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Abstract

We propose a scaled gradient projection algorithm for the recon-
struction of 3D X-ray tomographic images from limited data. The
problem arises from the discretization of an ill-posed integral problem
and, due to the incompleteness of the data, has infinite possible solu-
tions. Hence, by following a regularization approach, we formulate the
reconstruction problem as the nonnegatively constrained minimization
of an objective function given by the sum of a fit-to-data term and
a smoothed differentiable Total Variation function. The problem is
challenging for its very large size and because a good reconstruction
is required in a very short time. For these reasons, we propose to
use a gradient projection method, accelerated by exploiting a scaling
strategy for defining gradient-based descent directions and generalized
Barzilai-Borwein rules for the choice of the step-lengths. The numer-
ical results on a 3D phantom are very promising since they show the
ability of the scaling strategy to accelerate the convergence in the first
iterations.

Keywords. 3D Computed Tomography, image reconstruction, Total Varia-
tion regularization, nonnegatively constrained minimization, scaled gradient
projection methods.

1 Introduction

In this paper we consider a very challenging optimization problem aris-
ing in 3D X-ray Computed Tomography (CT) image reconstruction from
low sampling acquisitions, i.e., when the CT system acquires only a reduced
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set of data. This application has recently received growing attention in the
medical community, since sub-sampling acquisitions have several advantages
over the traditional complete sampling acquisitions in speeding up the imag-
ing process, thus reducing the exposure to ionizing radiations and increasing
the patient safety [31, 11, 20].

In these cases the traditional analytical reconstruction methods such as
the Filtered Back-Projection (called Feldkamp method in 3D [17]) produce
images of low quality, with extreme artifacts and high noise. Iterative Image
Reconstruction (IIR) methods are generally preferred because they can in-
troduce a priori information about the unknown object and they can exploit
the Compressed Sensing (CS) theory for reconstructing a signal or an image
from a reduced number of acquisitions with respect to the Nyquist theory
[20]. The drawback of IIR algorithms is their higher computational cost with
respect to the analytical methods, but thanks to the dramatic improvement
of CPUs speed and the possibility to perform parallel computation at low
cost on GPUs, the time for the IIR algorithms execution is now acceptable
even in the clinical setting [3].

The IIR methods solve a minimization problem of the form:

min
x≥0

f(x) = J(x) + λR(x) (1)

where J(x) is the fit-to-data function whose expression is related to the kind
of noise on the data, R(x) is a regularization function and λ > 0 is the
regularization parameter.

Since tomographic data are affected by mixed Gaussian and Poisson
noise, it is desirable to be able to efficiently solve problem (1) with J(x)
equal to the linear Least Squares (LS) functional, when Gaussian noise is
dominant, or equal to the nonlinear Kullback-Leibler (KL) divergence, when
Poisson noise is dominant. We propose a unifying optimization framework
which allows to choose the proper form of J(x), depending on the dominant
kind of noise of a specific physical CT system. The function R(x) should
reduce the noise, regularize the ill-conditioned problem arising from the dis-
cretization of an ill-posed Fredholm integral equation and impose some spar-
sity on the computed solution following the CS theory. Since many medical
images are almost uniform inside the organs, the most widely used regular-
ization function for the CT problems is the Total Variation (TV) function
[36, 38, 35, 34, 37, 40, 24, 32]

TV (x) =

∫
Ω
|∇x|dx (2)

that forces the sparsity in the gradient domain of the solution.
In real applications, the problem has a very large size, of the order of

billions, and the problem solution is very challenging, because in the clinical
applications a good image must be reconstructed in at most 1-2 minutes.
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For these reasons, the IIR methods are not executed until convergence, but
they are stopped after the desired time. With these premises, it is essential
to use a reconstruction algorithm with non-expensive iterations and fast
convergence in the very first iterations. To this end, some suggestions are
available in the recent literature: first-order optimization methods based on
accelerated gradient schemes have been proposed in [37, 21, 34], optimization
transfer methods have been applied to CT image reconstruction for example
in [25, 15, 23], a momentum approach can be found in [24] (based on Nesterov
method in [29]) and a Fixed Point method using approximate second-order
information has been used in [27].

The aim of this paper is to propose, for the solution of (1), a first-
order solver belonging to the class of the Scaled Gradient Projection (SGP)
methods [6, 10], exploiting special diagonal scaling matrices for defining the
descent directions and selection strategies derived by the Barzilai-Borwein
(BB) rules for the choice of the step-length parameter [1]. SGP algorithms
have been successfully exploited in image restoration applications [7, 10],
where the problem formulation is very similar to (1), while the problem size
is much smaller than in 3D CT imaging and the matrix-vector products are
performed by Fast Fourier Transforms thanks to the particular structure of
the matrix involved in the objective function. Hence, the efficiency of an SGP
approach in the considered CT application is not predictable and its ability
in satisfying the practical request to provide accurate reconstructions in a
short time needs to be investigated. In our study, we evaluate the behavior
of the proposed SGP algorithm in comparison with a standard non-scaled
BB method and the state-of-the-art accelerated gradient method [21], which
has been successfully applied in tomographic reconstruction problems.

The paper is organized as follows. In Section 2 we describe the 3D CT
discrete model and we formulate the constrained optimization problem; in
Section 3 we present the proposed SGP algorithm; in Section 4 we show the
numerical results obtained on a 3D phantom; finally, in Section 5 we draw
some conclusions.

2 Problem formulation

In a 3D cone beam tomography system a cone of X-rays is emitted by
a source rotating along an arc or a circular trajectory around the object of
interest (see Figure 1) from a fixed number of positions (or angles). The
rays, partially absorbed by the object, are projected on a flat panel detector
(that can possibly move with the source) and then recorded.

Following the Lambert-Beer’s model that relates the recorded value b(θ)i
at each pixel i of the detector, for a fixed angle θ, with the attenuation
coefficient µ at each position w of the object we obtain the image formation
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model for X-rays tomographic images; in details,

b
(θ)
i = exp

(
−
∫
Lθ

µ(w)d`

)
+ η

(θ)
i , i = 1, . . . , Np, θ = 1, . . . Nθ, (3)

where Np is the number of pixels in the detector, Nθ is the number of angles,
Lθ is the line followed by the X-ray beam through the object, µ(w) is the
linear attenuation coefficient at the position w, depending on the material
in the object and characterizing the structures inside the object, and, lastly,
η

(θ)
i is the noise measured at the detector (pixel i, angle θ) and it includes
scattering and electronic noise.

Figure 1: scheme of a 3D X-rays CT tomography scanning geometry.

The IIR methods consider the discrete linearization of (3):

Ax = b (4)

where b ∈ RNp×Nθ (b > 0) is the vector of recorded projections affected by
noise, x ∈ RNv represents the discretization of µ(w) in the Nv voxels of
the object (lexicographically ordered in a vector) and A ∈ R(Np×Nθ)×Nv is
the matrix describing the system geometry. In real applications, Np is of
the order of millions and Nv is of order of few billions and Nθ is of order
101 for sparse tomography. Different algorithms can be found in literature
for the computation of A; we use here the Siddon algorithm [33] based on
geometrical ray-tracing. Each element aθi,j of A represents the length of
the intersection of the ray, emitted at angle θ, recorded by pixel i of the
detector, with the voxel j (in this notation, the pixels of the detector and the
voxels of the object are lexicographically ordered in vectors). Moreover, in a
reasonable physical setting, the matrix A has elements greater than zero in
each column, because each voxel is projected at least once onto the detector.
In the case of reduced sampling acquisition as is our case, Np × Nθ < Nv

hence the linear system (4) has infinite possible solutions. Furthermore, since
the linear system comes from the discretization of an integral equation of the
first kind (3), the problem is ill-conditioned and some of the solutions of (4)
are dominated by noise; thus, regularization strategies are necessary. Then,
the problem can be reformulated as a penalized optimization problem of the
form [35]:

min
x≥0

f(x) = J(x) + λTVβ(x) (5)
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where TVβ(x) is a smoothed differentiable version of the TV function defined
as [39]:

TVβ(x) =

Nv∑
j=1

(‖∇xj‖22 + β2)1/2 (6)

with β a positive small parameter.
For what concerns the fit-to-data function J(x), its expression is related

to the noise on the data. Following a Maximum Likelihood approach [4], if
the noise has a Gaussian distribution, the Least Squares function:

J(x) =
1

2
‖Ax− b‖22 (7)

gives the appropriate fit-to-data function, while, if the noise has a Poisson
distribution, the Kullback-Leibler divergence

J(x) =

Np×Nθ∑
i=1

 Nv∑
j=1

Aijxj + bg − bi − bilog
∑Nv

j=1Aijxj + bg

bi

 (8)

(bg > 0 is the background value) is the suitable term. The noise on the CT
data is mixed Poisson (due to the X-rays particles behaviour) and Gaussian
(due to the recording digital system) and the dominant one depends on
the particular system considered. Hence, we consider in this paper the two
different cases in which the fit-to-data term J(x) is defined as in (7) or as
is (8). In both cases, the objective function of the problem (5) is coercive
and strictly convex on the nonnegative orthant, therefore the problem has a
unique solution.

2.1 Problem discretization

For the discussion in the next section, it is useful to introduce the dis-
cretization of the problem in the 3D setting, by using the notation jx, jy, jz
to indicate the indices of a voxel of the discrete object on the three cartesian
axes.

The TVβ(x) function is discretized by forward differences with boundary
periodic conditions. The discrete TVβ(x) function can be written as:

TVβ(x) :=
1

2

Nx∑
jx=1

Ny∑
jy=1

Nz∑
jz=1

φ(δ2xjx,jy ,jz) (9)

where Nx ×Ny ×Nz = Nv,

δ2xjx,jy ,jz = (xjx+1,jy ,jz−xjx,jy ,jz)2+(xjx,jy+1,jz−xjx,jy ,jz)2+(xjx,jy ,jz+1−xjx,jy ,jz)2

and
φ(t) = 2

√
t+ β2.
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Table 1: SGP algorithm.

Initialize: x(0) ≥ 0, γ, σ ∈ (0, 1), 0 < αmin ≤ αmax, α0 ∈ [αmin, αmax], D0 ∈
Dρ0 ;
for k = 0, 1, . . .

d(k) = P+

(
x(k) − αkDk∇f(x(k))

)
− x(k); (scaled gradient projection step)

ηk = 1;
while f(x(k) + ηkd

(k)) > f(x(k)) + σηk∇f(x(k))T d(k)
ηk = γηk; (backtracking step)

end
x(k+1) = x(k) + ηkd

(k);
define the diagonal scaling matrix Dk+1 ∈ Dρk+1 ; (scaling updating rule)
define the step–length αk+1 ∈ [αmin, αmax]; (step–length updating rule)

end

In order to better explain some details of the SGP algorithm presented in
the next section, it is convenient to recall also the form of the (jx, jy, jz)
entry of the gradient of TVβ(x):

∂TVβ
∂xjx,jy ,jz

(x) =
1

2

∂

∂xjx,jy ,jz

(
φ(δ2xjx,jy ,jz) + φ(δ2xjx−1,jy ,jz) + φ(δ2xjx,jy−1,jz) + φ(δ2xjx,jy ,jz−1)

)
=

(
φ′(δ2xjx,jy ,jz)(3xjx,jy ,jz − xjx+1,jy ,jz − xjx,jy+1,jz − xjx,jy ,jz+1)

)
+

+
(
φ′(δ2xjx−1,jy ,jz)(xjx,jy ,jz − xjx−1,jy ,jz)

)
+

+
(
φ′(δ2xjx,jy−1,jz)(xjx,jy ,jz − xjx,jy−1,jz)

)
+

+
(
φ′(δ2xjx,jy ,jz−1)(xjx,jy ,jz − xjx,jy ,jz−1)

)
.

3 A scaled gradient approach for CT image recon-
struction

In this section we recall a general framework that allows to design first-
order descent methods for problem (5) able to exploit both scaled gradient
directions and effective step-length selections. This framework is provided
by the class of the Scaled Gradient Projection (SGP) methods [6, 10] that
can be described as in Table 1.

The following notation is used in the SGP description: Dρ denotes the set
of diagonal matrices D with entries d̄j,j , j = 1, . . . , n, such that 1

ρ ≤ d̄j,j ≤ ρ,
with ρ > 1, and P+(z) is the euclidean projection of the vector z ∈ Rn
onto the nonnegative orthant. At the k-th iteration of the SGP algorithm, a
matrixDk ∈ Dρk is used to define the scaled gradient direction−Dk∇f(x(k)),
along which a step depending on the step-length αk > 0 is performed starting
from x(k); then, by projecting the resulting vector onto the nonnegative
orthant, the descent direction d(k) is obtained. This direction is exploited in
a line-search procedure for generating the new approximation x(k+1) in which
the objective function achieves a sufficient reduction with respect to f(x(k)).
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Finally, the scaling matrix and the step-length parameter are prepared for a
new iteration by means of suitable adaptive updating rules.

For an effective application of SGP to problem (5), important theoretical
and practical aspects need to be discussed. The main convergence properties
of SGP algorithm are stated in the following proposition, whose proof can
be found in [9].

Proposition 3.1. Let {x(k)} be the sequence generated by applying the SGP
method to problem (5) with the fit-to-data term J(x) defined as in (7) or (8).
The following properties hold true:

i) if ρ2
k = 1 + ζk, ζk ≥ 0,

∑∞
k=0 ζk < ∞, then the sequence {x(k)} con-

verges to the solution of the problem.

ii) if f∗ denotes the optimal value of the objective function of problem (5),
then

f(x(k))− f∗ = O(1/k)

Proposition 3.1 ensures that SGP algorithm converges without restrictive
assumptions on the step-length parameter αk and the diagonal scaling matrix
Dk, whose choices can be directed to accelerate the convergence rate of the
scheme. Even if the theoretical convergence rate O(1/k) on the objective
function values is lower than the rate O(1/k2) of some optimal first-order
methods exploiting extrapolation/inertial steps [28, 5, 2, 21], the practical
performance of SGP method, achievable by suitable selections of Dk and αk,
is very well comparable with the convergence rate of the optimal algorithms
[9, 30, 8, 13]. In the following we provide the updating rules for Dk and αk
that allow SGP to efficiently solve problem (5).

In order to update the diagonal scaling matrix Dk, we adapt the strategy
proposed in [26] to the SGP framework. This strategy has shown the ability
to force convergence acceleration, especially in the first steps of the iterative
process [10, 7]. We define the diagonal scaling matrix by means of special
splittings of the gradient of the objective function:

∇f(x) = V f (x)− Uf (x), V f (x) > 0, Uf (x) ≥ 0, (10)

where V f (x) and Uf (x) are obtained as:

V f (x) = V J(x) + λV TV (x), Uf (x) = UJ(x) + λUTV (x),

with

∇J(x) = V J(x)− UJ(x), V J(x) > 0, UJ(x) ≥ 0,
∇TVβ(x) = V TV (x)− UTV (x), V TV (x) > 0, UTV (x) ≥ 0.

Given the splitting (10), in [26] the choice d̄(k+1)
j,j =

x
(k+1)
j

V fj (x(k+1))
, j = 1, . . . , n,

is suggested for the diagonal entries of the matrix Dk+1. In order to exploit
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a similar idea within the SGP scheme, we propose to update the diagonal
scaling matrix in the following way:

d̄
(k+1)
j,j = min

(
ρk+1,max

(
1

ρk+1
,

x
(k+1)
j

V f
j (x(k+1))

))
, j = 1, . . . , n.

The vectors V J(x) and V TV (x) defining V f (x) are set by taking into account
the special form of ∇J(x) and ∇TVβ(x), respectively.
When the J(x) is the LS function (7), the gradient of the fit-to-data term
has the form:

∇J(x) = ATAx−AT b;

in this first case, we choose:

V J(x) = ATAx, UJ(x) = AT b.

When the fit-to-data term J(x) is the KL function (8), we have that:

∇J(x) = AT1−ATY −1b,

where 1 ∈ Rn is a vector whose components are all equal to one and
Y = diag (Ax+ bg) is a diagonal matrix with the entries of (Ax + bg) on
the main diagonal; in this second case we choose:

V J(x) = AT1, UJ(x) = ATY −1b.

Following the notation introduced in Section 2 for the entries of ∇TVβ(x),
we set the components of V TV (x) as

V TV
jx,jy ,jz

(x) =
(
3φ′(δ2xjx,jy ,jz) + φ′(δ2xjx−1,jy ,jz)+

φ′(δ2xjx,jy−1,jz) + φ′(δ2xjx,jy ,jz−1)
)
xjx,jy ,jz .

Following the suggestions in [8, 13], the parameter ρk+1 is chosen as ρk+1 =√
1 + 1015/(k + 1)2.1.
Once the scaling matrix Dk+1 has been defined, a new value for the step-

length αk+1 can be computed with the aim to achieve further acceleration
of the iterative process. The wide literature of the last decades identifies the
Barzilai-Borwein (BB) rules as effective selection rules for the step-length
updating in gradient methods [1]. In particular, recent studies have shown
that selection rules based on special adaptive alternations of the two classical
BB rules generally provide the best performance [41, 18]. For these reasons,
first we derive the two BB rules for the step used by SGP and then we
exploit these step-lengths rules within the alternating strategy proposed in
[18], that has provided interesting convergence rate acceleration in many
imaging algorithms [10, 30]. Due to the use of scaled gradient directions,
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by applying the quasi-Newton properties on which the classical BB rules are
based, the following step-lengths are obtained:

αBB1
k+1 = argmin

αk∈R
‖(αkDk+1)−1s(k) − z(k)‖2 =

s(k)TD−1
k+1D

−1
k+1s

(k)

s(k)TD−1
k+1z

(k)
(11)

and

αBB2
k+1 = argmin

αk∈R
‖s(k) − (αkDk+1)z(k−1)‖2 =

s(k)TDk+1z
(k)

z(k)TDk+1Dk+1z(k)
(12)

where s(k) =
(
x(k+1) − x(k)

)
and z(k) =

(
∇f(x(k+1))−∇f(x(k))

)
.

The alternating strategy introduced in [18] leads to the following selection
rule:

if αBB2
k+1/α

BB1
k+1 < τk

αk+1 = min
{
αBB2
j : j = max{1, k + 1−mα}, . . . , k + 1

}
, τk+1 = 0.9 τk,

else

αk+1 = αBB1
k+1 τk+1 = 1.1 τk,

end;

where mα is a nonnegative integer and τk is a positive real number (we
refer to the next section for the setting of these parameters). Other step-
length updating rules are currently investigated in literature [14, 19, 16]; in
particular, in [12] it has been shown that, for the CT image recontruction
application, the step-length selection proposed in [30] seems to well compare
with the above alternated BB rule and deeper studies are in progress on this
topic.

4 Numerical results

In this section we present the numerical results performed on a MacBook
Pro, 3GHz Intel Core i7, 8 Gb of RAM, equipped with Matlab (Release
2015a). For performing the tests, we used some functions of the TVReg
Matlab Toolbox, http://www.imm.dtu.dk/~pcha/TVReg/ [22].

Test problem. We consider as the true object x∗ the digital Shepp
Logan phantom discretized in Nv = Nx ×Ny ×Nz = 61× 61× 61 = 226981
voxels lexicographically ordered in a vector. In Figure 2 the slices number 24,
31 and 35 in the z direction are shown. The projections have been created
as:

b∗ = A · x∗

where A is the projection matrix, obtained with the functions in the TVReg
Toolbox for a 3D geometry with random angles over the half of a sphere. The
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detector is supposed with Np = 61× 61 pixels and the number of angles Nθ

varies in the set {19, 37, 55}. In all the cases the problem is underdetermined.
The projections are corrupted by noise, with both Gaussian and Poisson
distribution, as specified in the following subsections.

Stopping criterion and parameters. We describe here the stopping
criterion for the SGP algorithm and the setting of its main parameters. If k
is the index of the current iteration and Sfk := |f(x(k+1))−f(x(k))|

|f(x(k))| is the relative
distance between successive values of the objective function, we consider the
conditions

Sfk ≤ ε1,
1

p

p−1∑
j=0

Sfk−j ≤ ε2 if k ≥ p− 1,

where ε1 = 10−6, p = 20 and ε2 = 10−5; the SGP stopping criterion consists
in satisfying both the conditions or performing a maximum number of k =
1000 iterations.

For what concerns the SGP parameters, the setting reported below is
used:

• γ = 0.4 and σ = 10−4 as backtracking parameters;

• αmin = 10−10, αmax = 105, α0 = 1, mα = 2 and τ0 = 0.5 for the
step-length selection.

Results evaluation. In order to evaluate the reconstruction results, we
consider the following parameters: the Relative Error (Relerr) between the
exact volume x∗ and the reconstructed image x̃ (Relerr = ‖x∗− x̃‖2/‖x∗‖2)
and the Standard Deviation (StdDev) of the image values inside a small crop
(represented by the yellow 8 × 8 pixel square in Figure 2(d)) on a uniform
region in the central layer. The reconstructed images are also evaluated by
plotting the profile of the yellow vertical line in Figure 2(d), vertical profile
(VP), and the profile over the 61 layers in the z direction of the red pixel in
Figure 2(d), depth profile (DP).

We show the results obtained by the algorithms at three different tem-
poral windows: at 5 seconds (10-15 iterations), for simulating a real-time
execution; at 20 seconds (50-60 iterations), corresponding to an over-time of
few minutes in real applications; at the convergence, i.e., when the conver-
gence criterium is satisfied (this is a long execution that can be performed
only off-line in a real application). We think that each of these three differ-
ent outputs may have a practical interest and together they represent the
evolution of the methods in time.

4.1 Case of Gaussian noise. Results with the LS data func-
tion.

In this paragraph we show the results obtained on the simulated data
b = b∗ + e, where e is the vector representing white Gaussian noise with
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(a) layer 24 (b) layer 31

(c) layer 35 (d) layer 31

Figure 2: different layers in the z-direction of the original phantom. For
the analysis of the results, in (d) some interesting features in layer 31 are
highlighted: a yellow small crop where the Standard Deviation is compute,
a yellow line along which we analyse the vertical profile and a red pixel to
examine the depth profile.

level defined as ν = ‖e‖2
‖b∗‖2 ; we consider here ν = 0.01, corresponding to a

Signal-to-Noise Ratio SNR := 20 · log10( ||b||2
||b−b∗||2 ) of about 40. We consider

the fit-to-data function J(x) as the LS function and we set the TV smooth-
ing parameter β equal to 0.001 in all the experiments. The regularization
parameter λ has been heuristically set to 0.09; we have experimented that
for this test the model is not very sensitive to the value of λ (similar results
have been obtained with different values of λ in the interval [0.005, 0.5]).

We compare the results of the proposed SGP method with the non-
scaled GP method (GP) (with the step-length selection used by SGP, but
with Dk+1 = I in the definitions (11) and (12) of the BB rules) and with
the UPN method proposed in [21], implemented in the TVReg toolbox. The
UPN method has been equipped with the same stopping criterion used for
SGP and its parameters have been set at their best values after a careful
tuning.

In Table 2 we present the results obtained with different number of views
(Nθ = 19, 37, 55) for the GP, SGP and UPN methods. In the columns
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from left to right we report the Relative Error, the Standard Deviation,
the objective function value and the number of performed iterations in the
three considered temporal windows: at 5 seconds, at 20 seconds and at
convergence. From the table, we see that the SGP method outperforms the
others in the first iterations (5 and 20 seconds) for all the considered angles;
at convergence, all the methods give very similar results. The reconstructions
of central layer (layer 31) obtained with the three considered methods in the
case Nθ = 37 are shown in Figure 3.

(a) GP method at 5 seconds, 20 seconds, convergence.

(b) SGP method at 5 seconds, 20 seconds, convergence.

(c) UPN method at 5 seconds, 20 seconds, convergence.

Figure 3: reconstructions obtained in case of Gaussian noise on the data.
From the left to the right: reconstructions after 5 seconds, after 20 seconds,
at convergence.

In Figure 4 the errors versus the iterations (on the left) and the objective
function values versus the iterations (on the right) are shown in log-log scale.
We compare here the GP method (blue line), the SGP method (red line)
and the UPN method (green line) up to the convergence of the methods.
The advantage of using the scaling matrix is evident, especially in the first
iterations.
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Relerr StdDev fun iters

Nθ = 19

5 secs 0.3816 0.0559 5574.36 16
GP 20 secs 0.1548 0.0312 1596.75 69

conv 0.0559 0.0052 1498.49 263
5 secs 0.2637 0.0463 3396.96 19

SGP 20 secs 0.1178 0.0241 1560.48 71
conv 0.0543 0.0052 1498.57 198
5 secs 0.3785 0.0640 6075.55 11

UPN 20 secs 0.1786 0.0414 1652.62 48
conv 0.0580 0.0056 1484.46 606

Nθ = 37

5 secs 0.3475 0.0331 11537.90 16
GP 20 secs 0.0898 0.0241 1795.02 64

conv 0.0245 0.0028 1645.77 154
5 secs 0.1840 0.0261 4335.56 18

SGP 20 secs 0.0477 0.0777 1689.30 66
conv 0.0247 0.0030 1646.39 194
5 secs 0.4001 0.0281 19918.90 8

UPN 20 secs 0.1045 0.0343 1917.49 46
conv 0.0241 0.0028 1632.07 224

Nθ = 55

5 secs 0.3091 0.0438 14306.80 15
GP 20 secs 0.0779 0.0276 1997.80 60

conv 0.0199 0.0044 1783.11 142
5 secs 0.2148 0.0306 9662.70 16

SGP 20 secs 0.0277 0.0077 1814.38 60
conv 0.0199 0.0044 1783.60 147
5 secs 0.4315 0.0325 40865.00 6

UPN 20 secs 0.0677 0.0293 2033.66 46
conv 0.0199 0.0043 1769.47 200

Table 2: results obtained on the test problems with data affected by Gaussian
noise.
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Figure 5 displays the VP (on the left) and DP (on the right) after 5
seconds, 20 seconds and at convergence. We compare again the GP recon-
struction (blue line), SGP reconstruction (red line) and UPN reconstruction
(green line) with the phantom profile (grey line). The VP plots confirm that
after few iterations (5 seconds) we can identify, in the signal reconstructed by
the SGP method, all the objects with a good approximation of their inten-
sity; in the DP plot after 20 seconds the SGP method has almost completely
eliminated the noise, while the GP and UPN plots show a residual noise yet.
In Figure 6 we show a zoom of Figure 5 for the pixels between 4 and 27 for
the VP plots on the left and between 19 and 43 for the DP plots on the right,
in order to clearer represent the behaviour of the method for reconstructing
the small object represented by the red dot in Figure 2(d). We can see that
the SGP profiles are less noisy than the others and in the DP the peak of
the SGP line is the closest the exact one.

4.2 Case of Poisson noise. Results with the KL data func-
tion.

We consider now some tests where the projections are affected by Poisson
noise, with SNR ' 40 and background bg = 10−5. The problem is solved
by using the KL fit-to-data function in (8). In this case the regularization
parameter λ has been heuristically set to 0.03 and the TV smoothing param-
eter β = 0.01; we have experimented that, as in the case of Gaussian noise,
similar results have been obtained with different values of λ in the interval
[0.001, 0.1].

For this model, we compare the results obtained with the GP and the
SGP methods, since the UPN method is provided only for the case of LS
fit-to-data function. Table 3 reports the results in the case Nθ = 19, 37, 55,
with the same information of Table 2. For the KL model, the performance
improvement due to the scaling is more consistent than in the LS model,
as it can be seen by the Relative Error and Standard Deviation values. If
the number of performed iterations in the last column is equal to 1000 an
asterisk reminds that the algorithm has stopped after reaching the maximum
number of iterations. We want to stress that this happens only for the GP
method, confirming its slower convergence rate. In Figure 7 we plot the
Relative Error versus the iterations in the left panel, while the objective
function values versus the iterations are displayed in the right panel. In
Figure 8 the reconstructions of the layer 31 obtained with both GP and
SGP methods after 5 seconds, 20 seconds and at convergence are represented.
Both the plots and the images confirm the convergence acceleration of the
scaled algorithm with respect to the non-scaled one.

The analysis of VP and DP profiles in the case of Nθ = 37 in Figure
9 shows that the scaling allows recovering very good profiles in very short
time: after 20 seconds the line of the reconstructed image almost overlap the

14



Relerr StdDev fun iters

Nθ = 19

5 secs 0.6305 0.0154 16781.30 12
GP 20 secs 0.5685 0.0204 9031.95 61

conv 0.4353 0.0290 3085.58 877
5 secs 0.2145 0.0332 767.85 19

SGP 20 secs 0.0984 0.0097 524.80 72
conv 0.0869 0.0063 522.01 172

Nθ = 37

5 secs 0.6914 0.0085 55813.10 11
GP 20 secs 0.6349 0.0107 31273.40 53

conv 0.4045 0.0180 4913.71 1000*
5 secs 0.1752 0.0201 1127.98 18

SGP 20 secs 0.0798 0.0129 597.74 66
conv 0.0335 0.0031 545.41 393

Nθ = 55

5 secs 0.6919 0.0105 85188.70 12
GP 20 secs 0.6495 0.0121 54467.70 52

conv 0.4191 0.0222 8215.40 1000*
5 secs 0.1745 0.0226 1552.37 16

SGP 20 secs 0.0496 0.0107 596.71 60
conv 0.0387 0.0068 580.17 198

Table 3: results obtained on the test problems with data affected by Poisson
noise.

line of the exact phantom (the only exception is the small peak in the center
of the DP).

4.3 Algorithms reliability with regard to noise

Finally, in this paragraph we test the reliability of the proposed SGP al-
gorithm with regard to noise of increasing levels on the projections. We have
performed some tests by adding noise of different intensity on the data and
solving the reconstruction problem with a suitable regularization parameter
in each case. We show in Figure 10 the results obtained in the different
executions after 20 seconds. We plot the relative errors as a function of
the SNR in the case of Gaussian noise (left panel) and Poisson noise (right
panel). The relative error obviously increases with increasing noise but the
SGP method always performs better for all noise levels. We highlight in
particular the remarkable difference between the errors obtained with SGP
and GP methods in the case of Poisson noise.
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5 Conclusions

In this paper we have presented a scaled gradient projection method for
the reconstruction of 3D X-rays tomographic images from limited data. The
problem is modeled in a variational framework as the nonnegative minimiza-
tion of a function constituted by a fit-to-data term and a smoothed version
of the Total Variation regularization function weighted by a positive param-
eter. In this framework we have considered both the Least Squares and the
Kullback-Leibler fit-to-data functions. The proposed strategy for scaling the
gradient directions by means of diagonal matrices derived by suitably split-
ting the objective gradient, combined with a step-length selection based on
the Barzilai-Borwein rules, greatly improve the performance of the algorithm
especially in the first iterations, as required by the specific application, where
a good image is required in a very short time for clinical requirements. The
results obtained on a medium size 3D phantom are very encouraging for a fu-
ture use of the SGP method on real data for clinical reconstructions. Work
in progress concerns the analysis of recent step-length selections [30, 16],
which appear valid alternatives to the Barzilai-Borwein rules, and the study
of suitable techniques for combining these step-length selections with the
scaling strategy presented in this paper.
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(a) Nθ = 19

(b) Nθ = 37

(c) Nθ = 55

Figure 4: case of Gaussian noise. On the left: errors vs iterations; on the
right: function values vs iterations. The circles and the diamonds represent
the values at 5 and 20 seconds, respectively.
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(a) Profiles after 5 seconds

(b) Profiles after 20 seconds

(c) Profiles at convergence

Figure 5: case of Gaussian noise. Profiles for 37 angles: on the left VP plots
and on the rigth DP plots at different temporal windows.
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(a) Profiles after 5 seconds

(b) Profiles after 20 seconds

(c) Profiles at convergence

Figure 6: zoom of the plots in Figure 5.
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(a) Nθ = 19

(b) Nθ = 37

(c) Nθ = 55

Figure 7: case of Poisson noise. On the left: errors vs iterations; on the
right: function values vs iterations.
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(a) GP method at 5 seconds, 20 seconds, convergence.

(b) SGP method at 5 seconds, 20 seconds, convergence.

Figure 8: reconstructions obtained in case of Poisson noise on the data.
From the left to the right: reconstructions after 5 seconds, after 20 seconds,
at convergence.
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(a) Profiles after 5 seconds

(b) Profiles after 20 seconds

(c) Profiles at convergence

Figure 9: case of Poisson noise. Profiles for 37 angles: on the left VP plots
and on the rigth DP plots at different temporal windows.
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Figure 10: relative errors vs SNR after 20 seconds for all the methods. On
the left panel, the results with Gaussian noise on the data; on the right panel,
the results with Poisson noise on the data.
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