.R., Oconnor, M., Bolotin, E., Nellans, D., Luitjens, J., et al.:
Scaling the power wall: a path to exascale. In: Proc. of SC 2014. pp. 830-841. IEEE
(2014)

Wong, A.K.L., Goscinski, A.M.: Evaluating the EASY-backfill job scheduling of
static workloads on clusters. In: Proc. of CLUSTER 2007. pp. 64-73. IEEE (2007)
Yoo, A.B., Jette, M.A., Grondona, M.: Slurm: Simple linux utility for re-
source management. In: Proc. of JSSPP 2003. pp. 44-60. Springer (2003),
http://www.slurm.schedmd.com

Zeldes, Y., Feitelson, D.G.: On-line fair allocations based on bottlenecks and global
priorities. In: Proc. of ICPE 2013. pp. 229-240. ACM (2013)

