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Abstract

Context. Design-time evaluation is essential to build the initial software architecture to be
deployed. However, experts’ design-time assumptions are unlikely to remain true indefinitely
in systems characterized by scale, heterogeneity, and dynamism (e.g. IoT). Experts’ design-
time decisions can be thus challenged at run-time. A continuous architecture evaluation that
systematically intertwines design-time and run-time evaluation is necessary. However, the
literature lacks examples on how continuous evaluation can be realized and conducted.
Objective. This thesis proposes the first continuous architecture evaluation framework.
Method. The framework is composed of two phases: design-time and run-time evalua-
tion. The design-time evaluation enables the necessary initial step of system design and
deployment. Run-time evaluation assesses to what extent the architecture options adopted at
design-time and other potential options, perform well at run-time. For that, the framework
leverages techniques inspired by finance, reinforcement learning, multi-objective optimisa-
tion, and time series forecasting. The framework can actively track and proactively forecast
the performance of architecture decisions and detect any detrimental changes. It can then
inform deployment, refinement, and/or phasing-out decisions. We use an IoT case study
to show how continuous evaluation can fundamentally guide the architect and influence
the outcome of the decisions. A series of experiments is conducted to demonstrate the
applicability and effectiveness of the framework.
Results. The design-time evaluation was able to evaluate the architecture options under
uncertainty and shortlist candidates for further refinement at run-time. The run-time evalua-
tion has shown to be effective. In particular, it enabled a significant improvement in overall
quality (about 40-70% better than reactive and state-of-the-art approaches in some scenarios),
with enhanced architecture’s stability. It was also shown to be scalable and robust to various
noise levels. In addition, it provides the architect with flexibility to set a monitoring interval
to profile the quality of candidates and has parameters that enable the architect to manage the
trade-off between architecture stability and learning accuracy.
Conclusion. The proposed continuous evaluation framework could potentially aid the archi-
tect in evaluating complex design decisions in dynamic environments.
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Chapter 1

Introduction

Architectures of complex and scalable real-time systems are dynamic in nature and exhibit
numerous uncertainties in their operation [6, 7]. This dynamism limits the effectiveness
of design-time architecture evaluation approaches. In particular, Internet of Things (IoT)
environments [8, 7] are fundamentally different from classical ones for which most archi-
tecture evaluation methods, such as Cost-Benefit Analysis Trade-off Method (CBAM) [9],
Architecture Analysis Trade-off Method (ATAM) [2], and Architecture-level modifiability
analysis (ALMA) [10], were advanced. These systems are data-driven, characterised by their
scale, hyper-connectivity, dynamism, and uncertainty in operation (with a constant stream
of new devices, new services, and fluctuations in quality of service (QoS) provisions) [11].
Furthermore, IoT has constrained devices, which are mobile, variable in processing and
computational power, and in some cases with limited network connectivity [6, 7].

We acknowledge that design-time evaluation [9, 2, 10] is a necessary step to build funda-
mental architecture decisions when designing a software system. However, its effectiveness
is highly influenced by the expertise of the evaluators, their knowledge of the domain, and the
usage contexts for which the architecture is conceived [12, 13]. Valuation and stakeholders’
perception on cost and value of the candidate architecture solution can suffer from under/over
estimations. They also rely on assumptions that are unlikely to hold true indefinitely in
dynamic, scalable and uncertain environments, such as IoT. Dynamicity, multi-tenant nature,
hyper connectivity, environmental changes, and uncertainty are fundamental properties of
non-stationary architectures, which are difficult to conceive and cater for in design-time
evaluation only.

In this context, design-time evaluation tends to be subjective and incomplete. Widely
used architecture evaluation methods [9, 2, 14] fundamentally lack mechanisms for aligning
operations with development when the architecture evaluation is conducted. Therefore, a
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more continuous approach to software architecture evaluation is necessary to complement

design-time evaluation. We define continuous software architecture evaluation as an evalu-

ation of the software architecture that begins at the early stages of the development and is

periodically performed throughout the lifetime of the software system. Continuous evaluation
is composed of two phases: design-time and run-time evaluation. In particular, design-time
evaluation can be used to support the necessary initial system design and deployment. After
that, run-time evaluation can be used to assess to what extent the architecture options created
at design-time, as well as other potential architecture options, perform well at run-time. This
enables architects to make informed decisions on potential changes to the architecture, so
that its performance remains good over time.

Intertwining and interleaving run-time evaluation with design-time has the potential to
change ad hoc and "trial and error" practices for architecting complex, scalable, and dynamic
software systems. Consider the case where architects embed design diversity [15] into their
solutions in an attempt to meet quality requirements under uncertainty and to mitigate risks
and Service Level Agreement violations. Diversification [15] encompasses design decisions
and architecture tactics that can be used to adapt the system to unforeseen changes [16].
For a given concern, architecture diversity "spices" the architecture with a variety of design
decisions and strategies (e.g. the choice of data collection and processing strategies and
tools), which can better cope with uncertainties at run-time. Diversified design decisions,
whether planned or accidental [17], can be expensive; their behaviour and value can be best
evaluated at run-time. However, there are no systematic continuous software architecture
evaluation methods that intertwine design-time and run-time evaluation.

Continuous architecture evaluation has been introduced and discussed as an integral
phase within modern software development processes (e.g., agile [18], DevOps [19], and
continuous delivery [20]). This is an enabler for rapid response to operational, environmental,
and requirements changes. It has also been advocated as an essential appraisal and qual-
ity assurance practice that symbiotically aligns development and operations as a measure
for responding to dynamism, unpredictability, and operational uncertainties. Despite the
widespread acceptance of continuous architecture evaluation as a concept, the literature
requires further examples on how continuous evaluation can actually be realized and con-
ducted. There are few research efforts (e.g. [21, 18, 13]) which explicitly mention continuous
architecting and assessment, while some others implicitly adopt it (e.g. [19]).

As an example, Pooley and Abdullatif [18] define continuous assessment as the contin-
uous production of performance evaluation tests. Despite their work being one of the few
approaches that explicitly provides continuous assessment, it lacks run-time monitoring and
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forecasting of the performance of architecture decisions. In such cases architecture is, at best,
a modelling tool, which may (or may not) be applicable in dynamic environments. Bersani et
al. [13] propose a continuous architecting approach that aids the designers in easing the static
analysis of the architecture, but lacks dynamicity and is domain-specific (i.e. for streaming
applications). Further, though DevOps [19] advocates continuous integration as part of the
continuous development process, it lacks a systematic mechanism for evaluating the artefacts
generated out of such systems. Thus, novel continuous evaluation methods could aid the
prior methods by providing extra insights about the behaviour of candidate architectures to
improve decision-making. In particular, they can benefit from further analysis in terms of
dynamic tracking and forecasting of architecture decisions’ performances, and automated
management of cost-benefit trade-offs.

1.1 Aim and Objectives

The complexity in reasoning about large scale environments, such as IoT, are hard to be
evaluated at design-time only. These architectures can employ diversification, as an example,
to respond to IoT challenges, handle uncertainties and hence improve the performance of
an IoT application. However, these diversified architectures introduce many design trade-
offs. Therefore, an approach that dynamically and continuously learns and forecasts the
behaviour of diversified architecture decisions is necessary. To this regard, the major aim of
this thesis is to address the lack of systematic continuous architecture evaluation framework

that intertwines design-time and run-time evaluation to handle complex architectures and

improve the decision-making, in dynamic and uncertain environments, such as IoT. This can
be done by addressing the following problems of existing work:

• Problem 1: The lack of a systematic design-time evaluation approach that can quantify
the long-term value of evaluating complex architecture decisions, such as diversity in
design.

• Problem 2: The lack of a run-time evaluation approach that can systematically and
dynamically track the benefits of architecture design decisions, while providing the
architect with flexible tuning for learning parameters and taking into account the
trade-offs between architecture’s stability and learning accuracy.

• Problem 3: The lack of a proactive run-time evaluation approach that can aid in
determining how well the architecture design decisions will behave in the future and
proactively deal with non-stationary scenarios.
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Accordingly, this thesis has four objectives:
• Objective 1: Perform a systematic literature review that discusses the state-of-the-

art of architecture evaluation approaches under uncertainty and hence provides the
necessary guidelines to develop a continuous architecture evaluation framework.

• Objective 2: Propose a systematic economics-driven design-time evaluation approach
as an initial step to shortlist the candidate architecture decisions, as well as, rank the
options under investigation.

• Objective 3: Complement the design-time decisions using an informed run-time
architecture evaluation approach that can monitor and learn the cost-benefit trade-offs
of architecture decisions over time.

• Objective 4: Propose a proactive evaluation approach that forecasts the future poten-
tials of architecture design decisions and hence improves the decision-making support
of (2) and (3).

1.2 Research Questions

The objectives outlined in Section 1.1 will be addressed by answering the following research
questions:

• RQ1: What is the state-of-the-art in software architecture evaluation under uncertainty
and to what extent continuous architecture evaluation is used? (Addressing Objective

1)

• RQ2: To what extent design-time architecture evaluation methods that adopt economics-
driven principles, such as real options analysis, can systematically evaluate complex
design decisions, such as diversification, in the face of operational uncertainties in
dynamic environments? (Addressing Objective 2)

• RQ3: How can run-time architecture evaluation using cost-benefit analysis and ma-
chine learning techniques complement the design-time one to handle uncertainty?
(Addressing Objective 3)

• RQ4: How can the use of forecasting analytics improve the state of run-time architec-
ture evaluation? (Addressing Objective 4)
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1.3 Research Methodology

In this thesis, we leverage techniques from classical research methodologies, inspired by [22]
to conduct the research. The methodology adopted is divided into five steps as follows:

1. Identifying thesis problems: The initial step is to acquire knowledge about the
domain (i.e. Evaluating Software Architectures for uncertainty). For that, we have
conducted a systematic literature review that covers the state-of-the-art and practices
of software architecture evaluation approaches. The review provides a holistic view
about the research progress for the domain along with open problems and gaps. As the
understanding of the problem is advanced, the major problem that this thesis aims to
address is the lack of continuous architecture evaluation approaches to handle complex

and dynamic architectures. The problem is also formulated through a set of research
questions.

2. Identifying thesis objectives: Motivated by the prior problem, this thesis aims to
propose a novel continuous architecture evaluation framework to reason about archi-
tecture decisions operating under uncertainty. To achieve the main objective of thesis,
we contribute to the following:

2.1. A systematic economics-driven design-time evaluation approach that reasons
about architecture decisions and quantifies their long-term value to cope with
operational uncertainties.

2.2. A run-time evaluation approach for tracking the benefits of architecture design
decisions and evaluating their cost-benefit trade-offs. This approach in turn can
complement the design-time decisions (2.1) for further refinements.

2.3. A proactive evaluation approach that forecasts the future potentials of architecture
design decisions and hence improves the decision-making support of (2.1 and
2.2).

3. Designing and developing thesis contributions: To achieve the prior objectives, this
thesis extends CBAM [23] and binomial real options analysis [24–26] to contribute
an economics-driven design-time evaluation approach to suit for the complexity and
dynamicity of software architectures. The binomial real options analysis can aid
in long-term valuation of architecture decisions (such as diversity in design) under
uncertainty. Moreover, this thesis leverages reinforcement learning techniques [27]
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to dynamically profile the benefits of architecture design decisions along with multi-
objective optimisation approaches [28, 29] to assess the cost-benefit trade-offs of
decisions. Finally, it demonstrates what benefits proactive approaches adopting time
series forecasting [30–32] can render to architecture evaluation.

4. Demonstrating thesis contributions: This thesis adopts the internet of things paradigm
for demonstrating the usefulness of the proposed continuous evaluation approach. We
consider the case of architecting for IoT (i.e. iTransport application) as a motivating
scenario to show how continuous evaluation, leveraging cost benefit analysis, machine
learning and forecasting analytics, can be realised and conducted for handling IoT
challenges. In particular, software architects are challenged by the heterogeneity, scale,
and high dynamism in IoT environments. For this purpose, we consider the case where
the architect has embedded design diversity [33] to the architecture aiming to improve
the application’s performance. Further, the stakeholders could have different QoS
priorities due to variation in contexts. The uncertainties associated with these decisions
require novel ways for evaluation. In this context, the use of a continuous evaluation ap-
proach could aid the architect in determining the long-term value of diversification and
analysing the cost-benefit trade-offs. It can also provide the architect with flexibility to
adjust the trade-offs between architecture’s stability and learning accuracy. As such,
the approach can inform deployment, refinement and/or phasing out of (diversified)
architecture decisions.

5. Evaluating thesis contributions: To evaluate each of the demonstrated contributions,
a set of controlled experiments are conducted derived from the iTransport application,
introduced in Chapter 3. In particular, we have used qualitative and quantitative
experimental evaluations to highlight on the extra insights which the continuous
evaluation approach would provide to reasoning of diversification in IoT design.

1.4 Thesis Contributions

This thesis makes a number of novel contributions towards the objective of providing a
continuous architecture evaluation framework for architectures operating in dynamic and
uncertain environments. In particular, the thesis investigates how leveraging on the principles
of options theory, cost-benefit analysis, machine learning, and time series forecasting can
lead to a pragmatic technique that can provide extra insights about the behaviour of candidate
architectures to improve the decision-making.
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The major contributions are the following:
• A systematic literature review that covers the state-of-the-art of software archi-

tecture evaluation approaches under uncertainty: We review existing work on
architecture evaluation under uncertainty. We also provide a classification framework,
which aided us in categorising and understanding the current state-of-the-art. The
objective of this review is to determine the design-time and/or run-time evaluation
approaches, the list of major challenges of architecture evaluation approaches, and
how they handle uncertainties. These challenges contribute to the design of our novel
continuous evaluation framework.

• A design-time architecture evaluation approach that adopts an economics-driven
approach: This contributes to an architecture-centric model, which is built on a well
established software architecture method, namely, CBAM. We have used diversification
in design as an example of architecture significant design decision that is taken by the
architect to design for more dependable provision in the face of uncertainty.

• A novel reactive run-time architecture evaluation method: We propose a novel
run-time architecture evaluation method, suited to systems that exhibit uncertainty and
dynamism in their operation. The method uses machine learning and cost-benefit anal-
ysis at run-time to continuously profile the architecture decisions for their added value
that trace back to the design decisions. The method provides continuous assessment
for these decisions; it can inform deployment, refinement and/or phasing out decisions.

• A novel proactive run-time architecture evaluation approach: We provide contin-
uous learning as built-in mechanisms for proactive evaluation that complement the
reactive one. The approach shows how proactive approaches leveraging the time series
forecasting analytics can fundamentally guide the continuous evaluation of software
architectures and influence the outcome of the decisions (i.e. potential impact on
decision-making).

1.5 Thesis Storyline

A systematic literature review we conducted discussing the state-of-the-art for design-time
and run-time architecture evaluation approaches indicates that despite the uncertainties in
dynamic environments, there is still a lack of examples and approaches on how to conduct
continuous architecture evaluation. To overcome this lack, we aim to answer RQ1: What is
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the state-of-the-art in software architecture evaluation under uncertainty and to what extent

continuous architecture evaluation is used? we report on a systematic literature review that
consolidates different approaches that can assist in providing the necessary guidelines to
develop continuous evaluation approaches. Though there are some methods (e.g. [21, 18, 13])
which explicitly mention continuous architecting and assessment, while others implicitly
adopt it (e.g. [19]), these approaches can benefit from further investigations in terms of how
continuous evaluation could leverage novel techniques to dynamically track and forecast the
architecture decisions, and also automatically manage the trade-offs.

Architecture diversification is a common practice, when architecting software for sys-
tems at scale, dynamism, and uncertainty in their operations, to improve the QoS (e.g.
performance). Our framework investigates this phenomenon and formulates the problem of
architecture diversity from economics-driven and run-time perspectives. In particular, this
thesis contributes to a systematic and continuous architecture evaluation framework that

reasons about complex architecture design decisions under uncertainty, such as diversity,

which in turn improves decision-making.
IoT architecture is a beneficiary distributed paradigm for which continuous evaluation

can be conducted due to their inherent properties that are characterised by scale, complexity,
heterogeneity, dynamism and uncertainty in operation [8, 7]. Uncertainties can be attributed,
for example, to hardware or software faults affecting an IoT device, thermal drifts or ageing
effects in sensors, resource-constrained and/or mobile devices, and fluctuations in QoS
[8, 30, 34]. We have extended an IoT case study proposed in [35] (i.e. used diversification to
handle IoT challenges) and developed various scenarios to motivate and evaluate the need
for the continuous evaluation framework.

Design-time evaluation is a prerequisite for continuous architecture evaluation frame-
work. However, based on our review, the current economics-driven design-time evaluation
approaches (e.g. [36–43]) have not been used before to deal with cost-benefit trade-offs in
dynamic environments, such as IoT. They have also not been validated as a technique to
determine the long-term value of diversified architecture decisions. Further, a design-time
economics-driven approach could be a potential solution to evaluate diversified architecture
decisions. To overcome this lack, we aim to answer RQ2: To what extent design-time ar-

chitecture evaluation methods that adopt economics-driven principles, such as real options

analysis, can systematically evaluate complex design decisions, such as diversification, in

the face of operational uncertainties in dynamic environments?

For that, we will explore the binomial real options analysis [24–26] and necessary
approaches to value it. CBAM has proven to be effective in valuing the costs and benefits of
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architecture design decisions (e.g. [23, 44, 45]). However, our design-time approach will
further extend it using Real Options. So why Real Options? It provides an analysis paradigm
that emphasises the value-generating power of flexibility under uncertainty. An option is
the right, but not the obligation, to make an investment decision in accordance to given
circumstances for a particular duration into the future, ending with an expiration date [24].
Our economics-driven approach has the following benefits: (1) It extends the CBAM with
binomial real options analysis to quantify and visualise the long-term value of engineering
diversification into the solution space at design-time in the face of operational uncertainties;
(2) It can be used to shortlist the candidate architecture decisions for run-time evaluation and
hence reduce deployment costs. We use the motivating IoT case study to demonstrate the
usability, the strengths, and limitations of our design-time evaluation approach.

The proposed economics-driven design-time evaluation is essential to build the initial
software architecture to be deployed. However, it relies on human experts (i.e. based on their
knowledge and confidence level), who can only partially forecast the fitness and the extent to
which an architecture can cope with operational uncertainties, unanticipated usage scenarios,
and emergent behaviours. Therefore, this requires run-time evaluation, which leads to RQ3:

How can run-time architecture evaluation using cost-benefit analysis and machine learning

techniques complement the design-time one to handle uncertainty?

To answer RQ3, we propose a reactive run-time evaluation approach inspired by self-
adaptive systems [46]. Our approach makes the following contributions to the research
literature: (1) A run-time approach for tracking the benefits of architecture design decisions
using machine learning; (2) An approach inspired by multi-objective optimisation to evaluate
the cost-benefit trade-offs of architecture decisions at run-time. In particular, the approach
is able to profile situations where options can be more effective and provide continuous
updates on their value potentials. Specifically, our approach adopts an exponential time-decay

function inspired by reinforcement learning [27]. This function enables us to track the current
benefit of a diversified architecture option by weakening the effect of old data (i.e. emphasise
on the recent versus past observations). Our reactive run-time evaluation approach also
adopts change detection tests to check whether the benefit of the diversified architecture
option currently being used is getting significantly worse [5]. If it is significantly worse, a
method inspired by the multi-objective optimisation literature [28, 29] is adopted to identify
the diversified architecture option with the optimal trade-off between cost and benefit. Based
on the profiling of options over time, it is also possible to determine which ones are not fit
for the purpose, and hence could be phased out.
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By run-time evaluation, we envision several potential scenarios of use to capture the dynamic
behaviour of the selected design decisions in relation to the quality attributes in question:

• Simulation can be a useful alternative to experimentation with real environments:
IoT environments are often large scale: an architecture can embed large numbers
of heterogeneous and diverse things, sensors and devices supporting some design
decisions. As it would be prohibitively expensive to configure the architecture and to
test these decisions exhaustively before deployment, the use of simulation can be useful
for assisting the architect in what-if analysis prior to deployment, stress-testing the
architecture with inputs that can go beyond the ones encountered in normal operation,
abstract the analysis, and demonstrate the potential for scaling it.

• This approach can also work if run-time data of a given configuration is available.
The architect will need to instrument the system with mechanisms for monitoring,
logging, and profiling quality attributes of interest and design decisions supporting
these attributes. This can be particularly useful for cases where the system is already
deployed and further refinements are envisioned. Learning from the log of operation
for example can be useful for profiling and analysing the likely technical and value
potentials of these decisions at run-time, whether diversified or not.

• A third scenario can also be possible, where the approach can be integrated in continu-
ous development paradigms, such as DevOps, where run-time information from the
operation side can provide feedback for development.

Each of the mentioned scenarios would require separate treatment and reporting to show
how the approach can be applied. The scope of this thesis is concerned with the case of using
simulation to support the run-time analysis. Nevertheless, many of the observations can be
applicable for the other cases. In particular, we adopt the iFogSim [35] tool. iFogSim builds
on Cloudsim [47]; it provides the architect with the freedom of hierarchically composing fog
devices, clouds, and data streams to simulate the technical and value potentials of selected
decisions using normal usage and stress tests in relation to quality attributes of interest. We
implement the motivating IoT case study using the iFogsim tool to simulate the qualities of
interest of each architecture decision over time. Accordingly, a series of experiments are
conducted to demonstrate the applicability and effectiveness of the continuous evaluation
framework using the case of architecting for IoT.

To evaluate the reactive approach, we conduct a set of controlled experiments that aim
at providing a better understanding of the influence of the stability parameters related to
exponential decay function and change detection tests on the proposed approach. This
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better understanding can guide software architects in the decision of which values to use for
these parameters. We have also provided another series of experiments to demonstrate the
usefulness of the approach as compared with three baseline architecture evaluation methods
[4, 48, 7]. The scalability and robustness to noise are other necessary factors to validate the
applicability of the approach, which we experimented as well.

To summarise, the proposed reactive run-time evaluation approach assesses the archi-
tecture design decisions through the following: (i) evaluating, complementing, and refining
design-time decisions with run-time ones; (ii) tuning the relative importance of present/past
of data for knowledge accumulation about an architecture which can aid in learning the
behaviour of architecture decisions over time; (iii) efficiently assessing the value of archi-
tecture decisions at different monitoring intervals; (iv) allowing the architect to tune the
sensitivity of the approach to changes, and therefore how stable/unstable it will be over
time. However, in other contexts, the reactive learning may suggest wrong decisions and
recommend unnecessary switches due to the lack of knowledge about the future benefit
of candidate architecture decisions. Taking into account the future potential of diversified
architecture option is important to provide a more informative evaluation. This leads to
RQ4: How can the use of forecasting analytics improve the state of run-time architecture

evaluation?

To answer RQ4, we propose a novel proactive run-time evaluation approach. This
approach contributes the following: (i) aid the architect in continuously learning about the
architecture decisions; (ii) help in forecasting how well they will behave in the future; (iii)
proactively deal with non-stationary scenarios. For this purpose, the proactive evaluation
approach uses continuous time series forecasting [30–32] as built-in mechanisms to com-
plement reactive run-time evaluation with proactive run-time evaluation. In this way, the
proactive approach does not take into account only the past likely performance of architecture
decisions, but also their future potentials, better informing run-time architecture decisions.
We report on a comparative study involving several forecasting models to illustrate the
impact of the forecasting analytics on the evaluation and decision-making. We also provide
the architect with recommendations that are grounded on experimentation and evidence.
We finally compare the proposed approach against the reactive approach and the classical
architecture evaluation approaches [4, 48, 7].

We have chosen diversified design decisions in IoT as a beneficiary to demonstrate the
usefulness and applicability of continuous evaluation in the context of highly dynamic and
non-stationary environments. Nevertheless, the approach could be applied to other software
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systems operating in dynamic environments, such as volunteer computing, microservices,
service-oriented architectures, and so forth.

The scope of our work can benefit the relation between requirements (mainly non-
functional requirements) and architecture. Though the contribution leverages configurable
architecture to better meet the requirements, we do not adapt the requirements themselves
but we alternate between architecture design strategies and decisions, when possible to meet
the requirements.

This thesis acknowledges that extending and evaluating the framework in real setting in
the future calls for further treatment and investigations related to practicality. Therefore, this
thesis concludes by reflecting on some suggestions related to applicability of the framework
in practice. Further, it points out some open problems which could further enrich the thesis’s
contributions. These open problems include (but are not limited to): the extension of currently
adopted linear aggregation modelling of qualities of architecture decisions to consider their
dependencies, the use of the framework to value the architecture’s sustainability [49], the
application of the framework in other contexts (e.g. volunteer computing, microservices,
service-oriented architectures, etc), moving it towards decentralisation, using transfer learning
to improve the evaluation, and the development of a tool-support, etc.

1.6 Publications

The work presented in thesis has been partially/completely derived from the following list of
papers published during the PhD. This thesis must be considered as the definitive reference
of details and ideas, presented in these publications.

• D. Sobhy, R. Bahsoon, L. Minku, R. Kazman, Diversifying software architecture
for sustainability: A value-based perspective, Proceedings of 2016 the European
Conference on Software Architecture (ECSA).

• Sobhy, D., Minku, L., Bahsoon, R., Chen, T. & Kazman, R. (2018, March). Run-time
Evaluation of Architectures: A Case Study of Diversification in IoT. Journal of Systems
and Software (Second Review Cycle).

• Sobhy, D., Minku, L., Bahsoon, R., & Kazman, R. (2019, April). Continuous and
Proactive Software Architecture Evaluation: An IoT Case. ACM Transactions on
Software Engineering and Methodology (TOSEM) (Review Cycle).
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• Sobhy, D., Bahsoon, R., Minku, L., & Kazman, R.. Evaluating Software Architectures
under Uncertainty: A Systematic Literature Review. IEEE Transactions on Software
Engineering (TSE) (To be submitted).

1.7 Thesis Roadmap

We will illustrate the thesis roadmap via Figure 1.1 and as follows:
• Chapter 2: conducts a systematic literature review on the state-of-the-art and practices

of software architecture evaluation under uncertainty. The objective of this review
is to provide a solid background on architecture evaluation domain. In particular, it
identifies the gaps of the current architecture evaluation approaches and motivates the
need for a continuous evaluation approach. Further, it highlights the inadequacies in
the design-time and run-time evaluation approaches and demonstrates the properties
required in developing a continuous evaluation approach. This chapter is derived from
[50].

• Chapter 3: introduces the IoT case study iTransport and motivates the need for the
continuous evaluation framework. This chapter first provides an overview of IoT
challenges, followed by the iTransport case study, diversity as a solution for handling
uncertainty and then the iTransport design trade-offs. It further discusses the current
problems faced by architects while evaluating for IoT applications. It finally shows
how the proposed continuous evaluation framework could be used to improve the
current evaluation practices. This chapter is partially derived from [51, 52].

• Chapter 4: presents the first part of the proposed framework. Particularly, this chapter
introduces the use of CBAM and binomial real options analysis to quantify the long-
term value of diversified architecture decisions at design-time. It also demonstrates the
usability of the approach through the iTransport application and different scenarios
of context. Accordingly, it shortlists the candidate architecture decisions for run-time
evaluation. This chapter is partially derived from [14].

• Chapter 5: proposes the reactive run-time evaluation approach which is inspired by
reinforcement learning and multi-objective optimisation to complement and evaluate
the diversified design-time decisions of Chapter 4. A set of controlled experiments
are conducted to provide systematic guidance for the architect on how to evaluate
the architecture decisions at run-time and tune the input parameters to best benefit
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from evaluation. We have also compared the approach against three baseline and
state-of-the-art approaches. This chapter is derived from [51].

• Chapter 6: proposes the final component of the proposed framework. In particular,
this chapter demonstrates steps of the proactive evaluation approach, which adopts
time series forecasting analytics. A series of experiments is conducted to demonstrate
the applicability and effectiveness of the approach. We also provide the architect with
recommendations on how to best benefit from the approach through choice of learners,
input parameters, etc, grounded on experimentation and evidence. This chapter is
derived from [52].

• Chapter 7: concludes the thesis with a discussion of the main findings and remarks
with respect to the thesis’s research questions. We also provide directions that this
research can take, in the future.

• Appendix A: presents the list of included studies used by the systematic literature
review in Chapter 2.

• Appendix B: plots the utility and binomial trees generated by the design-time approach
to perform the evaluation of architecture options introduced in Chapter 4.

• Appendix C: plots the rest of the experimental evaluation figures generated by the
proactive approach and provides additional evaluation results, introduced in Chapter 6.
It also tabulates the experimental parameters by the proactive approach.
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Figure 1.1 Thesis Roadmap.



Chapter 2

Evaluation of Software Architectures
under Uncertainty:
A Systematic Literature Review

Context. Evaluating software architectures in dynamic and uncertain environments raises
a number of new challenges, which require continuous approaches. We define continuous
software architecture evaluation as an evaluation of the software architecture that begins at
the early stages of the development and is periodically performed throughout the lifetime
of the software system. Continuous evaluation has been called by different names, such
as run-time, dynamic, continuous, etc., along with assessment and analysis. The common
characteristic between these approaches is that they start at design-time (even if they do
not mention that explicitly) and continue to evaluate the architecture decisions during the
life-time of the system by observing environmental conditions. However these approaches
are still few, limited, and lack maturity.
Objective. In this review, we attempt to survey all these efforts and provide a unified ter-
minology and perspective on the subject. In particular, we review the existing architecture
evaluation methods under uncertainty, which may implicitly or explicitly adopt continuous
approaches. Through this survey and associated analysis we provide a set of guidelines for
the elements needed to develop and conduct a continuous architecture evaluation approach.
Method.We conducted a systematic literature review to identify and analyse architecture
evaluation approaches under uncertainty including continuous and non-continuous, covering
work published between 1990-2018. We examined each approach and provided a classifi-
cation framework for this field. We present an analysis of the results and provide insights
regarding open challenges, which will pave the way for future research. Our review and
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classification framework contribute to the core principles of evaluating software architectures
under uncertainty.
Results. Most of the existing approaches focus on either design-time evaluation or run-time
evaluation. In particular, several approaches select the optimal candidate at design-time and
then deploy it at run-time without further evaluation. Other approaches make implicit use of
run-time evaluation through monitoring one or more qualities of interest. However, these
solutions typically lack an explicit linkage between design-time and run-time. Their run-time
evaluation of architectures and forecasting capability tend to be limited.
Conclusion. There is a lack of systematic guidance on how continuous architecture evalua-
tion can be realised or conducted and few examples of their application. To remedy this lack,
and as a contribution of this chapter, we present a set of necessary ingredients for continuous
architecture evaluation.

2.1 Introduction

Architecture evaluation is a milestone in the decision-making process. It aims at justifying the
extent to which architecture design decisions meet a system’s quality requirements and their
trade-offs, particularly in the face of operational uncertainties and changing requirements.
The evaluation can aid in early identification and mitigation of design risks; the exercise is
typically done in an effort to save integration, testing and evolution costs [53]. Examples of
seminal work in this area include Architecture Tradeoff Analysis Method (ATAM) [2], and
Cost Benefit Analysis Method (CBAM) [9].

Software architectures that operate in dynamic and non-stationary environments (e.g.,
IoT and cloud applications) require a fundamental shift in the way evaluations are conducted.
This is due to unforeseen factors that may affect the evaluation, including (but not limited to),
fluctuations in QoS, multi-tenancy, hyper-connectivity, sensor ageing effects, etc [54, 8, 34].

Though existing design-time evaluation approaches promise to evaluate flexibility in
architectures under uncertainty and their responses in enabling change [2, 9, 10], in contexts
of highly dynamic environments these approaches tend to be limited because there may be
emerging scenarios where the architect cannot rely solely on design-time evaluation. Such
scenarios require a run-time evaluation to inform and calibrate the design-time decisions. In
this context, a more continuous approach would benefit the evaluation process. We define
continuous software architecture evaluation as an evaluation of the software architecture that

begins at the early stages of the development and is periodically performed throughout the
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lifetime of the software system. Continuous evaluation is performed either continuously or
sporadically covering either one feature (e.g. QoS) or multiple features.

There have been many research studies aimed at evaluating software architectures to
deal with uncertainty which may implicitly or explicitly adopt continuous approaches (e.g.
DevOps [19]). The field has attracted a wide range of researchers and practitioners. However,
continuous evaluation has not been viewed as a key area within software architecture research.
We still lack a clear vision regarding the elements of a continuous software architecture
evaluation approach.

In past years, many research studies have reviewed design-time architecture evaluation
methods (e.g. [12, 55, 56]), while some have attempted to review run-time methods without
addressing them from the context of continuous architecture evaluation (e.g. [57, 46, 58–
60]). In particular, to date there is no systematic literature review for software architecture
evaluation approaches under uncertainty which may implicitly or explicitly adopt continuous
approaches. A systematic literature review (SLR) is a methodological mean to aggregate
empirical studies, to systematically investigate a research topic, answer specific research
questions, and finally determine the gaps and research directions for the research topic
[61–63].

The objective of this study is to (i) provide a basic classification schema with which to
categorise software architecture evaluation approaches under uncertainty; (ii) categorise the
current design-time and run-time approaches for evaluating software architectures based on
this schema; (iii) determine the necessary guidelines for developing a continuous evaluation
approach; (iv) point out current gaps and directions in software architectures operating
under uncertainty with respect to design-time and run-time evaluation for future research.
Concretely, we aim to provide answers for the thesis’s first research question: RQ1: What
is the state-of-the-art in software architecture evaluation under uncertainty and to
what extent continuous architecture evaluation is used? This research question is further
divided into following:

• RQ1.1: How can the current research on software architecture evaluation under uncer-
tainty be categorised and what are the current state-of-the-art approaches with respect
to this categorisation? The goal is to provide a categorisation of existing architecture

evaluation approaches under uncertainty and classify the state-of-the-art approaches

under this categorisation.

• RQ1.2: What are the actions taken by these architecture evaluation approaches to
deal with uncertainty? The aim of this question is to demonstrate and discuss how the
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existing approaches deal with uncertainty and whether these actions can contribute to

developing more continuous approaches.

• RQ1.3: What are the current trends and future directions in software architecture
evaluation under uncertainty and their consideration for continuous evaluation? This

question aims to show how we can benefit from the existing approaches to draw

inspiration on the essential requirements and address the pitfalls when developing a

continuous evaluation approach.

The chapter is structured as follows: Section 2.1.1 identifies and explains the necessary
concepts to ease the understanding of the review. Section 2.2 demonstrates the systematic
literature review process, Section 2.3 provides an overview of the included studies from the
chronological and distribution perspectives. Section 2.4 categorises the included studies
with respect to a classification framework and presents the limitations of review. The related
reviews are discussed in Section 2.6. New trends and research directions are discussed in
Section 2.7. Finally, Section 2.8 concludes the work.

2.1.1 Preliminaries and Basic Concepts

In this section, we list descriptions of the main concepts used in this review to ease the
analysis.

2.1.1.1 Architecture Design Decisions

The foundation of an architecture is in the set of design decisions taken [64–66]. The
architects define the possible set of candidate architectures to serve a particular concern
and then, based on their experience and knowledge, they choose the best candidate [67].
For example, in an IoT application, the architect could prefer processing the data in the
cloud rather than the fog devices to improve energy consumption. However, this design
decision could have a negative impact on performance. This motivates the need for software
architecture evaluation.

2.1.1.2 Software Architecture

In the literature, software architecture is defined in many ways. In our work, we use the
definition introduced by ISO/IEC/IEEE 42010:2011: "the fundamental concepts or properties
of a system in its environment embodied in its elements, relationships, and in the principles
of its design and evolution". This definition is complementary to [68, 69] and later ones [70].
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In this context, a software architecture represents the abstractions for a software system by
defining its structure, behaviour, and key properties [69]. These include software components
(i.e. processing and computational elements), connectors (i.e. interaction elements), and their
relation to the environmental conditions [68, 70].

2.1.1.3 Quality Attribute

We adopt the definition introduced by the IEEE Standard for Software Quality Metrics [71],
where a quality attribute is "a characteristic of software, or a generic term applying to quality
factors, quality sub-factors, or metric values". Examples of quality attributes are performance,
reliability, energy consumption, availability, security, and so forth.

2.1.1.4 Uncertainty in Architecture Evaluation

A common issue in architecture evaluation is the presence of uncertainty. In architecture
evaluation and decision-making, uncertainty is the lack of full knowledge about the outcomes
of deploying the architecture options [45]. For instance, the architects may be uncertain about
the effect of a proposed software architecture on benefit (e.g. performance, availability, etc)
and cost. Uncertainty also may arise due to unpredictable situations in dynamic applications,
such as IoT. For instance, sensors’ ageing effects, the varying internet connectivity and
mobility of sensors, fluctuations in QoS and so forth [8, 34, 72, 7].

2.1.1.5 Stakeholder

We adopt the notion used by ISO/IEC/IEEE 42010:2011: "an individual, team, organisation,
or classes thereof, having an interest in a system". In this context, stakeholders are any people
who have a stake in the success of the architecture, and of any systems that are derived from
the architecture. So this could include customers, programmers, testers, reusers, architects,
integrators, users, managers, etc. An architect is just one stakeholder among many, whose
needs are less important (and hence lower priority) than the needs of many of the other
stakeholders.

2.2 Systematic Literature Review Process

In this section, we will discuss the SLR protocol, how the systematic review process has
been carried out, and finally the existing architecture evaluation approaches with respect to
criteria and review objectives.
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2.2.1 SLR Protocol

We have followed the systematic literature review guidelines and procedures [63] and the
work of [56] to develop our review protocol. In particular, the protocol identifies the objectives
of the review, the necessary background, research questions, inclusion and exclusion criteria,
search strategy, data extraction and analysis of gathered data. One author has developed
the review protocol and then the outcome has been revised by other authors to limit bias.
The review objectives, background, and the research questions are discussed in Section 2.1,
whereas other procedures are described below.

2.2.2 Inclusion and Exclusion Criteria

Initially, we needed to set up a criteria to aid in the search process and filtration of irrelevant
studies. We considered English papers published in peer-reviewed journals, conferences,
and workshops from 1990-2018. This time frame was chosen because one of the earliest
well-known architecture evaluation approaches (e.g. SAAM [73]) was published in 1994.
We excluded studies that do not have software architecture evaluation as one of its main
contributions. We also excluded editorials, position paper, abstract, keynote, opinion, tutorial
summary, panel discussion, or technical reports, panels and poster sessions. Moreover, we
found that some studies are duplicated in different versions that appear as books, journal
papers, conference and workshop papers. In this context, we included only the latest and
most complete version. We provide a summary of the inclusion and exclusion criteria below.
Publications are included if they cover all the inclusion criteria in Section 2.2.2.1, and
publications are excluded if they fit any of the exclusion criteria in Section 2.2.2.2.

2.2.2.1 Inclusion Criteria

• Studies published between 1990-2018.

• Studies in the domain of software architecture evaluation. In particular, the study
should include a software architecture evaluation method as one of its contributions.

• Studies focus on architecture-centric evaluation (i.e. focusing on the architecture
decisions).

• Studies provides a quantitative evaluation for software architectures.
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2.2.2.2 Exclusion Criteria

• Studies not related to the core objective of architecture evaluation 1.

• Studies that are non-peer reviewed.

• Studies not written in English and not accessible in full-text.

2.2.3 Search Strategy

The search strategy was performed to identify the studies through the following:

1. Applying an initial search to determine the current systematic reviews and mapping
studies, and hence identifying significant related studies.

2. Using the concept of "quasi-gold" standard, as introduced by Zhang and Babar [74],
where we performed a manual scan for the most well-known venues of the software
architecture and the software engineering domains to cross-check the automated search
results.

3. Performing several trials using different combinations of keywords derived from the
main objectives of the review (i.e. automated search from recognised bibliographical
data sources).

4. Performing an additional search to manually check and analyse the related references
(snowballing) [75] to ensure that we did not miss any important study and hence
guarantee a representative set of studies.

All the prior procedures aided us in defining valid search strings along with other procedures
discussed in Section 2.2.3.1. For the venues, we manually searched the following:

− International Conference on Software Engineering (ICSE).

− International Conference on Software Architecture (ICSA) 2.

− European Conference on Software Architecture (ECSA).

1Some contributions fundamentally apply architecture evaluation at run-time, but these approaches did not
mention that explicitly. In particular, in the area of models@run-time, self-managed systems, and self-adaptive
systems, their evaluation can be an after-thought made through profiling configurations and recommending
alternatives. Therefore, we have discussed closely related contributions to demonstrate how these approaches
conduct evaluations and capture uncertainty.

2Formerly the Working IEEE/IFIP Conference on Software Architecture (WICSA)
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Our manual search included the title, keywords, and abstract of each publication. After
finishing the manual and automatic searches, we checked the differences between the results
to guarantee the most appropriate coverage of the domain. We found that all the manual
results were a subset of the automatic results (i.e. meeting the "quasi-gold" standard).

2.2.3.1 Keyword Selection

As mentioned above, we used both automatic and manual search. In the automatic search,
we tried several keywords on search engines of electronic bibliographical sources. Manual
search is not a practical procedure as it retrieves thousands of results, which is difficult to
manually filter. However, we still performed a manual search (to meet the "quasi-gold"
standard [74]) to ensure that we used the most suitable search queries.

One of the main challenges identified through our automatic search is a lack of well-
defined terminology in this domain. Though we see that several "self-*" systems may
implicitly incorporate some principles of a typical architecture evaluation approach. Further,
searching in a very large domain such as self-adaptive systems, self-managed, self-awareness,
etc would mislead the searching process and would not serve the main objective of this review.
Therefore, to solve this problem and avoid missing any relevant studies, we used some generic
keywords in the search query of automatic search (e.g. "run-time", "dynamic", etc). This led
to retrieving some studies that were actually relevant to our search. We have also performed
a manual search for the studies, which could seem to be a run-time architecture evaluation
approach. To obtain our search query, we applied the following procedures:

1. Extract the major keywords from the objectives of review and main research topics.

2. Determine and try different spellings, related terms and synonyms for major keywords,
if applicable.

3. Use the "advanced" search option to insert the complete search query and filter by date,
if the bibliographical source allows for that (Section 2.2.3.2).

4. Pilot various combinations of search keywords in test queries.

5. Validate the results of (4) with "quasi-gold" standard.

From our pilot testing, we found that the notion of "continuous" architecture evaluation
is used in different forms in the context of software architecture and software engineering
with other closely-related alternative terms, such as run-time and dynamic. This is because
the term "continuous" is not clearly defined. We also incorporated additional keywords
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which may implicitly refer to continuous evaluation, such as design-time and static (i.e.
the state-of-the-art approaches for architecture evaluation). Furthermore, in other contexts,
architecture evaluation is interpreted as architecture assessment or architecture analysis.
Therefore, we tried to consider these related keywords in our search query and used them in
an interchangeable manner.

The search query is composed of five major terms, Continuous AND Software AND
Architecture AND Evaluation AND Uncertainty. To generate the main search query, we used
the alternate keywords listed above. This is performed by connecting these terms through
logical OR as follows:
(design-time OR run-time OR design time OR runtime OR static OR dynamic OR contin-
uous) AND Software AND (architecture OR architectural) AND (Evaluation OR analysis
OR assessment) AND Uncertainty

2.2.3.2 Bibliographical Sources

The selected databases present the most important and highest impact journals and conference
proceedings. They also provided us with the ability to perform expert search with a variety
of Boolean operations and limit the search on the Title, Abstract and Keywords fields and
time frame, which returned more relevant results as compared to searching all the fields.
For instance, this allowed us to use Boolean "OR" to try different spellings and synonyms,
and use Boolean "AND" to link the major keywords (e.g. software AND architecture AND
evaluation).
The electronic bibliographical sources used include:

− IEEE Xplorer (http://ieeexplore.ieee.org/Xplore/)

− ACM digital library (http://portal.acm.org/)

− SpringerLink (http://www.springerlink.com/)

− ScienceDirect (http://www.sciencedirect.com/)

− GoogleScholar (http://scholar.google.com/)
Note that we included Google Scholar as there are some of works in software architecture

evaluation (e.g. ATAM), which were not retrieved in the first four databases. Our pilot
tests showed that the final 100-200 results from Google Scholar were more relevant to other
domains rather than architecture evaluation. To ensure the reliability of results, we limited
the Google Scholar results to 1000.

http://ieeexplore.ieee.org/Xplore/
http://portal.acm.org/
http://www.springerlink.com/
http://www.sciencedirect.com/
http://scholar.google.com/
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Table 2.1 Summary of Search Results and Included Studies from each database. Note that there are
14 studies generated from the snowballing process in addition to the 26 studies from the databases
below, making a total of 40 included studies. Further, some studies may be duplicated in more than
one database.

Database Search Results # Included Studies
IEEE Xplorer 994 8
ACM digital library 2108 6
SpringerLink 999 3
ScienceDirect 524 2
GoogleScholar 1000 7
Other
Snowballing Process 349 14
Total 40

2.2.4 Search Execution

In this stage, we executed the search process in Figure 2.1, realising the procedures in Section
2.2.3. Initially, we performed manual search (13 results) to determine the set of studies to
be compared with automatic search list (i.e. "quasi-gold" standard). After that, we searched
through all the search engines and bibliographical sources mentioned in Section 2.2.3.2
using search queries created in Section 2.2.3.1. All the search engines provided the option
to save the results to excel spreadsheets, except for Springer which exports only the first
999 relevant results and ScienceDirect which does not have that option and hence a manual
scan was performed. We then filtered the 5,230 primary studies using title, abstract, full-text
(when needed), inclusion and exclusion criteria. We also snowballed the primary studies
[75], where we scanned the list of references for the primary studies and the citations to add
related works (14 results), which were not identified by the bibliographical engines. In the
end we included 40 studies. The search results and number of included studies from each
database and snowballing process are listed in Table 2.1.

2.2.5 Quality Assessment

To assess the quality of the findings, we adopted similar quality criteria to the ones used by
[56]. The following criteria show the credibility of an individual study when analysing the
results:

1. The study provides evidence or theoretical reasoning for their experimental evaluation
and data analysis rather than relying on non-justified or ad hoc statements.
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Figure 2.1 Search Execution.
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Table 2.2 Data Extraction Criteria.

Extracted Data Description
Study Identification Unique ID for the study
Bibliographical references Author, title, publication type, source and year
Study Type Book, journal paper, conference paper, workshop paper
Study Focus Main area and study objectives
Strengths and Limitations Identified strengths and limitations of the approach and its application

and its potentials for future directions

2. The study describes the context in which the research was conducted.

3. The design and implementation of the research is mapped to the study objectives.

4. The study provides full description of their data collection process.

To guarantee the credibility of studies, we checked all the primary studies against the above
criteria, where we included only the studies that met each of the four criteria.

2.2.6 Data Extraction process

In this process, we performed a thorough scan for the 40 included papers to extract the
relevant data, which were managed by Excel spreadsheets and bibliographical management
tool BibTeX. The data extraction for the 40 studies was driven by the form depicted in Table
2.2 and the classification framework in Section 2.4.1. For the data analysis, we investigated
the extracted data with respect to their relationships. The results of this process is given in
the subsequent sections. The list of included studies are presented in Table A.2, A.3, and A.4.

2.3 Overview of the included studies

Here we provide an overview of the included studies with respect to their distribution along
publication channels, over the years, and their ranks.

2.3.1 Distribution of Studies over Publication Channels

Most of the included studies (i.e. 40 studies) were published in the most well-known and
prominent journals and conferences. In Table 2.3, we provide an overview of the included
studies with respect to their publication channels and the number of studies per channel. We
have checked the included studies against the criteria for quality assessment and confirmed
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Figure 2.2 Distribution of the publication types.

that they indeed fulfil the quality criteria introduced in Section 2.2.5. We have also plotted
the distribution of the included studies related to the publication channel (i.e. conference,
journal, etc) in Figure 2.2. From these results, we found that there are a significant number of
studies published in conferences (about 65%), followed by a smaller number of studies (20%)
in journals. There are limited studies published in workshops (roughly 7.5%) and books
(about 7.5%). This indicates that architecture evaluation approaches are still presented in
conferences, and some of them have matured and been published through books and journals.
These results suggest that architecture evaluation research is still maturing and hence it is
attractive for researchers to develop new approaches.

2.3.2 Distribution of Included Studies Through the Years

By analysing the studies by year of publication, as depicted in Figure 2.3, we observe an
increasing trend in the area of software architecture evaluation starting from 2003 till 2013
(with some oscillation). Though it may seem that interest in architecture evaluation has
decreased in the past four years, there were recent studies that provided new architecture
evaluation approaches. For instance, Abrahão and Insfran [76] reported a comparative analy-
sis for ATAM and a model-driven method named Quality-Driven Architecture Derivation and
Improvement (QuaDAI) method. There are also many approaches which either implicitly
or explicitly adopt continuous evaluation through continuous quality control (e.g. [77, 78]),
continuous development (e.g. DevOps [19]), continuous testing [79], etc. We excluded these
studies because our main goal is to survey the continuous architecture evaluation approaches
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Table 2.3 Distribution of included studies along with the publication channels.

Publication Channel No. of Studies
IEEE International Conference on Software Engineering (ICSE) 8
International Conference on Software Architecture (ICSA) 5
Software Engineering for Self-Adaptive Systems (SEAMS) 4
Journal of Systems and Software (JSS) 3
Book 3
IEEE Transactions on Software Engineering (TSE) 2
IEEE Internet Computing 1
Software Quality Journal 1
Empirical Software Engineering 1
European Conference of Software Architecture (ECSA) 1
IEEE International Conference on Software Maintenance (ICSM) 1
ACM Joint European Software Engineering Conference and Symposium 1
on the Foundations of Software Engineering (ESEC/FSE)
IEEE International Conference on Autonomic Computing (ICAC) 1
ACM/SPEC International Conference on Performance engineering (ICPE) 1
International Conference on Software Reuse (ICSR) 1
International Conference on Quality of Software Architectures (QoSA) 1
IEEE International Conference and Workshops on 1
Engineering of Computer-Based Systems (ECBS)
International Conference on Evaluation of Novel 1
Approaches to Software Engineering (ENASE)
IEEE/ACIS International Conference on Software Engineering, Artificial 1
Intelligence, Networking and Parallel/Distributed Computing (SNPD)
International Workshop on the Economics of Software and Computation (ESC) 1
IEEE International Enterprise Distributed Object 1
Computing Conference Workshops (EDOC)
Total 40
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Figure 2.3 Distribution of the publication types.

Table 2.4 An overview of citation rate of included studies.

Cited by <10 10-50 50-100 >100
Number of Studies 5 17 5 13

(Total = 40)

from a high-level (architecture) perspective rather than low-level (code level) and including
these studies could affect the analysis.

2.3.3 Citation Rate of Included Studies

We list in Table 2.4 the citation rate for the included studies, which was obtained from Google
Scholar3. The citation rate is not meant for comparing studies; instead we use it to provide a
rough estimate of the quality of papers. In particular, five studies were cited by fewer than
10 sources. Two of them were cited in 2004 and 2010 and hence we do not expect that they
will be cited further, whereas the others are relatively new. Almost 45% of the studies (17
publications) were cited by 10-50 other sources, and five studies were cited 50-100 times.
Thirteen studies have very high rates with more than 100 citations and the first ranked study
was cited almost 1448 times. This shows that the included studies are, in general, highly cited,
which signifies their quality and impact. In Table 2.5, we present the most cited publications.
The first study is a book, and the remainder are journal and conference papers.

3http://www.googlescholar.com

http://www.googlescholar.com
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Table 2.5 Featuring the most cited studies above 100 citations.

Rank Ref Author(s) Year Title
1 [80] R. Kazman, M. Klein, 2003 Evaluating software architectures

P. Clements and others
2 [73] R. Kazman, L. Bass, 1994 SAAM: A method for analyzing the

G. Abowd, & M. Webb properties of software architectures
3 [10] P. Bengtsson, N. Lassing, 2004 Architecture-level modifiability analysis

J. Bosch, and H. Vliet (ALMA)
4 [81] R. Calinescu, L. Grunske, 2011 Dynamic QoS management and optimization

M. Kwiatkowska, in service-based systems
R. Mirandola,
& G. Tamburrelli

5 [21] I. Epifani, C. Ghezzi, 2009 Model evolution by run-time
R. Mirandola, parameter adaptation
& G. Tamburrelli

6 [9] R. Kazman, J. Asundi, 2001 Quantifying the costs and benefits
& P. Clements of architectural decisions

7 [82] P. Bengtsson,J. Bosch 1998 Scenario-based software
architecture reengineering

8 [83] G. Tesauro 2007 Reinforcement learning in autonomic computing:
A manifesto and case studies

9 [84] S. Cheng 2004 Rainbow: cost-effective software
architecture-based self-adaptation

10 [85] T. Al-Naeem, I. Gorton, 2005 A quality-driven systematic approach for
and M. Babar architecting distributed software applications

11 [86] N. Esfahani, E. Kouroshfar, 2011 Taming uncertainty in self-adaptive software
& S. Malek

12 [87] L. Zhu, A. Aurum, 2005 Tradeoff and sensitivity analysis in
I. Gorton, & R. Jeffery software architecture evaluation using

analytic hierarchy process
13 [88] R. Calinescu 2009 Using quantitative analysis to

& M. Kwiatkowska implement autonomic IT systems
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2.4 Data Extraction Results

This section aims to provide answers for the first and second research question: RQ1.1: How

can the current research on software architecture evaluation under uncertainty be categorised

and what are the current state-of-the-art approaches with respect to this categorisation?;
RQ1.2: What are the actions taken by these architecture evaluation approaches to deal with

uncertainty? Our analysis of research topics addressed in each study and the systematic
reviews and surveys found in literature (e.g. [12, 89, 56, 58, 60]) helped us in developing
the following classification framework. This classification aided us in filtering, mapping,
and understanding the architecture evaluation domain. We also discuss how the included
evaluation approaches deal with uncertainty.

2.4.1 Classification Framework

Next, we will explain in detail the criteria presented in Figure 2.4.

1. Stage of Evaluation: The evaluation could occur at design-time and/or run-time.
Design-time evaluation occurs before system deployment, whereas the run-time evalu-
ation approaches use run-time and/or simulated data (e.g. QoS) to capture the dynamic
behaviour of architecture decisions under uncertainty and use such information to
profile or evaluate design decisions.

2. Approaches to Evaluation: The architecture evaluation methods can be categorised
as utility-driven, economics-driven, and learning-driven.

2.1. Utility-driven: We define utility-driven architecture evaluation methods as meth-
ods which adopt utility functions for decision-making. Utility functions are used
in two contexts. First, it is a measure of the user’s satisfaction with respect to a set
of quality attributes. Second, it can be used to provide a stakeholder’s preferences
over a set of quality attributes, which is called a Weighted Utility function.

2.2. Economics-driven: We define economics-driven architecture evaluation meth-
ods as the methods which quantitatively evaluate the impact of architecture
decisions on quality attributes of interest using finance-inspired methods. In most
cases, economics-driven approaches evaluate the architectures at design-time.

2.3. Learning-driven: We define learning-driven architecture evaluation methods
as methods which adopt machine learning techniques to improve the evaluation.
These types of approaches are related to run-time architecture evaluation.
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3. Level of Stakeholder Involvement in Evaluation: Full, partial, non (i.e. autonomous).
As mentioned earlier, a stakeholder is a person or organisation who is involved in the
architecture design.

4. Addressing quality attributes: There are some evaluation methods which focus on a
single or multiple quality attributes.

5. Management of Trade-offs: A common problem in selecting an optimal architec-
ture decision is the management of trade-offs [90]. For example, an architecture
decision concerning a sensor could provide high response time but with low energy
efficiency. So one objective is to select an architecture decision that can satisfy both
quality attributes. There are two types of trade-off management: manual and auto-

mated. Manual management denotes the adoption of tools or techniques that require
human-intervention, whereas automated indicates the use of parametric models that
automatically select and/or shortlist trade-off candidates.

6. Quality Attributes Supported: We categorised the quality attributes supported into:
general and specific. For general, we consider the literature that discusses the support
of any quality attribute, such as performance, availability, reliability, etc. For instance,
some studies propose generic methods that accept any quality attribute. However, there
are others that focus on specific quality attributes (e.g. performance only).

7. Dealing with uncertainty: In the research literature there are approaches that deal
with explicit or implicit uncertainty. Explicit approaches are those that consider
uncertainty to be a main focus whereas other methods which do not mention uncertainty,
but their tools and techniques could be used to handle uncertainties (i.e. implicit).

8. Quality attribute monitoring and treatment: This criterion is relevant to run-time
evaluation approaches where quality attribute values are either determined through
run-time monitoring or through prediction. Similarly for the treatment, there are two
types [91, 92, 58]: reactive and proactive. A reactive approach triggers a switch
after experiencing a drop in performance, a goal violation, etc. A proactive approach
switches architecture options without experiencing a drop in performance; instead it is
based on predictions that a significant change in performance may occur in the near
future.

In Section 2.4.2 and 2.4.3, we aim to provide answers for the review’s research questions
mentioned earlier. We classify the architecture evaluation approaches to: design-time and
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Figure 2.4 The proposed classification of architecture evaluation approaches

run-time. In each classification, we further classify and explain the existing architecture
evaluation approaches with respect to classification framework (answering RQ1.1, introduced
in Section 2.1). We also discuss the actions taken by these architecture evaluation approaches
to deal with uncertainty (answering RQ1.2, introduced in Section 2.1).

2.4.2 Design-Time Architecture Evaluation

The design-time evaluation of software architectures aims to enable a proper specification of
the problem which is the first step on that path of finding the suitable architecture decision.
Documented efforts on systematic design-time architecture evaluation approaches are best
linked to the seminal work of [73, 2, 9, 10]. These approaches focus on selecting design
decisions and styles that are best fit for quality requirements of interest and their trade-
offs. Table 2.6 and 2.7 summarise the included studies related to design-time architecture
evaluation approaches with respect to the proposed classification. Next, we will discuss the
relevant studies to utility-driven and economics-driven.

2.4.2.1 Utility-Driven

Within design-time evaluation, there are utility-driven approaches, which are guided by
scenarios and/or parametric models.

Utility-driven Approaches guided by Scenarios The foundation of most architecture
evaluation approaches rests on scenarios [12, 89, 55, 56]. These approaches use quantitative
evaluation to determine the fitness of operational quality attributes. They elicit from stake-
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holders the utilities of architecture decisions and their effect on quality attributes of interest.
Some of the scenario-based approaches have been validated and used in industry over the
past decades [12].

• Software Architecture Analysis Method (SAAM) [73]: is the first well-known ar-
chitecture evaluation method that aimed to reify quality attributes via a set of scenarios
as a means to evaluate architecture design decisions under concern and identify risks
in an architecture. It assesses the extent to which the architecture meets the quality
attributes of interest. It was originally used for assessing modifiability, but it has been
applied for other quality attributes, such as portability and extensibility. SAAM takes as
input: business goals, software architecture description, and quality requirements that
illustrate the interaction between stakeholders and the system being analysed. It then
maps between scenarios and architecture components to assess anticipated changes
to the system. This mapping can also be employed to estimate the amount of effort
needed to handle these changes. The SAAM does not explicitly deal with trade-offs
between quality attributes. The lack of trade-off management has contributed to the
evolution of Architectural Trade-off Analysis Method.

• Architectural Trade-off Analysis Method (ATAM) [80]: is the most popular ar-
chitecture evaluation method. It is an evolved version of SAAM. Unlike SAAM,
the ATAM focuses on a comprehensive evaluation of quality attributes rather than
just concentrating on modifiability, portability, and extensibility. ATAM is a generic
design-time architecture evaluation method that uses scenarios to assess the value of
architecture design decisions. Specifically, it aims to reveal the degree to which an
architecture will meet its quality requirements (e.g. availability, security, usability, and
modifiability), and the interaction between those goals through trade-off analysis.

Uncertainties and risks, linked to the deployment, are implicitly discussed and mitigated
through envisioning a set of scenarios, taking the form of use case, growth, and
exploratory scenarios [2, 93, 80] as defined by the ATAM. A use case scenario reveals
how stakeholders envision the system usage. A growth scenario illustrates planned and
foreseen refinements to the architecture, whereas exploratory scenario help to probe the
extent to which the architecture can adapt to future changes (e.g. functionality upgrades,
new quality attribute requirements). Hence, the evaluation and its conclusions are
highly dependent on the choice of these scenarios. The ATAM defines and records
the risks that may threaten the achievement of quality attribute goals. These include
architecture decisions leading to subsequent problems in some quality attributes (risks),
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architecture decisions where a slight alteration results in significant impact on quality
attribute responses (sensitivity points), and the simultaneous effect of a single decision
on multiple quality attributes (trade-offs) [94]. ATAM focuses on the risks and benefits
of architecture decisions and does not explicitly consider cost.

• Cost-Benefit analysis method (CBAM) [9]: is an architecture evaluation method
that extends ATAM to provide cost/benefit analysis of architecture design decisions.
The CBAM was created to "develop a process that helps a designer choose amongst
architectural options, during both initial design and its subsequent periods of upgrade,
while being constrained to finite resources" [3]. Although the CBAM uses cost/benefit
information to value the architecture design decisions and to justify their selection,
this method is unable to dynamically profile the added value of architecture decisions,
which is essential for applications operating in uncertain environments (such as IoT).
It only deals with uncertainty through a set of scenarios, similar to ATAM.

• Scenario-Based Architecture Re-engineering (SBAR) [82]: is another scenario-
based architecture evaluation method that uses different techniques to assess the
quality attributes of interest and implicitly deal with uncertainty: scenarios, simula-
tion, and mathematical modelling. For example, if a quality attribute is concerned
with development and design-time properties, such as maintainability and reusability,
scenario-based techniques can be best utilised. Scenario-based analysis can be still
used for behavioural and run-time properties, such as performance and fault-tolerance,
simulation and/or mathematical models can better provide meaningful insights and can
complement scenario-based ones. A major concern in SBAR is its use of impractical
assumptions. For instance, to address the reusability concern, the architect has to define
all the scenarios related to the reuse of parts of the architecture, which is not feasible.

• Architecture-Level Modifiability Analysis (ALMA) [10]: Unlike ATAM and CBAM,
ALMA focuses on a single quality attribute, and hence it does not consider trade-offs.
It utilises probabilities to determine the likelihood of the impact of scenarios at the
software architecture level with respect to modifiability concerns (e.g. maintenance
cost prediction and risk assessment).

• Systematic Quantitative Analysis of Scenarios’ Heuristics (SQUASH) [95]: is a
systematic quantitative method for scenario-based value, risk, and cost analysis. The
method focuses on evaluating the relative benefits of proposed scenarios in early stages
of architecting. The method extends some steps from CBAM by providing extensive
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evaluations of the internal structure of the scenarios to predict the quality attributes of
architecture decisions. In this context, the approach relies more on stakeholders than
CBAM and hence it may not be easy to apply in practical settings.

• Analytic Principles and Tools for the Improvement of Architectures (APTIA)
[96]: is an architecture improvement method that combines existing architecture
evaluation methods (such as ATAM, CBAM, etc.) through: quality attribute models,
design principles in the form of tactics, scenario-based quality attribute elicitation and
analysis, explicit elicitation of the costs and benefits of architecture decisions from
stakeholders, and the use of architecture documentation templates. It also adds new
steps to the analysis. Particularly, it identifies design decisions linked to the analysis
rather than stating their future problems. It was able to aid the team of architects to
propose architecture alternatives for a complex system and in a short period of time.

• Architectural Tradeoff Method using Implied Scenario (ATMIS) [97]: is an ex-
tension of ATAM through the adoption of Implied Scenarios for security testing [98].
The main aim of this approach is to apply trade-off analysis between security and any
other quality attribute through the use of implied scenarios.

ATAM, CBAM, ATMIS, SQUASH and APTIA partially capture uncertainty, although they
do not operate at run-time. However, they suffer from the limitation of design-time analysis
(i.e. high reliance on stakeholders). ATMIS is also specifically tailored for security. ALMA
is similar to ATAM and CBAM, in the context of taking more utility-driven perspective
for the evaluation. It aids in performing architecture evaluation more systematically than
SBAR. Scenario-based approaches do not provide explicit management for uncertainties,
and include manual tools/techniques which may not be effective at run-time. Further, some
of these approaches handle trade-offs manually (ATAM, CBAM, ATMIS, and APTIA) or do
not consider the trade-offs at all (SAAM, SBAR, SQUASH, and ALMA).

Summary: Scenario-based evaluation approaches can be described as best-effort, where the
evaluators’ expertise, choice of stakeholders etc., are all factors that influence the evaluation.
In particular, these approaches heavily rely on human inputs and expert judgement. These
processes can thus suffer from subjectivity, bias and can never be complete.

Utility-driven Approaches guided by Parametric models: The previous scenario-driven
approaches used simplistic mathematical models and relied heavily on stakeholders for
the elicitation of scenarios and on expert evaluators for the impact of these scenarios on
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quality attributes. Here, we will discuss approaches that assess architecture decisions using
parametric models.

− Analytic Hierarchy Process (AHP) [99] is a mathematical modelling tool used in
dealing with complex decision-making. AHP has been used in two contexts for
architecture evaluation: managing trade-offs and determining the relative importance
of scenarios and decisions. Zhu et al. [87] adopted AHP to explicitly determine
the trade-offs being made and the relative size of these trade-offs. It has been used
with CBAM to determine the relative importance of scenarios through pair-wise
comparisons [100]. It relies on eliciting the benefits and costs from stakeholders, and
hence suffers from the same limitations of scenario-based approaches. ArchDesigner
[85] is an architecture framework that first adopts AHP to elicit from stakeholders
their preferred architecture decisions. It then uses Integer programming to determine
the optimal architecture decision, which satisfies conflicting stakeholder quality goals
subject to project constraints such as time and cost. LiVASAE [101] (a lightweight
value-based architecture evaluation technique) attempts to measure the uncertainty
level using AHP and also provides three simplified evaluation steps as compared to
the CBAM. All these approaches rely on stakeholders for evaluating the candidate
architecture decisions as well as their benefits and costs.

− Various methods have adopted utility theory to shortlist the candidate architectures
operating under uncertainty, such as [102, 44, 45]. Osterlind et al. [102] used utility
theory to balance quality attributes against each other to obtain the best possible
architecture. GuideArch [44] is an architecture framework that explicitly models
the uncertainty of architecture decisions using fuzzy logic to rank and determine the
optimal architecture decision. However the use of fuzzy logic cannot be empirically
evaluated and adjusted. Letier et al [45], designed a method, based on GuideArch
and CBAM, to deal with uncertainty. Utility theory and Monte Carlo simulation
were used to calculate the costs and benefits of candidate architecture decisions under
uncertainty. The latter approach made an assumption that the probability distributions
of model attributes are accurate; this may affect its applicability, particularly in dynamic
environments.

− Grunske et al. [103] proposed a method to automate the trade-off management process
using an evolutionary algorithm. The aim of the approach was to rank design deci-
sions (architecture refactorings) by taking into consideration competing quality goals.
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However, this was an initial attempt without a complete evaluation (i.e. it has not been
applied on architecture evaluation methods).

Summary: Though all the prior approaches provide some management for uncertainties,
they suffer from the same concerns: the high reliance on stakeholders for the elicitation of the
relative importance (i.e. rank) of architecture decisions and their impact on quality attributes.

Other Approaches
− The architecture evaluation approach in [104] focuses on middleware and design

pattern integration for developing adaptive self-managing architectures at design-time
that are able to recover from failures. This approach suffers from the same limitation of
design-time approach: the design-time patterns (i.e. decision) may not be able to handle
the changing environmental conditions at run-time. Architecture Software Quality
Assurance (aSQA) [105] is an evaluation method that uses metrics to determine the
user’s satisfaction towards prioritised quality requirements, especially in agile software
projects. Despite it focuses on a single point of evaluation to lighten the evaluation
process, yet it misses the main aim of evaluation (i.e. assess the impact of architecture
decisions on quality attributes).

− Decision-centric software architecture evaluation method (DACAR) [106] assesses the
architecture decisions made or to be made independently, rather than evaluating the
whole architecture. The method could be potentially adopted in agile projects, since the
architecture decisions could be evaluated as they appear in the process. However, the
approach is not as flexible as scenario-based methods in obtaining the novel paradigms
and significant change domains from stakeholders.

− Further, there is another scenario-based method which is different from the commonly
used scenario-based architecture evaluation methods. The method is named Perfor-
mance Assessment of Software Architecture (PASA) [107]. In PASA, the architect
uses the architecture specification to form performance models. The generated models
are then utilised to assess whether the performance objectives are met. ATAM uses
scenarios to identify, prioritise and refine the most important quality attribute goals by
building a utility tree, where each leaf in the tree represents a scenario. PASA instead
employs scenarios in the form of UML and sequence diagrams to demonstrate how
the software architecture will achieve the performance objectives. Continuous Per-
formance Assessment of Software Architecture (CPASA) [18] is one the few explicit
attempts of continuous evaluation. It is an extension of PASA, with an explicit focus
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on deployment in agile development process. It provides an interactive system that aids
the architect in the automatic assessment of performance attributes through modelling
of architecture decisions. They define "continuous" assessment as the production of
continuous performance evaluation tests. Despite the attempts in PASA and CPASA to
handle cost-benefit trade-offs, (i) the evaluation was incomplete; (ii) they are not using
any run-time information to refine their architecture decisions; and (iii) the evaluation
lacks run-time monitoring and forecasting of the performance of architecture decisions.
In such cases architecture is, at best, a modelling tool, which may (or may not) be
applicable in dynamic environments. Therefore, these approaches are still design-time
evaluation approaches.

Summary: The prior approaches are either domain-specific or cannot be used to evaluate
new paradigms. They also still rely on stakeholders for the elicitation of benefits and costs of
architecture decisions.

2.4.2.2 Economics-Driven

Traditional cost-benefit analysis methods have been used to evaluate software. For instance,
Cellini et al. [108] computed the net benefit of software through the deduction of total costs
from total benefits. These attributes have been obtained from software architects through a
group of questions (e.g. "what is the state of the world in the absence of the program ?").
CBAM [9] is a utility-driven architecture evaluation method that uses cost-benefit to assess
the impact of architecture decisions on quality attributes of interest. This approach partially
capture uncertainties which motivated the need to integrate some finance-inspired approaches
into the software engineering field. Boehm [109, 110] was among the first to incorporate
economics and finance theories to evaluate software design decisions. Examples of these
approaches: Net Present Value (NPV) [111, 112], Modern Portfolio Theory (MPT) [113],
and Real Options Analysis (ROA) [25]. In Table 2.7, we outlined the software architecture
evaluation approaches, which adopted economics-driven principles (i.e. excluded the studies,
which dealt with design evaluation (e.g. modularity in design), but were not scoped for
high-level architecture evaluation, such as [38, 37, 36, 43], etc).

• Net Present Value (NPV) [112, 111]: is a popular approach used to value software.
It values the software project by eliciting the probability of investing in an established
discount rate or interest. A positive NPV indicates that it is financially beneficial to
invest (i.e. deploy this architecture decision) and negative NPV is the opposite. It has
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been originally used in [114, 115]. However, NPV has been discouraged, because it
ignores the value of the flexibility under uncertainty [38, 37, 36, 39, 40, 43].

• Modern Portfolio Theory (MPT) [113]: was first introduced by the Nobel prize
winner Markowitz in 1950s. MPT aims to improve the decision-making process by
allocating capital to a portfolio of diverse investment assets. MPT handles uncertainty
through the distribution of capital among assets to minimise risk and maximise the
returns. In particular, it provides a weighted combination (i.e. portfolio) of the assets,
where the weight denotes the investor’s share of capital in each asset. In this context,
MPT seeks to demonstrate the rewards of having a diversified portfolio of assets. MPT
is well-known in finance domain and has been also introduced in software engineering
domain as a means to deal with uncertainties. In software architecture [116], it has been
adopted with CBAM to determine which portfolio of architecture decisions will deliver
value by considering sustainability dimensions. Although this approach explicitly
deals with uncertainty, yet it provides a short-term value. It does not embed flexibility
as real options analysis.

• Real Options Analysis (ROA) [25]: provides an analysis paradigm that emphasises
the value-generating power of flexibility under uncertainty. An option is the right, but
not the obligation, to make an investment decision in accordance to given circumstances
for a particular duration into the future, ending with an expiration date [24]. Real
options are typically used for real assets (non-financial), such as a property or a
new product design. ROA treats uncertainty as an option which may provide future
opportunities to the project, which could be exercised when it provides a high option
value. On the contrary, MPT specifically deals with financial assets and considers
uncertainty as a risk that should be minimised.

Real options theory has been discussed thoroughly in the literature in various domains,
including systems design and engineering [36], COTS-centric development [38, 43],
architecture patterns [42], software design and refactoring [37], and software archi-
tecture [41, 117]. Baldwin et al. [36] enact the use of real options in systems design
and engineering. They emphasise the contribution of modularity on system designs
in the form of real options. Similarly, Sullivan et al. [39] propose an options-based
analysis approach to evaluate the use of the spiral model in software development [37].
The goal of their approach is to deal with uncertainty by providing alternative options.
The decision for an option is based on knowledge from prior phases of the software
development. Erdogmus et al. [38] investigate the means of valuing the strategic
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flexibility in software development using real options. The main objective is to study
the economic incentive of choosing a favourable COTS centric strategy in a project.
According to their results, real options theory is preferred over NPV analysis, as the
latter ignores the value of the flexibility in COTS-centric projects. The approach in
[42], a variety of different architecture patterns are valued by CBAM along with real
options with respect to their relative impacts on system quality goals. Tansey et al.
integrated COCOMO II as the software-development cost model along with ROA to
quantify the potential business value in service-based applications. Moving to software
architecture context in specific, Bahsoon et al. [41] were the first to use real options
analysis along with CBAM to measure the architecture’s stability. They then used their
method to value scalability in distributed architectures [117].

2.4.2.3 Relevance to Continuous Evaluation

As mentioned earlier, a continuous architecture evaluation approach starts at design-time
and continues to operate at run-time. Therefore, the first component should be a design-time
architecture evaluation. The approach should be able to cope with operational uncertainties
and dynamicity, which may be encountered at run-time. Therefore, a systematic design-time
evaluation approach that explicitly deals with uncertainty rather than either relying on ad hoc
evaluation or implicit mitigation of uncertainty is necessary.

2.4.3 Run-time Architecture Evaluation

By run-time evaluation, we refer to approaches that use run-time and/or simulated data (e.g.
QoS data) to capture the dynamic behaviour of architecture decisions under uncertainty and
to use such information to profile and evaluate design decisions. Table 2.8 summarises the
run-time architecture evaluation methods studied.

2.4.3.1 Utility-driven

In software architecture evaluation, utility functions are commonly used to select the optimal
architecture option. This approach has also been adopted to determine the stakeholder’s
preferences towards quality attributes of interest. Therefore, it is utilised as a way to model
trade-offs between quality attributes. Utility functions have been used at run-time for self-
adaptive and self-managed systems, such as [86, 118–126].

− Heaven et al. [120] reported on an approach tailored for self-managed software systems.
The approach provides the following features: high-level task planning, architecture
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Table 2.6 Representative Contributions for Design-time Architecture Evaluation.

Study Approaches Addressing QA Level of Management Dealing
to QA supported stakeholder of with
Evaluation involvement trade-offs uncertainty

[73] Utility-driven Multiple Specific (Modifiability, Full No Support Implicit
Portability,
Extensibility)

[80] Utility-driven Multiple General Full Manual Implicit
[9] Utility-driven Multiple General + Specific (Cost) Full Manual Implicit
[10] Utility-driven Single Specific (Modifiability) Full No Support Implicit
[82] Utility-driven Multiple Specific (Performance, Full No Support Implicit

Fault-tolerance, Maintainability,
Reusability)

[95] Utility-driven Multiple General Full No Support Implicit
+ Specific (Cost)

[96] Utility-driven Multiple General Full Manual Implicit
+ Specific (Cost)

[87] Utility-driven Multiple General Full Manual Explicit
+ Specific (Cost)

[85] Utility-driven Multiple General Partial Automated Implicit
+ Specific (Cost)

[103] Utility-driven Multiple General Partial Automated Implicit
+ Specific (Cost)

[101] Utility-driven Multiple General Full Manual Explicit
+ Specific (Cost)

[104] Utility-driven Multiple Specific (dependability, reliability Full No Support Implicit
and maintainability)

[18] Utility-driven Multiple General Full Manual Implicit
+ Specific (Cost)

[100] Utility-driven Multiple General Full Manual Explicit
+ Specific (Cost)

[105] Utility-driven Multiple General Partial Automated Explicit
+ Specific (Cost)

[97] Utility-driven Multiple General Full Manual Explicit
+ Specific (Security)

[102] Utility-driven Multiple General Partial Automated Explicit
+ Specific (Cost)

[106] Utility-driven Multiple General Full No Support Implicit
[44] Utility-driven Multiple General Partial Automated Explicit

+ Specific (Cost)
[45] Utility-driven Multiple General Partial Automated Explicit

+ Specific (Cost)
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Table 2.7 Representative Contributions for Design-time Architecture Evaluation (Continued).

Study Approaches Addressing QA Level of Management Dealing
to QA supported stakeholder of with
Evaluation involvement trade-offs uncertainty

[41] Economics-driven Multiple Specific (Stability) Partial Manual Explicit
+ Specific (Cost)

[117] Economics-driven Multiple Specific (Scalability) Partial Manual Explicit
+ Specific (Cost)

[42] Economics-driven Multiple General Partial Manual Explicit
+ Specific (Cost)

[116] Economics-driven Multiple General Partial Manual Explicit
+ Specific (Cost)

configuration and reconfiguration, and component-based control. Their approach uses
weighted utility functions to represent quality attributes and determine the total utility
of configurations by taking into account reliability and performance concerns. Esfani
et al. [86] proposed an approach that elicits from stakeholders their beliefs regarding
uncertainty with respect to attributes such as network bandwidth. In particular, the
stakeholders provide an estimate for the range of uncertainty with respect to the
expected level of input variation. The approach also quantifies the uncertainty through
profiling by comparing the actual values with estimates from stakeholders and hence
provides probability distributions for the variation in data collection. After that the
overall uncertainty is computed using fuzzy math. Veritas [124] is another utility-
driven approach which adopts utility functions to guide the test adaptation process as
part of a run-time testing framework.

− Cooray et al. [121] proposed a proactive approach, which continuously updates
reliability predictions in response to environmental changes. The approach has proved
its efficiency in adapting the system before it experiences a significant performance
drop. However, the approach does not consider cost and suffers from scalability issues.

− Recently, the approach in [126] proposes an architecture evaluation approach inspired
by CBAM [9] (mentioned in Section 2.4.2) for run-time decision-making in self-
adaptive systems that considers benefits and costs of decisions. The approach adopts a
weighted utility measure of the qualities that the adaptation decisions can provide to
the stakeholders. Although this approach seems to provide continuous evaluation, it
requires additional elements, such as online machine learning techniques, and extra
experimental evaluation for applicability and efficiency.



2.4 Data Extraction Results 45

Models@run.time [127, 128] includes built-in mechanism for evaluating the behaviour
of software systems through continuous monitoring, planning, and model transforma-
tion. However, the effort was not discussed from the architecture evaluation angle.
In particular, the authors state that "models of the functional and/or non-functional
software behaviour are analysed at run-time, in order to select system configurations
that satisfy the requirements" [129]. Models@run.time operates on the assumption
that possible run-time configurations have already been evaluated and encoded in the
system, where evaluation can be an afterthought through profiling configurations and
recommending alternatives. It aims to reevaluate requirements satisfaction while the
system is evolving [130].

− In the spirit of models@run.time, several approaches which are architecture-centric
have been discussed in the context of self-adaptive and managed architectures [131,
132, 46, 133, 59]. Examples of these approaches include [118, 21, 134, 81, 135, 123,
121], which formally analyse their architectural models. The Rainbow framework [118]
uses Markov processes to compute the expected aggregated impact of each strategy on
each quality attribute. It requires high human intervention to determine the effects of
strategies with respect to quality attributes (i.e. predefined probabilities) [136]. Epifani
et al. [21] proposed a utility-driven approach leveraging a Discrete Time Markov Chain
approach and Bayesian estimators to provide continuous automatic verification of
requirements at run-time and support failure detection and prediction. Their approach
does not consider multiple quality attributes, switching cost, and variance in run-time
data. Additionally, Morin et al. [134] integrated model-oriented and aspect-oriented
techniques to support run-time adaptation. The latter applies offline analysis by using
synthetic data to analyse and evaluate the quality attributes of a group of system
configurations. Ghezzi et al’s [123] method is one of the few that complement design-
time with run-time analysis. At design-time, the approach integrates goal-refinement
methodologies with Discrete Markov Time Chains to determine all possible execution
paths for the goal. At run-time, it exploits utility functions to measure the utility of
paths, based on assumptions. For example, the utility for a 5ms response time is 1
and so forth. Given these assumptions, a hill climbing algorithm is used to select the
optimal goal. We will discuss [81, 135, 121] in Section 2.4.3.2.

− Different from models@run.time, Yang et al. [119] proposed a utility-driven approach
that extends the scenario-based approaches (e.g. ATAM, CBAM) and profiles the
run-time information to better manage the QA trade-offs. It aims to improve decision-
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making and handle the uncertainty which may be better managed at run-time. In
particular, their approach determines the potential QA trade-off points, designs the
adaptive architecture decisions, and finally deploys their system on a middleware
platform to collect run-time information. Though the latter approach is one of the
few attempts to extend scenario-based approaches at run-time, it lacks the ability to
learn over time and hence cannot forecast the future potentials of architecture decisions.

Summary: Generally, the major problems of the prior approaches are: (i) the high reliance
of stakeholders for utility estimations, which is subject to their experience; (ii) the utility
functions are hard to define; (iii) there is complexity and uncertainty in the quantification of
utility values. This motivated the need to integrate learning techniques to learn over time and
hence improve the analysis (discussed in next section).

2.4.3.2 Learning-driven

"The effectiveness of model-based reasoning about the properties of a software system
depends on the accuracy of the models used in the analysis" [129]. For example, some
models may become obsolete due to evolution in the software architecture. The same applies
to the use of utilities for evaluation and decision-making. Therefore, machine learning could
be adopted to better enhance the evaluation through profiling the observations of the system
properties over time, as in the following studies [83, 137, 138, 122].

− In the context of using reinforcement learning techniques, Tesauro et al. [83] integrated
queuing policies with reinforcement learning, forming a hybrid approach to enhance
the dynamic resource-allocation decision-making process in data centres. The approach
suffers from scalability and performance overhead. A reinforcement learning online
planning technique was used by Kim et al. [137] to improve a robot’s operation with
respect to changes in the environment, by dynamically discovering the appropriate
adaptation plans. However, it does not continuously evaluate the cost-effectiveness
of architecture decisions over time. These approaches [83, 137] tend to be domain-
specific. Further, Calinescu et al. [138] proposed initial attempts for the use of Bayesian
learning and ageing coefficients to update the model parameters, where the ageing
coefficients may be a useful element for a continuous evaluation approach. Because
it may then allow the architect to tune the sensitivity of approach to present/past
observations. Though their work had potential, it was still work-in-progress (i.e. initial
evaluation for the approach has been performed and hence it requires further analysis).
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Table 2.8 Representative Contributions for Run-time Architecture Evaluation.

Study Approaches Addressing QA Level of Management Dealing QA
to QA supported stakeholder of with Monitoring
Evaluation involvement trade-offs uncertainty &treatment

[84] Utility-driven Multiple General + Autonomous Automated Explicit Reactive

Specific (Cost)

[83] Utility-driven Single Specific (Performance) Autonomous No Support Explicit Reactive

Learning-driven

[88] Utility-driven Multiple Specific (Performance, Autonomous Automated Implicit Reactive

Energy Consumption)

[137] Utility-driven Multiple General Autonomous Automated Explicit Reactive

Learning-driven

[120] Utility-driven Multiple Specific (Reliability Partial No Support Implicit Reactive

, Performance)

[119] Utility-driven Multiple General + Partial No Support Implicit Reactive

Specific (Cost)

[138] Utility-driven Multiple Specific (Reliability, Autonomous No Support Explicit Reactive

Learning-driven Performance)

[81] Utility-driven Multiple Specific (Reliability, Partial Automated Explicit Reactive

Performance)

[86] Utility-driven Multiple General Partial Automated Explicit Reactive

[122] Utility-driven Multiple General + Autonomous Automated Explicit Reactive

Learning-driven Specific (Cost)

[124] Utility-driven Single Specific (Energy Consumption) Partial No Support Explicit Reactive

[21] Utility-driven Single Specific (Reliability) Partial No Support Implicit Proactive

[123] Utility-driven Multiple General Partial No Support Explicit Proactive

[121] Utility-driven Multiple Specific (Reliability, Autonomous Automated Implicit Proactive

Efficiency)

[139] Utility-driven Multiple Specific (Performance) Autonomous No Support Explicit Proactive

Learning-driven

[126] Utility-driven Multiple General + Autonomous Automated Explicit Reactive

Specific (Cost)
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− FUSION [122] is another learning-driven approach that adopts a machine learning
algorithm named Model Trees Learning to tune the adaptation logic towards unpre-
dictable triggers, rather than using static analytical models. It also uses utility functions
to determine the benefit of models in question. The major benefit of FUSION is its
ability to learn over time and improve the adaptation actions due to the promising
learning accuracy. However, FUSION has the following limitations: (i) it is specifically
tailored to feature modelling; and (ii) it only detects goal violations, i.e. constraints,
but does not have the ability to check if the current architecture option is getting worse.

− Moreno et al. [139] recently propose a proactive latency-aware adaptation approach
that constructs most of the Markov Decision Processes offline through stochastic
dynamic programming. Their method focuses on optimising the latency of adaptation
action based on forecasts, without considering the cost of architecture decisions and
multiple stakeholder concerns.

Summary: As far as we know, the majority of run-time evaluation approaches rely on models
for the analysis, which may be subject to scalability and complexity concerns. For that, these
approaches have adopted some machine learning algorithms, such as Reinforcement learning,
to update their models at run-time. Despite their potential, these approaches suffer from the
following limitations: (i) they assume that the quality data about architecture decisions is
available at every timestep, which may not be true in non-stationary environments such as
IoT; and (ii) they lack the capability for checking whether the current architecture decision is
getting worse.

2.4.3.3 Relevance to Continuous Evaluation

The most important component in a continuous evaluation approach is the run-time approach
to be included. Some of the above approaches seem to provide important elements for a
run-time approach in terms of providing learning techniques. These techniques could aid
the architect in predicting the impact of architecture decisions on quality attributes under
different scenarios of interest. However, non of the above approaches was explicitly used in
the context of software architecture evaluation.

2.4.4 Limitations of the Review

Though this review was developed following the typical systematic literature review method-
ology [61–63], there are some limitations that require clarification:
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Table 2.9 Summary of Contributions for Design-time Architecture Evaluation approaches with other
categories.

Design-time

Category Representative
Contributions

Addressing QA
Single [10]
Multiple [73, 80, 9, 95, 82]

[96, 87, 101, 100, 103]
[85, 102, 45, 41, 18]
[116, 117, 42, 106]

QA Support
General [80, 9, 95, 96, 87]

[103, 101, 100, 102, 44]
[45, 41, 116, 18, 106]

Specific (Cost) [9, 95, 96, 87, 85]
[103, 101, 18, 100, 105]
[102, 44, 45, 41, 117]
[42, 116]

Specific (Other QA) [73, 10, 82, 104, 97]
[41, 117]

Level of stakeholder Involvement
Full [73, 80, 9, 95, 101]

[82, 10, 96, 87, 104]
[100, 18, 97, 106]

Partial [103, 85, 102, 45, 41]
[117, 42, 116, 44, 105]

Management of Trade-offs
Manual [80, 9, 96, 87, 101]

[18, 100, 97, 41, 117]
[42, 116]

Automated [85, 103, 105, 102, 44, 45]
No Support [73, 10, 82, 106, 95, 104]

Dealing with Uncertainty
Implicit [73, 80, 9, 82, 10]

[95, 96, 85, 103, 104]
[18, 106]

Explicit [87, 101, 100, 102, 45]
[41, 105, 97, 117, 42]
[44, 116]



50
Evaluation of Software Architectures under Uncertainty:

A Systematic Literature Review

Table 2.10 Summary of Contributions for Run-time Architecture Evaluation approaches with other
categories.

Run-time

Category Representative
Contributions

Addressing QA
Single [83, 124, 21]
Multiple [84, 137, 88, 120, 119]

[138, 81, 86, 122, 123]
[121, 139, 126]

QA Support
General [84, 137, 119, 86, 122]

[123, 121, 139, 126]
Specific (Cost) [84, 119, 122, 126]
Specific (Other QA) [83, 21, 120, 138, 81, 124]

Level of stakeholder Involvement
Partial [120, 119, 81, 86, 124, 21, 123]
Autonomous [84, 83, 88, 137, 138]

[122, 121, 139, 126]

Management of Trade-offs
Automated [84, 137, 88, 81, 86]

[122, 121, 126]
No Support [83, 120, 119, 138, 124]

[21, 123, 139]

Dealing with Uncertainty
Implicit [88, 120, 119, 21, 121]
Explicit [84, 83, 137, 138, 86]

[122–124, 81, 126, 139]

QA Monitoring and Treatment
Reactive [84, 83, 119, 88, 120]

[137, 81, 138, 86, 122]
[124, 126]

Proactive [21, 123, 121, 139]

Table 2.11 Summary of Contributions for Architecture Evaluation approaches with respect to ap-
proaches to evaluation.

Stage of Evaluation Approaches Representative
to Evaluation Contributions

Design-time Utility-driven [73, 80, 9, 95, 82, 96, 10, 103, 87, 101, 100, 85]
[104, 18, 97, 102, 44, 45, 105, 106]

Economics-driven [41, 117, 42, 116]
Run-time Utility-driven [84, 83, 120, 21, 88, 81, 119, 121, 122]

[123, 86, 124, 126, 138, 139]
Learning-driven [83, 137, 138, 122, 139]
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− The main threats to validity in this SLR is the selection bias when including the studies
and extracting the data. To resolve that in terms of determining the relevant studies a
research protocol (Section 2.2) was conducted. We applied this protocol to set out the
objectives of the review, the necessary background, the research questions, inclusion
and exclusion criteria, search strategy, data extraction and analysis of gathered data.
The SLR protocol was arranged by one author and then revised by other authors to
verify and evaluate the research questions and whether the search queries map to the
review objectives and research questions. They also checked the relevance between
data to be extracted and research questions.

− Several junior and senior researchers (with up to 15-30 years of experience in archi-
tecture evaluation) assessed and reviewed the SLR. They provided feedback which
reduced the bias of the formalisation of the protocol, due to the selection of search
keywords. There is still a risk of missing some related studies. This could occur in
cases where software architecture evaluation keywords are not standardised and clearly
identified. For instance, continuous evaluation is defined under different terms, such as
continuous, run-time, dynamic, etc. Therefore, we made an agreement with each other
about the definitions of unclear keywords. In some cases it was difficult to elaborate
how the authors of reviewed studies interpreted terms such as continuous or run-time
or dynamic (Section 2.2.3.1). In this context, we tried our best to include all the related
terms that imply continuity. However, we cannot guarantee completeness.

− We also used a data extraction form to select information for answering research
questions hence improving the consistency of data extraction (Section 2.2.6). To
ensure that the findings and results were credible, we conducted a quality assessment
on related studies (Section 2.2.5).

− The limited number of included studies might open a question about the completeness
and coverage of the review, as compared to other SLRs (e.g. [135]). But the objective
of this review was to focus on a specific goal, i.e. the state-of-the-art in software
architecture evaluation approaches under uncertainty and to what extent continuous
software architecture evaluation approaches are used. This results in a narrowed scope
for the review. This is analogous to the case of [60] that conducted a review focusing
on methods that handle multiple quality attributes in architecture-based self-adaptive
systems (54 included studies), and [140] that studied the variability in quality attributes
of service-based software systems (46 included studies). The narrow scope of SLRs
explains the limited number of search results and included studies. We believe that
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the relevant studies to the research topic were indeed included. Further, the quality of
conferences, journals, and books of the included studies ensures the significance of the
analysis.

− In our search execution, some relevant studies may have not been shown in the search
results of the bibliographical sources. This may be due to the fact that automated
searches depend on the quality of the search engine. On the other hand, the selected
bibliographical sources are considered the largest and most significant sources for
conducting SLRs and the most used ones in software architecture and software engi-
neering [56, 60]. We also performed manual and automated searches through the most
popular venues for software architecture and software engineering [60]. Consequently,
we are confident that the included studies are the most relevant and important ones and
others are unlikely to be missed.

− We applied our search on meta-data (i.e. abstract, title, and keywords) only and some
studies might have used architecture evaluation as a part of their proposed work without
mentioning that explicitly in abstract, title, and keywords. Since the authors identify
the meta-data of their studies, therefore, our included studies depend on the quality of
the bibliographical digital sources in classifying and indexing studies.

− Since the self-adaptive and self-managed domain is large, we did our best to include
studies which show architecture evaluation as part of their approach. In particular, we
added studies from a list of 5244 papers (the output of the search process in Figure
2.1) through search databases and a snowballing process, in addition to some manual
search. However we may have missed some works unintentionally.

− Furthermore, a common threat to validity is the fact that there are some criteria—
such as dealing with uncertainty and management of trade-offs—where the paper’s
authors do not explicitly mention whether they are addressed or not. In this context,
we attempted to infer these criteria. Similarly, a common concern in the run-time
approaches is that, in most cases, "the proactiveness or reactiveness of the approaches
are not explicitly discussed and it can only be inferred from the adaptation strategies"
[60]. Accordingly, we made our best effort to infer the reactiveness and proactiveness
of the examined approaches.
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2.5 Relevant Fields

There are other techniques outside the area of software architecture and/or software engineer-
ing, which have inspired our proposal for developing a continuous architecture evaluation
framework. In particular, a continuous architecture evaluation approach could benefit from
control theory [141]. For example, the approach may use a feedback system, which is
analogous to the feedback control system in control theory [141]. Control theory has primi-
tives to monitor the observations of the system, detect its problems and then react. In the
context of continuous evaluation, the approach can use primitives of control theory for system
monitoring and change detection. However, novel ways are necessary to provide faster and
more optimal reactions in case of system failure.

The requirements-driven approaches have been adopted as a way to perform quali-
tative analysis in handling non-functional requirements trade-offs. However, it has not
been discussed from the architecture evaluation perspective. The traditional requirements-
driven approaches such as object-oriented modelling [142] and structured analysis [143] are
not suitable for evaluation because of the following: (i) the inability to handle the rising
complexity of software systems; and (ii) the lack of dealing with non-functional require-
ments. Requirements-driven approaches are "concerned with the use of goals for eliciting,
elaborating, structuring, specifying, analysing, negotiating, documenting, and modifying
requirements" [144]. The main idea of requirements-driven approaches is starting with the
high-level goal of system, and then keep refining it (i.e. decompose into sub-goals). They
often do not explicitly evaluate these requirements in relation to the architecture and its
design options.

2.6 Related Reviews

There are several surveys in the software architecture community, which focus on reviewing
architecture evaluation methods. However, to the best of our knowledge, they did not
explicitly address architecture evaluation methods from both perspectives: design-time and
run-time. Some reviews analysed the use of specific quality attributes for evaluation, such
as reliability and availability prediction methods for software architectures [145]. Others
focused on practices that may relate to architecture evaluation, such as decision-making
techniques for software architecture design [146], software architecture optimisation methods
[135], and architecture design rationale [147].



54
Evaluation of Software Architectures under Uncertainty:

A Systematic Literature Review

In the area of design-time architecture evaluation, there are many studies, such as [12,
55, 56]. For instance, Dobrica et al. [12] focused on surveying the most popular methods,
such as ATAM [2], CBAM [9], and ALMA [10]. Babar et al. [89] provided a framework
for classifying design-time software architecture evaluation methods and a comparative
analysis for the scenario-based approaches in specific in [148]. Roy et al. [55] extended the
previous reviews and considered most of the design-time evaluation methods at that time.
The authors in [56] systematically reviewed and classified architecture evaluation methods
from the architecture evolution perspective.

Other surveys focused on run-time methods, such as self-adaptive systems [46, 58, 60],
self-managed systems [57], and models@run-time [59]. From [57, 46, 58–60], we found
that none of the studies explicitly demonstrated the use of run-time architecture evaluation
principles. And none of the works have examined continuous software architecture evaluation.
This is surprising because some research studies implicitly provide the elements for a
continuous evaluation approach. Our survey bridges this gap by rethinking architecture
evaluation and providing classifications that can do the following: (i) help architects to
conduct the evaluation in continuous settings by determining the elements of a continuous
evaluation approach; (ii) help in identifying common approaches for this type of evaluation;
(iii) identify common concerns for systems that can benefit from this type of evaluation; (iv)
point out the strengths and weaknesses of these types of approaches.

2.7 Discussion and Recommendations for Future Research

Based on the SLR, it is clear that the area of software architecture evaluation has received
a lot of attention in the past decades. Nevertheless, the results demonstrate some observa-
tions which could potentially lead to future research. In particular, the SLR has identified
several gaps in relation to architecture evaluation under uncertainty with respect to decisions
which relate to designing dynamic and complex systems, such as IoT, cloud, and volunteer
computing. In this context, this section aims to address the third question: RQ1.3: What are
the current trends and future directions in software architecture evaluation under uncertainty
and their consideration for continuous evaluation? This question aims to show how we can

benefit from the existing approaches to draw inspiration on the essential requirements and

address the pitfalls when developing a continuous evaluation approach. In Section 2.7.1, we
present the architecture evaluation research area maturation stages and classification. We then
highlight the important objectives that should be accomplished by the research community to
advance this research area (Section 2.7.2 and 2.7.3).
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2.7.1 Research Area Maturation

In this systematic review, we aim to investigate the extent to which architecture evaluation
under uncertainty and the consideration for continuous evaluation have matured as a discipline.
For this purpose, we examine the included studies with respect to the Redwine-Riddle model
[149]. The latter provides six stages for technology (research area) maturity. These stages
are [149]:

1. Basic Research: investigating the ideas and concepts; and providing a clear articulation
of problem’s scope.

2. Concept Formulation: presenting a comprehensive evaluation of solution approach
through seminal paper or a demonstration system.

3. Development and Extension: preliminary using the ideas and extending the general
approach to a broader solution.

4. Internal Enhancement and Exploration: extending the general approach to solve real
problems in other research areas.

5. External Enhancement and Exploration: creating a broader group and involving them
in decision-making to provide a substantial evidence of value and applicability.

6. Popularisation: showing production-quality, providing supported versions, as well as
marketing and commercialising the technology.

Initially, one author has classified the 40 included studies against Redwine-Riddle model,
and the outcome was revised independently by other authors. Discussions and agreements
were carried out in cases of discrepancies between the authors’ categorisations. Figure 2.5
shows the results of classification. It is clear that almost 80% of the studies are still in early
maturity stages (Basic Research and Concept Formulation), whereas almost 20% have been
extended to broader problem domains and applied in practice. Among those approaches that
are already adopted by industry, none of them are deployed at run-time; they only focus
on design-time evaluation. In particular, maturity has only been proven for design-time
approaches, such as ATAM and CBAM. This explains why 5% (2) of approaches are still in
the popularisation stage. Table A.1 depicts the studies with respect to area maturity level.

We have seen some examples of continuous evaluation that are either implicit, partial, or
explicit, such as CPASA and DevOps. However, these research efforts have not demonstrated
and documented how to adapt those practices in the evaluation of software architectures
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Figure 2.5 Distribution of the included studies over the research area maturity classification model
(The number of studies for each maturation stage are placed between parenthesis and maturity
distribution are shown in percentage).

under uncertainty. Therefore, to mature the architecture evaluation research area with
continuous evaluation approaches, we need a set of guidelines, tools, systematic procedures,
acceptance from (and case studies with) real-world organisations, and shared benchmarks
across companies for best practices. In this thesis, the systematic evaluation practice has
been chosen as part of avenue to fill in this gap. The presence of systematic methods could
support the evaluation, where integrating these methods with development life-cycle can
help to accelerate the maturity of that practice and transient from ad hoc attempt to discipline
attempt.

2.7.2 Leveraging Existing Approaches To Develop A Continuous Eval-
uation Framework

Having done this SLR, we observe that elements from different approaches could be com-
bined to develop a continuous software architecture evaluation framework. For instance,
the CBAM [9] is a scenario-based design-time evaluation method, which determines the
influence of architecture decisions on the cost-benefit trade-offs. The CBAM provides an
implicit mitigation for uncertainty through different types of scenarios. However, this type
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of evaluation approach would not be suitable for the emerging technologies and paradigms,
such as IoT and cloud-based systems. Further, diversification [150] is an important design
principle that is often used to architect dynamic and complex systems, such as IoT and cloud
[151, 152]. But the majority of evaluation techniques do not provide the means to either
value or evaluate for diversification. In this context, a systematic design-time evaluation
approach that can deal with complex architecture design decisions (such as diversity) and
handle uncertainties is necessary. This is an important foundation of a continuous evaluation
framework.

Based on the existing approaches, we infer that there is a lack of well-documented, real-
world examples for economics-driven approaches in the context of design-time evaluations
(Table 2.6 and 2.11). In particular, these approaches ([36–42, 117]) have not been used to
deal with cost-benefit trade-offs in dynamic environments, such as IoT. Further, they have
not been explored from the perspective of forecasting the long-term value of architecture
decisions to determine whether the complex design decisions, such as diversity in design
[150], can handle uncertainties that can be attributed to dynamic changes in the environment.

We believe that economics-driven approaches, such as real options analysis [25], could
be combined with CBAM to support the analysis. Real Options Analysis is one of the
few design-time techniques that can embed flexibility under uncertainty. Therefore, it can
aid the architect in predicting the impact of architecture decisions on quality attributes of
interest. It can also shortlist the candidate options for deployment at run-time and thus reduce
unnecessary costs. This is still very much a research area that requires further investigation
in the context of design-time evaluation, as an initial stage for continuous evaluation.

We found that most of the architecture evaluation approaches focus on design-time (about
60% of the approaches) and less on run-time (about 40% of the approaches). Evaluation
approaches also tend to focus on development (i.e. mostly human-centric activities) and lack
a consolidated approach that integrates design-time and run-time considerations. On the
contrary, in the context of architecting and evaluating dynamic and complex systems, a more
continuous approach that starts at the early stages of development and continues to evaluate
the architecture options during the lifetime of the system at run-time is necessary to cope
with operational uncertainties, such as high fluctuations in QoS, sensor ageing effects, etc.
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2.7.3 Finding The Necessary Ingredients For Developing A Continu-
ous Evaluation Framework

Modern software system environments, such as IoT, cloud, volunteer computing, and mi-
croservices, are a challenge for existing software architecture evaluation methods. Such
systems are largely data-driven, characterised by their dynamism, unpredictability in opera-
tion, hyper-connectivity, and scalability. Properties, such as performance, delayed delivery,
and scalability, are acknowledged to pose great risk and are difficult to evaluate at design-time
only. Therefore, a run-time evaluation approach is necessary to complement design-time
analysis. This run-time stage should be able to handle different sources of uncertainty and
evaluate complex design-time decisions. In this regard, we need to determine the necessary
ingredients for this run-time stage.

One interesting observation is that just 25% of run-time approaches address cost as a
concern (Table 2.8 and 2.11). Since the management of cost-benefit trade-offs is essential in
dynamic environments [8], cost will highly influence the value of architecture decisions.

Based on the results of our review (Table 2.8), most of the run-time approaches handle
uncertainty either by checking goal violations or providing some probabilistic estimations.
However, in contexts of highly dynamic environments such as [34, 7, 8, 153, 154], this is not
sufficient. Even if the currently deployed architecture decision is not violating any goal, this
does not mean that it has good performance. For example, in some cases, an architecture
decision is meeting its quality constraints but it is providing poor performance. In this context,
a change detection test is a necessary component in a continuous evaluation framework to
determine significant drifts in the architecture decisions. This type of test can provide the
architect with the flexibility of adjusting the sensitivity to changes. Therefore, determining
the type of test and its efficiency could be a potential future direction.

Moreover, most of the existing run-time methods rely on historical data or online data
to perform the evaluation, but they do not consider the age of data. Therefore, embedding
some ageing parameters to emphasise the relative importance of older versus more recent
data could potentially improve the analysis [138]. Further investigations, related to the use of
these parameters and how the architect could tune these parameters to enhance the evaluation
are required (examined in Chapter 5).

From the run-time perspective (Table 2.8 and 2.11), it is clear that most of the current
approaches (e.g. [138, 155, 122], etc) tend to be reactive when simplistic learning, partial or
incomplete knowledge is used. Thus they may suggest incorrect decisions due to unexpected
future environment changes and recommend unnecessary switches due to the lack of future
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knowledge about the candidate architecture decisions. This in turn may affect the architec-
ture’s stability and overall behaviour. To bridge the gap, further proactive approaches are
necessary to improve the continuous evaluation process (addressed in Chapter 6).

In addition, our analysis shows that just 25% of the run-time approaches embed machine
learning principles in the decision-making process. Using machine learning approaches
in decision-making has shown great improvements to the decision-making (e.g. [156]).
Therefore, another important element when developing a continuous architecture evaluation
framework is leveraging machine learning techniques. In this thesis, we plan to investigate
the use of machine learning techniques for architecture evaluation in Chapter 5 and 6.

The literature depicts that there are some approaches (e.g. [21, 123, 121, 139]) that are
proactive in terms of failure prediction and recommending alternatives. These approaches
may, however, experience scalability problems. Moreover, these approaches assume that
the impact of architecture decisions on QoS is available at run-time, which is not always
the case for uncertain environments such as IoT. To this end, novel solutions are required to
determine how QoS monitoring challenges could be handled (discussed in Chapter 5).

There are methods (e.g. [21, 18]) that explicitly mention continuous architecting and
assessment, and others that implicitly adopt it (e.g. [19]). These approaches can benefit from
further investigations in terms of how continuous evaluation could dynamically track and
forecast architecture decisions and automatically manage cost-benefit trade-offs.

2.8 Conclusion

Continuous evaluation has been discussed under different labels, such as run-time, dynamic,
continuous, etc, along with assessment and analysis. The common characteristic among
these efforts is that they start at design-time (even if they do not mention that explicitly) and
continue to evaluate architecture decisions during the life-time of the system by observing
environmental conditions. In this review we have attempted to unify these efforts. We
performed a systematic literature review to examine existing architecture evaluation methods
that deal with uncertainty either design-time or run-time. We also provided guidelines for the
necessary elements to develop and conduct a continuous architecture evaluation approach.
We both automatically and manually searched well-known venues for software architecture
and engineering, other related systematic reviews and mapping studies, and significant
bibliographical data sources. In addition we applied a snowballing process to collect our
primary studies.
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The results of our investigation are the following: (a) design-time architecture evaluation
approaches garnered more attention than run-time ones, though the latter are increasingly
important to handle the dynamism and increasing complexity in software systems; (b) there
is a lack of examples on demonstrating how continuous evaluation approaches can realised
and conducted; (c) few methods focus on managing trade-offs between benefits and costs at
run-time; (d) few methods focus on adopting machine learning techniques to the evaluation;
(e) most of the run-time approaches tend to be reactive (and may recommend unnecessary
switches and hence increase deployment costs).

In summary, our main findings, listed in Section 2.7 and Table 2.6-2.11, call for a con-
tinuous software architecture evaluation method that can complement some of the included
studies and aid the architect in assessing the architecture design decisions under uncertainty
through the following: (i) analyse the use of continuous architecture evaluation in dynamic
environments, such as IoT and cloud systems (discussed in Chapter 3); (ii) employ economics-
driven approaches (i.e. forecasting the long-term value of complex architecture decisions),
this is discussed in Chapter 4; (iii) adopt economics-driven principles in the design-time
evaluation approach (the initial stage of a continuous evaluation approach) because it embeds
flexibility under uncertainty (introduced in Chapter 4); (iv) perform additional research
in analysing the use of machine learning techniques to improve architecture evaluation
at run-time (the ongoing stage in a continuous evaluation approach), this is explored in
Chapter 5 and 6; (v) explore how tuning the input parameters for the continuous evaluation
(e.g. sensitivity to changes, monitoring intervals, the relative importance of present/past
data) could affect the evaluation and what are the most suitable parameters to improve the
decision-making (addressed in Chapter 5); (vi) investigate the development of proactivity in
the architecture evaluation process (tackled in Chapter 6).



Chapter 3

IoT as a Motivating Case Study

Context. Dynamic and complex systems, such as IoT, are fundamentally different from
classical ones for which most design-time architecture evaluation methods, such as CBAM
and ATAM, were advanced. These systems are characterised by their heterogeneity, high
dynamicity, and scale. Therefore, the dynamic nature of IoT requires us to combine design-
time evaluation with run-time when evaluating architecture design decisions. In this context,
continuous architecture evaluation frameworks, which integrate design-time and run-time
evaluation, could be a potential aid for the architects to improve the decision-making, in
dynamic environments such as IoT.
Objective. In this chapter, we aim to motivate the need for continuous evaluation and show
how it goes beyond existing architecture evaluation approaches.
Method. We have used and extended an existing IoT (i.e. video surveillance) application
from the literature, which was not addressed from the context of run-time architecture eval-
uation and adaptability under time-varying environment. Through the case study, we have
shown the challenges facing the team of architects and how the proposed framework can aid
in improving the architecture evaluation practices.
Conclusion. The challenges facing IoT applications require a continuous evaluation frame-
work that can help the architect in evaluating and forecasting cost-benefit trade-offs of
complex architecture decisions in IoT domain.

3.1 IoT challenges

Upon evaluating the IoT application, the architect is faced with several challenges that are
rooted in the characteristics of the domain and the environmental conditions facing that
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domain. These challenges call for revisiting evaluation practices for software architectures.
Let us focus the discussion on the challenges below ([8, 6, 11, 7]):

• Heterogeneity, having different types of things, such as static sensing (e.g. fixed
sensors), mobile crowd-sensing (e.g. cellular-based, vehicle-based, and bike-based
sensors), virtual (e.g. web services), and social sensing (e.g. share data across social
networks like facebook);

• High dynamism, due to the presence of fixed and mobile things, and uncertainty of
their resource demand and QoS provisions over time (i.e. service level objectives),
varying energy consumption per device and their varied availability;

• Scale, where their ubiquitous, light, and mobile nature has led to the presence of, in
some cases, millions of things.

Classically, design-time analysis is a commonplace for architecting software systems.
However, the new era of applications, such as IoT [157], requires us to rethink the way we
analyse and evaluate architectures of software systems [158, 8, 159]. Current architecture
evaluation approaches, such as ATAM [2], CBAM [9], and ALMA [10], are not well designed
to handle these emerging challenges. The dynamism, heterogeneity and scale of IoT naturally
moves architecting practices towards architecting for uncertainty, where architecture design
decisions are more complex to evaluate at design-time only. This is because it is difficult to
anticipate their fitness and the extent to which they can cope with operational uncertainties
and continuous changes in the structure, topology, and requirements of possible composition
patterns. It leads to a need for a more continuous approach that intertwines design-time and
run-time evaluation of architectures.

3.2 Introducing the IoT case: iTransport

In this thesis, we draw on an IoT application, documented in [35], to motivate the need of a
framework that is applicable to domains like IoT. In particular, we are looking at domains
that can benefit from the continuous evaluation framework, such as IoT. The basic concept of
IoT is the interaction between a group of devices— "things"—such as sensors and actuators,
over the Internet. Our IoT application extends Gupta et al. [35]’s application – an urban
traffic monitoring system, named iTransport. Gupta et al. [35] used a video surveillance
application to demonstrate the usefulness of their proposed cloud/fog simulator tool iFogSim.
However, in their case study, the context of architecture evaluation and adaptability under
time-varying environment have not been considered, which are addressed in our work. In a
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nutshell, iFogSim is a cloud/fog simulation environment; it can aid developers to simulate the
impact of their application on qualities of interest. It forms the basis in our work to mimic the
dynamics and uncertainty of cloud/fog environments, and their impact on qualities of interest
in our case study. Further explanation related to our use of iFogSim, which differs from
that of Gupta et al., can be found in Section 5.5. In addition, Gupta et al. [35] assume the
presence of one application architecture (i.e. configuration). We have designed the multiple
configurations with respect to the common architecture decisions of a video surveillance
application.

The iTransport application provides online (for emergencies) and offline (for long-term
prediction) analytics. It uses smart cameras, which are either fixed (attached to street lights
and buildings) or mobile (attached to vehicles and bikes) to capture the traffic for accident
avoidance and traffic management. For instance, the data generated from vehicles could
be used for the following: monitor traffic patterns, inform drivers of traffic situations, and
help governments determine appropriate solutions to traffic problems [160]. The iTransport

application has 6 modules as seen in Figure 3.1: camera, motion detector, object detector,
object tracker, accident storage, and emergency control. Smart cameras transmit raw video
streams to the motion detector module, which then forwards the video in which motion was
detected to the object detector module. The object detector module analyses the objects and
detects any abnormal actions (i.e. car accidents). If it observes an accident, the emergency
control searches for a nearby ambulance for notification. The data is then sent to the accident
storage database to profile the accidents with respect to areas. This database could be stored
in either fog or cloud, which will be evaluated in this thesis. The application automatically
provides either "online analytic" functionality or "offline analytic" functionality, every 10
minutes based on user requirements. For instance, if "online analytic" functionality is invoked,
then minimised response time and network usage are necessary, whereas if "offline analytic"
is called, then the energy consumption is the main goal for optimisation.

When architecting iTransport application, the architects must address uncertainties due
to heterogeneity of the things; the dynamicity of the things’ behaviors and the dynamism
of their composition. For instance, having different types of smart cameras (e.g. fixed and
mobile) could potentially lead to varying QoS, due to their varied mobility, heterogeneity
in the topology, memory, computational efficiency, etc. Further, the hyperconnectivity and
increasing number of smart cameras have a significant impact on the overall behavior of
iTransport. This could cause unpredictable and dynamic performance levels.
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Figure 3.1 The flow diagram of iTransport application [1].

3.3 A hypothetical scenario

In the past decades, a stream of academic literature has touted the benefits of software
diversity in design [150, 161, 162]. J. Kelly was among the first to speak about design
diversity; defined as "the approach in which the hardware and software elements that are
to be used for multiple computations are not copies, but are independently designed to
meet a system’s requirements" [163]. Diversity here refers to the generation of functionally
equivalent versions of a software system, but implemented differently [164]. Historically,
diversity is used to handle the uncertainties [165]. These are translated into quality-related
objectives; improving dependability [33, 166, 167], reliability [168, 169], security and
privacy [170, 171], robustness [172, 152], and adaptability [151].

Design diversity is a potential solution to embrace uncertainty through spicing the
architecture by variety to improve the QoS of the architecture and its design decisions
when deployed in uncertain and unpredictable environments, such as IoT [152, 151]. The
intuition is that the architecture of software systems can maximise its benefits from varieties
through the availability of multiple implementations of a specification in an attempt to better
mitigate operational uncertainties in open and dynamic environments, such as IoT. In this
context, design diversity poses itself as a key solution for architecting under uncertainty.
Design diversification has the potential to mitigate risks in situations exhibiting uncertainty
in operation, usage, etc. Therefore, we decided to perform a case study where we use our
continuous evaluation framework to evaluate diverse software architectures.

Let us consider the case where the architects have employed design diversification
strategies [15, 167, 16] to respond to the challenges and to handle uncertainties: the greater
the uncertainty, the more architects have attempted to apply design diversification with the
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objective of improving the QoS in terms of performance and energy consumption. We
contend that diversification means embedding in flexibility in handling operational changes.
Since there is a variety of ways to diversify, each diversified architecture can be treated as a
candidate option, which we denote by dao (i.e. diversified architecture option). The set of
diversified architecture options are denoted by DAO. A dao implements a set of diversified
decisions to meet some quality goals and trade-offs. Given a set of architecture decisions
D, where a decision dka ∈ D. dk denotes a particular capability, including connectivity, data
collection, data management, etc. dka indicates the software architecture components and
connections that implement this capability. For example, the architects decided to diversify
the data collection capability (d1), where video could be captured using fixed cameras (d11),
mobile cameras (d12), or both (d13). Another diversification decision is concerned with the
connectivity and processing capability (d2), where the things can connect, track, and process
the captured video on the cloud (d21) or both cloud and fog (d22). So dao1 comprises d11 and
d21, whereas dao2 consists of d12 and d22 and so forth. Further, fixed d11 or mobile camera
decisions d12 could have different software and hardware, which then affect their QoS over
time. Processing the data from cloud d21 or fog d23 denote the use of diverse cloud/fog
providers, which in turn provide uncertain QoS over time. In this context, dao1, dao2, dao7,
and dao8 embed diversity through the use of diverse fixed/mobile devices and different cloud
providers/heterogeneous fog devices. Table 3.1 depicts the selected options, with decisions
designed for cloud, fog, mobile, or fixed.

Table 3.1 Possible Diversified Architecture Options for iTransport application. The diversity in each
dao can refer to using fixed and/or mobile fog devices for data collection capability; using different
cloud providers and heterogeneous fog devices for data processing capability.

Option daoi

Decision dk Data Collection Capability (d1) Data Processing Capability (d2)

1 Fixed (d11) Cloud (d21)
2 Mobile (d12) Cloud (d21)
3 Fixed and Mobile (d13) Cloud (d21)
4 Fixed (d11) Fog and Cloud (d22)
5 Mobile (d12) Fog and Cloud (d22)
6 Fixed and Mobile (d13) Fog and Cloud (d22)
7 Fixed (d11) Fog (d23)
8 Mobile (d12) Fog (d23)
9 Fixed and Mobile (d13) Fog (d23)
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3.4 iTransport in the context of continuous architecture
evaluation

In iTransport, there are several design trade-offs concerning the critical QoS attributes (e.g.,
response time, energy consumption, network usage, etc) and cost, subject to constraints such
as the predefined coverage and availability of the things. In the context of iTransport, we
consider the operating cost to include the following: deployment cost (the expenses related to
the infrastructure deployment in cloud/fog environment), execution cost (the computational
costs of running the processing tasks on cloud/fog devices), and networking costs (related
to the bandwidth requirements and associated expenses). For instance, data uploading cost
from end devices/sensors and inter-nodal data sharing costs) [173]. Further, the switching
costs in iTransport embrace the migration costs to/from the cloud/fog, thing’s connectivity
and other costs (if any). Nevertheless, the architect can include other costs. So the question
here is "Will IoT architectures forward all streams of data to a centralised cloud, or will
the scale and timeliness requirements of IoT applications require distributing storage and
computing to the fog’s devices?" [174]. The design trade-offs can inform the diversification
design decisions and the deployment of dao.

Let us imagine a group of architects Team Alice, whom are assigned to design and
evaluate the architecture of iTransport. With respect to design trade-offs introduced earlier,
Team Alice have found that an ad hoc fashion would not serve the purpose. In particular,
it appears that the previously assigned architects have chosen random dao based on their
perception, without performing any systematic evaluation. On the contrary, Team Alice argue
that the deployment of all candidate DAO or the ad hoc selection would lead to unnecessary
costs. Therefore, Team Alice may:

1. Perform a systematic design-time evaluation as an initial step to shortlist the candidate
options, as well as, rank the options under investigation (Section 3.4.1).

2. Complement the design-time decisions using an informed run-time architecture eval-
uation approach that can monitor and learn the cost-benefit trade-offs of diversified
architecture options over time (Section 3.4.2).

3. Use forecasting analytics capabilities to predict the cost-benefit trade-offs of DAO and
hence improve the decision-making process (Section 3.4.3).
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3.4.1 Perform a systematic design-time evaluation

Team Alice observed that the common practice has been to select dao based on the context, for
example, (i) Deploying dao1 in cases where the energy consumption is the major concern to
be optimised. Because data processing in the cloud may (not) incur lower energy consumption
than in fog devices [175]; (ii) Selecting dao4 to be continuously deployed when response
time and network usage are the stakeholders’ concerns, due to the presence of fog and cloud
for data processing, which in turn may reduce the network congestion.
However, Team Alice are still uncertain about their decisions, due to the following DAO

trade-offs:
• dao1 uses fixed camera sensors to provide more stable and better response time to

fulfil the pre-defined coverage. However, achieving the coverage for the scale of city
highways using fixed cameras may incur much higher cost and static coverage. In
contrast, the use of mobile crowdsensing (using smart vehicles) [11], as in dao2, could
be an alternative solution due to its low cost. But the mobile crowdsensing in dao2

may be unstable in terms of response time and it can consume much more power at
this scale due to the simultaneous transmission, processing, and remote execution of
the images on the cloud. Further, availability in dao2 is much more restricted than that
of dao1.

• When comparing with the case where cloud is used as the sole computation paradigm
(in dao1 to dao3), the partial use of fog (in dao4 to dao6) could provide faster response
time (e.g., for scenarios such as emergency notification and online analytics) and lower
network usage, due to the offloading of computational load on the near by fog devices.
But it may incur more energy consumption, given the large number of required fog
things and the additional overhead that may be required to synchronise and store the
processed information on the cloud (if any). In addition, the fog option needs to fulfil
the constraints on the proximity of the thing to the fog and the availability of the fog.
Further, the sole use of fog (in dao7 to dao9) could provide the best response time
(i.e. fastest) as compared with the use of cloud (i.e. in dao1 to dao3) or partial use of
fog (i.e. in dao4 to dao6). However, relying on fog only is strongly dependent on the
devices, which are affected by their efficiency, mobility, and heterogeneity. They may
also incur high energy consumption, similar to in dao4 to dao6. On the contrary, the
presence of cloud (in dao4 to dao6) could be a backup in case fog devices were not
working as expected.
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From the architect’s perspective, relying on an ad hoc fashion to evaluate the architecture
options may cause undesirable results, because iTransport is a time-critical application and
ignoring the uncertainties is not desirable. From the operator’s perspective, it is even too
expensive to implement all the DAO and then select between them at run-time. This is due to
the need for licensing costs, maintenance costs, switching costs and so forth. Consequently,
this calls for a systematic design-time evaluation that forecasts the cost-benefit trade-offs of
each dao. Further, an approach that can value flexibility under uncertainty is necessary to
demonstrate how the architecture option can "survive" under varying environmental changing
conditions.

By taking into consideration the economic gains/losses, the architect may deploy a dao

that seemed to initially deliver value, but then it turned out to be inefficient. This is due to
the high reliance of expertise knowledge and neglecting the uncertainties in environments,
such as IoT. This in turn may cause unnecessary losses and the need to switch to another dao.
The design-time evaluation should consider the uncertainty and dynamicity in IoT when
selecting the architecture options for deployment. In particular, it would aid the architect in
quantifying the long-term value of diversified architecture options. This leads to our second
research question: RQ2: To what extent design-time architecture evaluation methods that

adopt economics-driven principles, such as real options analysis, can systematically evaluate

complex design decisions, such as diversification, in the face of operational uncertainties

in dynamic environments? For that, we adopt an economics-driven approach binomial real

options analysis [176] that extends one of the most well known architecture evaluation
techniques CBAM [9]. The problem with the state-of-the-art evaluation techniques, such
as CBAM, is that it can shortlist the candidate architecture options without providing the
long-term value of these options. More specifically, the CBAM evaluates the architec-
ture options by performing classical cost-benefit analysis. On the contrary, the proposed
design-time evaluation approach can predict and value the architecture’s flexibility in han-
dling uncertainties. The proposed design-time evaluation approach is introduced in Chapter 4.

Summary: A systematic economics-driven design-time evaluation is a necessary step to ini-
tially decide on the candidate diversified architecture options by determining their long-term
value. This shortlisting would limit the number of architecture options for implementation
and hence reduce costs.
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3.4.2 Complement the design-time decisions using a run-time architec-
ture evaluation approach

Team Alice have found that there are some scenarios where design-time decisions may fail to
select the "suitable" options due to the run-time uncertainties and dynamics caused by various
environmental factors, which emergently affects the benefit of the options. In particular, it is
possible that, at run-time, their benefit deviates more than the expected value at design-time,
for example:

• The design-time evaluation suggests dao6 to be continuously deployed when response
time and network usage are the stakeholders’ concerns, due to its high expected benefit.
Conversely, at run-time (i.e. output of simulator), the hyper-connectivity of mobile
things and the high network latency affect its actual benefit in terms of response time
and network usage, which was significantly lower than expected.

• Team Alice have decided to implement dao1 in cases where response time and network
usage is not a concern, aiming to improve the energy consumption in fog devices due
(i.e rely on cloud providers rather than fog devices for data processing). However, the
actual overall benefit (e.g. response time, network usage and energy consumption)
was much worse than expected during run-time. This is because the sensors are still
performing some processing to transmit the data to the cloud (i.e. there is high power
load on the fixed sensors).

• Team Alice have prioritised the response time concern over the network usage and
energy consumption. They selected dao2 for deployment due to the use of mobile
things, which may have lower impact on network congestion as compared with fixed
ones. On the contrary, Team Alice have discovered that the actual benefit of dao2 was
much worse than expected, due to the presence of a very large number of mobile things
(i.e equivalent to the deployment of lower fixed number of sensors), which resulted in
high network usage. Therefore, dao2 was almost violating the quality constraints in
most of the cases.

The prior scenarios motivate the need for the run-time evaluation to capture conditions that
may not be discovered at design-time. The approach can accumulate run-time information
(i) discovering patterns related to the availability of mobile nodes and their connection to
benefit improvement/degradation and value; (ii) the added value of switching to a diversified
option and when that value will be realized, become optimal or cease to exist, considering
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various costs and load. The dynamism of the above cases makes it difficult for architects to
solely evaluate the architecture based on design-time knowledge.

This leads to our third research question: RQ3: How can run-time architecture evaluation

using cost-benefit analysis and machine learning techniques complement the design-time

one to handle uncertainty? The run-time evaluation could be employed to complement the
design-time decisions. Run-time knowledge can be particularly useful to suggest refinements
for the diversified architecture options; informing when a dao should (not) be invoked;
phasing-out a dao or suggesting a replacement, etc.

However, there are some scenarios, which Team Alice need to consider while evaluating
the architecture options at run-time. For example:

• When evaluating the architecture options over time, the currently available change
detection methods (e.g. [177, 125]) detect only QoS constraint violation. In particular,
they lack the ability of checking whether the current deployed architecture option is
getting worse.

• Due to the dynamcity and hyperconnectivity of IoT devices, in some contexts, the IoT’s
QoS data, such as response time, energy consumption, etc, are not always available.

• The fluctuation in QoS can be attributed to environment and network changes, such as
noise in the network.

• The selection of dao is time-consuming, which may be a problem in case of IoT.
For instance, the need to comply to standardisation [178] may have implications on
performance and scalability of the system; this can be best understood and evaluated at
run-time.

In this context, we contribute to a run-time architecture evaluation approach that gets in-
spiration from reinforcement learning [27] and multi-objective optimisation [28, 29] literature
(introduced in Chapter 5). The proposed run-time architecture evaluation approach would
improve the decision-making process by providing the following properties: (i) evaluate the
set of diversified architecture options and ensure the selection of the dao with most balanced
cost-benefit trade-off over time; (ii) the flexibility for the architects to adjust the relative
importance of information (i.e. QoS); (iii) the approach’s robustness to noise imposed on the
data; (iv) the malleability of tuning the monitoring intervals, which could potentially save
costs and handle cases where the data is not always available; (v) the ability to search for the
optimal dao in a short period of time.



3.4 iTransport in the context of continuous architecture evaluation 71

Summary: The proposed run-time architecture evaluation approach complements design-
time decisions. In particular, it continuously profiles architecture decisions for their added
value, identifies significant deviations from previously expected benefits, and automatically
determines the architecture options with the most balanced cost-benefit trade-offs.

3.4.3 Use forecasting analytics

We name the run-time evaluation introduced in Section 3.4.2 as reactive, because it lacks the
use of forecasts about the future, which is its main limitation. Team Alice have figured out
that the reactive run-time evaluation approach suffers from some limitations. Though the
reactive approach continuously helps the architect in understanding the past behaviour of the
architecture decisions in question, such a reactive approach is limited. Even though it can
monitor the past observed performance of architecture decisions, it cannot proactively reason
about their future potentials. However, a decision that has worked well in the past may not
necessarily work well in the future, given the potential changes and uncertainty underlying
the environment where the system is embedded. Reactive approaches may ignore the future
potentials of architecture decisions. For instance, the reactive approaches may cause the
current decision to seem poor, even though it could become attractive in the near future.
This could trigger unnecessary architecture adaptations that would cause the system to be
unstable. Conversely, a decision that may not seem attractive based on the past could have
better future potentials. Discarding that decision could lead to poor future performance. In
summary, reactive approaches can lead to partially justified decisions, unnecessary adaptation,
and increase development cost, while slowing down the operations. Therefore, there is a
great need for an approach that has the ability to forecast the future potentials of diversified
architecture options.

This leads to our fourth research question: RQ4: How can the use of forecasting analytics

improve the state of run-time architecture evaluation? To answer this research question,
we adopt time series forecasting algorithms to predict the future benefits of diversified
architecture options in question. More specifically, our approach has the ability to: (i)
forecast for further ahead timesteps how the DAO will react; (ii) select the DAO based on
their future potentials. This in turn will improve the decision-making process and aid the
architect in handling unforeseen scenarios. Chapter 6 presents the proactive architecture
evaluation approach.

Back to the IoT context, so the question here is do proactive approaches using forecasting

analytics provide useful information for evaluation, which reactive approaches may miss?

By focusing on economic gains/losses, without forecasting which architecture decisions
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have the potential to materialise into future economic gains, IoT systems cannot keep up
with the rate at which these potentials appear/disappear in dynamic IoT environments. In
particular, by the time the reactive approach suggests an architecture decision in response to a
detected problem (i.e. the current architecture is getting worse), the problem itself may cease
to exist (i.e. the current architecture is improving). Therefore, a reactive approach can lead
to missing opportunities for future economic gains. Similarly, without forecasting whether
architecture decisions will continue to deliver value for a long time or not, unnecessary costs
can materialise into economic losses for the IoT system when a decision is implemented.
The opportunity for future economic gains which should have been enabled by this decision
(i.e. recommended by the reactive approach) can disappear. In that situation, implementing
such a decision is useless and incurs nothing but an economic loss. We aim to illustrate how
proactive approaches using forecasting analytics can handle the prior scenarios, in contrast to
design-time and reactive approaches (addressed in Chapter 6).

Summary: The use of forecasting analytics completes the continuous evaluation framework,
as it has the ability to forecast and value the architecture options for further ahead timesteps.
Henceforth, it would lower unnecessary costs (i.e. unnecessary adaptations) and improve the
system’s stability.

3.5 Conclusion

In this chapter, we sketched an IoT case study to motivate the need for the continuous
architecture evaluation framework. Nevertheless, our framework has the potential to be
applied to other systems exhibiting high dynamism and uncertainty in their operations,
such as volunteer computing, microservices, etc. Through the case study, we have shown
the challenges facing the team of architects and how the proposed framework can aid in
improving the architecture evaluation practices.

The use of ad hoc fashion to evaluate the architecture options may cause undesirable
results in time-critical applications, such as iTransport. This is because IoT applications
are generally challenged by the following characteristics: heterogeneity, dynamism, and
scale. This calls for a systematic economics-driven approach that can value flexibility under
uncertainty by quantifying the long-term benefit of architecture options (introduced in the
next chapter). In particular, this approach can aid the architect in selecting the suitable
diversified architecture options for the varying environmental conditions. This approach
could also shortlist the candidate options for run-time architecture evaluation.



Chapter 4

Economics-driven Design-time
evaluation

Context. The first step for conducting a continuous architecture evaluation is performing
design-time evaluation. It is expensive for the architect to deploy all the possible architecture
decisions. In this context, a design-time approach is necessary to shortlist a set of architecture
decisions to be deployed. In particular, the continuous evaluation framework requires a
design-time evaluation approach that can evaluate complex design decisions operating in
dynamic environments, such as IoT, and suggest a set of architecture decisions believed to
be suitable for the application. There are many economics-driven design-time architecture
evaluation approaches (e.g. [36–42, 117]). However, none of them have been used before
to (1) evaluate diversification in design; (2) deal with cost-benefit trade-offs in dynamic
environments, such as IoT.
Objective. In this chapter, we aim to demonstrate how an economics-driven approach could
be used to assess and shortlist the candidate architecture decisions under uncertainty.
Method. We propose a novel extension of one of the widely used architecture trade-offs
analysis methods (CBAM [9]) to architect for diversification and reason about its design trade-
offs, costs, and benefits. The fundamental premise is that diversification embeds flexibility
in an architecture [151], which can be useful for dynamic and uncertain environments.
Therefore, it is beneficial to reason about this flexibility as part of a continuous architecture
evaluation approach. The proposed economics-driven design-time evaluation method shows
how CBAM along with binomial real options analysis could be used to evaluate diversification
as a design decision in dynamic and uncertain environments, such as IoT. Real options theory
provides an analysis paradigm that emphasises the value-generating power of flexibility
under uncertainty.
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Results. We can infer, from the results, that the architects’ confidence level is important
for evaluating the design-time decisions. For example, when the confidence level was high,
the architects were able to estimate the expected impact of architecture options on the QoS.
However, in other cases (i.e. low confidence level), the option values of architecture options
were very close and hence it was hard for the architect to decide which one to deploy at run-
time. Further, the results show the approach’s ability to shortlist the candidate architecture
options for run-time evaluation and deployment and hence avoid unnecessary costs.
Conclusion. The proposed method can potentially be used as a design-time approach within
a continuous architecture evaluation framework.

4.1 Introduction

One of the commonly used practices for engineering software systems to deal with uncertainty
is design diversity [150, 161, 162]; "the approach in which the hardware and software
elements that are to be used for multiple computations are not copies, but are independently
designed to meet a system’s requirements" [163]. Let us consider the case where the architect
has decided to embed diversity in the architecture to improve the QoS (e.g. performance) in
a dynamic environment, such as IoT. The assumption here is that a diversified architecture
has better potentials in meeting the requirements through diversifying the architecture design
decisions within the architecture. In particular, it enables better support for dependable
provision of quality and functionality within the system. This requires rethinking architecture
design decisions by looking at their link to long-term value creation to determine whether
the design decisions can handle uncertainties that can be attributed to dynamic changes in an
uncertain environment, such as IoT. Here, we aim to demonstrate how options thinking [176]
can be employed to evaluate diversity in design. An option is the right, but not the obligation
to invest or take an action in the future of uncertain value.

This chapter aims to answer the second research question introduced in Chapter 1:
RQ2: To what extent design-time architecture evaluation methods that adopt economics-
driven principles, such as real options analysis, can systematically evaluate complex
design decisions, such as diversification, in the face of operational uncertainties in dy-
namic environments?

As aforementioned in Chapter 1, despite the accidental or planned presence of diversity
in many modern architectures, research still lacks an understanding of its core fundamentals;
and justification/evaluation of the worthiness of this exercise. Further, design diversity-based
systems have been criticised for their high cost, because each software version has to be
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implemented, which increases the implementation cost [168]. This has opened a series of
works dedicated to mechanisms to assure the contrast, such as [179, 150]. We argue that
this will always be the ongoing dilemma. To this end, it is necessary to develop cost-benefit
trade-off analysis for the diversified architecture decisions, which is why we use CBAM
[9, 23] with Real Options principles [176].

In particular, we develop a framework that extends CBAM [9, 23] with an emphasis on
diversified architecture options, their cost, and the value they add to the software. Unlike
CBAM, our focus is on valuing the options which diversification can embed in the architecture
and their corresponding value using binomial real options theory [24]. More specifically, we
use this information as a way to reason and reflect about their added value. CBAM tends to
quantify the extent to which an architecture decision meets the scenarios and its response
level, whereas our method operates on the improvement (if any) on the quality attributes’
responses once we consider diversification. This improvement’s response can carry an added
value, but with a price. The use of real options analysis can adequately help to quantify and
visualise that response under uncertainty. The essence is in the future opportunities flexibility
creates and its contribution to long-term value creation. Therefore, the key issue is how
to select the best-fit diversified option according to the current goal. Our holistic view is
reaching a set of options that can have a global impact on long-term value and hence be able
to deal with uncertain and dynamic environments.
Our method makes the following contributions to the research literature:

• an economics-driven method that evaluates and quantifies the long-term value of engi-
neering diversification into the solution space at design-time in the face of operational
uncertainties;

• a design-time evaluation method that shortlists the candidate architecture decisions for
run-time evaluation and hence reduce deployment costs.

This chapter is organised as follows: Section 4.2 provides background for CBAM and
real options analysis, which are necessary to understand the economics-driven design-time
evaluation approach. Section 4.3 describes architecture diversification as real options in the
context of the motivating example iTransport. Section 4.4 then introduces the proposed
economics-driven design-time evaluation approach. Section 4.5 provides a constructive
evaluation and discussion for the method. Finally, Section 4.6 concludes the work.
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4.2 Background

This section explains the background needed by our proposed approach to quantify the impact
of applying diversified decisions on the system’s quality attributes.

4.2.1 Cost-Benefit Analysis Method (CBAM)

The CBAM was created to "develop a process that helps a designer choose amongst architec-
ture options, during both initial design and its subsequent periods of upgrade, while being
constrained to finite resources" [3]. CBAM extends ATAM [2] with an explicit focus on
the costs and benefits of the architecture decisions in meeting scenarios related to quality
attributes. CBAM is illustrated in Figure 4.1. It starts with the determination of business
goals, which are elicited from the stakeholders. It has typically been troublesome for stake-
holders to elicit goals, due to their vagueness and varying levels of abstraction (this is outside
of our scope of research). For interested readers, a review of the categorisation of business
goals is found in [180]. An example of a typical goal could be to cut down maintenance
and development costs, or to provide a highly reliable and secure system. These goals drive
the architecture decisions D. They have two major implications [9, 3, 2]: technical and
economic. The former are the quality attributes portraying the system, e.g., performance,
usability, security, etc. These in turn influence the benefit of the architecture. The latter
are the costs of implementation, maintenance, operation, deployment, configuration, and so
forth.

4.2.2 Real Options Analysis

Real options analysis is a well-known paradigm used for strategic decision-making [181]. It
emphasises the value-generating power of flexibility under uncertainty. An option is the right,
but not the obligation, to make an investment decision in accordance to given circumstances
for a particular duration into the future, ending with an expiration date [24]. Real options
are typically used for real assets (non-financial), such as a property or a new product design.
Furthermore, they can be categorised into call and put options. The former gives the right
to buy an uncertain future valued asset for the strike price by a specified date, whereas the
latter offers the option to sell that asset. Two of the most popular approaches widely used
to value real options are Black-Scholes formula [182] and Binomial option pricing model

[183, 25, 42]. We employed the Binomial option pricing model [183, 25, 42], a popular
approach to value real options. The choice of this model is advocated as it gives the architect
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Figure 4.1 Steps of Classical CBAM [2, 3].

the freedom to estimate the up and down in the value backed up by their experience. Whereas,
Black and Scholes requires information about the volatility using history and the use of twin
asset [37, 26], which is not always possible to have in practice. In this chapter, we have
chosen the option to switch, wait, and abandon [184] to evaluate for diversification.

The Binomial option pricing model [183, 25, 4, 176, 42] estimates the value and price of
options based on a binomial decision tree. The latter is ordinarily employed to model project
flexibility [4]. The essence of the timing of architecture design decisions is homologous to
an American option, where the option can be exercised any time until a given expiration date.
In this context, the binomial tree with American option adopts a backward-looking strategy;
forming the tree from the end to the beginning and checking at each decision point whether
exercising the decision rule before the expiration of the option is optimal [42]. Figure 4.2
represents the structure of the tree for a given option. Each level of the tree represents a
timestep. For example, if one timestep equals one month, the first level represents the present,
level 1 represents one month into the future, level 2 represents 2 months into the future,
and so on. The first node corresponds to the current market price, i.e. system value, S of
the option. This system value has a probability p of rising to Su in the next timestep, and
a probability of (1− p) of going down to Sd. The u is the factor by which the stock price
increases, whereas d is the factor by which the stock price decreases [42]. The market’s
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Figure 4.2 A typical binomial tree structure [4]. It uses u (an estimation for the stock increase), d (an
estimation for the stock decrease), p (probability that stock increases), (1− p) (probability that stock
decreases) and S (system value of the option) to generate the tree from the final level (i.e. timestep 3)
to the first level (i.e. timestep 0).

volatility, given by the experts, is used to compute the u and d coefficients [24]. Nodes Su

and Sd are split again based on these probabilities, generating the potential values in the next
timestep. The process of splitting nodes is repeated until we generate all desired levels of the
tree. Once the potential system values covering the whole desired time period are determined,
then the option value O, at each timestep, considering these system values is determined.
The formulation of decision tree coefficients and examples of how to calculate the system
and option value are given in section 4.4.

4.3 Architecture Diversification as a Real Options in the
context of iTransport

In this section, we will introduce the notion of diversified options along with goal of the
approach.
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4.3.1 Options

We contend that diversification is likely to create decisions in the form of real options that
can be exercised for value creation. An option which embeds architecture diversification is
referred as a diversified architecture option (dao). For example, in iTransport, a dao could
include d11, d12, and d21. In particular, the architect has decided to diversify the type of things
(d1), which indicates the usage of fixed and/or mobile sensors (d13), whereas performing
all the computation in the cloud (d21) forming dao3. Other examples related to DAO were
discussed in Section 3.3.

When evolving an existing system, the current implementation of the system has a direct
ramification on the selection of a dao. It could provide an intuitive indication about whether
the current system architecture needs to grow, alter, defer, etc. To exemplify, if the current
system architecture is valued as having low long-term value, hence it is obvious that another
dao should be employed instead. We will also demonstrate here the candidate architecture
options of iTransport from Chapter 3 in Table 4.1.

Table 4.1 Possible Diversified Architecture Options for iTransport application. The diversity in each
dao can refer to using fixed and/or mobile fog devices for data collection capability; using different
cloud providers and heterogeneous fog devices for data processing capability.

Option daoi

Decision dk Data Collection Capability (d1) Data Processing Capability (d2)

1 Fixed (d11) Cloud (d21)
2 Mobile (d12) Cloud (d21)
3 Fixed and Mobile (d13) Cloud (d21)
4 Fixed (d11) Fog and Cloud (d22)
5 Mobile (d12) Fog and Cloud (d22)
6 Fixed and Mobile (d13) Fog and Cloud (d22)
7 Fixed (d11) Fog (d23)
8 Mobile (d12) Fog (d23)
9 Fixed and Mobile (d13) Fog (d23)

4.3.2 Goal

The goal of our design-time approach is to help the architect to choose a dao that maximises
the benefit of the system on some quality goals of interest. The selection shall consider both
the cost and long-term value for these options, which is expected to provide insights on how
to maximise it. More specifically, we propose an approach that can be used to evaluate a set
of diversified architecture options from an economics-driven perspective under uncertainty.
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Figure 4.3 The design-time architecture evaluation approach.

The software architect can then choose the dao that provides the most balanced trade-off
between long-term value (i.e. benefit) and cost.

4.4 The Economics-driven Design-time Evaluation Approach

Our proposed economics-driven design time evaluation approach builds upon the CBAM
method for evaluating a set of diversified architecture options with real options theory, as
illustrated in Figure 4.3. In our approach, we follow the steps of CBAM, found in [9]. The
architect decides on some candidate diversified options. A key question to be answered in
our method is which dao will provide the most added value. Despite the prominent outcome
from having a variety of options, sometimes the value of an option in terms of cost exceeds
its benefit. To this end, real-options theory is employed along with CBAM, for example,
to provide design-time support for decisions that promote diversification and evaluate their
long-term value.
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4.4.1 Initiate and Diversify

In this step, we aim to select the business goals, scenarios of interest, and decisions. Based
on that, some decisions are selected for diversification forming the diversified architecture
options. We then elicit the relative importance of each quality attribute from the architects.

Step 1: Identifying diversified architecture options and attributes of interest

The analysis first aims at providing the system with typical business drivers, a number
of scenarios of interest, and varying architecture decisions, which uses the formulation of
CBAM. Our method focuses on quality attributes and their responses with respect to scenarios
of interest, which are key tenets for improving the long-term value of the system. The business
drivers encompass business goals, barriers, schedule, and cost constraints [23]. The treatment
of business goals is implicit in CBAM and elicited from stakeholders. In CBAM, evaluation
of design decisions and choices tend to align technical design decisions with their business
potentials. Scenarios of interest are generally the system quality constraints which address a
quality attribute. Moreover, DAO are the set of diversified architecture options that deal with
these scenarios. Based on the business requirements, some critical capabilities are candidates
for diversification. The combination of these diversified decisions form a dao. For instance,
the candidate solutions of diversifying for performance are different from those for energy
consumption, and so forth.

In our approach, exercising each single option dao can be formulated as a call option
[24], with an exercise price and uncertain value. Our approach aims to maximise the benefit
and minimise the cost of applying diversified options on a system’s quality attributes over
time, given the following information that must be specified:

• The set K of capabilities selected for diversification. Examples of capabilities are data
collection, connectivity, processing, routing topology, and data management.

• The set D of architecture decisions. An architecture decision dka ∈ D specifies an archi-
tecture component a to implement a given capability k ∈ K. For example, architecture
decisions for the capability of data collection could be performed either through fixed,
mobile, or fixed+mobile things.

• The set Q of qualities of interest. Response time and network usage are examples of
quality attributes of interest.

• Each dka has a cost and quality. The cost of each architecture decision is cka and
quality is qka, where ka identifies a decision dka ∈ D, c is a measure of cost, q ∈ Q is a
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measure of quality. In particular, each architecture decision dka will be associated to
one measure of cost and |Q| measures of quality.

• A set of diversified architecture options DAO, where |DAO| represents the number
of DAO and each daoi ∈ DAO is composed of a set of architecture decisions. For
example, in iTransport, the architect has decided to diversify the type of things (d1),
which indicates the usage of fixed and/or mobile sensors (d13), whereas performing
all the computation (d2) in the cloud (d21) forming dao3. Other examples of DAO are
found in Table 4.1.

Step 2: Assessing the weight of each quality of interest

A ranking weight (wq) must be chosen by the stakeholders to reflect the relative importance
of each quality attribute to the benefit of the system, which should satisfy equation 4.1.
Generally, stakeholders have diverse interests and quality needs [185], so there are several
researches dedicated to reach a common understanding between stakeholders [186, 187].
This is outside of our scope.

∑wq = 1;∀q : wq ⩾ 0 (4.1)

4.4.2 Elicit Benefits and Costs

Here, we aim to determine the benefits and costs accompanied by each dao from stakeholders.

4.4.2.1 Step 1: Eliciting the benefits of the diversified architecture options

Classically, any dao has an effect on a multitude of quality attributes. A dao will favour
certain quality attributes and hurt others, which is represented in CBAM as a contribution
score [9]. It shows how the architects "feel" about the impact of architecture decision on
quality attributes of interest. In CBAM, it is theoretically rated using -1 to 1 scale, where ‘1’
resembles the best impact on quality attribute (e.g. high throughput value) and ‘-1’ means
the opposite. Unlike CBAM, our approach adopts the utility with quality model, which
infers the utility gained for quality attributes in question by investing (i.e. deploying) in
this diversified architecture option. These utilities are elicited from stakeholders, which
are input to the binomial trees. The utility gained from deploying a dao on a particular
quality of interest is denoted by V q

daoi
. The benefit of an architecture option Bdaoi is the

weighted sum of utilities gained from deploying a dao on a particular quality of interest V q
daoi

,
where each quality attribute is assigned a ranking weight wq (equation 4.2). For example,
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if the architect has assumed that dao4 adds utility to the system through response time
(V RT

daoi
= $1800) and network usage (V NU

daoi
= $1200), and the stakeholders set equal ranking

weight for response time and network usage. Therefore, the benefit of dao4 is equal to
wRTV RT

daoi
+wNUV NU

daoi
= 0.5∗1800+0.5∗1200 = $1400.

Bdaoi = ∑
q∈Q

wqV q
daoi

;∀q : V q
daoi

⩾ 0 (4.2)

The V q
daoi

is elicited from the architects based on their knowledge about the expected dao

behaviour. If the architects do not have enough knowledge about the application domain,
they estimate V q

daoi
by looking at similar application architectures, domains, cross company

data and publicly available benchmarks [26, 42].

4.4.2.2 Step 2: Eliciting the costs of diversified architecture options

Our consideration for the cost is situation dependent. As an example, the cost can relate to
one or more dimensions of interest. This can include the cost of configuration, deployment,
testing, maintenance, leasing, execution, etc. These costs can be estimated using parametric
models, back-of-the-envelope estimation, and reliance on experts (i.e. architects and other
stakeholders) [110, 188].

Classical CBAM uses the common measures for determining the costs, which involves
the implementation costs only. Unlike CBAM, our approach embraces the switching costs
between decisions, which is equivalent to primary payment required for purchasing a stock
option, denoted by scdaoi . A switching cost could be the deployment cost of dao, which is
considered once the architect decided to replace the current dao. This is in addition to the
costs of configuration, maintenance, etc (as mentioned earlier), similarly to the exercise price,
denoted by cdaoi . The cost is computed using equation 4.3, where ν considers a variety of
costs (e.g. operating cost, leasing cost, etc).

cdaoi = ∑cν
daoi

(4.3)

It is essential to note that CBAM implements the architecture decisions with high benefit
and low cost [9]. On the other hand, we believe that some architecture decisions could
provide high cost with low benefit initially or high cost with high benefit, but a much higher
benefit in the long-term that outweighs the cost. To this extent, the long-term benefit is the
key factor for the decisions’ evaluation.
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4.4.3 Evaluate

In real options analysis, the value of a project’s cash flow is analogous to the stock price
in a financial option [176]. We employ a different approach by encompassing the utility

with quality (i.e. V q
daoi

). Our stock price is translated to the system value Sdaoi and benefit
Bdaoi (i.e. weighted sum of utility values), whereas the exercise price is the cost of imple-
menting/deploying that dao (i.e. cdaoi). The volatility is the architecture’s fluctuation (i.e.
uncertainty in QoS), which is represented using p (explained in Section 4.4.3.2). We consider
the risk-free interest rate r to be a known market value by the architect [176]. The time until
the opportunity disappears (i.e. date on which dao implementation decision must be taken)
is equivalent to the time to expiration.

For our analysis, the real options will help us in deciding which dao to embed in the
architecture and when. This is based on the value of the options created by the chosen
dao. As aforementioned, diversification decisions can be formulated as options that can be
evaluated in the presence of uncertainty. DAO supporting diversification can be valued as
calls. The value of these calls provide the right without symmetric obligations to switch to a
new dao if the exercise is favourable. Further, our approach embraces the option to wait to
switch, where the rational investigation of an option and waiting for provocative outcome
has a positive impact on switching options. Another use of options valuation is abandoning

an option, if the current one is no longer favouring the system.
We have exploited the binomial pricing calculation approach proposed by [25, 183, 176,

42] to calculate the option value. The binomial model provides a visual representation for
the options. It is a constructive aid aiming to show the suitable time slot for exercising an
option. In other words, it indicates the cost-benefit of diversified options over time. For
each level of the binomial tree, the up and down node values are important in determining
the system value rise and fall, which is ultimately used to calculate the option value. Our
method aims to determine the impact of applying each dao (i.e. utility) on the system quality
attributes, which is computed at every time slot t, where t = T indicates that the time equals
to T unit time of interest. In the binomial tree [25, 183, 176], the option is exercised at time
T. So, OnePeriod tree assumes that the option is exercised at time T = OnePeriod (i.e. one
tree level), TwoPeriod assumes that the option is exercised at T = TwoPeriod (i.e. two tree
levels), etc. We measure the benefit and costs (operating and switching) in dollars. Next, we
will explain the steps of binomial real options evaluation along with Figure 4.4 and Algorithm
1.
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ALGORITHM 1: EvaluateDAOUsingBinomialRealOptions()
Input: diversified architecture options DAO, number of DAO (|DAO|), System initial

value Sini, risk-free interest rate r, utility trees (i.e. V q
daoi

(t), which represents
the increase/decrease in the quality attribute value over time), operating cost
cdaoi(t), switching cost scdaoi , and listO f Periods which represents the number
of exercise strategies

Output: net value NVdaoi

1 for i = 1 to |DAO| do
2 foreach period ∈ listO f Periods do
3 T = period
4 for t = 0 to T do

{Calculate the benefit and system value of daoi by forward passing through
all the utility tree (upper and lower nodes)}

5 for q = 1 to |Q| do
6 Bdaoi(t) = ∑

q∈Q
V q

daoi
(t)

end
7 Sdaoi(t) = Sini +Bdaoi(t)

end
{Calculate the likely rise Ou(t) and fall Od(t) of payoff with each dao for the

final node in tree (i.e. t = T )}
8 Ou(t) = max(0,Sdaoi(t)− cdaoi) {Use Sdaoi(t) from upper node}
9 Od(t) = max(0,Sdaoi(t)− cdaoi) {Use Sdaoi(t) from lower node}

10 for t = T −1 to 0 do
{Calculate the value rise factor u and value fall factor d }

11 u =
Sdaoi(t+1)

Sdaoi(t)
{Use Sdaoi(t +1) from upper node}

12 d =
Sdaoi(t+1)

Sdaoi(t)
{Use Sdaoi(t +1) from lower node}

{Calculate the risk-adjusted probability p }
13 p = 1+r−d

u−d
{Calculate the option value of exercising daoi }

14 Odaoi(t) =
pOu(t+1)+(1−p)Od(t+1)

1−r
end

15 Operiod
daoi

= Odaoi(0)
end

16 Odaoi = ∑
period

Operiod
daoi

{where period ∈ listO f Periods

{Calculate the net value of daoi }
17 NVdaoi = Odaoi − scdaoi

end
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4.4.3.1 Step 1: Anticipating the utility values and calculating the system value

As a start, the favourable and unfavourable outcomes at each time period are anticipated using
a utility tree from the architects. A sample of a utility tree is shown in Figure 4.4 (left side),
where each node corresponds to the utility gained from implementing daoi on a particular
quality attribute over timestep t (i.e. V q

daoi
(t)). For instance, in the case of improvement in

utility at time t +1, the elicited utility is placed in upper nodes (i.e. node B in Figure 4.4
(left side)), whereas for degradation in utility at time t +1, the elicited utility is placed in
lower nodes (i.e. node C in Figure 4.4 (left Side)). The same process is repeated till we
reach the final nodes of the tree (i.e. t = T ). Each quality attribute has its own utility tree (i.e.
utility tree for response time, utility tree for energy consumption, etc). We suggest reading
subsection 4.5.2.1 for better illustration and discussion about the utility trees. The benefit of
a dao over time Bdaoi(t) is computed using equation 4.4.

Bdaoi(t) = ∑
q∈Q

wqV q
daoi

(t) (4.4)

Let Sdaoi(t) be the system value after implementing a particular dao causing either
incremental improvement or degradation at time t (line 4-7), which is equivalent to the
uncertain stock price when modelling an American call option. It is evaluated with respect to
the initial system value, denoted by Sini and benefit gained from a dao over time t (Bdaoi(t)),
as depicted in equation 4.5. In equation 4.5, we used equation 4.4 with the values (i.e.
V q

daoi
(t)) from the utility tree to compute Bdaoi(t).

Sdaoi(t) = Sini +Bdaoi(t) = Sini + ∑
q∈Q

wqV q
daoi

(t) (4.5)

As seen in Figure 4.4 (right side), the system values at each timestep Sdaoi(t) are used as
a part of the construction of the binomial tree. In particular, they are used to calculate the
likely rise and fall of payoff with DAO, as shown in the next step.

4.4.3.2 Step 2: Calculating the likely rise and fall of payoff with DAO

Let Ou(t) be the likely rise of payoff at time t, i.e. rising option value from implementing a
dao, whereas Od(t) is the likely fall of payoff , i.e. falling option value from implementing a
dao. The Ou(t) and Od(t) are computed using the same formula (i.e. equation 4.6). Except
that system value of a daoi at t=1 from the upper node (i.e. node B in Figure 4.4 (left
side)) is used to compute Ou(t) (line 8), whereas system value of a daoi at t=1 from the
lower node (i.e. node C in Figure 4.4 (left side)) is used to quantify Od(t) (line 9) and so
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Figure 4.4 An illustration of the utility trees (left side) and binomial trees (right side) for a TwoPeriod
tree.

on. Besides, cdaoi is the cost for maintaining/configuring/operating a dao (corresponding
to exercise price), computed using equation 4.3. In our case, equation 4.6 is applied first at
t = T , i.e. the final nodes in the tree, as seen in Figure 4.4.

Ou,d(t) = max(0,Sdaoi(t)− cdaoi) (4.6)

4.4.3.3 Step 3: Calculating the option value of exercising a dao

The option value reveals at what time t it is favourable to take the decision, i.e. exercise
an option. It also illustrates the long-term value of a dao. In step 2, we have demonstrated
the process of quantifying the option values (i.e. Ou(t) and Od(t)) at the final tree level. To
compute the option value of exercising a diversified architecture option Odaoi(t) for other tree
levels (i.e. from t = T −1 to t = 0), we need first to compute the following coefficients u, d,
r, and p. The system value benefiting from dao i.e. value rise, is denoted by the up factor u,
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whereas d is the down factor denoting the system value being hurt from dao i.e. value fall. In
our approach, the u and d coefficients are computed from the expected system values, elicited
from architects. However, there are other ways to calculate them in classical n-level binomial
trees [183, 176]. To be consistent with the classical binomial tree, explained in Section 4.2.2,
we assume that Sdaoi(t +1) = uSdaoi(t). For instance, at t = 0, Sdaoi(1) in the upper node
is equal to uSdaoi(0), whereas Sdaoi(1) in the lower node is equivalent to dSdaoi(0). In this
context, the u and d are computed using the same formula (i.e. equation 4.7), as seen in
Figure 4.4 (right side). Except that Sdaoi(t +1) is used from the upper node to compute u

(line 11), whereas Sdaoi(t +1) is taken from the lower node to determine d (line 12).

u,d =
Sdaoi(t +1)

Sdaoi(t)
(4.7)

To compute the risk-adjusted probability, we use equation 4.8 (line 13). The risk-free
interest rate r is an estimated theoretical concept, and a measure of an economy’s long-
run growth rate in a country [189]. The u and d should satisfy the following constraint:
d < 1+ r < u [42]. The latter is important, to avoid a negative risk-adjusted probability p

[183].

p =
1+ r−d

u−d
(4.8)

Therefore, the option value is computed using equation 4.9 (line 14).

Odaoi(t) =
pOu(t +1)+(1− p)Od(t +1)

1− r
,0 ≤ t ≤ (T −1) (4.9)

Since we adopt a backward-looking strategy for the quantification of option value,
therefore, the option value of a dao for a period Operiod

daoi
is equal to option value at the first

node of the tree (i.e. Odaoi(0)), as seen in equation 4.10 (line 15). This is analogous to Figure
4.4.

Operiod
daoi

= Odaoi(0),where period ∈ listO f Periods (4.10)

Here, we will summarise the previous steps through Figure 4.4. Let us consider the case
of having TwoPeriod tree as in Figure 4.4, we initially compute system value Sdaoi(t) for
all the nodes in the upper orange cells of nodes (A-F) using equation 4.5. Since we adopt
backward-looking strategy for the quantification of option value, then the option value will
be computed from final node to start node. For example, at T = TwoPeriod, we computed
the Ou(2) and Od(2) in lower green cells (at nodes D, E, and F) using equation 4.6. After
that, we determined the corresponding u and d factors (equation 4.7), then p is computed
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using equation 4.8. Note that r is a known market value estimated from the architects. We
then used the equation 4.9 to quantify the option value Odaoi(t). The process of calculating
u, d and p to quantify the option value is repeated for Odaoi(1) and Odaoi(0) (i.e. till we
reach the start node). The final option value OTwoPeriod

daoi
is at t = 0, which is computed using

equation 4.10.
In our approach, we adopt a compound option strategy [190, 191]. This type of strategy

implies that exercising an option in a time t enables further options in the upcoming times.
For example, in the context of iTransport, the compound options mean that exercising an
option related to energy consumption can enable further options to maintain that QoS even
further. The premise is in finding a diversified architecture option that can deal with the
energy consumption constraint, every time change occurs. This change could happen due
to the heterogeneity of devices in computational power and excess load. In this context, at
design-time, the architect attempts to find a dao that can "survive", i.e. maintain the required
QoS, despite these uncertainties. Therefore, the option value will be calculated by adding
the option value for several periods using equation 4.11 (line 16), after computing them
separately, as shown in equation 4.10.

Odaoi = ∑
period

Operiod
daoi

,where period ∈ listO f Periods (4.11)

For example, if we have OnePeriod, TwoPeriod, and ThreePeriod exercise strategies, then
they are computed as in equation 4.12.

Odaoi = OOnePeriod
daoi

+OTwoPeriod
daoi

+OT hreePeriod
daoi

(4.12)

We then compute the net value of each dao (NVdaoi) to determine the "suitable" dao after
switching using equation 4.13 (line 17). An option should be exercised only when the net
value of exercise is positive [192].

NVdaoi = Odaoi − scdaoi (4.13)

After quantifying the net value for each dao, we exclude the DAO with negative net
values from the shortlist of DAO to be deployed, as this indicates that the costs of these
options exceed its benefits and hence it is not favourable to deploy them. In this context,
this would aid the architect in shortlisting the DAO for deployment as part of the continuous
evaluation framework.

In the next section, we show a step-by-step example of how to construct a binomial tree
and calculate the option values through iTranport case study.
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4.5 Evaluation and Discussion

In this section, we aim to show how the economics-driven design-time approach can evaluate
the architecture options for uncertainty in the presence of varying QoS constraints. Section
4.5.1 introduces the experimental settings, whereas Section 4.5.2 demonstrates the application
and evaluation of the approach on the iTransport case study.

4.5.1 Experimental Setting

The major business goals of iTransport is improving its performance (i.e. response time
and network usage) and energy consumption. This is translated into a set of constraints,
which address those quality attributes. The quality attributes of interest are: response time

of an application (in milliseconds ms) that is measured through the application’s end to end
delay; energy consumption (in mega joules MJ) that is the total energy consumption by all
the devices in the application; network usage (mega bytes MB). The sources of uncertainty in
iTransport application come from the hyper-connectivity (nodes leave and join) and varying
network delays due to network congestion. The constraints employed for evaluation in this
chapter are summarised in Table 4.2. Historical performance and experts’ judgement can
inform the adjustment of the prior constraints [193, 35]. The cost is a composite of operating
cost, and switching cost that is added once we switch. In the context of iTransport, the
average cost encompasses thing’s connectivity (includes switching), execution in the cloud
and/or fog, and other costs mentioned in Chapter 3. After that we elicit the operating and
switching costs from stakeholders in dollars ($), as depicted in Table 4.3. Risk-free interest
rate is hard to estimate or apply on the case. Consequently, for simplicity, we assumed that
the risk-free interest rate r is 1.00% throughout the evaluation.

4.5.2 Evaluation

The next series of experiments aim to show how the proposed design-time method could be
applied on iTransport through two case scenarios.

4.5.2.1 Case 1: Energy Consumption as a Concern

Motivation: In this experiment, we aim to show how the real options theory can complement
the architect’s decision related to the optimal architecture option and whether the selected
option is "suitable" or not, by focusing on a single quality concern. It will also illustrate
whether a more diversified option embeds further options (i.e. has better added value).
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Table 4.2 Quality Attribute Responses

Case Quality Attribute Constraint
1 Response Time Application should handle the

request in ≤ 4000 ms
Network Usage Average load on the network

≤ 1Mbps
Energy Consumption Average energy consumption

in the whole architecture op-
tion ≤ 110 MJ

2 Response Time Application should handle the
request in ≤ 350 ms

Network Usage Average load on the network
≤ 500Kbps

Energy Consumption Average energy consumption
in the whole architecture op-
tion ≤ 120 MJ

Table 4.3 Costs of diversified architecture options

daoi Operating Cost Switching Cost
1 $1800 $600
2 $1000 $500
3 $1200 $1000
4 $1500 $700
5 $900 $300
6 $1100 $900
7 $1600 $600
8 $1200 $400
9 $1500 $700

Experimental Setup: The first case scenario for evaluation is Case 1, shown in Table 4.2.
The architect chooses the most suitable dao for implementation aiming to improve the long-
term energy consumption with respect to the first constraint scenario in Table 4.2. We assume
that, currently, the response time and network usage are not critical attributes and maintaining
the energy consumption is the concern. Consequently, we did not consider additional utility
gained from the response time or network usage. The architect has suggested dao1, which
includes a set of fixed IoT devices and processes the data through the cloud, as the best option
for deployment. This choice is based on his/her knowledge and experience. Therefore, in
this experiment, we aim to show whether this choice is "suitable" for the concerns.
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The long-term value of the current option is evaluated to determine its benefit, in com-
parison with the other diversified architecture options. The utility is significantly affected
by the outcome of the uncertain quality attribute energy consumption (measured in MJ).
The expected favourable and unfavourable outcomes at each time period are depicted using
utility trees in Figure 4.5. Note that we assume that every single time period is equivalent
to 40 timesteps. For instance, at node D in Figure 4.5a, a utility of $950 is gained from
investing in energy consumption after 80 timesteps (V EC

dao1
(t = 80)). All the utility values are

elicited from the architects. Since we only have one quality constraint (i.e. wEC = 1), then
Bdaoi(t) =V EC

daoi
(t) when quantifying all system values Sdaoi(t). Table 4.4 summarises the op-

tion and net value of all the DAO for energy consumption constraint. We have demonstrated
in this chapter some examples for utility trees and binomial trees for illustration purposes,
whereas the rest are shown in Appendix B.
Analysis: Next, we will demonstrate the necessary steps for valuation of options using
binomial option pricing model. We assume that the initial system value Sini for all the DAO is
$1000, throughout the evaluation process. Generally, for the binomial trees in Figure 4.6-4.7,
each node in the tree consists of two cells: upper and lower. The upper orange cells denote
the system value (equation 4.5), whereas the lower green cells indicate the option value
(equation 4.6 and 4.9). For illustration purposes, we will show how the option value of dao1

is calculated, whereas the other DAO follow the same procedures.
Consider node D from the tree for the evaluation of 80-timestep as presented in Fig-

ure 4.6b, where the upper orange cell value is computed as follows:

Sdao1(t = 80) = Sini +Bdao1(t = 80) = 1,000+950 = $1,950

where Bdao1(t = 80) is the benefit with respect to utility gain when lowering the energy
consumption. The lower green cell value is computed as follows:

Odao1(t = 80) = max(0,Sdao1(t = 80)− cdao1) = max(0,1,950−1,800) = $150

Consider also node B from the tree for evaluating 80-timestep as presented in Figure 4.6b,
the upper orange cell value is computed as follows:

Sdao1(t = 40) = Sini +Bdao1(t = 40) = 1,000+900 = $1,900



4.5 Evaluation and Discussion 93

After that we compute the u and d values as follows:

u =
Sdao1(t = 80)
Sdao1(t = 40)

=
1,950
1,900

= 1.03

where Sdao1(t = 80) is taken from the upper cell in node D, and Sdao1(t = 40) is used from
the upper cell in node B.

d =
Sdao1(t = 80)
Sdao1(t = 40)

=
1,900
1,900

= 1.00

where Sdao1(t = 80) is taken from the upper cell in node E, and Sdao1(t = 40) is used from
the upper cell in node B.

(a) dao1 (b) dao2

(c) dao3 (d) dao4

Figure 4.5 Utility Tree of all options for Case 1.

The risk-adjusted probability p is computed as follows:

p =
1+ r−d

u−d
=

1+0.001−1.00
1.03−1.00

= 0.334
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Note that u, d, and p are calculated in the rest of analysis using the same formulation as
above. After that, the lower green cell value is computed as follows:

Odao1(t = 40)=
p∗Ou(t = 80)+(1− p)∗Od(t = 80)

1− r
=

0.334∗1,950+0.666∗1,900
1−0.01

= $115.55

Consider, then, node A from the tree for evaluating 80-timestep, the upper orange cell value
is calculated as follows:

Sdao1(t = 0) = Sini +Bdao1(t = 0) = 1,000+800 = $1,800

The lower green cell value is computed as follows:

Odao1(t = 0) =
p∗Ou(t = 40)+(1− p)∗Od(t = 40)

1− r
=

0∗115.55+1∗16.54
1−0.01

= $16.38

(a) T=40-timestep (b) T=80-timestep (c) T=120-timestep

Figure 4.6 Binomial Tree of dao1 for Case 1.

Therefore, option value formula for 80-timestep O80-timestep
dao1

is equal to:

O80-timestep
dao1

= Odao1(t = 0) = $16.38
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(a) T=40-timestep (b) T=80-timestep (c) T=120-timestep

Figure 4.7 Binomial Tree of dao1 for Case 1.

The same formulation is used to compute option value for 40-timestep O40-timestep
dao1

(Figure
4.6a) and for 120-timestep O120-timestep

dao1
(Figure 4.6c). Finally, the option value formula Odao1

of dao1 (Figure 4.6) is:

Odao1 = O40-timestep
dao1

+O80-timestep
dao1

+O120-timestep
dao1

= 16.54+16.38+4.88 = $37.80

The same formulation is applied to other diversified options. The corresponding operating
costs to each dao is taken from Table 4.3. The option value of dao2, as computed from
Figure 4.7 is:

Odao2 = O40-timestep
dao2

+O80-timestep
dao2

+O120-timestep
dao2

= 209.11+207.04+199.00 = $615.15

For the other options as seen in Table 4.4, Odao3=$2426.41, Odao4 =$949.96, Odao5

=$1,221.42, Odao6 =$1,821.59, Odao7 =$33.06, Odao8 =$174.15, and Odao9 =$339.73. Note
that if dao1 will continue to be deployed, then there is no switching cost (i.e. $0), because it
is already selected for deployment by the team of architects. From the above valuation, it
is clear that the currently selected option for deployment dao1 has low option value ($37.8)
as compared with dao2 to dao6. However, it is still better than dao7, dao8, and dao9. More
specifically, when energy consumption becomes important, the current dao is no longer
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Table 4.4 Option and Net values of diversified architecture options for Energy Consumption Concern
(i.e. Case 1). Note that the daoi with the highest net value is highlighted in gray.

daoi Option Value Net Value NVdaoi

Odaoi (i.e. after deducting switching cost)
1 $37.80 $37.80
2 $615.15 $115.15
3 $2,426.41 $1,426.41
4 $949.96 $249.96
5 $1,221.42 $921.42
6 $1,821.59 $921.59
7 $33.06 $-566.94
8 $174.15 $-225.85
9 $339.73 $-360.27

applicable. So by switching to other dao, the architecture could be able to cope with the
uncertainties. Further, dao3 provides the highest value of $2,426.41 as compared to other
options. Even though the switching cost is quite high ($1,000), yet dao3 had the best net
value of $2,426.41−$1,000 = $1,426.41 as compared to dao1 (which provides a value of
($37.80−$0 = $37.80)) and the other options. Therefore, it is more favourable to switch
to dao3, which creates the best value. This may be because dao3 is more diverse than dao1,
due to the presence of different types of things (fixed/mobile). So dao3 is more flexible than
dao1 in handling and improving the energy consumption concerns, because the mobile things
may consume less power due to their hyper-connectivity (nodes leave/join). We can see from
Table 4.4 that dao7, dao8, and dao9 provided a negative net option value. This indicates that
these DAO will not be able to handle the run-time uncertainties. Therefore, it is advantageous
to eliminate them from the list of candidate options for run-time evaluation.

4.5.2.2 Case 2: Response Time and Network Usage as Concerns

Motivation: In this experiment, we aim to determine the options’ impact on two quality
attributes: response time and network usage. The evaluation is performed with respect to
Case 2 in Table 4.2. We will also show whether the architect’s choice is complementary to
the option’s value and whether diversity is always effective or not.
Experimental Setup: As a starting point, we elicit the utility outcomes from the uncertain
variable in response time (measured in seconds) and network usage (measured in Kbps).
This is translated into utility trees for response time and network usage of all the diversified
architecture options. Consider dao1 as an example (Figure 4.8), there are few possible utility
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outcomes for this option, as shown in Figure B.9a and B.9b. Investing more in network usage
(Figure B.9b) could result in a noticeable improvement, i.e. more value ($2000 at node G),
which could enhance the lifetime of the application. However, in some occasions, investing
more in another quality attribute, such as response time, may not deliver a remarkable
value. This is clearly seen in Figure B.9a, after 80 timesteps the system is not creating any
noticeable added value. For Case 2, the architect’s initial choice was dao4 due to the presence
of fog-cloud as a computation location, so here we will illustrate whether it will continue
to deliver value. Now, we will examine the option value of the architect’s choice dao4 and
other diversified options, with respect to response time and network usage. We exploit the
same rationale used in Case 1. In Case 2, the stakeholders have set the following ranking
weights: wRT = 0.5 and wNU = 0.5. Therefore, Bdaoi(t) = 0.5∗V RT

daoi
(t)+0.5∗V NU

daoi
(t) when

quantifying all system values Sdaoi(t). The corresponding operating and switching costs to
each option is taken from Table 4.3. In this case, we have developed two scenarios: best and
worst, which will explained thoroughly in the analysis.

(a) Utility Tree for Response time of dao4. (b) Utility Tree for Network Usage of dao4.

Figure 4.8 Utility Tree of dao4 for Case 2 (Best Scenario).

Analysis (Best Case Scenario): Let us consider the case where the architects are confident
about their perceptions with respect to DAO utilities In particular, the architects have very
good knowledge about the DAO utilities. Next, we will demonstrate how the approach will
compute the option value for more than one quality attribute (i.e. response time and energy
consumption) where dao4 is used as an example. Consider node D for the evaluation of
80-timestep as presented in Figure 4.9. The system value, in the upper orange cell value, is
calculated as follows:

Sdao4(t = 80) = Sini +Bdao1(t = 80) = Sini + ∑
q∈Q

wqV q
daoi

(t = 80)
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Sdao4(t = 80) = Sini +0.5∗V RT
daoi

(t = 80)+0.5∗V NU
daoi

(t = 80)

= 1,000+0.5∗2,400+0.5∗1,800 = $3,100

The lower green cell value is computed as follows:

Odao4(t = 80) = max(0,3,100−1,500) = $1,600

The other system values and options are calculated using the same formulation as in Case 1.
Finally, the option value formula Odao4 of dao4 is:

Odao4 =O40-timestep
dao4

+O80-timestep
dao4

+O120-timestep
dao4

= 1,015.05+1,005.00+1,010.04= $3030.09

(a) T=40-timestep (b) T=80-timestep (c) T=120-timestep

Figure 4.9 Binomial Tree of dao4 for Case 2 (Best Scenario).

From Figure 4.9, we found that the current architect’s option would be unable to deal
with emerging uncertainties (i.e. lacks future options). It has low option value of $3,030.09
with an expensive operating cost of $1500, as compared to other options. Except for dao7,
dao8, and dao9, which produced the lowest option and net values (i.e. they will be excluded
from selection). Consequently, it is better to abandon dao4 and switch to a more diversified
option. Particularly, it is better to invest in dao3, dao5, and dao6 (because they have the
best option values as depicted in Table 4.5), rather than dao4. By considering the switching
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Table 4.5 Option and Net values of diversified architecture options for Response Time and Network
Usage concerns (i.e. Case 2 for Best case scenario). Note that the daoi with the highest net value is
highlighted in gray.

daoi Option Value Net Value NVdaoi

Odaoi (i.e. after deducting switching cost)
1 $3,633.29 $3,033.29
2 $3,746.98 $3,246.98
3 $4,952.04 $3,952.04
4 $3,030.09 $3,030.09
5 $4,494.36 $4,194.36
6 $6,583.76 $5,683.76
7 $481.56 $-118.44
8 $34.57 $-365.43
9 $183.92 $-516.08

costs in Table 4.3, the results remain the same, paying $0 for dao4 provides a value of
(3,030.09-0= $3,030.09) less than dao3, dao5 and dao6. Even spending $1,000 for dao3

(4,952.04-1,000=$3,952.04), $1,200 for dao5 (4,494.36-300=$4,194.36) and $900 for dao6

(6,583.76-900=$5,683.76) creates more value than with dao4. Although dao3 was the winner
in the previous scenario, yet it provides lower value than dao6. This is due to having much
lower option value and higher switching cost. This is a case where we did not benefit from
diversity of having fixed and mobile devices, due to having lower net value. Conversely, a
more diversified option is necessary which may improve the response time and network usage
concerns, due to the option of having both cloud and fog for computations and processing.
This depicts that diversifying is based on the context and quality attribute to be achieved.
However, further evaluation is necessary to validate the significance of real options to
diversity in other case studies. As depicted in Table 4.5, dao7, dao8, and dao9 also provided
a negative net option value, similar to Case 1. In this context, we recommend excluding these
DAO from the shortlisted options for run-time evaluation, as their deployment would incur
extra unnecessary costs.
Analysis (Worst Case Scenario): Let us consider the case where the architects are not
confident enough about their estimations with respect to the DAO utilities. This may be
due to their little knowledge about the software architectures in that domain and/or the high
uncertainty in QoS of such environments (e.g. IoT). In this context, the evaluation would
produce uncertain valuation of options. In Table 4.6, we illustrate the option value and net
value (i.e. after deducting the switching cost) for the DAO, whereas the utility and binomial
trees are shown in Appendix B. As depicted in Table 4.6, dao7, dao8, and dao9 will excluded
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Table 4.6 Option and Net values of diversified architecture options for Response Time and Network
Usage Concerns (i.e. Case 2 for Worst case scenario). Note that the daoi with the highest net value is
highlighted in gray.

daoi Option Value Net Value NVdaoi

Odaoi (i.e. after deducting switching cost)
1 $3917.13 $3317.13
2 $4193.36 $3693.36
3 $4346.37 $3346.37
4 $1222.00 $1222.00
5 $3746.76 $3446.76
6 $4493.42 $3593.42
7 $33.06 $-566.94
8 $174.15 $-225.85
9 $339.73 $-360.27

from implementation, because of their negative net value (i.e. similar to previous cases).
Further, dao4 showed the second lowest net value of $1222.00. In this context, the architect
would better abandon this option and switch to another one. For that, we found that dao2

provides the best net option value ($3693.36) and thus will be assigned for deployment at
run-time. However, we cannot guarantee that dao2 will be the best option and can "survive"
with dynamic environmental conditions at run-time. This is due to the following: (i) the low
confidence of the architects (i.e. hard for them to estimate the utilities); (ii) there is a small
difference between the net value of dao1, dao2, dao3, dao5, and dao6. To this regard, this
calls for run-time evaluation of the concerned DAO (i.e. dao1-dao6).

4.5.3 Discussion

In this chapter, we aim to answer the following:
RQ2: To what extent design-time architecture evaluation methods that adopt economics-
driven principles, such as real options analysis, can systematically evaluate complex
design decisions, such as diversification, in the face of operational uncertainties in dy-
namic environments? To answer this question, we have proposed an approach that makes
a novel extension to the CBAM. The method supports reasoning about complex design
decisions using real options. In particular, the architect could use the approach to incept
the building blocks of the architecture through pre-deployment valuation of decisions in
the presence of uncertainty (at design-time). Our approach can work in situations, where
the architect has some confidence about the value of the decisions and the likely dynamic
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scenarios that can confront the architecture (e.g. Case 1 and Case 2). However, in the absence
of data, expertise and/or knowledge of a dynamic environment, which is the case in IoT, the
evaluation of architecture decisions tends to be limited. For instance, there are some cases
(e.g. Worst Scenario for Case 2) where the architects had low confidence with respect to the
candidate architecture options and the way it can benefit from diversification. This could be
attributed to the fact that there is no documented guidelines, artefacts, and benchmarks for
evaluating diversity in design.

In the experimental evaluation, we have shown how our method can be used to determine
how and when diversification can contribute to long-term value (and when it may cease to
add value) in the presence of uncertainty. In particular, we emphasised the need for real
options to value flexibility in design and how the compound options strategy could illustrate
the added value of a diversified architecture option. For example, when the current diversified
option cannot accommodate the context changes (i.e. uncertainties), it is advantageous to
search for a diversified choice that embeds more options. Our computations also demonstrate
that an early exercise of an option may seem to deliver value as in Figure 4.6 and 4.9.
However, it is necessary to wait to determine the long-term value, which may differ by time.
Moreover, the approach could help the architect to determine the suitable dao for a particular
context. For instance, when the energy consumption was the concern in Case 1, dao3 was
recommended by the approach (Table 4.4). Whereas when low response time and network
usage were priorities in Case 2, the approach showed that the previously recommended dao3

(less diverse) and other options are not capable for that. Instead dao6 provided the best
option net value (Table 4.5). In this context, we have shown how the method can provide
systematic assessment to evaluate diversity in design using value-based reasoning, in the
presence of uncertainty. Another potential use for the design-time evaluation approach is
shortlisting the candidate architecture options. For example, from Case 1 and Case 2, it is
clear that dao7, dao8, and dao9 are not suitable candidates for adoption in both contexts.
This was due to their very low net values (i.e. less than zero), which means that they should
be eliminated from the list of candidates. In the Worst Scenario for Case 2 (Table 4.6), it was
hard for the architect to confirm which one of the DAO to deploy at run-time. This is due
to the minor difference between DAO net value, which happened in accordance to the little
expertise knowledge and high fluctuation in QoS in dynamic environments.
To apply this method in practice, there are some questions that need to be answered:

• Which stakeholders need to participate and in what ways? Our main objective is
providing a long-term economics-driven approach for architecture design and evolution
that can be used by software project stakeholders (i.e. architect, software development
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team, project management team, etc). IoT is an emerging paradigm that is currently on
its architecting phase and could benefit from the approach. IoT architects backed by
fog, cloud computing and sensing knowledge, IoT companies and vendors, govern-
mental and research institutions such as IoT-A consortium [194] need to participate to
develop these types of applications. The stakeholders share their knowledge to elicit
the application information and the impacts of each architecture decision on quality
attributes of interest. For instance, the utility values in Figure 4.5-4.8 manifest on how
the stakeholders/market would "feel" about the system, if a particular quality attribute
is improved.

• Which tools must be available? Software tools to construct the binomial trees are
necessary. If the architect wants to implement the iTransport IoT application, rather
than the general design-time evaluation method, some tools are required. In particular,
fixed and mobile things such as smart phones, physical and virtual sensors and other
online monitoring tools (e.g. Amazon Cloud Watch [195]) are necessary to stress test
the iTransport application, which can then aid the architect in estimating the utility
trees.

• Are there specific applications for which this will work best and are there other
contexts in which it would be possible or feasible? This method is generic, which
in turn could be applied in architecting and evaluating applications working on non-
stationary and unpredictable environments, such as IoT, cloud, grid deployments,
microservices and service-oriented architectures.

4.6 Conclusion

In this chapter, we have described an approach, which makes a novel extension of the
CBAM. The approach reasons about diversification in software architecture design decisions
in dealing with operational uncertainties in IoT using real options. The assumption here
is that a diversified architecture has better potential in meeting the requirements through
diversifying the architecture design decisions within the architecture. Architects and decision
makers can benefit from visualisation of value using binomial real options analysis to assess
the extent to which diversification of architecture design decisions can continue to deliver
value. The method can be used to inform the architect whether an architecture decision
needs to be diversified and what the trade-offs between cost and long term value resulting
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from diversification are. Real Options analysis could also aid the architect in shortlisting
the candidate architecture options for run-time evaluation and deployment. In particular,
Case 1 and 2 highlighted the suitable options (e.g. dao1-dao6) and others (e.g. dao7-dao9

with negative option values) that need to be eliminated. However, real options analysis is a
static method for economic modelling and forecasting of architecture decisions. This type of
design-time evaluation relies on human experts, who can only partially anticipate the fitness
and the extent to which an (diversified) architecture can cope with operational uncertainties,
unanticipated usage scenarios, and emergent behaviours. It is based on assumptions (i.e.
experts knowledge) which may (not) be valid in dynamic environments, such as IoT. For
instance, there are some cases (e.g. Worst Case scenario for Case 2) where the architects had
low confidence with respect to the candidate architecture options. This calls for a systematic
continuous evaluation method which intertwines design-time and run-time evaluation to
provide more informed assessment of design options and capture deviations from the design-
time evaluation for technical and value potentials (addressed in Chapter 5).



Chapter 5

Reactive Run-time evaluation

Context. Run-time properties of modern software system environments, such as IoT,
are a challenge for existing software architecture evaluation methods. Such systems are
largely data-driven, characterised by their dynamism, unpredictability in operation, hyper-
connectivity, and scale. Properties, such as performance, delayed delivery, and scalability, are
acknowledged to pose great risk and are difficult to evaluate at design-time only. Economics-
driven design-time evaluation is necessary as an initial step in a continuous evaluation
framework to determine the long-term value of architecture options and hence shortlist the
candidate options for next step evaluation. Run-time evaluation could potentially be used
to complement design-time evaluation, enabling significant deviations from the expected
performance values to be captured.
Objective. This chapter proposes a novel reactive run-time architecture evaluation method

suited for systems that exhibit uncertainty and dynamism in their operation.
Method. Our method uses machine learning and cost-benefit analysis at run-time to continu-
ously profile the architecture decisions made, to assess their added value. We demonstrate the
applicability and effectiveness of this approach in the context of an IoT system architecture,
where some architecture design decisions were diversified to meet QoS requirements.
Results. Our method showed its efficiency in automatically evaluating the cost-benefit
trade-offs of architecture options, detecting significant deviations in QoS, and selecting the
architecture option with most balanced cost-benefit trade-off. It also provides the architect
with the flexibility of tuning the approach’s parameter (e.g. the relative importance of data,
stability, monitoring intervals, etc) to best benefit from the evaluation. Finally, our exper-
iments show that it outperformed the baseline and state-of-the-art approaches, in terms of
selection of most balanced architecture options.
Conclusion. Our approach could potentially assist architects in evaluating design-time de-
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cisions at run-time, which could then inform deployment, refinement, and/or phasing-out
decisions.

5.1 Introduction

Intertwining and interleaving run-time evaluation with design-time has the potential to
change ad hoc and "trial and error" practices for architecting complex, scalable, and dynamic
software systems. Consider, for example the case where architects embed design diversity

[15] into their solutions in an attempt to meet quality requirements under uncertainty and to
mitigate risks and Service Level Agreement violations. Diversification [15] encompasses
design decisions and architecture tactics that can be used to adapt the system to unforeseen
changes [16]. For a given concern, architecture diversity "spices" the architecture with a
variety of design decisions and strategies (e.g. the choice of data collection and processing
strategies and tools), which can better cope with uncertainties at run-time. Diversified design
decisions, whether planned or accidental [17], can be expensive; their behaviour and value
can be best evaluated at run-time. However, there are no systematic continuous software
architecture evaluation methods that intertwine design-time and run-time evaluation.

This chapter addresses this gap by proposing a novel run-time architecture evaluation

method suited for systems that exhibit uncertainty and dynamism in their operation. In
this context, this chapter aims to answer the third research question introduced in Chapter
1: RQ3: How can run-time architecture evaluation using cost-benefit analysis and
machine learning techniques complement the design-time one to handle uncertainty?

Our method uses machine learning and cost-benefit analysis at run-time to continuously
profile architecture decisions for their added value, identify significant deviations from
previously expected benefits, and automatically determine which architecture options have
the optimal cost-benefit trade-off. As such, it can inform deployment, refinement and/or
phasing out architectural decisions.
Our method makes the following contributions to the research literature:

• a run-time method for tracking the benefits of architecture design decisions using
machine learning;

• a method inspired by multi-objective optimisation to evaluate the cost-benefit trade-offs
of architecture decisions at run-time.

The remainder of this chapter is structured as follows: Section 5.2 illustrates the necessary
background to understand the approach. Section 5.3 then discusses the research questions



106 Reactive Run-time evaluation

which the approach aims to answer. Section 5.4 presents the proposed approach. Section 5.5
explains the experimental settings and the use of the iFogSim tool. Section 5.6 reports on
evaluation of the research questions, Section 5.7 presents further analysis of the proposed
approach. Section 5.8 discusses the potential of the approach in providing extra insights to
the architects and stakeholders, as well as the limitations.

5.2 Background

In this section, we will provide the background necessary to understand the run-time evalua-
tion approach.

5.2.1 Reinforcement Learning

Reinforcement learning is an agent-oriented approach that learns using observed rewards,
by mapping situations to actions as an attempt to maximise a scalar reward signal [196].
Generally, it is a sequential decision-making process, where in every step, the agent chooses
an action and the reward is computed. It aims at optimising the rewards to get the best
possible outcome. Further, there is no supervisor, hence the reward signal is the only metric
for the determination of the right action to take. Moreover, reinforcement learning is a trial
and error learning process, where agents discover appropriate policies with acceptable reward
from the experiences of its environment. The major challenge of this type of learning is the
trade-off between exploration and exploitation [196]. The former indicates the examination
of non-optimal actions, which may provide better reward in the future. The latter denotes
implementing the optimal known decision to maximise the reward. For further elaboration,
the exploitation process may result in missing an optimal decision, which may yield better
cumulative future reward rather than the present best one. Whereas the cost of exploration
may exceed its benefits in some cases.

5.2.2 Time-Decayed Function

In [27], an exponential smoothing function was used as a time-decayed function to handle
the challenges of online class imbalance learning. The proffered function is similar to
reinforcement learning, which tracks the rewards resulting from actions via the occurrence
probability (percentage) of examples belonging to a particular class. It is different from
the traditional way of considering all observed examples equally, instead they are updated
incrementally by using a time decay (forgetting) factor to emphasise the current status of
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data and to weaken the effect of old data. In particular, the adoption of a time-decay function
is advantageous, due to the following [197, 198]: (i) it weakens the effect of old data; (ii) it
is very east to compute; and (iii) minimum data is necessary. In this context, our approach
leverages a time-decayed function to provide the architect with flexibility of tuning the
relative importance of past versus recent observations, when valuing the benefit of diversified
architecture options (further information on how time-decay function is used in our approach
is illustrated in Section 5.4.4).

5.2.3 Change Detection Approaches

Generally, in machine learning, the notion of concept drift denotes a change in the underlying
distribution of the data, which the approach is learning over time [5]. Examples of appli-
cation include making inferences based on financial data, energy demand and climate data
analysis, web usage or sensor network monitoring, and so forth [30]. Non-stationary and
uncertain environments are challenged by their rapid changes (i.e. drifts). Therefore, change
detection approaches are necessary to discover these concept drifts and hence perform the
corresponding actions. In [30], the change detection approaches are classified into the follow-
ing families: Hypothesis Tests (HT), Change-Point Methods (CPM), Sequential Hypothesis
Tests (SHT), and Change Detection Tests (CDT). The latter approaches determine variations
in the underlying data through statistical methods (e.g. sample mean, variance, etc), but they
differ on how data is processed [30].

HT and CPM operate on fixed-length observations, whereas SHT and CDT sequentially
investigate the incoming observations. Therefore, HT and CPM are not suitable for applica-
tions operating in an online manner, due to the high complexity with respect to analysing
all observations at once. Though SHT is partially suitable for online observations, it has the
following drawback: SHT examines the incoming observations until it has enough statistical
confidence for decision-making (i.e. a "drift" or "no drift" is detected), but after the deci-
sion is made it stops processing the observations. This is a common pitfall in this type of
sequential analysis, since the main objective is to continually collect information to ensure
true change detection. The CDT attempted to overcome the prior limitations, since they are
continuously tracking the observations (i.e. fully sequential manner), which in turn provide
reduced computational complexity. To this end, our approach adopts the change detection
test proposed by [5], but for a different purpose than that of [5].

In [5], the authors were interested in a supervised learning approach able to make accurate
predictions in non-stationary environments. In this case, their approach first attempts to
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Figure 5.1 A representation for the confidence interval statistical technique used by [5] as the change
detection test.

make a prediction, and then gains access to the true outcome from a supervisor. The average
classification error of the predictions is then computed and monitored over time to detect
changes in the probability distribution of the data. Changes are detected based on confidence
intervals of the classification error average, as depicted in Figure 5.1. In particular, if the
classification error is within the boundaries of the confidence interval (i.e. the upper and lower
limits of the interval) then we are confident that there is no change, otherwise a change is
detected. The upper and lower limits of interval are adjusted based on the level of confidence
required (further explanation is found in Section 5.4.5). Our approach, on the other hand,
can be understood in the framework of reinforcement learning, where there is no supervisor.
We use the CDT to detect changes in the benefit of software architectures over time, rather
than changes in the classification error as done in [5].

5.2.4 Multi-Objective optimisation

When evaluating software architectures, some of the evaluation approaches appeal to multi-
objective optimisation (MOP) [135]. MOP is not trivial as the process involves optimising
multiple conflicting objectives. For this purpose, multi-objective evolutionary algorithms
have been widely used, such as Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
[29]. NSGA-II relies on the concept of non-dominance to decide which solutions are better.
A non-dominated solution is a solution that is similar or better on all objectives, and strictly
better in at least one objective [199]. Non-dominated solutions can thus be seen as better
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Figure 5.2 An illustrative example of Pareto front and application of the knee point strategy. In
the example, the knee points inside the dotted box have better chances to win (i.e. provide a more
balanced trade-off between the two objectives).

solutions than dominated ones. NSGA-II thus searches for the set of solutions that are
non-dominated by any other solution, which can be referred to as a Pareto front. Figure 5.2
shows an illustrative example of a Pareto front, where both the first and second objectives are
to be maximised. NSGA-II then relies on humans to decide which of the solutions from the
Pareto front to adopt for a given problem. However, this choice may not be easy.

Some MOP scenarios use a knee point strategy on their Pareto fronts (Figure 5.2) to help
choosing a solution. A knee point is "almost always the most preferred solution, since it
requires an unfavourably large sacrifice in one objective to gain a small amount in the other
objective" [200]. In particular, as in Figure 5.2, moving in any direction out of the dotted
box may generate a small improvement in one objective, but with a large deterioration in
the other objective. Therefore, the knee point strategy promises to find the most balanced
decision. Our approach adopted a knee point strategy inspired by NSGA-II for MOP. Further
details on how this strategy is used in our approach are given in Section 5.4.6.

5.3 Research Questions

Deciding on which diversified architecture options to implement is not straightforward due
to the uncertainties related to the dynamicity and the unbounded scalability of the things
in composition, as exemplified in Chapter 3. Our approach thus leverages design-time
and run-time knowledge to embrace uncertainties. Based on design-time knowledge, the
architects can decide on the options to be implemented. We use CBAM to evaluate different
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architecture options potentials at design-time [14] (Chapter 4), where the architecture options
providing high option value are considered for diversification of the IoT Case study (Chapter
3). However, as the environment is dynamic, value potentials can fluctuate at run-time.
This leads to the following questions, which our chapter aims to answer:

RQ3.1 How to evaluate the benefit of each dao over time? A key requirement for deter-
mining the added value of a dao is through tracking its benefit over time based on
its quality attributes. In non-dynamic environments, tracking the benefit based on a
simple average of its value at each time t could be sufficient. However, in dynamic
environments, simple average may take a long time to reflect changes [27] in benefit.
A method to enable tracking the current benefit over time is necessary. It is essential to
note that we have found that a noticeable reduction in the price volatility of resources
(e.g. storage and processing) has begun from December 2017 [201]. In this context,
when the price volatility is so low, the use of exponential decay factor for cost is not
necessary. Therefore, we have provided a continuous measure only for the benefit of a
dao over time.

RQ3.2 How can run-time evaluation determine changes in dao’s value over time and in-
form subsequent decisions? To properly support decision-making, a run-time archi-
tecture evaluation approach should be able to identify when changes in the benefit of a
dao are truly significant. A decision to change the software architecture based on an
insignificant change in benefit would lead to an unstable system. Moreover, when a
significant change is detected, run-time evaluation should be able to identify which
dao provides a better trade-off between benefit and cost. Therefore, a method to detect
both significant changes and balanced trade-offs is desired.

To answer these questions, we propose a run-time evaluation approach inspired by self-
adaptive systems. The approach is able to profile situations where options can be more
effective and provide continuous updates on their value potentials. Specifically, to answer
RQ3.1, our approach adopts an exponential time-decay function inspired by reinforcement
learning [27]. This function enables us to track the current benefit of a dao by weakening the
effect of old data (i.e. emphasise on the recent versus past observations). To answer RQ3.2,
our proposed approach adopts change detection tests to check whether the benefit of the dao

currently being used is getting significantly worse [5]. If it is significantly worse, a method
inspired by the multi-objective optimisation literature [28, 29] is adopted to identify the dao

with the optimal trade-off between cost and benefit. Based on the profiling of options over
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time, it is also possible to determine which ones are not fit for the purpose, and hence could
be phased out.

The steps of the approach are summarised in Figure 5.3. Here, the design-time evaluation
is the one proposed in Chapter 4, which uses options theory (i.e. an economics-driven
approach) [176] to evaluate the diversified architectural options. The run-time evaluation is
our proposed approach in this chapter, which is discussed in Section 5.4.4, 5.4.5, and 5.4.6.

Figure 5.3 Steps of the approach, where the design-time evaluation (Chapter 4) forms the initial
design decisions and run-time evaluation complements it.

5.4 Proposed Approach

This section explains our proposed approach. Sections 5.4.4 explains how our approach
addresses RQ3.1. Sections 5.4.5 and 5.4.6 explain how our approach addresses RQ3.2.

5.4.1 Diversified Architecture Options (DAO)

Design diversity [15, 33, 167, 16, 14] is used to design for dependability under uncertainty:
the greater the uncertainty, the more diversity the architects may need to apply to improve
QoS (e.g. performance, energy consumption, etc). We denote a software architecture which
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Figure 5.4 An overview of the operational procedures of run-time evaluation approach.

embeds diversity as diversified architecture option dao and the set of dao as DAO. A dao

implements a set of diversified decisions to meet some quality goals and trade-offs. Consider
a set of architecture decisions D, where a decision dka ∈ D; k denotes a particular capability,
including connectivity, data collection, data management, etc; and a indicates the software
architecture component and connection that implements this capability k. For example, in an
IoT system, architecture decisions for the capability of data collection d1 could be performed
either through fixed d11, mobile d12, or fixed+mobile sensors d13. Another example is data
processing could be performed either in cloud d21, or fog+cloud d22. Therefore, daoi could
collect data from fixed and mobile sensors (d13) and processes it in cloud-fog (d23). Other
examples of DAO are depicted in Chapter 3 through Table 3.1. In the IoT system case, the
diversity in each dao can refer to using fixed and/or mobile fog devices for data collection
capability; using different cloud providers and heterogeneous fog devices for data processing
capability.
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5.4.2 The Proposed Approach In The Context Reinforcement Learn-
ing

Given a set of possible diversified architecture options (i.e. states), the current state of the
system denotes the use of current dao. The proposed approach is learning how to recognise
the dao with the most balanced cost-benefit trade-off at a given moment in time. This could
be translated as an "action" to take. In particular, the approach chooses the action (i.e. most
balanced dao) with respect to feedback (i.e. rewards) from the environment. This feedback
is captured from the observed quality attributes over time (i.e. benefit) and cost, through
a time-decayed function that comes from reinforcement learning [196]. In this sense, our
approach can be understood in the framework of reinforcement learning approaches.

However, from the context of software architecture evaluation, we need to do the follow-
ing: (1) perform reinforcement learning in an online way where bad actions chosen during,
e.g., early stages of the learning process, can have serious inappropriate consequences to the
architecture evaluation; and (2) consider multiple goals, rather than a single one. Therefore,
we cannot adopt existing reinforcement learning approaches out of the box.

To deal with (1), we adopt simulators and/or monitor the diversified architecture options
in parallel. We also then employ a pre-defined rule to decide which action to take (i.e. which
dao to choose) based on the modelled rewards. This rule was designed to minimise the
chances of making poor architecture recommendations. To handle (2), we get inspiration
from the MOP literature [28]. In our case, the suggestion of which dao to adopt is performed
in an innovative way, based on non-dominated solutions (a key concept adopted by many
MOP algorithms), knee point strategy, and the marginal loss (Section 5.4.6).

In a nut shell, our approach performs optimisation guided by machine learning strategies

(i.e. strategies derived from reinforcement learning), where a decay function is adopted that
continually learns and updates the aggregated benefit of monitored quality values forming
the exponential benefit. It then selects the balanced (knee) diversified architecture options
when needed based on the learned exponential benefits.

5.4.3 Stakeholder Involvement versus Automated Management

As seen in Figure 5.5, the stakeholders first specify the business goals, scenarios and diversi-
fied architecture options along with their anticipated utilities (i.e. manual evaluation). After
that these options are evaluated using binomial real options analysis (i.e. semi-automated
evaluation). The run-time evaluation complement the design-time decisions by assessing the
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Figure 5.5 An overview of the level of stakeholder involvement and automated management in the
design-time and run-time evaluation approach.

behaviour of architecture options over time, checking if it requires replacement and finally
recommends the most balanced dao instead (i.e. fully-automated evaluation).

5.4.4 Evaluating The Diversified Architecture Options

The goal of the evaluation is to determine what are the diversified architecture options, the

quality attributes of interest and how they will react over time. This step is divided into
further sub-steps as explained below and summarised in Algorithm 2.

1. Identifying the diversified architecture options and quality attributes of interest:
This step is inspired by the formulation of CBAM [9, 23], except for the fact that the
benefit and cost of options vary over time. It also explicitly considers that diversified
architecture options are composed of architecture decisions, which are defined by the
architects (Figure 5.4). In particular, the following must be specified:

• The set K of capabilities selected for diversification. Examples of capabilities are
data collection, connectivity, processing, routing topology, and data management.

• The set D of architecture decisions. An architecture decision dka ∈ D specifies an
architecture component a to implement a given capability k ∈ K.
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• Set of diversified architecture options DAO, where |DAO| represents the number
of DAO and each daoi ∈ DAO is composed of a set of architecture decisions.

• The set Q of qualities of interest. Response time and energy consumption are
examples of quality attributes of interest.

• Each dka has a cost and quality which may vary over time. The cost of each
architecture decision is cka(t) and quality is qka(t), where ka identifies a decision
dka ∈ D, c is a measure of cost, q ∈ Q is a measure of quality and t is a time stamp.
In particular, each architecture decision dka will be associated to one measure of
cost and |Q| measures of quality at each time stamp.

2. Assessing the weight of each quality of interest: A ranking weight (wq) must be
chosen by the stakeholders to reflect the relative importance of each quality attribute
to the run-time benefit of the system as depicted in Figure 5.4, which should satisfy
equation 5.1:

∑wq = 1;∀q : wq ⩾ 0 (5.1)

3. Quantifying the benefit of DAO over time: The benefit Bdaoi(t) of daoi at timestamp
t is a measure of the contribution of each quality attribute to value creation, i.e., added
value. In other words, each Bdaoi(t) is a function of qdaoi(t), ∀q ∈ Q, whereas each
qdaoi(t) is a composite of the quality qka(t) of each of its component architecture
decisions dka ∈ daoi. To compute qdaoi(t), the qualities of the architecture decisions
need to be aggregated based on how they are connected to each other (line 3). Table
5.1 depicts some aggregate functions for QoS. Note that, the approach could work on
any quality attribute, such as security, response time, throughput, etc, based on the
application context.

We monitor the benefits of dao as a whole. The modelling for qualities of dao follows
linear aggregation and is consistent with online QoS modelling approaches that have
been widely adopted in the service computing community (e.g., [202, 203]). Though
the use of linear aggregation for qualities is the widely adopted practice in service
community, it is acknowledged to be limited when capturing dependencies of decisions
affecting qualities. Additional online aggregation functions, for capturing dependencies
of decisions affecting qualities, is a non-trivial problem; its solution will constitute
a significant contribution to both the software architecture and services community,
which is worth separate reporting due to the complexity of its treatment.
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Each qdaoi(t) has one constraint, which follows one of the following possible formats:
qdaoi(t)⩽ qmax, qdaoi(t)⩾ qmin, qmin ⩽ qdaoi(t)⩽ qmax.

To place all quality attributes in the same scale (line 4-9), equation 5.2 is for scaling of
negative quality values (i.e. the lower the better, e.g. response time), whereas equation
5.3 could be used for scaling positive quality values (i.e. the higher the better, e.g.
throughput). q′daoi

(t) denotes the normalised value of a given q of a particular daoi at
time t.

q′daoi
(t) =


qmax−qdaoi(t)

qmax−qmin i f qmax −qmin ̸= 0

1 i f qmax −qmin = 0
(5.2)

q′daoi
(t) =


qdaoi(t)−qmin

qmax−qmin i f qmax −qmin ̸= 0

1 i f qmax −qmin = 0
(5.3)

Table 5.1 Aggregate Functions. The Max, Min and ∑ operations are over all architecture decisions
that are connected to each other in the specified way (parallel or sequence).

QoS Attribute Parallel Sequence
Response Time Max(qka) ∑qka
Energy Consumption ∑qka ∑qka
Cost ∑cka ∑cka

Therefore, the benefit of a diversified architecture option can be computed using
equation 5.4, if none of its quality attributes violates any constraint (line 12). If a dao

at time t, violates any constraint (line 10), its benefit is set to zero (line 11).

Bdaoi(t) = ∑
q∈Q

wq ∗q′daoi
(t) (5.4)

This step uses the run-time knowledge (i.e. observed QoS) to compute the benefit of
each dao, which is then used as input to step 5 (Figure 5.4).

4. Quantifying the cost of DAO: CBAM [23] extends ATAM (Architecture Trade-off
Analysis method) [2] with explicit focus on the costs and benefits of the architecture
decisions in meeting scenarios related to quality attributes. Our consideration for the
cost is similar to what is mentioned previously in Chapter 4. For example, the cost can
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relate to one or more dimensions of interest. This can include the cost of configuration,
deployment, testing, leasing, execution, etc. We estimate the costs using parametric
models, experts’ judgement (i.e. architects and other stakeholders) [110, 188], as
well as run-time knowledge (i.e. monitoring tools). Unlike CBAM, our approach
considers the switching costs between options, which could include the configuration,
license cost, etc. This is in addition to the operating costs, such as costs of deploying
and maintaining the dao. The cost associated with an architecture option at time t is
denoted by cdaoi(t) (line 13), which is computed using equation 5.5 (Figure 5.4).

cdaoi(t) = ∑cν
daoi

(t) (5.5)

where ν : considers a variety of costs (e.g. deployment cost, leasing cost, etc). Further,
the approach receives monetary values for cost, which could then be normalised in the
same way as negative quality values in equation 5.2.

5. Determine the exponential benefit of DAO over time: The benefit of a given option
is monitored using a time-decay function inspired by reinforcement learning [27].
This function enables the architect to continuously learn the current benefit of a given
dao over time. At a given timestep t, the exponential benefit µdaoi(t) of a dao is the
time-decayed average of its benefit, incrementally computed based on all timesteps up
to t (line 14), as seen in equation 5.6. This average allows us to tune the importance
given to the present and past observations of the benefit and to learn more about the
behaviour of DAO over time. How much emphasis is given to the present/past is
controlled by a pre-defined parameter θ . In particular, the relative importance of
the present is denoted by 1− θ , whereas of the past by θ , where 0 ≤ θ < 1. The
θ parameter affects the system’s stability. More specifically, a high θ (e.g., larger
than 0.95) corresponds to a greater emphasis on the historical observations of benefit,
leading to more robustness to noise, making the quantification of benefit more stable,
but slower at adapting to changes. Conversely, smaller values give more emphasis to
the more recent observations of benefit and swifter adaptation to changes. However,
too low values can lead to unstable quantification of benefit (due to higher sensitivity
to noise). To this regard, the architect has the freedom to adjust the θ parameter, with
respect to the required system stability (Figure 5.4).

µdaoi(t) = θ µdaoi(t −1)+(1−θ)Bdaoi(t) (5.6)



118 Reactive Run-time evaluation

ALGORITHM 2: Evaluate()
Input: diversified architecture options DAO, number of DAO (|DAO|), quality qdaoi(t),

number of quality attributes |Q|, weight of each quality attribute wq, relative
importance of the past θ

Output: exponential benefit µdaoi(t), standard deviation σdaoi(t), cost cdaoi(t)

1 for i = 1 to |DAO| do
2 for q = 1 : |Q| do
3 Compute quality qdaoi(t) based on Table 5.1

{For negative quality attribute (i.e. the lower the better, e.g. Response Time):}
4 if qdaoi(t) is a negative quality & qmax −qmin ̸= 0 then
5 q′daoi

(t) =
qmax−qdaoi(t)

qmax−qmin

{For positive quality attribute (i.e. the higher the better, e.g. Throughput):}
6 else if qdaoi(t) is a positive quality & qmax −qmin ̸= 0 then

7 q′daoi
(t) =

qdaoi(t)−qmin

qmax−qmin

8 else
9 q′daoi

(t) = 1

end
{Check constraints’ violation:}

10 if any q′daoi
(t) violates constraints then

11 Bdaoi(t) = 0
else

12 Compute benefit Bdaoi(t) = ∑
q∈Q

wq ∗q′daoi
(t)

end
13 Quantify cost cdaoi(t) = ∑cν

daoi
(t)

14 Compute exponential benefit µdaoi(t) = θ µdaoi(t −1)+(1−θ)Bdaoi(t)
15 Determine variance σ2

daoi
(t) = θσ2

daoi
(t −1)+(1−θ)∗ (Bdaoi(t)−µdaoi(t))

2

16 Determine standard deviation σdaoi(t) =
√

σ2
daoi

(t)

end
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6. Determine the variance and standard deviation of dao over time: The time-decayed
variance σ2

daoi
(t) of the benefit of this option is computed using equation 5.7 (line 15).

After that, the standard deviation σdaoi(t) is computed as the square root of variance as
depicted in equation 5.8 (line 16).

σ
2
daoi

(t) = θσ
2
daoi

(t −1)+(1−θ)∗ (Bdaoi(t)−µdaoi(t))
2 (5.7)

σdaoi(t) =
√

σ2
daoi

(t) (5.8)

5.4.5 Detecting Significant Changes Over Time

At every timestep t, the detect module triggers an alert if there is a significant change for
the worse on the benefit Bdaoi(t). If such a detrimental change is detected, then it may be
necessary to switch from the current dao to another better dao for the current circumstances
of the software system. The steps for detecting significant detrimental changes are shown in
Algorithm 3 and are explained below.

To detect changes, we use the confidence interval of the maximum exponential benefit
seen so far and its corresponding exponential standard deviation, as shown in equation 5.9.
In particular, two variables computed based on the evaluate phase are used: µmax

daoi
is the

maximum exponential benefit seen so far, and σmax
daoi

is its corresponding standard deviation.
Whenever a new reading arrives at time t, those values are updated if µdaoi(t)> µmax

daoi
(line

2-4). The parameter α is a parameter that affects the confidence level [5]. In particular,
confidence levels 95% and 99% correspond to α = 1.96 and 2.58, respectively.

[µmax
daoi

−ασ
max
daoi

,µmax
daoi

+ασ
max
daoi

] (5.9)

If the current exponential benefit µdaoi(t) is outside the left boundary of the confidence
interval (line 5), a significantly detrimental change is detected (line 6). This leads to the
insight that the current dao′s benefit is getting worse and may need to be replaced.

Replacements may affect the system’s stability. The parameter α enables us to tune the
sensitivity of the approach to changes, and therefore how stable/unstable it will be over time.
For instance, consider that the architect has chosen the confidence level of 95%. Then, if
the current exponential benefit is outside the left boundary of the 95% confidence interval
(µdaoi(t)−σdaoi(t)≤ µmax

daoi
−1.96∗σmax

daoi
), a significantly detrimental change is informed to

the software architects. However, if a 99% confidence interval has been chosen, a significantly
detrimental change would only be informed when µdaoi(t)−σdaoi(t)≤ µmax

daoi
−2.58∗σmax

daoi
.
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In this context, the detect step uses µdaoi(t) and σdaoi(t) along with α parameters (set by the
architect) to detect changes, as shown in Figure 5.4.

When a significantly detrimental change is detected, µmax
daoi

and σmax
daoi

are reset and re-
computed from scratch using the values of the exponential benefit accumulated since a
warning was triggered (line 7). A warning is triggered based on a more relaxed confidence
interval (line 8-9). For example, if using 99% as the confidence interval to detect significant
detrimental changes, a confidence level of 95% could be used to issue a warning. Otherwise,
no change/warning is detected (line 10).

ALGORITHM 3: Detect()
Input: confidence intervals (α1, α2), exponential benefit µdaoi(t), standard deviation

σdaoi(t)
Output: change/warning/no change is detected

1 µmax
daoi

= µdaoi(0), σmax
daoi

= σdaoi(0)
{Update the maximum exponential benefit and its corresponding exponential standard

deviation}
2 if µdaoi(t)> µmax

daoi
then

3 µmax
daoi

= µdaoi(t)
4 σmax

daoi
= σdaoi(t)

end
{Check if a change is detected}

5 if µdaoi(t)−σdaoi(t)≤ µmax
daoi

−α2 ∗σmax
daoi

then
6 a change is confirmed
7 reset µmax

daoi
and σmax

daoi
{Check if a warning is triggered}

8 else if µdaoi(t)−σdaoi(t)≤ µmax
daoi

−α1 ∗σmax
daoi

then
9 a warning is triggered

else
10 no change/warning is detected

To summarise, a change detection method is necessary to check whether the current dao

is getting worse based on its accumulated exponential benefit µdaoi(t). In this context, the
change detection test used could be adjusted to detect only significant changes and hence
improves the stability of the system (i.e. avoid alerting the software architects of insignificant
triggers).
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5.4.6 Selecting The Architecture Option With The Optimal Trade-offs

If a significant detrimental change is detected in the dao currently being used (daocurr), this
means that it may be beneficial to replace this dao by another one from DAO elicited in step
1 of Section 5.4.4. In such a situation, it is desirable to know which dao among DAO has
recently been providing the optimal trade-off between cost and benefit (Figure 5.4). Such a
dao is assumed to be the best one to use now and hence the best one to switch to.

To determine the dao with the optimal trade-offs, we were inspired by the literature on
MOP, NSGA-II, and a knee selection method [28, 29]. Our problem has two objectives:
maximise benefit (Equation 5.6) and minimise cost (Equation 5.5). It is therefore a multi-
objective problem with two objectives. As such, we calculate the expected marginal loss in
order to identify the dao with the likely most balanced trade-off between benefit and cost.
The process of determining the dao with the optimal trade-offs between cost and benefit at
time t is divided into three sub-processes as explained below and summarised in Algorithm
4.

1. Determine the Non-Dominated DAO: This includes determining which diversified
architecture options are non-dominated by any other dao [28, 29] (line 2-9). A given
daoi dominates dao j iff:(cdaoi(t) ≤ cdao j(t) and µdaoi(t) ≥ µdao j(t)) and (cdaoi(t) <

cdao j(t) or µdaoi(t) > µdao j(t)). According to the definition above, non-dominated
architecture options can be considered as better than dominated ones.

2. Calculate the marginal loss of the Non-Dominated DAO over time: The marginal
loss is used for the purpose of computing the expected marginal loss (Step 3). In
particular, we use a loss function that aggregates cost and benefit into a single value as
follows (line 12):

Lλ (daoi, t) = λcdaoi(t)− (1−λ )µdaoi(t) (5.10)

where λ ∈ [0,1] is a pre-defined parameter that controls the relative importance between
cost and exponential benefit. The loss describes how (un)desirable a certain dao is.

The marginal loss L′
λ
(daoi, t) represents how much worse the loss would be if daoi

was not available and we had to use the one with the second optimal trade-off, given a
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certain λ (line 13-15). It can be calculated based on the following equation [28]:

L′
λ
(daoi, t) =


min(i̸=ii)Lλ (daoii, t)−Lλ (daoi, t)

: i f i = argminiLλ (daoi′ , t)

0 : otherwise

(5.11)

where argmin function is used to check if daoi has the minimum loss. If this is true,
then we will iterate over all DAO to find the minimum difference between losses of a
particular daoii and daoi. This is set as the marginal loss. If daoi is not the one with
the minimum loss, we set L′

λ
(daoi, t) to 0.

3. Determine the expected marginal loss of Diversified Architecture Options over
time: The dao with the optimal trade-off between cost and benefit at time t is the dao

with the maximum expected marginal loss at time t. This option can be suggested to
the software architect as the optimal dao to be adopted at time t. This dao may or may
not be the same as current option daocurr.

As in [28], we use an approximation of the expected marginal loss rather than the true
marginal loss. The expected marginal loss has been proposed and used in the MOP
literature [28] to facilitate the choice of which solution from the Pareto front to adopt
in practice. In contrast, a single-objective problem would use a single fixed value for
λ . However, we need to compute the marginal loss with a sample of different λ values.
In our work, we used equally spaced values λ : {0.1,0.2, · · · ,0.9}, where |λ | = 9 is
the number of λ values used. The expected marginal loss (approxM[L′

λ
(daoi, t)]) can

be approximated by taking the average of the marginal losses computed using different
sampled values for λ [28] (line 16-17), as shown in equation 5.12. The optimal daoi is
the one with maximum expected marginal loss (line 18).

approxM[L′
λ
(daoi, t)] =

∑
λ∈{0.1,0.2,··· ,0.9}

L′
λ
(daoi, t)

|λ |
(5.12)

As explained above, to determine the dao with the optimal trade-off between cost and benefit
at time t, we need to know the exponential benefit and standard deviation of the DAO at
this timestep, including the DAO that are not currently in-use by the software system. This
information can be obtained in a number of different ways:

• If a given daoi uses the same D as the current daocurr, but connects them in a different
way, the exponential benefit and standard deviation can be tracked over time even if
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daoi is not currently being used. This is because the qualities of interest of the D are
being monitored via daocurr and just need to be aggregated using a different function
to compute daoi’s exponential benefit and standard deviation.

• A given daoi ̸= daocurr can be activated for use in parallel with daocurr at pre-defined
time intervals T ′ to track their qualities of interest. In this case, dao j’s exponential
benefit and standard deviation are updated at every T ′ > 1 units of time, saving the
overhead of having to use more than one dao at every timestep. The accuracy of dao j’s
exponential benefit and standard deviation will depend on how large T ′ is.

• A simulation based on what-if test scenarios can be used to estimate the exponential
benefit and standard deviation of daoi ̸= daocurr. Simulators are typically used during
the architecture prototyping, analysis, and refinement stages to evaluate the response
and sensitivity of the architecture for these tests. In this case, daoi’s exponential benefit
and standard deviation could be updated frequently, possibly at every unit of time.
However, their accuracy depends on the simulator. Due to the exponential time-decay
factor used for calculating exponential benefit, inaccuracies on exponential benefit of
architecture options not in-use at time t can be quickly found if and when we switch
from a dao to another. If the newly adopted one is found to have significantly poorer
benefit than previously estimated, the change detection mechanism will detect this
and trigger the procedure to determine whether we should switch to another one. For
instance, if some of the IoT devices forming the selected dao become unavailable after
selecting it due to the highly dynamic application environment, making it not possible
to execute the selected dao, this will lead to a decrease in exponential benefit and
hence cause a change to an alternative architecture.

In summary, our proposed approach monitors the extent to which the concerned architec-
ture design decisions satisfy the quality attributes over time; it provides feedback on their
performance against the said qualities. The feedback is used to adapt the architecture as seen
fit. In particular, the feedback determines the benefit of diversified architecture options and
hence can aid the architect in demonstrating the situations where the dao would work and
the others which are not suitable for that context. As an example, if a particular dao does
not perform well in any of the provided scenarios (e.g. when the energy consumption is a
priority) over a prolonged period of time, this is a strong indicator of a wrong choice of the
design decisions and choices. The approach incorporates human expertise in the decision of
whether or not to change or keep this architecture as an option, as the modelling of diversified
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architecture options is the fundamental domain knowledge from the engineers, as for every
software system.

ALGORITHM 4: Select()
Input: change detected in daocurr, a pre-defined parameter λ , number of λ (|λ |), number of DAO (|DAO|),

exponential benefit µdaoi(t), cost cdaoi(t)

Output: optimal daoi

{A change is detected in daocurr, then do:}
{Initialisation:}

1 λ : {0.1,0.2, · · · ,0.9}, |λ |= 9
{Determine the Non-Dominated DAO:}

2 for i = 1 to |DAO| do
3 dominant = 0
4 for j = 1 to |DAO| do
5 if (cdaoi(t)≤ cdao j(t)&µdaoi(t)≥ µdao j(t))&(cdaoi(t)< cdao j(t)|µdaoi(t)> µdao j(t)) then
6 daoi dominates dao j

7 dominant = 1

end
end

8 if dominant = 0 then
9 Add daoi to list of non-dominant DAO

end
end
{Calculate marginal loss for the non-dominant DAO:}

10 for i = 1 to Length (list of non-dominant |DAO|) do
11 foreach λ ∈ {0.1,0.2, · · · ,0.9} do
12 Lλ (daoi, t) = λcdaoi(t)− (1−λ )µdaoi(t)

13 if i = argminiLλ (daoi′, t) then
14 L′

λ
(daoi, t) = min(i ̸=ii)Lλ (daoii, t)−Lλ (daoi, t)

else
15 L′

λ
(daoi, t) = 0

end
end

end
{Determine the expected marginal loss for the non-dominant DAO:}

16 for i=1 to Length (list of non-dominant |DAO|) do

17 approxM[L′
λ
(daoi, t)] =

∑
λ∈{0.1,0.2,··· ,0.9}

L′
λ
(daoi,t)

|λ |

end
18 Return optimal daoi = daoi with max(approxM[L′

λ
(daoi, t)])
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5.5 Data Synthesis And Analysis

Our experiments focus on architecting the sensing-actuating functionality of iTransport to
show how run-time evaluation can complement design-time evaluation. At design-time, the
architect has followed the procedure of Chapter 3 and Chapter 4 to preliminary decide on
the DAO (and their composing D) for implementing this functionality. The experiments
were executed on Intel Core i7 processor machine with 16GB of RAM. The data synthesis
process is performed using iFogSim [35], whereas Matlab is exploited for data analysis.
To simulate the qualities of interest of each architecture decision over time, we adopt the
iFogSim [35] tool. This tool builds on Cloudsim [47]; it provides the architect with the
freedom of hierarchically composing the fog devices, clouds, and data streams. In iFogSim,
we have hierarchically composed the application as shown in Figure 3.1. The candidate
DAO used in this study are shown in Table 3.1. In particular, each dao is composed of
different types of data collection (type of sensors) and connectivity (computation locations)
as architecture decisions, meaning that the processing performed by each dao is executed
differently. Connectivity was simulated by either executing the object detector and tracker

modules (shown in Figure 3.1) in the cloud and/or fog. For data collection, two gateways
were used, where each is connected to an average of 50 smart cameras (Figure 5.7): fixed,
mobile, as well as fixed and mobile, having a total of 100 fog devices. The fog devices and
cloud are configured based on [204, 205, 35].
The goal is to continually optimise the following two conflicting requirements:

• Benefit: It needs to be maximised and is based on three quality attributes of interest:

1. Response Time: iTransport is time-critical application, so it should respond as
early as possible. In iTransport, the response time (RT) of an application is the
application’s end to end delay (in milliseconds ms) and measured using iFogSim.

2. Network Usage: High network usage would cause network congestion, so it
should be as low as possible. The network usage (NU in mega bytes MB) is also
measured using iFogSim.

3. Energy Consumption: IoT will lead to unlimited energy consumption if not
controlled [206]. Therefore, energy consumption needs to be minimised. In this
context, when designing IoT architectures, architects have to consider energy
consumption as a major concern [207]. In iTransport, the energy consumption
(EC in mega joules MJ) is the total energy consumption by all the devices in the
application, which is also determined through iFogSim.
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Figure 5.6 Sample of changing environmental conditions facing iTransport (i.e. input for one of the
DAO). Note that the red circles denote some examples of accidental spikes.

• Cost: It needs to be minimised. It is a composite of operating cost, and switching
cost that is added once we switch. In the context of iTransport, the average cost
encompasses a thing’s connectivity (includes switching), execution in the cloud and/or
fog (i.e. leasing cost of processing services), and other costs mentioned in Section 3.4.
The mean overall costs have been collected from iFogSim.

The iFogSim tool takes as input: the network latency, power load, smart camera’s latency
(i.e. fog devices), number of cameras, number of gateways, tuple configurations, cloud
and fog devices configurations. The sources of uncertainty in iTransport come from the
varying network delays due to network congestion. There are other factors, which impact
the environmental conditions, such as uncertainty in QoS of cloud service providers (e.g.
Amazon, Google Cloud, etc) and software-defined capabilities of fog service providers in
terms of their processing power, as well as the hyperconnectivity of the nodes. In this context,
we have generated data corresponding to each dao including typical as well as worst case
scenarios. For instance, we varied the power load as 80-110 watt with a fluctuation of 5-10%,
following the typical power load values from [205]. The latency was varied in the range of
low to high, i.e. 1-6ms with a fluctuation of 20-30% on the smart camera. We also varied
the network latency with an average of 100ms and fluctuation of 20-25%, as exemplified
in Figure 5.6. The choice of this fluctuation was based on [208], as it normally provides
acceptable throughput across various networking protocols, but also causes accidental spikes
that represent worst case scenarios.

We also simulated changes by using diverse smart cameras’ configuration [205, 35],
as depicted in Table 5.2. Based on that, it outputs the energy consumption of devices,
application’s response time, and network usage. This setting was intentionally designed
as a worst case that goes beyond a stable setting. Further, the iFogSim takes the pricing
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configurations for IoT devices (i.e. fog devices) and cloud to generate the mean costs of each
dao (i.e. application architecture). All the pricing configurations are used with respect to
AWS IoT services [209]. We have run the simulations for each dao for 120 timesteps.

Table 5.2 Simulation Parameters for iTransport.

Parameter Value
Device Configurations CPU (GHz), RAM (GB), Cost ($/day)
Cloud Datacenter 3GHz CPU, 40GB RAM, $0.1-0.3/day
Wifi and ISP Gateways 3GHz CPU, 4GB RAM, $0.0053-0.0056 /day
Smart Camera [1.6, 1.867, and 2.113] GHz CPU,

4GB RAM,$0.0053-0.0056 /day
Number of Smart Cameras 80-120
Network Configurations (From-To) Avg Latency
From ISP Gateway to Cloud Datacenter 80-120 ms
From Wifi Gateway to ISP Gateway 1-6 ms
From Smart Camera to Wifi Gateway 1-6 ms
Tuple Configurations (Message size): CPU Length (MIPS), Network Length (Bytes)
Raw Video Stream: 1000, 20000
Motion Video Stream: 2000, 2000
Object Location: 500, 2000
Warning: 1000, 100
Tracking parameters 28,100
Average QoS:
Energy Consumption of devices 80-120MJ
Applications Response time 300-4000 ms
Network Usage 500 Kbps- 2 Mbps
Evaluation Settings:
θ {0.7,0.9,0.99}
α1,α2 {80,92%}, {90,95%}, {99,99.9%}
Normal(Constraint[RT, EC, NU]; Weights[wRT , wEC, wNU ]) [400ms, 130MJ, 1Mbps]; [0.4,0.3,0.3]
Strict(Constraint[RT, EC, NU]; Weights[wRT , wEC, wNU ]) [350ms, 130MJ, 500Kbps]; [0.4,0.2,0.4]
Normalised {Operating;Switching} Cost {0.3−0.5;0.2−0.4}

5.6 Experimental Evaluation

In the next series of experiments, we aim to show the usefulness of the approach by evaluating
how well it addresses the research questions introduced in Section 5.3.

The system that uses the dao evaluated by our approach as having the optimal trade-offs
is called Informed-Selection System. We compare this system against the following baseline
systems:

1. Static-Selection System: This is a typical type of system used in practice [210, 14],
where the expert implements a single dao based on its assessed value at design-
time. For our work, the value is determined using the Binomial option pricing model
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Figure 5.7 The Initial Experiment Configuration for iFogsim.

[4, 42, 14], which estimates the future benefits and costs of options based on a binomial
decision tree. This approach is introduced in Chapter 4.

2. Predefined-Selection System: This is inspired by [211, 48], where the architect will
choose the dao that is likely to perform the best for a given context. This selection
is typically based on experience, backed up by back-of-the-envelope calculations for
the cost, benefits, and technical potential. However, the selection may fail to predict
potential fluctuations in value, quality potentials, and costs. As an example, our case
used dao6 during week days (because of peak hours) and dao3 during weekends
(because of less demand).

3. Random-Selection System: Our design for the baseline system follows the argument
of [7, 212] but for the context of services. When a significant change is detected, it
selects a dao randomly independent of its QoS over time. This is because the DAO

are deemed to be functionally equivalent but deployed in different environments and
geographical location (i.e., distributed Fogs/clouds). All the results related to the
Random-selection approach are based on the average of 30 runs (the choice of 30 runs
is recommended by [213]).

RQ3.1: How to evaluate the benefit of each dao over time?

Motivation: This experiment aims to show the usefulness of run-time evaluation over design-
time evaluation. More specifically, it conveys that the run-time evaluation visualises scenarios
and dynamics, which can hardly be captured at design-time. It is also important to confirm
the design-time choices. For that, we compare the run-time approach against the design-time
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architecture evaluation approach proposed in Chapter 4. The latter uses options theory [176]
to evaluate and justify the employment of architecturally diversified decisions and their
augmentation to long-term value creation under uncertainty. The architect has the freedom
to estimate the increases and decreases in the value potentials for the candidate architecture
options over time, backed up by their experience.

(a) Benefit for dao6 (design-time) (b) Exponential Benefit for dao6 (run-time)

(c) Benefit for for dao1 (design-time) (d) Exponential Benefit for dao1 (run-time)

Figure 5.8 The results of assessing design-time and run-time evaluation.

Experimental setup: The design-time architecture evaluation approach uses experts’ (e.g.
architects and other stakeholders) assumptions on the likely utilities of a dao over a pre-
defined period of time. In our experiments, the pre-defined period of time corresponded to
120 timesteps. The expert’s opinion is depicted by a utility tree that is provided at design-
time, without making use of any run-time information. We investigate how the design-time
architecture evaluation approach (Chapter 4) and the proposed run-time approach in this
chapter evaluate two DAO: the dao with the best benefit (dao6) over time and the dao with
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the worst benefit (dao1). The utility tree created for the design-time approach used in the
experiments is shown in Figure B.9a and B.9b for dao1 and Figure B.10c and B.10d for dao6.
The design-time approach (Chapter 4) then uses this utility tree to compute the likely benefit
of a dao over the pre-defined period of time. This benefit is the one depicted in Figures
5.8a and 5.8c. Therefore, even though this is a design-time evaluation approach, it provides
information on the expected run-time benefit of the DAO, being a meaningful design-time
approach to compare against.

Figure 5.8a depicts the dao with the best benefit (i.e. dao6) over time computed using
the design-time approach (Chapter 4), whereas Figure 5.8b shows the exponential benefit
quantified using our run-time architecture evaluation approach. Further, the benefit of dao1

(i.e. worst) is shown in Figure 5.8c, whereas its exponential benefit is plotted in Figure 5.8d.
Note that we have normalised the design-time benefit to ensure fair comparison with the
run-time benefit, as the design-time evaluation approach provides a monetary value for the
benefit of DAO. We assume that the cost of both options is constant over time, whereas the
benefit is varying over time.
Analysis: As we can see, the design-time approach was conservative and estimated that
dao6 had initially low benefit and then improved over time. Our run-time approach, on
the other hand, is able to show to the software architect that dao6 has high benefit from
the beginning. Figure 5.8c shows the benefit value of dao1 over time computed using the
design-time approach (Chapter 4). In this scenario, the design-time approach incorrectly
estimated that the value of dao1 was going to increase over time. Our approach was able to
discern at run-time that this was not really the case, as shown in Figure 5.8d. Even though
the exponential benefit ascended from 0.3 to 0.7 until timestep 25, this was followed by a
deterioration to an average of 0.4 (Figure 5.8d).

RQ3.2: How can run-time evaluation determine changes in dao’s value over time and
inform subsequent decisions?

Motivation: This experiment aids the architect to evaluate the DAO and suggest the ones
with most balanced cost-benefit trade-offs using the informed-selection approach as compared
with other approaches introduced earlier in Section 5.6. For that, we consider that when our
approach detects a significant detrimental change, the software architect decides to implement
the dao that our approach recommends as the one with the optimal trade-off between cost
and benefit, based on strict quality constraints. This experiment will also aid the architect in
refining the selection of design-time DAO by checking their cost-benefit at run-time. It can
also indicate which DAO were not performing well, and hence require phasing-out. Back
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to IoT context, the use of fog computing and cloud computing in mobile crowd sensing
applications is highly affected by the QoS requirements. Consider a scenario where the
stakeholders require the iTransport application to quickly track the accident in the city centre,
especially in rush hours. In this context, low response time and network usage is of higher
concern rather than energy consumption. Therefore, the ranking score (i.e. weights) for
response time and network usage qualities are higher than energy consumption. Also the use
of fog-cloud computing is advisable over cloud computing. So object detector and tracker
modules will be executed in the fog. We are uncertain about the network latency (due to
dynamic traffic and variable load) and mobility of devices (nodes join/leave the network).
This will cause instability, which may require a switch to another architecture option.
Experimental setup: The environmental conditions that keep changing at run-time are
network latency, camera latency and power load. These potentially affect the aggregated
benefit, which is composed of application response time, energy consumption in devices and
cloud, and network usage. Therefore, we might not get a linear effect from input to output
– this is due to the use of aggregated exponential benefit, where the change detection and
selection is based on it. Next, we will demonstrate the strict quality constraint scenario to
show whether the changes detected by the approach are aligned with the input environmental
conditions. Consider the case where the architect can adjust the quality weights to reflect
priorities from stakeholders. For example, when the application response time and network
usage become a priority, energy consumption priorities can be downgraded. In our case study,
we assume a wRT of 0.4 for response time, wEC of 0.2 for energy consumption, and wNU for
network usage of 0.4. We also consider that the architect has constrained the application to
handle the request in less than 350 ms and network usage does not exceed 500KB; whereas,
the energy consumption should not exceed 130 MJ. Historical performance and experts’
judgement can inform the adjustment of the prior constraints [193, 35]. In this experiment,
the focus is on the application’s response time and network usage concerns. Nevertheless,
the same experiment could be applied on other stakeholders’ concerns, such as the ones
discussed in Section 3.4. Figure 5.9 shows the average benefit and cost of the system as
a whole across 120 timesteps, i.e., calculated based on the DAO currently being used for
two scenarios: best case and worst case. We have also plotted the environmental changing
conditions (the power load, network latency, and camera latency) for best case scenario, in
Figure 5.10a and 5.10b, along with their impact on response time, network usage, and energy
consumption.
Analysis (Best case scenario): The design-time evaluation approach (Chapter 4) suggests
the systems start operation using the dao that are believed to provide the most balanced
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(a) Average Benefit and Cost for the best case scenario across
120 timesteps.

(b) Average Benefit and Cost for the worst case scenario
across 120 timesteps.

Figure 5.9 The evaluation of the four approaches’ decision-making process under strict quality
constraints.

cost-benefit trade-off at run-time (dao6). Different changes were observed after 5 timesteps
(Figure 5.9a). The mobility of devices has caused a decrease in the overall benefit, due
to highly changing response time causing a violation in the response time constraint. The
random-selection approach selects a random dao, which is not always the best. In addition,
throughout the experiment, this approach suffered from too many switches (9 switches),
causing instability and lowering the benefit to about 0.35. The pre-defined selection performs
a bit worse than the random one; this is because the constraint was too strict for options
recommended by that approach, causing various violations. The static-selection is the second
best one; this is because the selection is geared towards selecting dao with better potentials
for the selected scenarios. This strategy considers design-time knowledge, which can be
challenged or confirmed by future runs of the system. The informed-selection approach
provides the most appealing results compared with other approaches: this is because the
informed-selection approach can continually recommend the dao with the most balanced
cost-benefit trade-offs. For example, we observed that when the first change was triggered,
the informed-selection figured out that the initially selected dao was still the optimal choice
to keep. Yet, after 22 timesteps when another change was detected, dao4 was recommended
due to its large improvements for response time. However, this requires cost of leasing these
services and maintaining their devices (switching cost).

By mapping the environmental conditions to the evaluation of DAO based on the informed-
selection approach (Figure 5.10a and 5.10b), the approach has detected significant deviations
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which are consistent with input environmental conditions. In particular, the change could be
triggered either from high fluctuation and/or a deterioration in one/all of QoS. For instance,
from timestep 1 to 5, we see an increase in the values of application response time and
network usage, caused by a (smaller) increase in network and camera latency (Figure 5.10a).
These result in a decrease in the exponential benefit, which is considered as significant when
reaching timestep 5 (Figure 5.10c).

Since the approach is still building knowledge about the current dao and having highly
dynamic changing conditions during the initial observation period, this caused a change
detection at almost every consecutive 5 timesteps until timestep 27 (Figure 5.10). However,
these only led to switches when another better dao was available (at timestep 22). This led to
improvements in the exponential benefit of the proposed informed-selection approach over
the following timesteps (Figure 5.10c).

Further, at t = 46 (Figure 5.10a), an increase in network camera latency has caused a
noticeable rise in the application’s response time and network usage, which accordingly
resulted in the detection of a significant change in environmental conditions. However, the
approach found that the current dao still provided the most balanced cost-benefit trade-off
and hence the approach kept using this dao for the next 15 timesteps (though other change
detection were triggered). After that, at t = 61, the approach detected a significant change
(i.e. a high power load, network and camera latency) and has then selected another dao

which provided the most balanced cost-benefit trade-off. After t = 61, the exponential benefit
was just oscillating resulting in no significant changes (i.e. no changes were detected), as
reflected by the exponential benefit (Figure 5.10c).
Analysis (Worst case scenario): The design-time evaluation approach suggests the systems
to start operation using the dao that turns out to provide the worst balanced cost-benefit
trade-off at run-time (i.e. dao2). In this respect, a replacement is advocated by our approach.
Figure 5.9b shows that the most balanced trade-off between benefit and cost is achieved
by the informed-selection approach, followed by the random- and predefined-selection
approaches. Here, informed-selection achieved much higher benefit than other approaches.
Since the response time constraint is violated from the beginning, the static-selection approach
experiences a zero benefit. In this context, high application response time is not recommended,
because this is a safety-critical application. From this experiment, dao1 has never been
recommended by the approach because of its low response time and high energy consumption,
which may inform the architect to phase-out. For the best and worst case scenarios, the
architect can use the run-time evaluation approach to visualise the cost-benefit trade-offs
of the suggested DAO over time (Figure 5.9) for informed-selection approach against other
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approaches. It can also show how the adoption of optimal DAO provided an improved benefit
over time (i.e. added values).

5.7 Further Analysis Of The Proposed Approach

This set of the experiments aims at evaluating the robustness and scalability of the proposed
approach. It also aims at providing a better understanding of the influence of the stability
parameters (θ , α) on the proposed approach. This better understanding can guide software
architects in the decision of which values to use for these parameters.

5.7.1 Impact Of Frequency Of Monitoring

Motivation: The proposed approach depends on the possibility of either monitoring the DAO

that are not currently in-use, or using a simulator to get an idea of their likely behaviour. If
we opt for monitoring the DAO that are not currently being used, this will lead to an overhead
in terms of time taken for the informed-selection approach to do the analysis. Therefore, one
may opt for not monitoring them very often. Practically, its hard to monitor the architectural
options (e.g. virtual sensors, physical sensors) every timestep, due to their availability. There
is a trade-off between the execution time and % error, which we aim to measure in this
experiment. To this regard, this could guide the architect on deciding the monitoring intervals.
In this context, this experiment aims to provide answers for the following question: What is

the impact of the frequency of monitoring on the accuracy of the approach?.
Experimental setup: For that, we use an error metric % Relative Error to measure the error
in decision-making between monitoring every T’ intervals and every timestep. In this context,
we will measure the error for each dao separately and mean exponential benefit for the

whole process. For the former, the %RelativeError =
∣∣∣Actualµdaoi(t)−Monitoredµdaoi(t)

Actualµdaoi(t)

∣∣∣ ∗ 100.
The actual exponential benefit is the one monitored every timestep till T’, where T ′ =

{5,10,20,30,40,50,60,70,80}. The monitored exponential benefit is the one monitored
every T’ intervals. For example, if T’=5, then from t=1 to 4, the exponential benefit will
be the same and then at t=5, it is updated. Figure 5.11 depicts the % relative error versus
T’ intervals for each dao. As for the mean exponential benefit for the whole process, the
%RelativeError =

∣∣∣ActualMeanµ−MonitoredMeanµ

ActualMeanµ

∣∣∣∗100. The actual mean exponential benefit
is the average benefit if monitoring occurs at every timestep, so it is constant for all. The
monitored mean exponential benefit is the average benefit if monitoring occurs at every T’
intervals. We consider the error in the whole process to evaluate how much worse the mean
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(a) The impact of network and camera latency on application’s response time and network usage.

(b) The impact of power load on application’s energy consumption.

(c) Exponential Benefit of informed-selection with change detection and switches.

Figure 5.10 An illustration of the input environmental conditions for the 120 timesteps including
network latency, smart camera’s latency, power load on the devices, change detection, and switching
occurrence, as well as the output exponential benefit of informed-selection approach for strict quality
constraints and prioritized ranking score for the best case scenario as an example. The red squares
represent change detections that did not lead to switching DAO, and green circles represent change
detection followed by dao switching.



136 Reactive Run-time evaluation

benefit (based on informed-selection approach) would be if monitoring happened every T’
intervals rather than every timestep. This includes the monitoring, change detection, and
decision-making processes. We have developed two scenarios: best case (Case 1 and 3),
where the optimal dao is initially chosen; worst case (Case 2 and 4), where the worst dao

is initially selected. This is illustrated in Figure 5.12, where each point in the plot has 3
coordinates (X: execution time; Y: monitoring interval; Z: % Error)
Analysis (for each dao): In Figure 5.11, the relative error for dao2 and dao3 ranges from
0-30%. This is due to the low fluctuation in these options. This in turn lowers their impact
on the accuracy. However, dao1 and dao5 violated the constraint at t = 1, which resulted in
an error of about 70%. This is because dao1 and dao5 had good exponential benefit after the
first timestep (i.e. not violating constraint), but the monitoring was based on the first timestep
only.
Analysis (for whole process): Case 3 presents the smallest error (Figure 5.12c), which
was about 0.27%. The error was small because the initially selected dao was optimal and
fluctuating less than the other DAO. As a result, the informed-selection approach managed
to keep using it for different monitoring intervals (i.e. no switching). In this context, the
architect could use higher monitoring intervals to save execution time. This is due to the
decrease in execution time from 0.45 seconds (T’ = 5) to 0.22 seconds (T’= 50).

Further, Case 1 experienced 10% increase in error (constant for all intervals), as shown
in Figure 5.12a. This rise is due to the fact that when monitoring happened at every timestep,
three switches were recommended by our approach. However, when the monitoring interval
increased, the approach had quite outdated information about the current dao. Therefore, it
did not advocate any switches, which resulted in slight degradation in benefit. To this regard,
if time is the concern, the architect could choose higher monitoring intervals to benefit from
lower overhead in terms of time and cost.

On the contrary, the selection of the worst dao in cases 2 and 4 caused a significant rise
of 65% in relative error (Figure 5.12b, 5.12d), because the approach had outdated knowledge
about the initial dao. To exemplify in case 2 at T ′ = 50, the approach updates the current
benefit with respect to the first timestep. Therefore, for the first 50 timesteps the benefit was
very low and a switch was recommended after T ′ = 50. On the other hand, if monitoring
occurred at every timestep, then the approach will advocate switching after 5 timesteps to an
optimal dao. This explains the rise in the relative error to 40%. For the latter scenarios, it is
recommended for the architect to use lower monitoring intervals with higher overhead, rather
than experiencing a reduction in benefit. To this end, our approach could aid the architect in
tuning the monitoring interval with respect to execution time overhead and relative error.
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Figure 5.11 The % Relative Error of monitoring every T’ intervals for each dao.

(a) Case 1 (Best) (b) Case 2 (Worst)

(c) Case 3 (Best) (d) Case 4 (Worst)

Figure 5.12 The % relative error and execution time of monitoring every T’ intervals for four
scenarios.



138 Reactive Run-time evaluation

5.7.2 Robustness To Noise

Motivation: An alternative to monitoring each dao at regular T ′ intervals would be to use a
simulator to monitor the likely benefit of the DAO that are not currently in-use. However,
simulators are likely to produce noisy quality indicators, which differ from the actual qualities
that these DAO would have if they were currently being used. In order to evaluate the impact
of the noise potentially produced by simulators, we investigate how the proposed approach
reacts to different levels of noise i.e. To what extent the informed-selection system can deal

with noise data as compared with other systems?.
Experimental setup: In this experiment, we have generated Gaussian Noise [214] on the
QoS data. A given quality attribute q′daoi

(t) is replaced by a value drawn from a Gaussian dis-
tribution N (q′daoi

(t),s), where q′daoi
(t) is the mean and s= {0.05(low),0.1(mid),0.5(high)}

is the standard deviation. The smaller/larger s represent the cases where there is less/more
noise. This reflects the cases in which simulators are more/less reliable. It enables us to check
how robust the approach is to wrong measurements provided by a simulator. In particular,
we expect the proposed approach to be affected by such erroneous quality information, but to
quickly react and recover from it if a poor switch occurs. This is because, once the switch
occurs, the true benefit of the dao can be determined. If this benefit is worse than expected, a
change will be detected, leading to a switch to another potentially better dao.

The results are based on the average of 30 runs, due to the randomness of noise (the choice
of 30 runs is recommended by [213]). In this experiment, we have compared the proposed
approach against the state-of-the-art and baseline approaches introduced in Section 5.6. For
this experiment, the design-time evaluation approach suggests the systems to start operation
using the dao that are believed to provide the worst cost-benefit trade-off at run-time (dao2).
This choice is advocated to show how our approach can deal with different noise levels, in
even worst case scenarios. Figure 5.13a, 5.13b, and 5.13c show the exponential benefit of
four approaches for the selected DAO across 120 timesteps. Whereas, Figure 5.13d, 5.13e,
and 5.13f depict the mean exponential benefit and cost of four approaches for the selected
DAO across 120 timesteps.
Analysis: As clearly illustrated in Figure 5.13, the informed-selection approach has managed
to select optimal options, although by introducing higher noise levels, the choice could
have become much worse. Followed by the random-selection, which benefited from the
change detection test. However, it selected DAO, which were not always the best. The
static-selection and predefined-selection approaches are based on design-time knowledge,
thus they are not affected by noise. However, the static-selection produced zero benefit across
120 timesteps, due constraints’ violation. The predefined-selection was highly fluctuating
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because of constraints’ violation in some timesteps. Therefore, the informed-selection
approach produced the best results overall (Figure 5.13d, 5.13e, and 5.13f). Further, the
informed-selection has quickly recovered from wrong choices due to noise. For instance in
Figure 5.13c, dao2 was initially selected for deployment (in one of the runs), which turned
out to be the worst dao. After 5 timesteps, the approach detected deterioration in exponential
benefit, and hence recommended dao4 to switch to. Ten timesteps later, another change
is triggered and the informed-selection chose dao5 to replace the current dao. We have
found that dao5 was not the optimal one and dao6 seemed to be better (i.e. this choice was
affected by noise). Though, the informed-selection approach has quickly recovered from the
poor switch and suggested dao6 after 5 timesteps. To this extent, our approach managed to
self-repair from incorrect choices (due to varying noise levels).

(a) Exponential Benefit (low) (b) Exponential Benefit (mid) (c) Exponential Benefit (high)

(d) Overall behaviour (low) (e) Overall behaviour (mid) (f) Overall behaviour (high)

Figure 5.13 The behaviour of all the approaches after the application of varying noise levels on the
data.

5.7.3 Scalability Of The Proposed Approach

Motivation: This experiment will answer the following: How scalable is the proposed

approach to larger numbers of dao?. The scalability of the proposed approach (informed-
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selection) is an important indicator to show to what extent our run-time evaluation can be
applied in practice. There is a trade-off between the candidate options and the execution time
of the algorithm.
Experimental setup: In this experiment, the mean execution of the informed-selection
algorithm is computed over 120 timesteps for varying number of dao, as illustrated in Figure
5.14.
Experimental Analysis: The informed-selection approach performs very well until reaching
500 DAO, it takes less than 3 seconds. This is applicable for safety-critical IoT applications,
which in case a change is detected, the approach will be able to search for the optimal
solution in a few seconds. However, after 500 architecture options, the execution time starts
to increase reaching 17 seconds for 1000 options. Therefore, for an application, which
requires more than 1000 options, our approach will take further time for decision-making.

Time Complexity Analysis: We also analyse the time complexity of the run-time evaluation
approach through Algorithm 2, 3, and 4, respectively. First, in Algorithm 2, there are three
main steps: (i) Iterate over all the DAO (O(|DAO|)), line 1; (ii) Iterate over all the quality
attributes for each daoi (O(|Q|)), line 2; (iii) Compute the quality qdaoi(t) based on Table 5.1
(O(Compute qdaoi(t))), line 3; and (iv) Quantify the exponential benefit, cost, variance and
standard deviation at time t for each daoi (O(|Q|+ |ν |)), line 12-16. Therefore, the overall
computational complexity for Algorithm 2 is:

O(|DAO| ∗ |Q| ∗ (Computeqdaoi(t))+ |Q|+ |ν |))

The time complexity for the cost is almost negligible if number of variety of costs |ν | < |Q|.
If |Q|< Computeqdaoi(t) then the overall complexity would be:

O(|DAO| ∗ |Q| ∗ (Computeqdaoi(t)))

Computeqdaoi(t) depends on the number of capabilities, the number of components im-
plement that these capabilities and how they are connected. In our approach, we use Table
5.1 for the computation of specific quality attributes based on how the DAO are connected.
However, our approach is flexible to include other types of quality attributes and different
connections between them.

Second, Algorithm 3 executes the change detection for only one dao (line 1-10), so this
would lead to a complexity of:
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O(1)

Finally, Algorithm 4 has three main procedures which constitute to the time complexity: (i)
Determine the list of non-dominated DAO (O(|DAO|2)), line 2 and 4; (ii) Calculate marginal
loss for the non-dominant DAO (O((#of non-dominatedDAO)2∗|λ |)), line 10 and 11, and 13;
(iii) Determine the expected marginal loss for the non-dominant DAO (O(#of non-dominated
DAO∗ |λ |), line 16 and 17 ; and (iv) Determine the optimal daoi from list of non-dominated
DAO (O(#of non-dominated DAO)), line 18.
In this context, the total time complexity for the run-time approach equals to:

O(|DAO|2 +(#of non-dominated DAO)2 ∗ |λ |)

If (#of non-dominatedDAO)2 ∗ |λ | < |DAO|2, then the time complexity would be approxi-
mately:

O(|DAO|2)

From our empirical results, we can see that the run-time approach’s scalability is consistent
with its time complexity analysis.

Figure 5.14 The execution time for large number of DAO for every timestep.

5.7.4 Impact Of The Parameter θ On The System’s Stability

Motivation: A low θ value corresponds to a greater emphasis on the most recent observations
of benefit and swifter adaptation to changes in the benefit. However, very low values can
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lead to unstable quantification of benefit, causing too much switching over time. A high
value (e.g., larger than 0.95) places more importance to the past observations of benefit,
leading to more stability, but potentially failing to track changes in benefit. This experiment
will answer the following: What is the impact of the parameter θ on the system’s stability?.

In this context, this experiment is performed to indicate the most applicable value for the
relative importance under typical environment settings.
Experimental setup: This experiment considers the values of θ ∈ {0.7,0.9,0.99}. In this
experiment, we started with dao6, which is advocated by the architect to be the optimal
dao for the normal quality constraints as depicted in Table 5.2. If a change is detected,
the approach recommends another dao to be implemented. In this context, the exponential
benefit of the selected DAO by the approach over 120 timesteps is computed and plotted in
Figure 5.15.
Analysis: As seen in Figure 5.15, θ = 0.7 leads to highly fluctuating benefit over time, which
may cause the system to recommend a lot of switches throughout time, as compared with
θ = 0.9 (the moderate fluctuation) and θ = 0.99 (too stable, which may not be realistic). For
instance, θ = {0.7,0.9,0.99} has recommended the following number of switches {13, 4,
1}, respectively. Therefore, based on this experiment, we recommend for the architect to
evaluate the four approaches for the next experiments, with respect to θ = 0.9, as it indicates
the most realistic forgetting factor.

Figure 5.15 Exponential Benefit of the informed-selection approach using different values for the
stability parameter θ .
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5.7.5 Impact Of The Parameter α On The System’s Stability

Motivation: The confidence interval is an interval with two boundaries (α1 and α2), where
the architect is not confident about the exponential benefit values outside this interval. In
other words, if the current exponential benefit µdaoi(t) is outside the left boundary of the
confidence interval, this is an indicator that the current option is getting worse and requires
replacement. For instance, If a system is highly sensitive to changes, then we can enlarge
the α values used (α ≥ 95%), whereas for the opposite case (α ≤ 92%) is more applicable
and so forth. Based on that, the architect can learn what α values to use and for which
scenarios. In order to adjust the α values, there is a trade-off between the number of switches
and overall benefit (i.e. stability versus improved benefit), which will be measured in this
experiment. To this end, the experiment aims at answering the following: What is the impact

of the parameter α on the system’s stability?.
Experimental setup: We have developed two cases for analysis: case 1 where the best
dao changed over time, which caused several switches; case 2: the best dao performed
well over time, resulting in no switches. This experiment considers the values of α1,α2 ∈
{80,92%};{90,95%};{99,99.9%}. Figure 5.16 shows the impact of varying α values
on the approach’s stability, whereas Table 5.3 summarises the corresponding number of
change detection and switches. Figure 5.16a, 5.16d show the exponential benefit of DAO

recommended by the informed-selection approach, whereas Figure 5.16b, 5.16e depict their
corresponding cost. The mean exponential benefit and cost of 120 timesteps for varying
α values are depicted in Figure 5.16c, 5.16f to show the overall behaviour of four approaches.

Analysis (Case 1): The use of low confidence interval {80,92%} caused higher change
detection than other confidence intervals. This is due to the detection of unnecessary changes.
So in a case where the DAO are highly changing, this caused higher number of switches (7),
as depicted in Table 5.3 and Figure 5.16a. A high confidence interval {99,99.9%} can lead
to neglecting significant changes, because the system is confident enough about the data.
There is a trade-off between the number of switches and improvement in benefit. For case
1, the informed-selection recommended 3 additional switches (when α = {80,92%} over
α = {99,99.9%}), with 5% increase in exponential benefit and 0.5% increase in cost over
{99,99.9%}. Although {95,99%} and {99,99.9%} advocated the same number of switches,
yet {95,99%} produced a 3.6% increase in exponential benefit and 1% increase in cost over
{99,99.9%}. This is because {99,99.9%} neglected significant changes, as stated before.
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Analysis (Case 2): Though for {80,92%} the informed-selection detected 9 changes (Table
5.3), yet it managed to continue with the optimal option without any recommendation for
switching. This is because it has found that there is no other dao better than the current one.
Therefore, the informed-selection approach has a safety mechanism, which recommends
a switch only if there is another better dao, otherwise it will keep using the same dao.
Further, no change was detected for {95-99%} and {99-99.9%}, this explains why all the
confidence intervals produced the same overall behaviour as seen in Figure 5.16f. Besides,
the low confidence interval also caused higher overhead in terms of searching for another
optimal option (informed-selection). In all cases, the informed-selection approach managed
to recommend the optimal dao in terms of balancing between cost and benefit over time.
To this regard, a confidence interval of {95-99%} is more applicable in most of the cases,
because it detects significant changes and neglect unnecessary ones. We recommend the
architect to use {95-99%} in the evaluation of the four approaches for the next experiments.

(a) Exponential Benefit (Case 1) (b) Average Cost (Case 1) (c) Overall behaviour (Case 1)

(d) Exponential Benefit (Case 2) (e) Average Cost (Case 2) (f) Overall behaviour (Case 2)

Figure 5.16 The impact of varying α values on the informed-selection approach.
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Table 5.3 The number of change detection and switching for informed-selection approach for varying
α values.

Parameter/Case 1 2
# of switches(α1 = 80%,α2 = 92%) 7 0
# of detection (α1 = 80%,α2 = 92%) 13 9
# of switches(α1 = 95%,α2 = 99%) 4 0
# of detection (α1 = 95%,α2 = 99%) 10 0
# of switches(α1 = 99%,α2 = 99.9% ) 4 0
# of detection (α1 = 99%,α2 = 99.9% ) 8 0

5.8 Illustration Of Some Insights The Approach Can Pro-
vide

This section provides extra benefits the approach could provide. For instance, it discusses
and demonstrates the usefulness of diversification and whether it can always add value to the
decision-making based on what-if scenarios.
Motivation: Design diversification has the potential to mitigate risks and improve the
dependability in design in situation exhibiting uncertainty in operation and usage [167, 16].
Design diversity has raised the potential awareness to apply diversification in the decision-
making process, which in turn may cause a noticeable improvement in the way we design
dependable and evolvable software. However, do diversification continuously deliver value
over time? In this experiment, we aim to evaluate the added value of diversification to the
decision-making process.
Experimental setup: In this experiment, we are trying to show whether the inclusion of new
DAO will benefit the decision-making. To demonstrate that, we have tested our approach
with respect to two cases: (1) Add new six DAO where the approach benefits from them
and a noticeable improvement in the overall behaviour occurred (Case 1); (2) Add new six
DAO where the approach does not benefit from them (Case 2). We used the original six DAO

recommended by the approach (Table 3.1) and created new six DAO adhering to the same
topology of original six DAO, but with different QoS fluctuations to generate Cases 1 and 2.

For Case 1, we have randomly generated their QoS over time using the mean of original
DAO and fluctuation of 5%− 25% for response time, 0%− 15% for energy consumption,
and 20%−29% for network usage. As for Case 2, the QoS fluctuation is 30%−40% for
response time, 25−40% energy consumption, and 30%−40% for network usage. These
volatility values were chosen with respect to [215, 216]. In Case 1, the low fluctuation has
resulted in additional DAO with improved aggregated benefit, whereas the newly created
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DAO in Case 2 has generated DAO with highly fluctuating benefit (i.e. seems good at the
beginning but then turns out to be worse after being selected).
Analysis: In Case 1, we have added 6 DAO, which seemed to add value to the decision-
making process. The overall average benefit and cost for the informed-selection approach
was better than the other approaches (Figure 5.17g, 5.17h), with noticeable rise in exponential
benefit over time (Figure 5.17a, 5.17b), and slight decrease in cost (Figure 5.17d, 5.17e).
This is because the informed-selection approach has benefited from the inclusion of new
DAO, by providing more stable behaviour in terms of benefit. For instance, after 10 timesteps
the approach has detected a significant change in current option (i.e. dao6). It has then
selected dao12 instead, which seemed to provide more stable benefit (Figure 5.17b) with
almost similar cost (Figure 5.17e) to the one chosen in default case (i.e. 6 DAO instead of 12
DAO).

In Case 2, the additional 6 DAO were highly fluctuating over time, which explains the
slight degradation in benefit (Figure 5.17c) as compared to the original 6 DAO only (Figure
5.17a). However, the addition of new options has introduced further instability to the random-
selection approach by selecting the worse DAO (4 more switches than the original case), as
depicted in Table 5.4. For example, after 5 timesteps, the approach has detected a significant
deviation in current option (i.e. dao6). After that, it chose dao11, which provided the most
balanced trade-off between benefit and cost. The exponential benefit of dao11 was increasing,
which explains why the approach did not detect any change. However, this has caused the
application to not benefit that much from diversification. At t = 71, the approach detected a
change and till t = 120, it has chosen similar DAO to the default case.

To this regard, the proposed approach successfully showed that diversification was helpful
in Case 1, and was not helpful in Case 2. This concludes that diversification will not always
add value and run-time evaluation could aid in assessing the worthiness of this exercise.

Table 5.4 The evaluation of embedding diversification to the architecture with respect to the number
of change detection and switches.

Parameter/Approach Static Predefined Random Informed
-selection -selection -selection -selection

# of switches (6 DAO) 0 8 8 4
# of detection (6 DAO) 0 0 8 10
# of switches (12 DAO) [Case 1] 0 8 10 3
# of detection (12 DAO)[Case 1] 0 0 10 4
# of switches (12 DAO) [Case 2] 0 8 12 4
# of detection (12 DAO)[Case 2] 0 0 12 5
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(a) Exponential Benefit (Default
Case)

(b) Exponential Benefit (Case 1) (c) Exponential Benefit (Case 2)

(d) Average Cost (Default Case) (e) Average Cost (Case 1) (f) Average Cost (Case 2)

(g) Overall behaviour (Default Case)(h) Overall behaviour (Case 1) (i) Overall behaviour (Case 2)

Figure 5.17 The evaluation of embedding diversification to the architecture on the decision-making
(positive impact (Case 1) and negative impact (Case 2)) as compared to the default case (6 original
DAO in Table 3.1).
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5.9 Discussion

In this chapter, we aimed to answer the thesis’s third research question RQ3: How can
run-time architecture evaluation using cost-benefit analysis and machine learning tech-
niques complement the design-time one to handle uncertainty ? Our reactive run-time
evaluation approach allows reasoning about value added under uncertainty, facilitated by the
use of reinforcement learning to profile the fitness values of options rather than the tradi-
tional (static) predictions of design-time decisions. The exponential decay factor provides
architects with a visual demonstration of the benefit of options over time and aids them in
complementing design-time decisions (Figure 5.8). Our approach also alerts architects of
significant detrimental changes in the benefit of the option being employed, and highlights
which of the candidate options provides the optimal cost-benefit trade-off when changes
occur for normal and strict constraints (Figure 5.9). This could assist architects in the process
of eliminating options with poor balance between benefits and costs over time. For instance,
in the best and worst case scenarios in the experiment addressing RQ3.2, we found that one
out of six options could potentially be eliminated because it was always worse than the others
(i.e. the cloud-based option). There is a trade-off between monitoring the architecture options
at every timestep and every T’ intervals; our approach was able to show this trade-off to the
architect (Figure 5.11, 5.12). Our approach is also robust when dealing with noise (Figure
5.13) and scalable to be applied in practical settings (Figure 5.14). Further, the exponential
decay factor that we use, weights recent values more heavily, which yields more practical
results (Figure 5.15). The approach uses the confidence interval to automatically tune the
sensitivity of the approach to changes, which improves the system’s stability (Figure 5.16).
In summary, our approach allows the architect to determine the added value of embedding
diversification in the architecture (Figure 5.17).

In a nut shell, the proposed run-time evaluation approach assesses the architecture design
decisions through the following: (i) evaluating, complementing, and refining design-time
decisions with run-time ones; (ii) tuning the relative importance of present/past data for
knowledge accumulation about an architecture which can aid in learning the behaviour of
architecture decisions over time; (iii) efficiently assessing the value of architecture decisions
at different monitoring intervals; (iv) allowing the architect to tune the sensitivity of the
approach to changes, and therefore how stable/unstable it will be over time.
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5.10 Threats to Validity

In answering RQ3 (Chapter 5), we have run a number of experiments in a controlled
environment. We discuss the threats related to internal and external validity in the context of
these experiments.

5.10.1 Threats to Internal Validity

These are concerned with the impact of evaluation parameters on the proposed approach.
For that, we have analysed our approach with varying input parameters (e.g. the relative
importance of present/past, the confidence interval, etc) to ensure acceptable accuracy and
stability. On the contrary, the values of these parameters might vary depending on some
characteristics (e.g., the environmental conditions and more complex dependencies between
architecture decisions), which could be investigated for future research. Further, one of the
threats to internal validity is that the real environment may differ from the simulated data due
to uncertainties at run-time. Therefore, we have tested the sensitivity of the approach to noise,
to check how well our proposed approach can handle this issue. We have also demonstrated
the applicability of our approach to monitor the environment at every T’ intervals if the
real-time evaluation was expensive and the architects did not wish to use simulation.

5.10.2 Threats to External Validity

These are linked to the run-time data synthesis and analysis used in the experiments. In par-
ticular, the notion of run-time evaluation is meant to contextualise dynamic and behavioural
evaluation; such evaluation needs to be conducted by monitoring a running system; analysing
historic data from a running system or using a simulated environment that mimics the be-
haviour of the running system to perform stress and what-if analysis for the performance of
the architecture design decisions under changing environment and/or extreme scenarios. The
results of such evaluations are time-dependent in non-stationary environments as it is the
norm for systems such as IoT. Evaluation that is based on simulation can still be considered
as design-time if the evaluation is performed at design-time and before deployment. However,
we also see potential for the same simulated approach to work in parallel with the running
system, with symbiotic feedback between the simulator and the running system to perform
anticipatory evaluation of key design decisions and their possible variants based on the
run-time context, which may be difficult without the aid of simulation.
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Additionally, there will always be a trade-off between using the simulators and physical
IoT devices in experimentation and data generation. This is due to the high cost of the actual
deployment of IoT devices as compared to simulators. However, some companies, such as
Amazon, IBM, and Intel, are motivating the need for having IoT simulation instrumenting
what-if test scenarios, typically used during the architecture analysis and refinement stages to
evaluate the response and sensitivity of the architecture to these tests.

To generalise, our approach can steer the evaluation process using simulated data; partially
simulated data and/or using monitored run-time data. The simulation can be used to simulate
what-if an option would be deployed. This is particularly useful if the architect would like to
solicit an early assessment on the option, where the cost of deployment would be expensive
and the outcome can not be verified with high confidence. Simulation can also be used
to simulate the performance of some design decisions under worst and stress scenarios.
Henceforth, simulation can be a cost-effective strategy to first assess the performance and
then adapt, if the option deems to be sensible. Further, transfer learning methodology [217]
has been recently adopted in [218], where the QoS measurements are taken from a simulator
and only a few samples are taken from the real system leading to much lower cost and faster
learning. In this context, the approach could learn from both simulated and run-time data,
which is a subject for future work.

A major challenge in mobile crowdsensing is the resource constraint of the mobile
devices. This can constrain the processing which can be done on the devices forming the
dao in our approach. On the other hand, mobile devices that are not constrained in resources
can have a high energy consumption to be able to perform on-device computations. High
energy consumption is therefore another challenge to our approach. However, the new mobile
devices are designed to handle processing tasks with acceptable energy consumption. The
IoT environment is highly dynamic and characterised by hyper-connectivity, due to high
refresh rates and continuous upgrades. More specifically, it is expected that nodes can leave
and join; nodes can be subject to upgrades and replacements; some nodes could be replaced
by inferior ones; some new nodes can share common characteristics with its predecessors,
offering enhancements for some qualities. Though it would be difficult for the approach
to predict all possible types of IoT devices and versioning that can be encountered in real
settings, our approach assumes the evaluation of reference architectures for this setting,
where commonalities and variabilities are analysed as part of the diversification procedure
for incepting and evaluating the diversified architecture options.
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5.11 Conclusion

In this chapter, we proposed a novel run-time architecture evaluation method suited for
systems that exhibit uncertainty and dynamism in their operation, such as IoT. This method
provides continuous assessment of design-time decisions. It can inform deployment, refine-
ment and/or phasing out decisions. Specifically, we used strategies derived from machine
learning and cost-benefit analysis at run-time to continuously profile and evaluate the archi-
tecture decisions for their added value. We demonstrated the use and significance of our
approach by applying it to the case of designing diversification in an urban traffic monitoring
IoT application to cater for the uncertainty in meeting quality requirements. Moreover, we
evaluated our run-time approach with respect to baseline design-time approaches. Based on
our experimental evaluation, our method could assist architects in evaluating design-time
decisions at run-time, which could improve their decision-making process.

Additionally, the proposed reactive approach accumulates the run-time knowledge of
the benefit of the architecture decisions. It then assumes that the best dao to switch to is
the one which has recently been obtaining the most balanced cost-benefit. This is effective
in some contexts, e.g., when the deployed architecture option is not violating the QoS
constraints that much, or when its performance level is not significantly changing over
time. However, in other contexts, this type of learning may suggest wrong decisions and
recommend unnecessary switches due to the lack of knowledge about the future benefit of
candidate architecture decisions. Taking into account the future potential of a diversified
architecture option may provide a more informative evaluation. This calls for extending the
following run-time approach with additional machine learning algorithms to anticipate the
benefit of architecture decisions over time.



Chapter 6

Proactive Run-Time Architecture
Evaluation

Context. Based on the results of Chapter 4 and 5, design-time evaluation and reactive
run-time evaluation are not enough to evaluate complex and dynamic design decisions. They
lack the ability to forecast the future benefits at run-time. Therefore, they could trigger
unnecessary switches, which affect the architecture stability and result in increased costs. A
proactive approach is necessary as a complementary component in a continuous architecture
evaluation framework.
Objective. This chapter proposes the first proactive approach to continuous architecture
evaluation.
Method. The approach evaluates software architectures by not only tracking their perfor-
mance over time, but also forecasting their likely future performance based on machine
learning. This enables architects to make informed decisions on potential changes to the
architecture, so that its performance remains good over time, at the same time as unnecessary
switches to different architecture decisions are avoided. We apply the proposed approach on
iTransport to show how machine learning can fundamentally guide the continuous evaluation
of software architectures and influence the outcome of architecture decisions. A series of
experiments is conducted to demonstrate the applicability and effectiveness of the approach.
Results. Our experimental results show that the proactive approach was more advantageous
than the design-time and reactive approaches, because it learns and forecasts, and hence
makes smarter decisions. In some contexts, the proactive approach has contributed to a
significant improvement in benefit: about 20-60% as compared to design-time approaches.
In other contexts, it also produced the best results (i.e. 40-70% better benefit than reactive,
state-of-the-art and baseline approaches).
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Conclusion. Proactive approaches leveraging the time series forecasting analytics can funda-
mentally guide the continuous evaluation of software architectures and influence the outcome
of the decisions made.

6.1 Introduction

In Chapter 4, we have used CBAM [9] along with options theory [26, 42] to evaluate
the potential of different architecture options at design-time, where the architecture options
providing high option value are then considered for deployment. However, as the environment
is dynamic, value potentials can fluctuate at run-time. This led to our subsequent work in
Chapter 5, where we have proposed a reactive approach for evaluating software architectures
at run-time, using techniques inspired by reinforcement learning [27]. This approach monitors
architecture design decisions with respect to some quality attributes of interest. If the
adequacy of a given decision starts to deteriorate, the approach then reacts by suggesting
possible refinements or changes of the decisions.

Meanwhile, modern developments practices have given rise to harvesting operational
data (e.g. QoS data), learning and analysing data, to continually feedback to the development
to refine, tune, and enhance architecture design decisions. The availability of this data has
provided new opportunities for continuous evaluation, whether they are real-time or simulated
ones. It could potentially: (i) aid the architect in continuously learning about architecture
decisions; (ii) complement design-time decisions; (iii) help in forecasting how well they will
behave in the future; (iv) proactively deal with variability scenarios.

Though the approach in Chapter 5 continuously helps the architect in understanding the
past behaviour of the architecture decisions in question, such a reactive approach is limited.
Even though it can monitor past observed performance of architecture decisions, it cannot
proactively reason about their future potentials. Meanwhile, a decision that has worked well
in the past may not necessarily work well in the future, given the potential changes and
uncertainty underlying the environment where the system is embedded. Reactive approaches
may cause the current decision to seem poor, even though it could become attractive in
the near future. This could trigger unnecessary architecture adaptations that would cause
the system to be unstable. Conversely, a decision that may not seem attractive based on
the past could have better future potentials. Discarding that decision could lead to poor
future performance. In summary, reactive approaches can lead to partially justified decisions,
unnecessary adaptation, and increase development cost, while slowing down the operations.
Existing work has only exploited data to provide benefit (i) mentioned in the previous
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paragraph, and partially provide benefit (ii). The full power of data has yet to be harnessed to
provide benefits (i)-(iv), which are essential to better inform software architecture decisions
at run-time.

This chapter thus, provides the first investigation of proactivity in continuous software
architecture evaluation. It exploits machine learning in the form of time series forecasting
analytics to produce a more powerful continuous architecture evaluation approach, able to
provide benefits (i)-(iv), which we contribute to the research literature.

Overall, this chapter answers the thesis’s fourth research question: RQ4: How can the
use of forecasting analytics improve the state of run-time architecture evaluation? This
research question is further divided into following:

• RQ4.1: How can proactivity in continuous evaluation be realised and conducted?
For instance, can continuous time series forecasting analytics enable us to predict
the behaviour of software architectures over time and, if so, how well?

• RQ4.2: How can proactive approaches complement reactive ones to provide a
well-rounded and more effective continuous architecture evaluation? What ben-
efits can they bring to continuous software architecture evaluation and decision-
making at run-time?

To answer these RQs, this chapter proposes a novel approach to continuous software
architecture evaluation. It uses continuous time series forecasting [30–32] as a built-in
mechanism to complement reactive run-time evaluation (Chapter 5) with proactive run-
time evaluation. In this way, the proposed approach not only takes into account the past
performance of architecture decisions, but also their future potentials, better informing
run-time architecture decisions.

A series of experiments were conducted to demonstrate the applicability and effectiveness
of this approach using the case of architecting for IoT (i.e. iTransport). The suitability of
various time series forecasting algorithms [30–32] to realise proactivity is investigated
under this case study (RQ4.1). The impact of proactivity on run-time decision-making is
then evaluated through a comparative study against design-time and reactive continuous
evaluation approaches (RQ4.2). Simulated run-time and operations data [35] were used to
test the potentials of the approach on a wider spectrum of scenarios and cases (similar to the
data used in Chapter 5). These experiments also provide software architects with systematic
guidance on how the approach can be realised in practice given a wide set of scenarios and
data capabilities for forecasting (i.e. how to select forecasting algorithm, how to best benefit
from forecasts, etc).
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Our results show that the proactive approach was more advantageous than the design-time
and reactive approaches in some important scenarios. In particular, we have set two scenarios
with different QoS constraints (i.e. the target QoS should not exceed a particular threshold)
based on the context and the stakeholders requirements. For normal constraint scenarios,
the proactive approach provided similar overall behaviour to the reactive approaches, but
with improved system stability (i.e. smaller number of switches). It also contributed to a
significant improvement in benefit: about 20-60% as compared to design-time approaches.
For most of the scenarios where architects have set strict constraints, it also produced the
best results (i.e. 40-70% better than reactive and baseline approaches).

Our novel contributions are:
• The first investigation of whether and how time series forecasting can be used to

successfully forecast the future benefit of architecture decisions.

• The first proactive approach to continuous software architecture evaluation. The
approach uses the power of forecasting analytics to complement design-time decisions
by taking into account not only the past, but also the future potentials of architecture
decisions.

• A detailed analysis of when and why the proposed approach can help to better inform
architecture decisions.

• Experimental guidelines aiding architects on how to tune the proposed approach.

The remainder of this chapter is structured as follows: Section 6.2 discusses the necessary
background to understand the proposed approach. Section 6.3 then presents the proposed
proactive approach. Section 6.4 provides a comprehensive and comparative evaluation.
Section 6.5 provides a further discussion on the method, whereas Section 6.6 discusses
threats to validity. Section 6.7 concludes the work.

6.2 Background

A time series is a sequence of observations (e.g. response time, energy consumption,
etc) measured/received sequentially over time [219]. Time series forecasting consists in
forecasting the value of a future observation (output attribute), based on the values of a
number of previous observations (input attributes) in the sequence. In this work, we will
consider that, once the true value of the future observation becomes known, it can be used
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to create a training example (i.e., an example where both the input and output attributes
are already known) for updating the current forecasting model. After that, this training
example is discarded. The learning procedure where forecasting models are updated over
time whenever a new observation arrives is called online learning, and is adequate when data
arrive at high speed, as is the case with IoT.

In this section, we will briefly explain two types of online learning algorithms, for sta-
tionary and non-stationary environments. More detailed explanation on how the forecasting
model is built and trained is given in Section 6.3.1.

6.2.1 Online learning models for stationary environments

Learning models for stationary environments assume that the true function underlying the
relationship between input attributes and forecast values does not change over time. The
online learning models for stationary environments investigated in this work are: k-Nearest
Neighbours (kNN), Perceptron, and Stochastic Gradient Descent (SGD) Multiclass.

6.2.1.1 k-Nearest Neighbours (kNN)

It is a type of lazy learning [220], where all the training and learning of examples is performed
when the forecasts are required. The algorithm uses a function that computes the output
attribute (i.e. forecast values) using the mean of all the output values of its k nearest
neighbours. For instance, if k=3, then the output attribute equals the average of the output
values of its 3 nearest neighbours. The nearest neighbours are usually determined based
on the Euclidean distance between the input attributes of the example to be predicted and a
training example.

6.2.1.2 Perceptron

This is a type of neural network approach [221], which trains a single neuron to output a
forecast. The neuron has weights associated with each input attribute. It provides a forecast
by computing a function that receives as input the weighted average of the input attribute
values. The weights start with random values, and are then iteratively updated based on
incoming training examples, so as to minimise the forecasting error. The size of the updates
is controlled by a parameter called learning rate.
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6.2.1.3 Stochastic Gradient Descent (SGD) Multiclass

SGD is an online learning algorithm that has shown its success for large-scale learning
and forecasting [222–224]. The aim of SGD is to minimise the forecasting errors when
training large numbers of examples. To this regard, it employs a differential error function
for optimisation. However, in other cases, it also uses non-differential functions to adjust
the error within a certain margin (i.e. particular threshold). It is different from classical
gradient descent which selects all the training examples as a batch, instead it randomly
nominates an example for training (i.e. stochastic) [225]. In particular, it iteratively accepts a
training example and then amends the forecasting model through gradient descent over the
corresponding instantaneous objective function [226]. The SGD MultiClass is an extension
of SGD, which is mainly used for solving multiclass classification and regression problems
[32]. It has the ability to perform online training of various models [226], such as support
vector machine (SVM), logistic regression, and linear regression. It also uses a learning rate
for the same purpose as the Perceptron. In our case, we have used SVM as a learning model.
Because it adopts an efficient and special type of loss function named hinge, which aids in
providing better forecasts than other models (i.e. output is more accurate) [227]. The hinge
loss is a non-differential loss function, which is known to be lazy [32]. This implies that
the forecast model parameters are only updated if the training example violates the margin
constraint rather than when every example which arrives. Therefore, this improves the
efficiency of the SVM [227]. Further details related to SGD Multiclass is found in [32, 227].

6.2.2 Online learning models for non-stationary environments

Learning models for non-stationary environments assume that the true function underlying
the relationship between input attributes and forecast values may change over time, requiring
specific mechanisms for models to update to such changes. The algorithms for non-stationary
environments investigated in this work are: Fast Incremental Model Trees with Drift Detection
(FIMTDD), Fading Target Mean (FTM) and Additive Experts (AddExp) [32].

6.2.2.1 Fast Incremental Model Trees with Drift Detection (FIMTDD)

This is an online machine learning algorithm that uses model trees for forecasting [228]. In
particular, it incrementally splits the training examples across the leaf nodes based on the
input attribute values with respect to some statistical analysis. The algorithm uses change
detection tests, which are updated with every example. These change detection tests are
used to determine whether there is evidence that the true function underlying the relationship
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between input attributes and forecast values is changing, based on the forecasting errors
obtained by the tree. If a change is detected, the tree structure is modified with respect to
an alternate tree adaptation strategy [228]. This strategy determines the node that is likely
to be involved in the change, and labels it as requiring re-growing. A new alternate tree
is constructed at this node in parallel with old one. Whenever, a new example arrives at a
labelled node, the algorithm will employ it to grow both the alternate and old trees. The
new alternate tree will replace the old tree once it becomes more accurate. FIMTDD has
three main parameters that affect the forecast error: (1) the type of tree adopted, where a
regression tree is found to provide better results than model tree; (2) the tie threshold, which
is a threshold below which a split will be forced to break ties; and (3) learning rate, which is
used for training Perceptrons in leaves (i.e. explained in Section 6.2.1.2). More information
related to FIMTDD is found in [228, 32].

6.2.2.2 Fading Target Mean (FTM)

This learning algorithm returns a forecast which is the mean of the target of the training
instances [32]. It also uses a fading (forgetting) factor [229] that gives more emphasis to
more recent target mean. This is based on the simple assumption that the importance of
examples reduces with their age, and enables the approach to adapt to changes. The fading
factor can be tuned based on the need to emphasise the most recent versus the past target
mean. Further details related to FTM is found in [229, 32].

6.2.2.3 Additive Ensemble (AddExp)

All the previous learning models are considered single learners, whereas there are other
algorithms which leverage a group of learners. The latter are named ensemble learners

[30]. AddExp [31] is an ensemble learner. Each learner is assigned a weight and produces a
forecast for the current example. At every timestep, the AddExp algorithm gets the models’
forecasts and provides a forecast which is computed as the weighted average of all models’
forecasts. The weight of each expert is then updated based on its forecasting error. Errors on
more recent examples are emphasised over old examples. The error of the ensemble forecast
is also computed over time and, if it is larger than a certain threshold, a new model is added to
the ensemble. This, together with the weight associated to each model, enables the ensemble
to adapt to changes in the underlying function of the problem. Finally each expert is trained
over time with respect to the available training data.



6.3 Proactive Architecture Evaluation Approach 159

6.3 Proactive Architecture Evaluation Approach

The proposed continuous evaluation approach intertwines run-time evaluation with design-
time evaluation for more informed decision-making. It builds on the reactive run-time
approach by adopting forecasting analytics as depicted in the forecast and learn module from
Figure 6.1. The use of forecasts makes the approach proactive, because it does not only
rely on reacting to potential changes in the benefit of architecture decisions over time, but
attempts to forecast them. In this way, architecture decisions could be made before negative
changes in benefit become detrimental.

Figure 6.1 Steps of the continuous evaluation approach, where the design-time evaluation (Chapter 4)
forms the initial design decisions and proactive run-time evaluation complements it by adopting time
series forecasting.

The approach tracks and evaluates the actual benefit and cost using exponential decay
factors (Section 5.4.4). The benefit is then modelled based on quality attribute forecasting
models (Section 6.3.1). Then, instead of detecting significant deviations based only on
previous benefit values, the proactive approach considers their future potentials (Section
6.3.2). The same applies to the selection of architecture options having the optimal cost-
benefit trade-off, which is also based on their forecast benefits (Section 6.3.3). This is
done to avoid critical problems, such as reactively recommending an architecture design
option which does not introduce added value over time, triggering unnecessary adaptations
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and hence leading to an unnecessary increase in costs. The future potentials are assessed
based on time-series forecasting approaches [30, 32], which forecast the future benefits of
diversified architecture options based on previous quality attribute values observed. The
Forecast and Learn step is explained in Section 6.3.1. Figure 6.2 illustrates the operational
procedures performed by the proactive run-time evaluation approach along with stakeholders
and architects involvement.

6.3.1 Forecast and Learn

The forecasting model learns a function that receives as input previous quality attribute values
monitored by the Evaluate step (Section 5.4.4), and outputs a forecast of the future value of
the quality attribute. One forecasting model is produced for each quality attribute. We refer
to a point in time when a new quality attribute value has been observed as a timestep. At
each timestep t, the following two main operations are run, for each quality attribute:

1. Learn: a new training example is produced if enough quality attribute values have been
observed to compose it. This training example is used to train (update) the forecasting
model corresponding to this quality attribute. A training example is composed of ζ

input attributes, where ζ is a pre-defined parameter, and one output attribute. The input
attributes are past quality values (q′daoi

(t ′−h−ζ −1),q′daoi
(t ′−h−ζ ), · · · ,q′daoi

(t ′−
h−1),q′daoi

(t ′−h)), where h represents the number of timesteps in the future for which
we wish a prediction to be made. The output attribute is the quality value that we want
to learn how to predict (q′daoi

(t ′)). Therefore, a training example can be seen as a tuple
<q′daoi

(t ′−h−ζ −1),q′daoi
(t ′−h−ζ ), · · · ,q′daoi

(t ′−h−1),q′daoi
(t ′−h),q′daoi

(t ′)>

2. Forecast: a forecast q̂daoi(t + h) is provided based on the forecasting model corre-
sponding to the quality attribute. The forecast is made by feeding the past ζ observed
quality attributes (q′daoi

(t −ζ −1),q′daoi
(t −ζ ), · · · , ,q′daoi

(t −1),q′daoi
(t)) as inputs to

the forecasting model.

Table 6.1 illustrates the training examples and forecasts produced at each timestep for
a given quality attribute. In this illustrative example, the quality value observed in a given
timestep t has the same numeric value as the timestep itself, so that the example is easier to
follow. However, in real scenarios, the quality value received at a given timestep t does not
necessary have the value t.

Suppose that the number of input attributes ζ used for forecasting is 4 and that we wish
to forecast h = 3 timesteps in the future. Therefore, the algorithm will require 4 past quality
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values (q′daoi
(t−3), q′daoi

(t−2), q′daoi
(t−1), q′daoi

(t)) as input attributes to provide a forecast
q̂daoi(t +3).

A given training example < q′daoi
(t−h−ζ −1),q′daoi

(t−h−ζ ), · · · ,q′daoi
(t−h−1),q′daoi

(t−
h),q′daoi

(t)> can only be produced at a given timestep t if all its input and output attribute
values have already been observed. Therefore, the first training example used to train the
forecasting model can only be produced at timestep t = 7. This also means that the first
forecast by the model can only be provided at timestep t = 7. Before that, even though new
quality values were being observed and stored to compose training examples, no complete
training example had been produced yet. So, the forecasting model could not be built. From
timestep t = 7 onwards, the number of training examples produced by the approach increases
by 1 at each timestep. Each new training example produced by the approach can be used to
train (update) the forecasting model, so that it will produce improved forecasts over time.
Even though it is possible to provide forecasts from timestep t = 7 on wards, it may be
desirable to wait to start providing forecasts only after a pre-defined number of training
examples ηmin has been produced. This is because a forecasting model trained on too few
examples may not perform well, and we would not have enough training examples to estimate
its forecasting ability either.

Each forecasting model is built and updated based on a given machine learning algorithm.
This algorithm may or may not be the same for different forecasting models. The choice
of which machine learning algorithm to use for each quality attribute depends on which
algorithm is able to provide better forecasts for that quality attribute. Our work investigates
the use of two types of machine learning algorithms: (i) online learning models for stationary
environments; and (ii) online learning models for non-stationary environments [30]). Online
learning means that the models are updated over time based on new training examples
produced over time. Learning algorithms for stationary environments assume that the true
function underlying the relationship between input attributes and forecast values does not
change over time. Learning algorithms for non-stationary environments assume that this
function may change, therefore adopting specific mechanisms to swiftly update forecasting
models to such changes. More details on how that is achieved can be found in Section 6.2.
We investigate the suitability of different learning algorithms to forecast quality attributes in
Section 6.4.

A more detailed explanation of the steps followed by the proposed approach is provided
below with respect to Algorithm 5. This algorithm is run for each quality attribute q.

1. Provide the input parameters: The architect will enter the following parameters to
initialise the forecasting procedures: q (quality value q for which the forecasting model
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Table 6.1 An Illustration of the Process of Creating Training Examples to Train the Forecasting
Models. The table illustrates what training example is produced at each timestep, and what forecast
can be provided at each timestep, when ηmin = 1. The value of "-" in a cell represents the absence of
a certain input attribute or forecast at a given timestep. A training example can only be created when
the true value of all of of its input and output attributes has already been observed.

Current # Training Training Example Generated Timestep
Timestep Examples Input attributes Output Attribute Being Forecast

(t) q′daoi
(t −6) q′daoi

(t −5) q′daoi
(t −4) q′daoi

(t −3) q′daoi
(t) t +3

1 0 - - - - 1 -
2 0 - - - - 2 -
3 0 - - - - 3 -
4 0 - - - 1 4 -
5 0 - - 1 2 5 -
6 0 - 1 2 3 6 -
7 1 1 2 3 4 7 10
8 2 2 3 4 5 8 11
9 3 3 4 5 6 9 12

10 4 4 5 6 7 10 13

is being used), q′daoi
(t) (normalised quality values for each dao over time), ζ (number

of input attributes required for forecasting), h (number of further ahead timesteps),
ηmin (minimum number of training examples to start using the forecasting models), and
τq (error threshold for using the model). The two latter parameters are used to prevent
using poor forecasting models. In particular, if the number of training examples used
to build the forecasting models is too small, these models are likely to perform poor
forecasts, and the estimation of their error will not be reliable either. Therefore, none
of the forecasting models is used before being trained on ηmin examples. In this case,
the approach will behave reactively, as in Chapter 5. Once ηmin training examples
have become available, if the estimated error of a given forecasting model for quality
attribute q is above τq, this model is not used at the current timestep and the approach
behaves reactively for this quality attribute. The architect has the flexibility to adjust
the prior parameters. The impact of such parameters will be investigated in Section
6.4.

2. Create training example: If enough past quality attributes have been stored in the
queue (line 6), a new training example will be created (line 7).

3. Evaluate the forecasting model: The current training example is used to update
the estimate of the predictive performance of the forecasting model. Therefore, the
forecasting model is first requested to provide a forecast for the current value of the
quality attribute (line 10). As the current value of the quality attribute is known, we
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can check how large the error of the forecast is by computing e = q̂daoi(t)−q′daoi
(t)

(line 11). Therefore, we can use this error to update the error average incurred by the
forecasting model, based on some error metric (line 12). This is going to be used later
on to decide whether to adopt the forecasts provided by this model.

The error metric used in this work is the Root Mean Squared Error, shown in equation
6.1.

eq(t) =

√
∑

t
t ′=1 (q̂daoi(t ′)−q′daoi

(t ′))2

η
(6.1)

where η is the number of training examples received so far. The error on the current
training example (line 11) can be used to update eq(t) incrementally if desired. In this
way, there is no need for storing all previous errors.

4. Train the forecasting model: The new training example {q′daoi
(t−h−ζ −1),q′daoi

(t−
h−ζ ), · · · ,q′daoi

(t−h−1),q′daoi
(t−h),q′daoi

(t)} is used to train its corresponding fore-
casting model (line 13).

5. Provide a forecast: If the error average incurred by the forecasting model is below
the threshold τq and the number of training examples used to train the forecasting
model is larger than ηmin (line 14), the forecasting model is used to produce a forecast
q̂daoi(t +h) (line 15-16). Otherwise, the algorithm returns null (line 17).

When a forecast is produced, it is used to update the estimated benefit (B̂daoi(t)),
which is computed as in equation 6.2. In this context, q∗daoi

(t) is equal to q̂daoi(t +h).
Otherwise, if a forecast is not produced, the approach behaves reactively and uses the
actual normalised quality value instead (i.e. q∗daoi

(t) = q
′
daoi

(t)).

B̂daoi(t) = ∑
q∈Q

wq ∗q∗daoi
(t) (6.2)

The approach also allows the architect to use the average forecasts of t +h instead of
using a single value of h. For instance, if h ∈ {1,5,8,15}, then q∗daoi

(t) will be equal
to the mean of q̂daoi(t + h) for varying h values. The use of average forecasts may
provide more realistic results than single h, as it considers a window of time in the
future, rather than a specific point in the future. This potential advantage of using the
average of the forecasts will be investigated in Section 6.4.3.
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ALGORITHM 5: ForecastAndLearn()
Input: quality attribute q for which to forecasting model is being trained, normalised

quality value q′daoi
(t) observed at time t, number of input attributes ζ , number

of further ahead timesteps h, minimum number of training examples for
enabling forecasts ηmin, error threshold per quality attribute τq

Output: forecast quality q̂daoi(t)

1 if this is the first call to ForecastAndLearn then
{queue stores past observations of quality values and η keeps track of the number

of examples produced by the algorithm. Their values persist over future calls of
ForecastAndLearn. }

2 Initialise Model[q].queue to empty.
3 Initialise Model[q].η = 0.
4 Initialise Model[q].error = 0

end
5 Add q′daoi

(t) to Model[q].queue.
6 if Size(Model[q].queue) == ζ then
7 Create new training example

< q′daoi
(t−h−ζ −1),q′daoi

(t−h−ζ ), · · · ,q′daoi
(t−h−1),q′daoi

(t−h),q′daoi
(t)>.

8 Model[q].η = Model[q].η +1
9 Delete first element of Model[q].queue.

{Evaluate the forecasting model by forecasting the output of the training example }
10 q̂daoi(t) = Model[q].Forecast(h,{q′daoi

(t −h−ζ −1),q′daoi
(t −h−

ζ ), · · · ,q′daoi
(t −h−1),q′daoi

(t −h)})
11 e = q̂daoi(t)−q′daoi

(t)
12 Use e to update the root mean squared error Model[q].error (Equation 6.1).

{Train the forecasting model }
13 Model[q].Train(<

q′daoi
(t −h−ζ −1),q′daoi

(t −h−ζ ), · · · ,q′daoi
(t −h−1),q′daoi

(t −h),q′daoi
(t)>)

end
{Provide a forecast }

14 if (Model[q].error ≤ τq & Model[q].η ⩾ ηmin ) then
15 q̂daoi(t +h) = Model[q].Forecast(h,{q′daoi

(t −ζ ),q′daoi
(t −ζ +1), · · · ,q′daoi

(t −
2),q′daoi

(t −1)})
16 Return q̂daoi(t +h)

else
17 Return null.

end
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Further, the approach provides the ability to check quality constraints’ violation. If
q∗daoi

(t) violates the constraint, equation 6.2 will be used to compute estimated benefit
B̂daoi(t), otherwise B̂daoi(t) is set to zero.

Figure 6.2 An overview of the operational procedures of proactive run-time evaluation approach.

6.3.2 Detect Based on Forecast and Learn

The same procedure as in Section 5.4.5 is applied here, except that the change is detected
with respect to the forecast benefits rather than the actual ones. The forecast benefit (B̂daoi),
forecast exponential benefit (µ̂daoi), variance (σ̂2

daoi
(t)), and standard deviation (σ̂daoi(t)) are

calculated in the same way as in Section 5.4.4. However, we use the forecast quality values
q̂daoi(t) rather than actual q′daoi

(t) here.
Therefore, they are computed as follows:

µ̂daoi(t) = θ µ̂daoi(t −1)+(1−θ)B̂daoi(t) (6.3)

σ̂
2
daoi

(t) = θσ̂
2
daoi

(t −1)+(1−θ)∗ (B̂daoi(t)− µ̂daoi(t))
2 (6.4)

σ̂daoi(t) =
√

σ̂2
daoi

(t) (6.5)
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The architect also has the flexibility to adjust θ , α1 and α2 (Figure 6.2) with respect to
required accuracy and stability similar to the reactive approach, as mentioned earlier in
Section 5.4.4. Algorithm 6 depicts the steps of change detection with respect to forecast
values. At each timestep, the approach updates the maximum forecast exponential benefit
µ̂max

daoi
(line 2-3) and its corresponding exponential standard deviation σ̂max

daoi
(line 4). After that,

the approach checks if a change/warning is detected. If the approach detects a significant
change (line 5-6), the maximum forecast exponential benefit and its corresponding standard
deviation are reset (line 7). In this context, the select function will then search for an optimal
dao based on the forecast exponential benefit (Section 6.3.3). The approach also has the
ability to just trigger a warning to the architect based on the α value chosen (line 8-9).
Otherwise, the approach indicates that neither a change nor a warning were detected (line
10).

ALGORITHM 6: DetectBasedOnForecastAndLearn()
Input: confidence intervals (α1, α2), forecast exponential benefit µ̂daoi(t), standard

deviation σ̂daoi(t) based on forecast benefit
Output: change/warning/no change is detected
The red parameters denote the differences with respect to the reactive approach

{Initialise the maximum forecast exponential benefit and its corresponding standard
deviation}

1 µ̂max
daoi

= µ̂daoi(0), σ̂max
daoi

= σ̂daoi(0)
{Update the maximum forecast exponential benefit and its corresponding forecast

exponential standard deviation}
2 if µ̂daoi(t)> µ̂max

daoi
then

3 µ̂max
daoi

= µ̂daoi(t)
4 σ̂max

daoi
= σ̂daoi(t)

end
{Check if a change is detected}

5 if µ̂daoi(t)− σ̂daoi(t)≤ µ̂max
daoi

−α2 ∗ σ̂max
daoi

then
6 a change is confirmed
7 reset µ̂max

daoi
and σ̂max

daoi
{Check if a warning is triggered}

8 else if µ̂daoi(t)− σ̂daoi(t)≤ µ̂max
daoi

−α1 ∗ σ̂max
daoi

then
9 a warning is triggered

else
10 no change/warning is detected
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ALGORITHM 7: SelectBasedOnForecastAndLearn()
Input: change detected in daocurr, a pre-defined parameter λ , number of λ (|λ |),

number of DAO (|DAO|), forecast exponential benefit µ̂daoi(t), cost cdaoi(t)
Output: optimal daoi
The red parameters denote the differences with respect to the reactive approach

{A change is detected in daocurr, then do:}
1 {Initialisation:}
2 λ : {0.1,0.2, · · · ,0.9}, |λ |= 9
3 {Determine the Non-Dominated DAO:}
4 for i = 1 to |DAO| do
5 dominant = 0
6 for j = 1 to |DAO| do
7 if (cdaoi(t)≤ cdao j(t)&µ̂daoi(t)≥ µ̂dao j(t))&(cdaoi(t)< cdao j(t)|µ̂daoi(t)>

µ̂dao j(t)) then
8 daoi dominates dao j
9 dominant = 1

end
end

10 if dominant = 0 then
11 Add daoi to list of non-dominant DAO

end
end

12 {Calculate marginal loss for the non-dominant DAO:}
13 for i = 1 to Length (list of non-dominant |DAO|) do
14 foreach λ ∈ {0.1,0.2, · · · ,0.9} do

L̂λ (daoi, t) = λcdaoi(t)− (1−λ )µ̂daoi(t)
15 if i = argminiL̂λ (daoi′, t) then
16 L̂′

λ (daoi, t) = min(i ̸=ii)L̂λ (daoii, t)− L̂λ (daoi, t)
else

17 L̂′
λ (daoi, t) = 0

end
end

end
18 {Determine the expected marginal loss for the non-dominant DAO:}
19 for i=1 to Length (list of non-dominant |DAO|) do

20 approxM[L̂′
λ (daoi, t)] =

∑
λ∈{0.1,0.2,··· ,0.9}

L̂′
λ (daoi,t)

|λ |
end

21 Return optimal daoi = daoi with max(approxM[L̂′
λ (daoi, t)])
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6.3.3 Select based on Forecast and Learn

If a significant change is detected (based on its forecast exponential benefit), then an optimal
dao is selected based on its forecast quality values (Algorithm 7). In this context, it follows
the same procedures as in Section 5.4.6, but using the forecast quality values rather than
the observed ones. Algorithm 7 summarises the steps and their differences with respect to
Algorithm 4.

6.4 Experimental Evaluation

We performed experiments with the aim of evaluating the proposed proactive approach and its
worthiness through architecting the urban traffic monitoring system iTransport described in
Chapter 3. The experiments are divided into two parts. The first part (Section 6.4.2) focuses
on evaluating the forecasting ability of the forecast models used by the proposed proactive
approach and understanding the conditions under which they do or do not perform well.
Together with the proposed approach as described in Section 6.3.1, it provides the answer
to RQ4.1, outlined in Section 6.1. The second part (Section 6.4.3) investigates whether
and when it is worth adopting the proposed proactive approach for architecture evaluation.
Together with the proposed approach as described in Sections 6.3.2 and 6.3.3, it provides the
answer to RQ4.2 outlined in Section 6.1. Section 6.4.1 explains the experimental setup.

6.4.1 Data Synthesis and Experimental Environment

The data synthesis process is performed using iFogSim (explained in Section 5.5), whereas
the Massive Online Analysis framework (MOA) [32] and Matlab are exploited for data
analysis.

To test and evaluate the forecast models, we have used MOA [32]; an open source
framework for data stream mining that comprises a group of online methods. This framework
receives the input attributes (i.e. list of data quality observations), and then it outputs the
forecasts with respect to the selected forecasting models. We also used Matlab to implement
the proposed approach. All experiments were executed on Intel Core i7 processor machine
with 16GB of RAM. Table 6.2 depicts the experimental parameters used in this section.
Further details on the experimental design used for each part of the experiments are provided
in Sections 6.4.2 and 6.4.3.
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6.4.2 Forecasting Ability of the Proposed Proactive Approach

In this section, we aim to provide answers for the following: RQ4.1: How can proactivity in

continuous evaluation be realised and conducted? For instance, can continuous time series

forecasting analytics enable us to predict the behaviour of software architectures over time

and, if so, how well?. This question is further divided into the sub-questions below.

Table 6.2 Simulation Parameters for iTransport

Parameter Value
Device Configurations CPU (GHz), RAM (GB), Cost ($/day)
Cloud Datacenter 3, 40, 0.1-0.3
Wifi and ISP Gateways 3, 4,0.0053-0.0056
Smart Camera [1.6, 1.867, & 2.113], 4, 0.0053-0.0056
Number of Smart Cameras 80-120 cameras
Network Configurations (From-To) Avg Latency
ISP Gateway-Cloud Datacenter 80-120 ms
Wifi Gateway-ISP Gateway 1-6 ms
Smart Camera-Wifi Gateway 1-6 ms
Tuple Configurations (Msg. size): CPU (MIPS), Network (Bytes)
Raw Video Stream: 1000, 20000
Motion Video Stream: 2000, 2000
Object Location: 500, 2000
Warning: 1000, 100
Tracking parameters 28,100
Average QoS:
Applications Response Time (RT) 300-4000 ms
Energy Consumption of devices (EC) 80-120MJ
Network Usage (NU) 500 KBytes- 2 MBytes
Evaluation Settings:
θ 0.9
α1,α2 {95,99%}
Detection time step 5
Normal(Constraint[RT, EC, NU]; Weights[wRT , wEC, wNU ]) [400ms, 130MJ, 1Mbps]; [0.4,0.3,0.3]
StrictCase1(Constraint[RT, EC, NU]; Weights[wRT , wEC, wNU ]) [4000ms, 110MJ, 2Mbps]; [0.2,0.6,0.2]
StrictCase2(Constraint[RT, EC, NU]; Weights[wRT , wEC, wNU ]) [350ms, 130MJ, 500Kbps]; [0.4,0.2,0.4]
StrictCase3(Constraint[RT, EC, NU]; Weights[wRT , wEC, wNU ]) [380ms,120MJ, 800Kbps]; [0.4,0.3,0.3]
Normalised Operating Cost {0.3−0.5}
Normalised Switching Cost {0.2−0.4}
Error Threshold τq [0.15(RT),0.25 (EC),0.20 (NU)]

RQ4.1.1: How many input attributes are needed to provide acceptable forecast ?

Motivation: We need to understand what are good values for the number of input attributes
ζ , i.e., what ζ values yield the smallest forecasting errors.
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Experimental Design: We use the kNN learner against different numbers of input attributes:
2, 6, and 14. These choices aimed to show how low, mid, and high values could affect
the forecasting error. Forecasting error is measured based on the mean absolute error

(MAE =
∑ |q̂daoi(t)−q′daoi

(t)|
η

) and root mean square error (RMSE =

√
∑(q̂daoi(t)−q′daoi

(t))2

η
), where

η is the number of training examples, q′daoi
(t) is the actual normalised quality for a dao as

seen in equation 5.3 and 5.2, and q̂daoi(t) is the quality attribute forecast.
The simulations are performed for 120 timesteps. Therefore, if ζ = 2, then η = 118, if

ζ = 6, then η = 114 and if ζ = 14, then η = 106. The comparison of the different numbers
of input attributes will be supported by non-parametric Friedman tests [230]. This test is
a rank-based test widely used for comparisons across multiple groups. In our case, each
group is a given number of input attributes for a given quality attribute, and each observation
within a group corresponds to the forecasting error obtained for each of the six DAO. The
null hypothesis is that all groups have similar forecasting error. The alternative hypothesis
is that at least one of the groups has different forecasting error. The same procedure was
repeated for MAE and RMSE as forecasting error metrics, and for each quality attribute. The
level of significance of the test was set to 0.05.

Table 6.3 reports the forecasting errors for the group of input attributes, whereas Table 6.4
shows their average ranking and p-value. If the null hypothesis is rejected, we will perform
the post-hoc tests, Bonferroni-Dunn [230], between each group and the top ranked one to
determine which groups are significantly different from the best ranked one.
Analysis: Based on Table 6.3, the p-value of MAE is 1 (response time), 0.2466 (energy
consumption), and 0.3679 (network usage). So the null hypothesis of MAE is not rejected,
for all quality attributes. This implies that, for all the quality attributes, there is no significant
statistical difference between the number of input attributes. The same applies for RMSE
with p-value of: 0.3679 (response time), 0.2466 (energy consumption), and 0.8187 (network
usage). To decide the number of input attributes to be used in the remaining experiments, we
have exploited their Friedman rankings. Based on Table 6.4, the rankings of varying input
attributes are very similar. However, ζ = 6 provided lower error for energy consumption
quality than the rest. Whereas, ζ = 14 produced more favourable outcome for response time
than the others, but it requires 14 timesteps before the initial forecasts can start being made.
Therefore, we decided to adopt ζ = 6 in the remaining of the experiments. We recommend a
similar procedure to be followed to decide what ζ to adopt in practice.
Overall Observations: The forecasting models seem to be quite robust to different values of

ζ , given that the rankings were all very similar. So, architects may not need to fine tune it so

much.
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Table 6.4 Average ranking and p-value for determining the statistical difference between the use of 2,
6, and 14 input attributes.

# of
Input Average Ranking of input attributes

Attributes Response Time Energy Consumption Network Usage
MAE RMSE MAE RMSE MAE RMSE

2 1.17 1.50 1.17 1.50 1.50 1.67
6 1.17 1.50 1.00 1.17 1.50 1.67

14 1.17 1.00 1.67 1.67 1.17 1.33
p-value 1 0.3679 0.2466 0.2466 0.3679 0.8187

The input attribute with minimum (not necessarily significantly better) MAE is highlighted in
yellow, whereas the minimum RMSE (not necessarily significantly better) is highlighted in
orange.

RQ4.1.2: How many training examples are required for the forecasting error to be-
come acceptable?

Motivation: In this experiment, we aim to determine the minimum number of training
examples ηmin (i.e. forecast quality values) after which the method could use the forecasts
q̂daoi(t) made for each quality attribute to compute the forecasting benefit for selection of a
dao. This reveals how many timesteps are typically required for the forecasts to be considered
reliable and their error estimates to stabilise. Before that, the small number of examples
could lead to poor forecasts and unreliable error estimates. In this context, this experiment
will show to the architect how to choose the suitable number of training examples after which
forecasts can start being used.
Experimental Design: In this experiment, the MAE and RMSE metric will be used to
measure the error between the actual quality attribute values and their forecasts for various
h values, where h ∈ {1,5,8,15}. We will plot the average MAE (Figure 6.3) and average
RMSE (Figure 6.4) over time for kNN learner for t+1. Whereas other plots related to t +h

are shown in Appendix C.1 for reference. The results for dao3 and dao6 are reported here,
whereas the other DAO showed similar results.
Analysis: As depicted in Figure 6.3 and 6.4, the forecasting error sharply reduces over the
beginning of the learning period, reaching a more stable value after 13-15 training examples,
for all DAO for t +1. Same applies for other t +h, where h ∈ {5,8,15}, as seen in Figure
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C.1, C.2, and C.3. Therefore, ηmin does not need to be a large value. In our remaining
experiments, we will adopt ηmin = 15.

Despite the sharp decrease in the error during the initial stage of the learning, how low
the error can get depends on the dao and quality attribute being forecast. In practice, once
the error estimates are deemed more reliable (i.e., once ηmin is reached), the parameter τq

can be used to prevent the adoption of forecasting models whose forecasting error is deemed
high.
Overall Observations: The error sharply reduces over the initial learning period. Therefore,

ηmin does not need to be a large value. In these experiments, ηmin = 15 was a reasonable

value.

Figure 6.3 The MAE over time for 3 quality attributes to determine the number of training examples
for kNN Learner.

Figure 6.4 The RMSE over time for 3 quality attributes to determine the number of training examples
for kNN Learner.

RQ4.1.3: Is it necessary to adopt learning algorithms for non-stationary environments?

Motivation: This experiment aims to show which type of learning algorithms (from the ones
introduced in Section 6.2) could be adopted for non-stationary environments, such as IoT.
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The architect can benefit from this experiment to select the most suitable learner for each
quality attribute.
Experimental Design: In this experiment, we will evaluate the performance of the sole use
of single learners for stationary (kNN, Perceptron, and SGD Multiclass) and non-stationary
environments (FIMTDD, and FTM). We will also analyze the ensemble learner (AddExp)
for non-stationary environments by adopting each of the prior single learners as experts to
AddExp. MAE and RMSE are utilised as error metrics to evaluate the learners’ performance.
Six attributes (i.e. ζ ) are used as input for the forecasting method based on Experiment
RQ4.1.1. We have also investigated the case of parameter tuning for each learner. However,
these set of trials did not lead to any significant improvement for the forecast error. Therefore,
we adopted the default values for AddExp and single learners except for FIMTDD. The final
parameters used in this experiment are depicted in Table C.1.

Quality Attribute p-value
MAE RMSE

Response Time 5.95×10−7 1.60×10−7

Energy Consumption 9.00×10−8 2.81×10−7

Network Usage 2.37×10−8 1.43×10−7

Table 6.5 The statistical difference between the learners measured using p-value with respect to each
quality attribute.

Analysis: Based on Table 6.6, the kNN, FIMTDD, and FTM (used with/without AddExp)
provided the minimum errors for all the DAO. The Friedman test was conducted to check
whether there is a significant statistical difference between groups. According to it (Table
6.5), a MAE p-value of 5.95×10−7 (response time), 9.00×10−8, (energy consumption) and
2.37×10−8 (network usage); a RMSE p-value of 1.60×10−7 (response time), 2.81×10−7,
(energy consumption) and 1.43× 10−7 (network usage) indicated: the null hypothesis is

rejected (i.e., the learners are significantly different in terms of MAE and RMSE).
The kNN learner was the one that obtained the top Friedman rankings. By employing

the Bonferroni-Dunn test [230] between each learner and kNN, we found that in most of
the quality attributes for both RMSE and MAE, there is a significant difference between
kNN (top ranked) and two learners (SGD Multiclass and AddExp with SGD Multiclass). For
RMSE, there was also a significant difference between kNN and two learners (Perceptron
and AddExp with Perceptron). To this regard, kNN provides better forecasting error than the
following learners: SGD Multiclass, AddExp with SGD Multiclass, Perceptron and AddExp
with Perceptron.
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Therefore, we recommend for the architect to exploit kNN learner for forecast, and also
adopt it for the remaining of the experiments in this chapter.

Interestingly, kNN is an algorithm for stationary environments, whereas the algorithms
for non-stationary environments did not perform best. This suggests that, in this domain,
even though the input attributes themselves suffer changes over time, such changes do not
affect the relationship between input attributes and the output value being forecast. Therefore,
machine learning algorithms able to cope with changes in the relationship between input
attributes and the output value were not necessary. When such algorithms are not necessary,
they can be detrimental, because they can confuse noise with changes in the relationship
between input attributes and output.

It is worth noting that dao1, dao2, and dao3 had less error than other DAO. This is due
to the use of cloud rather than fog-cloud, which resulted in lower fluctuation in QoS than
fog-based ones. This aided the experts to forecast quality values close to the actual ones.
However, the energy consumption for dao5 and dao6 was highly fluctuating, which affected
the performance of forecast models.
Overall Observations: Even though IoT is a non-stationary environment that will cause the

quality attributes to significantly vary over time, our experiments indicate that the relationship

between input attributes and output does not vary, not requiring forecasting algorithms for

non-stationary environments.
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RQ4.1.4: How far ahead can we predict the future benefit based on the quality at-
tribute forecasts?

Motivation: This experiment could help the architect in improving the forecasts by tuning h

parameter and showing to what extent the forecasts could be beneficial.
Experimental Design: In this experiment, the forecasting method is evaluated with respect
to anticipations made for timesteps further ahead, such as t + 1, t + 5, t + 8, and t + 15. The
MAE and RMSE metric are also exploited to measure the difference between the forecast
and actual value, and how the latter metric varies over time. In this context, a bar plot is used
to compare between four categories of forecast (Figure 6.5 and 6.6). Further, the Friedman
test is also conducted to investigate the statistical significance of the differences between
different choices of h values.
Analysis: As depicted in Figure 6.5 and 6.6, the MAE and RMSE are slightly increasing
when h increases. For instance, for the response time quality, MAE is almost 0.035 (t+1),
0.035 (t+5), 0.036 (t+8), and 0.038 (t+15). The Friedman test confirms that there is no
statistical difference between different h values (p-value = 0.0602). This indicates that the
forecasting model is actually able to provide competitive forecasts for timesteps further ahead
in the future.
Overall Observations: The errors obtained by the forecasting models varied depending on

the quality attribute being forecast and the dao being monitored. The MAE was smaller

than 0.1 in several cases. Since most of the quality attributes when normalised, ranged

from approximately 0.2 to 0.9. Therefore, a MAE of 0.1 is considerably low, indicating that

forecasts are possible and thus could potentially be used to enable proactivity.

Figure 6.5 Average MAE of DAO for 3 quality attributes for varying forecast timesteps.
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Figure 6.6 Average RMSE of DAO for 3 quality attributes for varying forecast timesteps.

6.4.3 Usability and Efficiency of the Proactive Approach

In this section, we aim to show how the forecasting method could be applied in iTransport and
evaluate its performance against other approaches. This series of experiments aim to provide
answers for the following: RQ4.2: How can proactive approaches complement reactive

ones to provide a well-rounded and more effective continuous architecture evaluation? What

benefits can they bring to continuous software architecture evaluation and decision-making

at run-time? These questions are further elaborated through several sub-questions explained
next.

RQ4.2.1: What is the performance of the proactive approach in comparison to the re-
active approach when using short-term forecasts (i.e., h = 1)?

Motivation: This experiment examines the proactive approach in comparison to the reactive
approach in the scenario where the proactive approach is the closest to the reactive one, i.e.,
when the forecast is a very short-term forecast (h = 1). It reveals to what extent forecasts,
even if short-term, can be beneficial to run-time architecture evaluation. In particular, it
shows whether the dao suggestions by the proactive approach (even if short-term forecasts)
in comparison to the reactive approach could lead to improvement in mean exponential
benefit, mean cost, and application’s stability.
Experimental Design: For the Proactive Informed-selection approach (Section 6.3), the
change detection and the selection of optimal dao to switch to is according to the forecast

values. The Reactive Informed-Selection approach (Chapter 5) evaluates, detects the change,
and selects the optimal dao based on test actual quality values.

We examine two scenarios for evaluation: (Best Case) The design-time evaluation
approach suggests the systems to start operation using the dao that are believed to provide



6.4 Experimental Evaluation 179

the optimal cost-benefit trade-offs at run-time (i.e. dao6); (Worst Case) The design-time
evaluation approach suggests the systems to start operation using the dao that turns out to
provide the worst balanced cost-benefit trade-offs at run-time (i.e. dao2). This was for all the
cases, except for Case 1, where the design-time knowledge has recommended dao3 which
turned out to be the best, whereas dao2 turned out to be the worst. We have developed these
scenarios to demonstrate how the reactive and proactive approaches can deal with extreme
scenarios. In particular, we assume that the stakeholders have a very good knowledge about
the dao and its dynamicity for best case and vice versa. In addition, we have generated the
design-time evaluation based on the gathered run-time information. For instance, we found
that dao6 almost provides the best QoS over time in most of the cases and so forth. Chapter
4 shows how we performed the design-time evaluation for the best case scenario for Case 2.

For this experiment, we have used the following parameters based on experiments in
Section 6.4.2. More specifically, the number of input parameters ζ is 6 (Experiment RQ4.1.1),
the minimum number of training examples ηmin is 15 (Experiment RQ4.1.2), and the adopted
learning algorithm is kNN (Experiment RQ4.1.3). The choice of the prior parameters is
based on the minimum acceptable forecasting error. We have also set the error threshold τq to
[0.15 (RT),0.25 (EC),0.20 (NU)] based on the average forecasting error for t+1 (Experiment
RQ4.1.4). For this experiment, we only tested the two approaches for number of further
ahead timesteps h = 1, whereas other values for h will be evaluated in the next experiment.

Regarding the IoT context, the use of fog computing and cloud computing in mobile
crowd sensing applications is highly affected by the QoS requirements. Consider a scenario
where the stakeholders require the iTransport application to quickly track the accident in the
city centre, especially in rush hours. In this context, low response time and network usage is
of higher concern rather than energy consumption. Therefore, the ranking score (i.e. weights)
for response time and network usage qualities are higher than energy consumption. Also
the use of fog-cloud computing is advisable over cloud computing. So object detector and
tracker modules will be executed in the fog. We are uncertain about the network latency (due
to dynamic traffic and variable load) and mobility of devices (nodes join/leave the network).
This will cause instability, which may require a switch to another architecture option.

We constructed four different scenarios for evaluation: normal and strict (3 cases)
constraints, which are introduced in Table 5.2. For instance, we consider that the architect has
constrained the application to handle the request in less than 400 ms and network usage does
not exceed 1Mbps; whereas, the energy consumption should not exceed 130 MJ (normal case)
and so forth. These cases are also used in the next experiment. Historical performance and
experts’ judgment can inform the adjustment of the prior constraints [193, 35]. The architect
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can adjust the quality weights to reflect priorities from stakeholders. For example, for the
normal case, we assume a wRT of 0.4 for response time, wEC of 0.3 for energy consumption,
and wNU for network usage of 0.3. We have used the typical experiment settings for the
method presented in Table 5.2.

In order to check how good the proactive approach is compared to the reactive approach,
we compare their exponential benefit, cost, and number of DAO switches. An approach with
higher exponential benefit and lower cost is a better approach. An approach with less DAO

switches is more stable. Stability is desirable, so long as it does not hurt the exponential
benefit and cost.

Table 6.7 The number of switches, mean exponential benefit and mean cost for Reactive and Procative
informed-selection approach for short-term forecasts (i.e. t +1). The best cases are highlighted in
green.
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Normal
Best 4 0.7871 0.5184 2 0.7876 0.5140
Worst 5 0.7475 0.5218 3 0.7481 0.5174

Case 1
Best 2 0.4367 0.5084 2 0.4367 0.5084
Worst 0 0.3801 0.5585 1 0.3511 0.5265

Case 2
Best 2 0.4862 0.5084 2 0.4862 0.5082
Worst 3 0.4502 0.5133 3 0.4502 0.5133

Case 3
Best 3 0.6274 0.5036 4 0.7173 0.5212
Worst 4 0.5879 0.5070 5 0.6778 0.5246

Analysis: Table 6.7 summarises the mean exponential benefit, mean cost and number of
switches for all the scenarios. In this experiment, the forecast is performed for the next
timestep (i.e. t +1). Our proactive approach showed promising results for some of the cases,
as follows (Table 6.7):

• For the Normal scenario, the average exponential benefit and cost by the proactive
approach is similar/slightly better than the reactive approach, but with less switches (e.g.
for best case two switches instead of four switches), which enhances the iTransport
application’s stability.
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• In the Case 1 and Case 2, the reactive and proactive approaches provided the same
outcome. This may be due to the following: (i) The energy consumption constraint is
too strict in Case 1, which was violated most of the times and hence the forecasts did
not provide extra benefits; (ii) For Case 2, knowledge for further ahead timesteps is
necessary to provide better results.

• For the Case 3, it provides high benefit and high cost, with a slight increase in number
of switches, as compared with reactive approach (e.g. for best case provided four
switches instead of three). This may be due to the fact that the approach has slightly
favored the benefit over the cost.

To this regard, using the proactive approach is recommended over the reactive approach, as it
provides better/similar outcome (i.e. based on the context).
Overall Observations: The proactive approach provided similar or better results than the

reactive one. When it was better, it either improved the system stability while maintaining

similar exponential benefit and cost, or considerably improved the exponential benefit through

a higher number of switches.

RQ4.2.2: What is the performance of the proactive approach against state-of-the-art
architecture evaluation approaches?

Motivation: The previous section only compared the proactive approach against the reactive
one, and when using h = 1. RQ4.1.4 also showed that the error of forecasts using t +15 was
similar to that obtained using t +1. However, this does not mean that the proactive approach
itself would benefit more from using t +15. RQ4.2.2 is an extension to these experiments,
where we evaluate how the proactive approach works under varying forecast timesteps (t +1,
t +5, t +8, and t +15), as compared with state-of-the-art architecture evaluation techniques.
We also aim to evaluate how averaging the forecast values for t +h, where h ∈ 1,5,8,15 will
affect the selection of dao. This experiment can also illustrate how to choose a suitable h for
use with the proposed approach. Architects willing to use the approach could investigate it
with different values of h during an initial period of time, and then decide which h value to
carry on using, based on experiments and analyses similar to those performed in this section.
Experimental Design: In this experiment, we compare the proactive system against the
reactive approach and the following baseline architecture evaluation systems:
(1) Static-Selection System: a typical type of system used in practice [210, 14], where the
expert implements a single dao based on its assessed value at design-time. For our work, the
value is determined using the Binomial option pricing model [4, 42, 14], which estimates the
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benefits and costs of options based on a binomial decision tree. This approach is introduced
in Chapter 4.
(2) Predefined-Selection System: This is inspired by [211, 48], where the architect will
choose the dao that is likely to perform the best for a given context. This selection is typically
based on experience, backed up by back-of-the-envelope calculations for the cost, benefits,
and technical potential. However, the selection may fail to predict potential fluctuations in
value, quality potentials, and costs. Our case used dao6 during week days (because of peak
hours) and dao3 during weekends (because of less demand).
(3) Random-Selection System: Our design for the baseline system follows the argument of
[7, 212] but for the context of services. When a significant change is detected, it selects a
dao randomly independent of its QoS over time. This is because the DAO are deemed to be
functionally equivalent but deployed in different environments and geographical location
(i.e., distributed Fogs/clouds). All the results related to the Random-selection approach are
based on the average of 30 runs (the choice of 30 runs is recommended by [213]).
(4) Reactive Informed-Selection system: It evaluates and detects the change as the proac-
tive system, however, the selection for optimal dao is based on actual rather than the forecast
quality values. This approach is introduced in Chapter 5.

In this experiment, we aim to demonstrate when the proactive approach will/not work
well and how do the number of further ahead h forecasts affect the selection. The same
applies to the average forecasts, where we will compute the mean of forecasts along with their
mean error. We will then evaluate the impact of average forecasts on the decision-making.

We have constructed two cases: best and worst cases, similar to RQ4.2.1. For all cases,
we have experimented using the error threshold shown in Table 5.2. We have summarised
the results of four cases in Table 6.9 and 6.10. We have also conducted the Friedman test
[230] to check whether there is a significant statistical difference between all the approaches.
We have implemented Friedman tests by including the exponential benefit for all the cases
(i.e. Normal, Case 1, etc, as well as best and worst cases). If there is a significant statistical
difference between groups (i.e. p-value < 0.05), we will run Bonferroni-Dunn test [230]
between each approach and the top-ranked approach. In addition, to provide a detailed
understanding of the behaviour of the proposed approach, we use representative examples
for the evaluation as follows: (i) Figure 6.7 to show DAO deployment over time, especially
for Case 2 (t + 1, average forecasts where h ∈ {1,5,8,15}) for best case; (ii) Figure 6.8
to illustrate the differences between the five approaches for Case 2 for best case. Figures
showing other cases are shown in Appendix C.2. The behaviour of the proposed approach in
those cases can be explained in a similar way to the cases illustrated in Figures 6.7 and 6.8.
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Approach Average Rank
with respect to exponential benefit

Static-Selection 2.250
Predefined-Selection 1.750
Random-Selection 2.000
Reactive Informed-Selection 3.875
Proactive Informed-Selection for t +1 4.375
Proactive Informed-Selection for t +5 5.875
Proactive Informed-Selection for t +8 5.000
Proactive Informed-Selection for t +15 5.250
Proactive Informed-Selection for average forecasts 5.125
p-value 1.49×10−81.49×10−81.49×10−8

Table 6.8 The average rank of approaches and statistical difference between them measured using
p-value with respect to the exponential benefit. The top ranked approach is highlighted in orange.

Table 6.9 The number of switches, mean exponential benefit and mean cost for Static-, Predefined-,
and Random-Selection approaches.
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Static-Selection Predefined-Selection Random-Selection

Normal
Best 0 0.7057 0.5131 8 0.5268 0.5439 7 0.5966 0.5222
Worst 0 0 0.5585 8 0.5268 0.5439 7 0.5491 0.5231

Case 1
Best 0 0.4055 0.5131 8 0.3098 0.5439 4 0.3434 0.5111
Worst 0 0 0.5841 8 0.3094 0.5458 4 0.2914 0.5120

Case 2
Best 0 0.4907 0.5841 8 0.4161 0.5439 1 0.4291 0.5510
Worst 0 0.3801 0.5585 8 0.4161 0.5439 0 0.3801 0.5585

Case 3
Best 0 0.6924 0.5148 8 0.5168 0.5439 7 0.5447 0.5240
Worst 0 0 0.5585 8 0.5168 0.5439 7 0.4924 0.5296
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Table 6.10 The number of switches, mean exponential benefit and mean cost for Reactive and
Procative informed-selection approach for t +h. The best cases are highlighted in green.
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Reactive Proactive
t+1 t+5 t+8 t+15 Average Forecasts

Normal
Best 4 0.7871 0.5184 2 0.7876 0.5140 3 0.7885 0.5170 3 0.7885 0.5170 3 0.7885 0.5170 3 0.7885 0.5178
Worst 5 0.7475 0.5218 3 0.7481 0.5174 4 0.7490 0.5212 4 0.7490 0.5212 4 0.7490 0.5212 4 0.7490 0.5212

Case 1
Best 2 0.4367 0.5087 2 0.4367 0.5087 2 0.4367 0.5087 2 0.4367 0.5087 2 0.4367 0.5087 2 0.4367 0.5087
Worst 0 0.3801 0.5585 1 0.3511 0.5265 2 0.4015 0.5652 1 0.3531 0.5251 3 0.3925 0.5679 0 0.3801 0.5585

Case 2
Best 2 0.4862 0.5084 2 0.4862 0.5082 1 0.6762 0.5279 1 0.6762 0.5279 1 0.6762 0.5279 1 0.6762 0.5279
Worst 3 0.4495 0.5119 3 0.4495 0.5119 2 0.6395 0.5316 2 0.6395 0.5316 2 0.6395 0.5316 2 0.6395 0.5316

Case 3
Best 3 0.6274 0.5036 4 0.7173 0.5212 3 0.7192 0.5166 4 0.7163 0.5218 4 0.7163 0.5218 2 0.7086 0.5195
Worst 4 0.5879 0.5070 5 0.6778 0.5246 4 0.6796 0.5200 5 0.6767 0.5252 5 0.6767 0.5252 3 0.6691 0.5229

Analysis – Overall Results Across Cases:
We first report the results of the Friedman test (Table 6.8). We have found that there is

a significant statistical difference between the approaches in terms of exponential benefit
(i.e. p-value = 1.49× 10−8 < 0.05). The proactive for t + 5 was the one that obtained
the top Friedman rankings. By employing the Bonferroni-Dunn test [230] between each
approach and proactive for t + 5, we found that there is a significant difference between
proactive for t +5 (top ranked) and three approaches (static-selection, predefined-selection,
and random-selection). However, there is no significant difference between the proactive for
t +5 (top ranked) and reactive, proactive for t +1, t +8, t +15 and average forecasts.

When conducting statistical tests across cases, a lack of significant difference between
two approaches can happen due to three possible reasons:

1. The two approaches achieved similar results for all cases.

2. One approach performed better for some of the cases, and the other approach performed
better for the remaining cases, leading to no significant difference across cases.

3. The two approaches performed similar in several cases, and one approach performed
better for the remaining cases. As a result, the test is unable to conclude that the latter
approach performed in general better than the former approach across cases.

When analysing Table 6.10, we can see that the reason for the lack of significant difference
between proactive for t +5 and reactive is reason #3. For instance, the reactive and proactive
for t +5 produced similar exponential benefit for normal and Case 1. On the contrary, the
proactive for t +5 obtained considerable improvements in mean exponential benefit than the
reactive approach in Cases 2 and 3.
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It is thus clear that the proactive approach with t +5 obtains in general better exponential
benefit than the static-selection, predefined-selection, and random-selection approaches, and
similar or better exponential benefit than the reactive approach. Therefore, the proactive
approach with t +5 is recommended over these other approaches.

As for the case of also having no statistical difference between top-ranked proactive
approach and other proactive approaches across cases, this may have occurred because
these approaches provided similar exponential benefit across the cases (reason #1 above).
Specifically, we can see from Table 6.10 that the average exponential benefit for all the
proactive approaches was very similar. However, there is a difference between the proactive
approaches in terms of the number of switches. In particular, average forecasts provided 1–2
switches less than other proactive approaches in Case 3 (best and worst), and 1-3 switches less
for Case 1 (worst). Therefore, the proactive approach with average forecasts is recommended
over the other proactive approaches.

Over the rest of this section, the behaviour of the proposed approach compared to other
approaches is discussed in more detail. A discussion on the specific behaviour of the static,
predefined and random approaches can be found in Appendix C.2.1, and further illustrates
why these approaches do not perform well.
Analysis – Summary of Results With Respect to Each Case Separately:

• Normal Case (Best/Worst Scenario): The results for reactive and all proactive ap-
proaches were similar in terms of exponential benefit and cost. In particular, Table
6.10 shows that the reactive and proactive approaches provided mean exponential
benefit of around 0.79 and cost of around 0.51 or 0.52 for the best case, and mean
exponential benefit of around 0.75 and cost of around 0.52 for the worst case. However,
the proactive approaches led to less switches than the reactive approach. Further,
the proactive approach produced 30-50% improvement in mean exponential benefit,
5% smaller mean cost, with improved stability (i.e. 3-4 switches less) compared to
predefined and random approaches on the best case (Tables 6.9 and 6.10). It also
provided a 10% increase in mean benefit and similar cost, but with an increase in the
number of switches (i.e. 2-3 switches) compared to the static-selection, which adopts a
fixed dao over time. Similar results were obtained for the worst case scenario, except
when comparing against the static-selection approach. This approach obtained a very
poor exponential benefit of zero (due to its violations to the constraints), and a 7%
higher cost than the proactive approaches.

• Case 1 (Best/Worst Scenario): The reactive and proactive approaches obtained the same
results in the best scenario (same number of switches, mean exponential benefit and
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cost, as shown in Table 6.10). The proactive approach showed better mean exponential
benefit (i.e. 10-30%) and cost (i.e. 3-7%) than baseline and state-of-the-art approaches
with better stability, except that the static-selection did not perform any switches (Table
6.9 and 6.10). In the worst scenario, the reactive and proactive for average forecasts
obtained similar results, whereas the other proactive approaches led to varied results
(either slightly worse exponential benefit and better cost or slightly better exponential
benefit and worst cost) with larger number of switches. This may be due to the very
strict quality constraint, which has been violated in most of the times. This caused
a high fluctuation in the exponential benefit, which ended up triggering additional
switches and producing varying behaviour between different t +h values. Therefore,
among the proactive approaches, we recommend the one with average forecasts as
it considers the forecasts for varying h values. We have seen similar behaviour in
the worst case scenario, except that static-selection showed the worst benefit and
cost (Table 6.9 and 6.10). In particular, the proactive approach for average forecasts
provided better benefit and cost with same number of switches as static-selection.

• Case 2 (Best/Worst Scenario): The proactive approaches for long-term forecasts (i.e.
h ∈ {5,8,15}) and average forecasts produced the best results in the best case, in
comparison to the reactive and state-of-the-art approaches. In particular, they obtained
an increase of about 40% in the average exponential benefit, a reduction of about 5%
in cost, and less number of switches (i.e. one instead of two), compared to the reactive
approach (Table 6.10). They also obtained a rise of 40-60% in the mean exponential
benefit with 5-10% reduction in cost and less number of switches, in comparison
to state-of-the-art and baseline approaches (Table 6.9 and 6.10). Similar behaviour
occurred for the worst case.

• Case 3 (Best/Worst Scenario): The proactive approaches achieved considerably better
exponential benefit at a slightly higher cost than the reactive approach and state-of-
the-art approaches (approximately 5-40% increase in benefit) for the best scenario
(Table 6.9 and 6.10). The proactive approaches using specific h values led to less
switches than the predefined and random approaches, but did not lead to an advantage
in terms of number of switches compared to the reactive approach. However, the
proactive approach with average forecasts led to the best behaviour in terms of number
of switches, except in comparison to the static approach, which uses a fixed dao

throughout time. Therefore, the proactive approach using average forecasts depicted
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the best overall results for the best case. A similar behaviour was obtained for the
worst scenario.

Detailed Analysis of the Behaviour of the Approaches:
Next, we will demonstrate key representative examples for the DAO evaluation by all

approaches and its corresponding behaviour for Case 2. The underlying behaviour of the
approaches for other cases is similar, and therefore were omitted.

The different exponential benefits and costs obtained by different approaches results
from the different choices of dao performed by these approaches over time. For Case 2, the
proactive approach with t +1 always led to the same dao choices as the reactive approach,
whereas the proactive approach with t +5, t +8 and t +15 led to the same dao choices as
the proactive approach with average forecasts. An example for Case 2 (Best) is shown in
Figure 6.7. Therefore, we only plotted the exponential benefit and cost for t +1 and average
forecasts in Figure 6.8.

(a) The selected DAO by reactive
approach

(b) The selected DAO by proactive
approach for t +1

(c) The selected DAO by proactive
approach for average forecasts

Figure 6.7 The selected DAO by reactive/proactive (t +1 and average forecasts) approach for Case 2
for the best scenario.

From Figure 6.8, we can see that all approaches have initially observed a gradual decrease
in the exponential benefit in Case 2 (best) over the first 5 timesteps. This means that the
current option (dao6) was not working well. This may be due to internal problems in devices
(e.g. ageing affects) and/or high computation in fixed devices. The approaches then behaved
as follows in response to that:

• The static-selection approach never changes the dao. Therefore, it kept using the same
option (i.e. dao6) regardless of exponential benefit changes at run-time. This led to
better mean benefit (i.e. 0.4907) and mean cost (i.e. 0.5841) than random-selection and
predefined-selection approaches (Figure 6.8a and 6.8d), but much worse than reactive
and proactive approaches. This is because, despite this decrease in exponential benefit,
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(a) Overall behaviour (t + 1,
Best)

(b) Exponential Benefit (t + 1,
Best)

(c) Average Cost (t +1, Best)

(d) Overall behaviour (Avg Fore-
casts, Best)

(e) Exponential Benefit (Avg
Forecasts, Best)

(f) Average Cost (Avg Forecasts,
Best)

(g) Overall behaviour (t + 1,
Worst)

(h) Exponential Benefit (t + 1,
Worst)

(i) Average Cost (t +1, Worst)

(j) Overall behaviour (Avg Fore-
casts, Worst)

(k) Exponential Benefit (Avg
Forecasts, Worst)

(l) Average Cost (Avg Forecasts,
Worst)

Figure 6.8 The evaluation of the five approaches’ decision-making process for Case 2 (t +1, Average
Forecasts) for best/worst scenarios.



6.4 Experimental Evaluation 189

dao6 still provided relatively good exponential benefit for some time intervals (e.g.
from 85th to 95th and 100th to 110th timesteps), as seen in Figure 6.8b.

• The predefined-selection also ignores run-time changes, but it deploys predefined
DAO from design-time evaluation based on the contextual requirements (dao3 in
weekends and dao6 in weekdays). The predefined-selection produced very high
exponential benefit up to 0.8-0.9 in some contexts, where dao6 was deployed (e.g.
Figure 6.8b). However, due to goal violation in other contexts (i.e. dao3), it provided
zero exponential benefit. This describes the high fluctuation leading to low overall
exponential benefit (e.g. Figure 6.8a). This poor result is a consequence of the design
choices not matching the architects’ expectations at run-time.

In particular, the behaviour of predefined-selection was due to the following: (i) The
deployed DAO did not work as expected. In particular, at run-time, it turned out that
dao3 (i.e. one of the predefined DAO for run-time deployment) had poor exponential
benefit, which resulted in low mean exponential benefit; (ii) Even though dao3 was
not working well, the predefined-selection did not consider the run-time changes (i.e.
no change detection test was adopted). Therefore, the predefined approach did not
benefit from the design-time knowledge. Instead it applied unnecessary predefined
switches between DAO (i.e. had negative impact on the architecture stability) without
noticeable improvement in benefit.

• Random-selection switches to a random dao, which ends up producing a drastic drop
in exponential benefit (from 0.95 to 0.3 as shown in Figure 6.8b) until t=25, instead
of improving the benefit or at least keeping it the same. This has been followed by
adhoc switches, which resulted in a significant degradation of benefit over time (an
average of 0.4291), and a high mean cost of 0.5510 with very high number of switches
(7 switches), as seen in Figure 6.8a, 6.8b, and 6.8c.

• The proactive and reactive approaches have continued adopting dao6 till t = 25 (Figure
6.7). Though there was significant degradation in exponential benefit from 0.95 to
0.42 (Figure 6.8b and 6.8e), other DAO did not obtained better balanced cost-benefit
than dao6 until t = 25. These approaches were able to detect that and keep using
dao6 until t = 25, leading to competitive cost and benefit (Figures 6.8b, 6.8c, 6.8e,and
6.8c). Afterwards, both approaches detected a change at t = 27 and hence suggested a
replacement to dao4, which resulted in a remarkable improvement in benefit from 0.42
to 0.82 (Figure 6.8b and 6.8e).
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• The reactive and proactive approaches provided similar behaviour (i.e. performed same
selection of dao) until t = 61 (Figure 6.7). This is because the proactive approach
will have to wait for 21 timesteps to start using the forecasts (ηmin +ζ = 15+6 = 21),
as stated in RQ1.2. In this context, the proactive approach used the actual values of
quality attributes as the reactive approach. After that, both approaches switched to
dao4 at t = 27. Since dao4 showed a gradual increase in exponential benefit until the
55th timestep (Figure 6.8b and 6.8e), no significant changes were detected by both
approaches until this timestep.

The reactive and proactive for short-term and long-term forecasts approaches have observed
a significant drop in exponential benefit at t = 61. We will discuss the approaches’ behaviour
in response to that, as follows (Figure 6.8a-6.8f):

• Due to the lack of future benefits, the reactive and proactive (i.e. t +1) approaches’
evaluation to DAO was based on either actual/short-term forecasts, respectively. There-
fore, this resulted in several detection and replacements to inefficient dao (e.g. dao5),
which caused a gradual rise in exponential benefit from 0.3 to 0.5 (Figure 6.8b) with a
decrease in cost from 0.5 to 0.45 (Figure 6.8c) at t = 71. This has been followed by a
drop in exponential benefit from 0.5 to 0.2 (Figure 6.8b) then fluctuation in exponential
benefit over time. This in turn has affected the mean exponential benefit (i.e. 0.5), as
seen in Figure 6.8a.

• The proactive approach using average and long-term forecasts has overcome the
previous unnecessary switches. They kept evaluating dao4 over time (Figure 6.7c)
with respect to its long-term future benefit. This has led to a reduction in number
of replacements (i.e. more stable system) because the change detection is based on
long-term future value rather than actual/short-term one.

• Finally, a remarkable rise in exponential benefit by almost 175% has occurred at
t = 61 for proactive approach using average and long-term forecasts, as compared with
short-term forecasts and reactive approach (Figure 6.8b and 6.8e). This has caused an
increase of about 40% for the average exponential benefit and less switches (Figure
6.7) with 4% increase in mean cost, in reference to reactive approach (Figure 6.8d).

The behaviour of the approaches for the worst case scenario was similar to that obtained
for the best case scenario, in terms of their DAO evaluation and selection. For example, the
predefined-selection used the same predefined design-time decisions, whereas the random-
selection detected significant changes in benefit and selected adhoc DAO (Figure 6.8h and
6.8k). The proactive approach and reactive approach initially suffered from low benefit in the
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first 5 timesteps (Figure 6.8h and 6.8k), but then they quickly handled that and switched to
the same DAO as in the best case scenario over time (Figure 6.8b,6.8e, 6.8h, and 6.8k). The
static-selection adopted a single dao over time regardless of run-time changes. In particular,
it has recommended an architecture option (dao2), which seemed to violate the constraints
all the time. This explains why it produces zero benefit over 120 timesteps (e.g. Figure 6.8h
and 6.8g).

6.5 Discussion

In this chapter, we aimed to answer the thesis’s fourth research question:
RQ4: How can the use of forecasting analytics improve the state of run-time architec-
ture evaluation? To answer this question, we proposed a proactive approach (Section 6.3.1)
and then tested the approach on iTransport application (Section 6.4). Particularly, in Section
6.4, we provided the architect with guidelines on: (i) how to determine the input attributes
required for forecasting (Table 6.4 and 6.3) and the number of training examples to potentially
benefit from forecasting (Figure 6.3 and 6.4); (ii) how to select the learners (Table 6.5 and
6.6); (iii) how to compare between the further ahead timesteps (Figure 6.5 and 6.6). We also
provided a fair comparison of the proactive approach against reactive, state-of-the-art, and
baseline approaches (Table 6.9 and 6.10, and Figure 6.8). Our proactive approach showed
better results (Table 6.7 and 6.10) than reactive approach in terms of stability (i.e. lower
number of switches) and improved exponential benefit. Further, it outperformed the baseline,
state-of-the-art, and reactive approaches (Table 6.9 and 6.10).

From the results in Section 6.4, we can see that the proactive approach outperformed the
state-of-the-art approaches in most of the cases in terms of exponential benefit and cost with
less switches than the random and predefined approaches. It also provided similar/better
benefit than the reactive approach. Even though we cannot generalise the results of each case
(normal, case 1, 2 and 3) to other cases in this or other domains, there are some observations
on the behaviour of the approach that can explain the situations in which one approach may
be expected to perform similarly or better than the other approaches.

For instance, when there is a lot of variability in exponential benefit over time, the
proactive approach with average forecasts may recommend less switches than the reactive
approach or the proactive approaches with single values for h. This is because this approach
may be able to forecast that, despite a given dao being potentially poor at present, it will
become better again in the near future, meaning that no switch is required.
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Furthermore, when the constraint for one of the quality attributes (e.g. energy consump-
tion) is too strict, the proactive approach provided similar behaviour to the reactive approach.
This is because the constraint was violated at some time intervals and the variability in the
quality was low, and so we did not benefit from the forecasts.

Additionally, when there are trends in the changes in exponential benefit, the proactive
approach may achieve better exponential benefit and cost trade-offs than the reactive and
state-of-the-art approaches, since it has the ability to detect the changes that will happen in
the future and hence may recommend better architecture options.

6.6 Threats to Validity

In this section, we discuss the threats related to internal, construct and external validity in the
context of these experiments.

6.6.1 Threats to Internal Validity

These are concerned with the impact of experimental parameters when evaluating the pro-
posed framework. We managed the threats related to internal validity in Chapter 5 through
the following: (i) analysing the run-time approach by varying the evaluation parameters (e.g.
the relative importance of present/past, the confidence interval, etc) and hence selecting the
ones which provide acceptable accuracy and stability; (ii) testing the sensitivity of run-time
approach to noise, to check how well the run-time approach can handle this issue; and (iii)
demonstrating the applicability of the run-time approach to monitor the environment at every
T’ intervals if the real-time evaluation was expensive and the architects did not wish to use
simulation. Similar treatment to the experimental parameters applies to Chapter 6.

6.6.2 Threats to Construct Validity

These are related to used metrics, which reflect what we intend to measure [63]. We managed
the Threats to Construct Validity in relation to Chapter 6. For instance, we have adopted the
MAE and RMSE as forecasting performance measures for the proactive run-time approach
(Chapter 6). These measures are unbiased towards under or over estimations, which make
them adequate for determining the appropriate number of input attributes; selecting the
suitable number of training examples to start forecasting; comparing between the forecasting
algorithms; and choosing the suitable number of future ahead timestep. Friedman, post-
hoc tests, and Bonferroni-Dunn rank-based tests [230] were adopted to demonstrate the
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significance of the statistical differences between groups (i.e. forecasting algorithms and
further ahead timesteps) in MAE and RMSE.

6.6.3 Threats to External Validity

These are linked to the generalisation of the experiments [63]. Though we have tested our
reactive run-time approach (the second component of the proposed framework) in Chapter
5 across state-of-the-art for architecture evaluation and on a dynamic environment, as well
as the proactive run-time approach (the final component of the proposed framework) in
Chapter 6 against state-of-the-art and reactive approaches. We cannot claim final generality.
Instead further experimentation on a greater number of independent domain-specific cases
could confirm the applicability of the proposed proactive approach for other domains (e.g.
volunteer computing, microservice architectures, etc).

Another external threat to validity is the computational overhead. In particular, the
computational overhead of the approach needs to be tested before it can be adopted in
industry. We can overcome this overhead by implementing the approach in a decentralised
manner. As for the scalability of our continuous evaluation approach, it has been evaluated
for the reactive part, whereas the proactive approaches employed are already used in practice
for big data [32]. Finally, we have discussed in Chapter 5, the threats related to the use of
simulation to aid the run-time evaluation in analysing the potentials of candidate architecture
decisions. Similar treatment applies to the proactive approach.

6.7 Conclusion

In this chapter, we contributed a novel approach for continuous software architecture eval-
uation, by providing continuous learning as a built-in mechanism for proactive evaluation
that complements reactive approaches. We have shown how proactive approaches leveraging
the time series forecasting analytics can fundamentally guide the continuous evaluation of
software architectures and influence the outcome of the decisions made. This approach
employs a forecast of the value of architecture decisions to reason about diversification at
run-time. We applied our method on an IoT application and compared it to other evaluation
methods.

We also explored how various forecasting learning techniques can be "orchestrated"
at run-time to better support evaluation and to demonstrate the impact of forecasting ana-
lytics on continuous evaluation and decision-making. In most of the cases, our proactive
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run-time approach produces promising results, because it learns and forecasts, and hence
makes smarter decisions. This work has paved the way for conducting further studies of
continuous software architecture evaluation. In the next chapter, we will discuss the possible
opportunities for future investigations.



Chapter 7

Reflections, Future Directions, and
Conclusion Remarks

7.1 Reflections

In this section, we will discuss first how the research questions have been addressed, followed
by the proposed framework with respect to its applicability and beneficiaries.

7.1.1 How the research questions have been addressed

As aforementioned in Chapter 1, the major aim of this thesis is to address the lack of

systematic continuous architecture evaluation framework that intertwines design-time and

run-time evaluation to handle complex architectures and improve the decision-making, in

dynamic and uncertain environments, such as IoT. In this context, we have proposed a novel
continuous evaluation architecture framework, which we address through the thesis’s main
research questions, introduced in Chapter 1. In this section, we summarise the answers to the
research questions.

• RQ1: What is the state-of-the-art in software architecture evaluation under un-
certainty and to what extent continuous architecture evaluation is used? We have
provided a systematic literature review, in Chapter 2, covering the existing architecture
evaluation methods which provide implicit or explicit management of uncertainty.
We have found that continuous evaluation has been mentioned under different terms,
such as dynamic, run-time, etc. Therefore, we consolidated these efforts, provided
a classification framework to categorise them, and discussed their strengthens and
weaknesses. We automatically and manually searched the most well-known venues for
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software architecture and engineering, other related systematic reviews and mapping
studies, and significant bibliographical data sources, as well as applied snowballing
process to collect our primary studies. This has potentially aided us in determining the
gaps and the necessary elements for developing a continuous architecture evaluation
framework. The results of our investigation are the following: (a) design-time archi-
tecture evaluation approaches garnered more attention than run-time ones, though the
latter are increasingly important to handle the dynamism and increasing complexity
in software systems; (b) there is a lack of examples on demonstrating how continu-
ous evaluation approaches can be realised and conducted; (c) few methods focus on
managing trade-offs between benefits and costs at run-time; (d) there is less focus
on adopting machine learning techniques for the evaluation; (e) most of the run-time
approaches tend to be reactive (and may recommend unnecessary switches and hence
increase deployment costs). Therefore, this calls for a systematic continuous archi-
tecture evaluation approach that intertwines design-time and run-time evaluation and
extends the existing architecture evaluation methods to improve the decision-making.

• RQ2: To what extent design-time architecture evaluation methods that adopt
economics-driven principles, such as real options analysis, can systematically
evaluate complex design decisions, such as diversification, in the face of opera-
tional uncertainties in dynamic environments?
The review in Chapter 2 motivated the need for further examples of economics-driven
design-time evaluation for analysing cost-benefit trade-offs in the context of dynamic
and uncertain environments, such as IoT. Further, they have not been used before to
evaluate complex design decisions, such as diversification, under uncertainty. There-
fore, we have extended the CBAM and binomial real options analysis in Chapter 4
to show how economics-driven principles can benefit the design-time evaluation. We
have demonstrated the use of binomial real options analysis to quantify and visualise
the long-term value of engineering diversification into the architecture to handle IoT
challenges with respect to the iTransport application (introduced in Chapter 3). In this
context, we have illustrated how it can be used to evaluate complex design decisions
such as diversification in the face of operational uncertainties in dynamic environ-
ments. In particular, the use of binomial real options analysis allows the architect
to value the flexibility of architecture options under uncertainty. The experimental
evaluation selected the optimal architecture option for deployment with respect to
multiple stakeholders QoS concerns. It also shortlisted the candidate decisions for
deployment. Finally, it highlighted the need for run-time evaluation to complement
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design-time decisions. This is because real options analysis is a static method for
economic modelling and forecasting of architecture decisions. This type of design-time
evaluation relies on human experts, who can only partially forecast the fitness and the
extent to which an (diversified) architecture can cope with operational uncertainties,
unanticipated usage scenarios, and emergent behaviours. It is based on assumptions
(i.e. experts knowledge) which may (not) be valid in unpredictable environments, such
as IoT. For instance, in the experimental evaluation, we have illustrated some cases
where the architects had low confidence with respect to the candidate architecture
options and hence run-time evaluation was necessary to evaluate these options.

• RQ3: How can run-time architecture evaluation using cost-benefit analysis and
machine learning techniques complement the design-time one to handle uncer-
tainty?
The review also in Chapter 2 showed that the current run-time architecture evaluation
methods are based on assumptions which may not be true indefinitely. For instance,
some approaches face scalability and complexity concerns, while others assume that
the non-functional data about architecture decisions is available at every timestep,
which may not be true in non-stationary environments such as IoT. They also lack
the capability for checking whether the current architecture decision is getting worse.
Therefore, we have proposed a novel run-time architecture evaluation approach, in
Chapter 5, to tackle the prior problems and complement design-time decisions (sug-
gested by design-time approach introduced in Chapter 4). In particular, the approach
uses a time-decay function inspired by reinforcement learning to quantify the benefit
of architecture decisions over time by emphasising on the recent observations rather
than the past ones. This could enable the architect to learn more about the behaviour
of architecture decisions over time. It also adopts change detection tests to check sig-
nificant deviations from the currently deployed architecture option. If it is significantly
worse, a method inspired by the multi-objective optimisation literature is adopted to
identify the architecture option with the most balanced trade-off between cost and
benefit. A set of controlled experiments were conducted, derived by the iTransport

application, to guide the architect in tuning the parameters of the approach (i.e. the
relative importance of past/present) to best learn the behaviour of architecture options.
In this context, the approach has demonstrated its ability to explicitly deal with un-
certain environments through the use of time-decay function. The architect can also
experiment with the input parameters with respect to the trade-off between architecture
stability and learning accuracy. It also provides the architect with flexibility to set
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a monitoring interval to profile the benefit of the architecture options. Furthermore,
this approach outperformed the baseline and state-of-the-art approaches, in terms of
providing better overall performance (i.e. high benefit with acceptable cost). The
experiments have demonstrated the approach’s scalability and robustness to varying
Gaussian noise levels. Finally, threats to validity related to these experiments were
discussed in Section 5.10.

In some contexts, the reactive learning may suggest wrong decisions and recommend
unnecessary switches due to the lack of knowledge about the future benefit of can-
didate architecture decisions. Taking into account the future potential of diversified
architecture options is important to provide a more informative evaluation. This calls
for a proactive approach, which aims to harvest the power of forecasting analytics to
anticipate the benefit of architecture decisions over time.

• RQ4: How can the use of forecasting analytics improve the state of run-time ar-
chitecture evaluation?
The review in Chapter 2 demonstrated the need for a novel proactive evaluation ap-
proach as a part of the continuous evaluation framework. This is because, it is clear that
most of the current run-time approaches (e.g. [138, 155, 122], etc,) tend to be reactive
when simplistic learning, partial or incomplete knowledge is used: may suggest wrong
decisions due to the unexpected future environment changes; recommend unnecessary
switches due to the lack of future knowledge about the candidate architecture decisions.
This in turn may affect the architecture’s stability and overall behaviour. In this context,
in Chapter 6, we adopted continuous time series forecasting as built-in mechanisms
to complement reactive run-time evaluation with proactive run-time evaluation. In
this way, the approach does not take into account only the past likely performance
of architecture decisions, but also their future potentials, better informing run-time
architecture decisions. Moreover, our work has investigated the use of online machine
learning models for stationary and non-stationary environments through a series of
experiments. In particular, the experiments provided the architect with recommenda-
tions on how to best benefit from the proactive approach through choice of learners,
input parameters, etc, grounded on experimentation and evidence. For instance, we
have adopted the kNN algorithm [220] due to its efficiency as compared with other
online machine learning models. Our experiments also demonstrated the applicabil-
ity and effectiveness of the approach using the case of architecting for IoT through
the iTransport application. We provided a comparative study between the proposed
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proactive approach, reactive, baseline and state-of-the-art approaches. The proactive
approach showed its effectiveness in terms of the selection of optimal architecture
options, significant improvement in benefit over time (e.g. about 40-70% better than
reactive, baseline, and state-of-the-art approaches in some scenarios), and enhanced
architecture stability. Finally, threats to validity related to these experiments were
discussed in Section 6.6.

7.1.2 Applicability and beneficiaries of the framework

We demonstrate the applicability and beneficiaries of the framework, through the following
set of questions:

• What are the types of decisions supported by the proposed framework? Architecture
design decisions could be static or dynamic in nature. Several structural design
decisions are static in nature; this implies that these decisions can be expensive to
change and cannot be altered very frequently at run-time. Henceforth, the architect
should evaluate them cautiously at design-time. Example of these decisions include
network-related decisions such as the physical connectivity between devices (e.g.
how data bits are moving in/out of the IoT device), logical connectivity (e.g. what
protocols the software uses to transport these bits, such as MQTT), and also the network
topology. These decisions are affected by the expected incoming data volumes, cost,
memory requirements, etc. Therefore, they are quite difficult to change. The architect
can leverage the contribution of Chapter 4 to assess the value of architecture design
decisions when the analyst/architect has some confidence about the value of the
decisions and understanding of the likely dynamic scenarios that can confront the
architecture.

However, there are other decisions, which are dynamic in nature and could be cus-
tomised at run-time (e.g., predefined decisions that could be tailored to fit the run-time
context; strategies and tactics to address behavioural requirements). For instance, dif-
ferent deployment strategies, such as the use of cloud, fog-cloud, etc, are an example
of a decision that can be best evaluated dynamically. When deemed to be neces-
sary, diversification was also employed to provide "malleability" to alter the structure
through inclusion of a limited number of tactics that can better meet the behavioural
requirements. In this context, our work is particularly interested in investigating and
evaluating dynamic design decisions.
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• How often should the architecture decisions be monitored? Our framework has the flex-
ibility to monitor the architecture decisions every T ′ intervals. We have demonstrated
to what extent our framework can be robust to monitoring of the actual diversified
architecture options at larger intervals T ′, to investigate scenarios where a simulator
is not available and the application cannot afford monitoring the actual diversified
architecture options very often.

• How often should changes be impacted on the architecture decisions under concern?

Our framework only recommends changes to the architecture when necessary, i.e.,
when the benefit is becoming worse and there is another better architecture option. The
proactive approach further considers the future likely benefit to make a recommenda-
tion.

• Should the evaluation of architecture decisions rely on historic data or forecast data?

In many real-world scenarios, the assumption that IoT applications are operating in
a stationary environment (e.g., fixed workload, fixed hardware/devices, guaranteed
network connectivity, known probability distribution of QoS) is simply not true [6, 7].
Therefore, the reliance on historical data only will not always provide the true value of
architecture options. In this thesis, our framework complements the previous properties
with time series forecasting (i.e. online learning). The method allows the architect
to do the following: tune the number of timesteps further ahead for anticipations;
select the forecasting learning model; assess the quality of the forecasting learning
model (judged by some error metrics). Based on that, the architect can determine when
(not) to use the forecasts to compute the benefit of architecture options. This could
potentially maximise the benefit from forecasts.

• Who can potentially benefit from the proposed framework? Architects from several
domains could benefit potentially from our continuous evaluation framework. For
instance, architects using DevOps are currently deploying some industrial monitoring
tools (e.g. AppDynamics [231] and New Relic [232]). Further, an application built
using AWS IoT and Greengrass suites [209] could benefit from our framework in the
context of evaluating the benefit of each option at run-time using the CloudWatch
monitoring tool [195]. Our framework could be integrated to one of these tools, to aid
the architect in evaluating, refining and/or phasing-out of architecture design decisions.
The forecasting ability could reduce the number of unnecessary adaptations causing a
decrease in development and implementation costs.
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• What domains can potentially benefit from the proposed framework? Other applica-
tions operating in dynamic environments, such as volunteer computing, cloud-based
architectures, and service-oriented architectures, could also potentially employ the
approach. For instance, Cloud-based architectures, which are essentially based on
service-oriented architectures, can use our framework to justify the choice of abstract ar-
chitecture model and its possible concrete instantiations over different releases. Inputs
from the evaluation can help architects in refining the abstract model; adjust, limit or
rethink modes for dynamic composition of concrete ones prior to future deployments.

The evaluation of self-adaptive systems introduces new challenges that have to deal with
evaluating uncertainties and dynamism, making design-time evaluation approaches
limited or unfit. Classical approaches for designing adaptive systems tend to take
design-time reasoning and evaluation, when deciding on encoding switches, policies,
adaptive decisions, etc. Continuous architecture evaluation framework can benefit self-
adaptive evaluation: (i) assisting in the systematic inception, elaboration, refinement
and evaluation of the adaptive design decisions and/or models (i.e. configurations) that
can influence QoS and justifying their need before the system is deployed in the next
release cycle; (ii) valuing, profiling, and forecasting the likely performance of these
decisions and/or models in meeting qualities in relation to alternatives over time as the
software evolves; (iii) continuously evaluating their cost-effectiveness and what to be
encoded from these decisions and/or models; and (iv) determining the frequency of
adaptation, which have a significant impact on the architecture’s stability and hence
decide on which options could better improve the architecture’s stability for run-time
deployment.

7.2 Future Directions

There are several areas of development to this thesis which could be interesting for future
research. In this section, we outline some of these directions.

• Dependencies between architecture decisions: As shown in Chapter 5, the modelling
for diversified architecture options qualities follows linear aggregation and is consistent
with online QoS modelling approaches that have been widely adopted in the service
computing community (e.g., [202, 203]). Though the use of linear aggregation for
qualities is the widely adopted practice in service community, it is acknowledged to be
limited when capturing dependencies of decisions affecting qualities. Additional online
aggregation functions, for capturing dependencies of decisions affecting qualities, is
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a non-trivial problem; its solution will constitute a significant contribution to both
the software architecture and services community. In this context, a future potential
research area is modelling of quality aggregation functions to consider dependencies
between architecture decisions.

• Cost Fluctuation over time: We have found that the pricing in most of IoT service
providers (e.g. amazon) is based on the following [209]: (1) Fixed charge to reserve
the required resources for a particular time; (2) Pay-per-use, where the consumer pays
for CPU per hour or per GB/TB of data; and (3) Auction-based, where a consumer
could book resources if s/he pays the highest price for these resources. For these types
of pricing methodologies, a noticeable reduction in the price volatility of resources has
begun from December 2017 [201]. In this context, when the price volatility is so low,
the use of the exponential decay factor for cost is not necessary. Therefore, we focused
on providing a continuous measure for the benefit of each dao (i.e. exponential benefit).
However, the exploration of the impact of high price volatility (i.e. using exponential
decay for the cost) on the decision-making could be investigated as a future work.

• Potentials of using the framework in self-adaptive systems: As aforementioned in
Section 7.1.2, our framework could benefit the self-adaptive systems in enhancing the
evaluation of architecture decisions, especially in dynamic and uncertain environments.
Therefore, one potential direction is to incorporate the framework into self-adaptive
systems, to see how beneficial it can be to this domain.

• Potentials of complementing the framework with users feedback: Continuous archi-
tecture evaluation has provided mechanisms which balance stakeholders’ (mainly
architects) involvement and automated behavioural evaluation for qualities (e.g. au-
tomatic management of trade-offs). The work can further benefit from involving end
users in the evaluation through getting their feedback [233, 234]. The level of abstrac-
tion that is more suitable to users would be the requirements level. We also recognise
that requirements models can be equally informative for other stakeholders, such as
the strategic management and system analysts of the system, where their feedback is
based on the actual operation of the system. Getting users feedback requires engineer-
ing of that feedback acquisition system [235]. For example, adaptivity to the users’
archetypes and their profiles when providing feedback will maximise the response rate
and the quality of the feedback provided [236]. Further investigation and analysis of
the use of users feedback on real case studies is necessary to confirm applicability and
efficiency.
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• Potentials of using the framework on architecture’s sustainability: We have explored
the potential of applying our framework in order to evaluate software architecture for
sustainability. During the lifetime of software, there are plenty of uncertainties and
dynamics which software experiences. Our framework provides explicit management
of uncertainty through automatic management of cost-benefit trade-offs, forecasting
the impact of candidate architecture options on quality attributes of interest, proactive
evaluation, etc. Therefore, our framework could potentially be used to analyse and
forecast the implications of uncertainties and dynamics on architecture sustainability
over time.

Architecture sustainability is an interpretation of the capability of enduring and retain-
ing the system functional activities over the long-term [237]. "A long-living software
system is sustainable if it can be cost-efficiently maintained and evolved over its entire
lifecycle" [93]. There have been a number efforts to better understand sustainability,
through the illustration of the long-term need for sustainability [238], possible metrics
for sustainability [239], and the necessary milestones to achieve it [240].

Architectural changes could have a negative impact on sustainability. Typically, these
changes could occur due to the emergence of new requirements, technologies and
markets, as well as, changes in the old requirements and current business strategies
or goals. Quick design decisions that meet short-term objectives and constraints, but
sacrifice long-term value can affect the sustainability of the architecture. Further, late
detection of errors may result in the execution of a string of unnecessary complex
design decisions [238]. The complexity of revisiting the architecture design decisions
can motivate the need for phasing-out the architecture and looking for an alternative
replacement. Avgeriou et al. [238] address three approaches to achieve architec-
ture sustainability by handling changes systematically: refactoring, renovating, and
rearchitecting. However, the effectiveness of these approaches has been looked at
from a technical point of view, without clear connection to their long-term value under
uncertainty.

The Karlstone manifesto [241] has categorised software architecture sustainability
into five dimensions: individual, social, technical, economical, and environmental
[242, 243]. Individual sustainability addresses the well-being of humans by main-
taining their capital, in terms of health, education, skills, etc. Securing the societal
communities is the main concern of social sustainability, which includes social equity,
justice, employment, democracy, etc. Technical sustainability refers to "longevity of
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information, systems, and infrastructure and their adequate evolution with changing
surrounding conditions" [241]. The long-term impact of human acts on the natural
surroundings is included in environmental sustainability. One of the fundamental
dimensions for software sustainability is economics. It is the continuous delivery of
added value and capital maintenance [241].

Despite that the sustainability dimensions are interleaving, finding a common measure
is troublesome [241]. To this regard, we recommend evaluating and extending the
current continuous evaluation framework to include a single dimension economic

sustainability. We believe that the continuous evaluation framework could aid the
architect in quantifying and assessing the economic sustainability, due to the manage-
ment, evaluation and forecasting of cost-benefit trade-offs of architecture decisions in
presence of uncertainty. This requires further treatment, validations, and experimental
evaluation.

• Potentials of applying transfer learning on the continuous evaluation framework: We
aim to demonstrate the usefulness of the transfer learning methodology (introduced in
Section 5.10) on the run-time architecture evaluation approach. In this context, the use
of transfer methodology could learn from both simulated and run-time data and hence
potentially confirm the accuracy of the forecasting models.

• Potentials of exploring other change detection tests for the continuous evaluation

framework: Though our change detection test produced satisfactory results, we plan
to extend our approach to explore other change detection tests, introduced in Section
5.2.3.

• Experiments and Tool Support: Another interesting future direction is testing the
framework on a real application. This could provide the architect with extra insights
on the provision of an application’s challenges in a real setting. For instance, as
mentioned in Section 7.1.2, the framework could be adopted to evaluate an application
built using AWS IoT and Greengrass suites [209] by profiling the QoS data from the
CloudWatch monitoring tool [195]. Another potential direction is the further use of
a simulator along with the running system. This could show the extra insights the
approach can provide in a run-time context. Further, as mentioned in Section 6.6.3, we
intend to implement the framework in a decentralised manner, which may potentially
improve the computational overhead. However, further investigations are necessary to
confirm the efficiency of decentralisation mode. This thesis has studied a representative
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web-operated IoT; nevertheless, the application of the framework to other dynamic and
variant-intensive systems can benefit from the framework. In this context, testing it on
other domains, such as volunteer computing and microservice architectures, would be
worth exploring. Finally, implementing our framework as a tool support can accelerate
the adoption of our contributions in an industrial setting.

7.3 Closing Remarks

In this section, we aim to summarise the outcome of the research carried out during the
different stages of this thesis. The major conclusions that we can draw from this research are,
as follows:

1. There is a pressing need for a continuous architecture evaluation framework that
systematically evaluate the cost-benefit trade-offs of architecture decisions, operating
in uncertain environments, such as IoT.

2. The design diversity methodology could be used to handle the heterogeneity, scale,
and high dynamism challenges when architecting for IoT.

3. A potential use for binomial real options analysis at design-time is quantifying the long-
term value of the flexibility of (diversified) architecture decisions under uncertainty.

4. Run-time evaluation can be useful to complement the design-time decisions.

5. The use of reinforcement learning could aid the architect in learning the behaviour of
architecture decisions over time being useful for the run-time architecture evaluation
part of the framework.

6. When evaluating the cost-benefit trade-offs of architecture decisions at run-time, the
trade-off between architecture’s stability and learning accuracy should be taken into
consideration as well, to best benefit from approach.

7. The proactive method is able to forecast the future potentials of architecture decisions
for further timesteps ahead.

8. The proactive run-time method leveraging time series forecasting analytics to as-
sess diversity in design performs better than baseline, state-of-the-art, and reactive
architecture evaluation approaches.



Appendix A

List of Included Studies in Systematic
Literature Review

In this appendix, we first tabulate the studies with respect to domain maturity level in Table
A.1 and then provide a list of included studies in the systematic literature review in Table
A.2, A.3, and A.4.

Table A.1 Studies with respect to Research Area maturation level.

Research Area Maturation Level Studies # of Studies
Basic Research [73, 18, 102] 3
Concept Formulation [84, 95, 87, 85, 96, 103, 83, 42, 101, 41] 29

[117, 104, 120, 137, 119, 100, 21, 88, 86]
[138, 81, 121–124, 45, 116, 139, 126]

Development and Extension [82, 106] 2
Internal Enhancement [97, 44] 2
External Enhancement [10, 105] 2
Popularization [80, 9] 2
Total 40
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Table A.2 Studies included in the review.

Study Ref Author(s) Year Title
S1 [73] R. Kazman, L. Bass, 1994 SAAM: A method for analyzing

G. Abowd, & M. Webb the properties of software architectures
S2 [82] P. Bengtsson & J. Bosch 1998 Scenario-based software

architecture reengineering
S3 [9] R. Kazman, J. Asundi, 2001 Quantifying the costs and benefits of

& P. Clements architectural decisions
S4 [80] R. Kazman, M. Klein, 2003 Evaluating software architectures

P. Clements & others
S5 [10] P. Bengtsson, N. Lassing, 2004 Architecture-level modifiability analysis

J. Bosch, & H. Vliet (ALMA)
S6 [41] R. Bahsoon & W. Emmerich 2004 Evaluating architectural stability

with real options theory
S7 [84] S. Cheng 2004 Rainbow: cost-effective software

architecture-based self-adaptation
S8 [95] M. Ionita, P. America, 2004 A Scenario-Driven Approach for Value,

D. Hammer, H. Obbink Risk, and Cost Analysis in
& J. Trienekens System Architecting for Innovation

S9 [87] L. Zhu, A. Aurum, 2005 Tradeoff and sensitivity analysis in software
I. Gorton, & R. Jeffery architecture evaluation using analytic

hierarchy process
S10 [85] T. Al-Naeem, I. Gorton, 2005 A quality-driven systematic

M. Babar, F. Rabhi approach for architecting
& B. Benatallah distributed software applications

S11 [96] R. Kazman, L. Bass 2006 The essential components of software
& M. Klein architecture design and analysis

S12 [103] L. Grunske 2006 Identifying good architectural
design alternatives with multi-objective
optimization strategies

S13 [83] G. Tesauro 2007 Reinforcement learning in autonomic
computing: A manifesto
and case studies

S14 [42] I. Ozkaya, R. Kazman 2007 Quality-attribute based economic
& M. Klein valuation of architectural patterns

S15 [101] C. Kim, D. Lee, 2007 A Lightweight Value-based Software
I. Ko & J. Baik Architecture Evaluation
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Table A.3 Studies included in the review (Continued).

Study# Ref Author(s) Year Title
S16 [117] R. Bahsoon & W. Emmerich 2008 An economics-driven approach for valuing

scalability in distributed architectures
S17 [104] Y. Liu, M. Babar 2008 Middleware Architecture Evaluation for

& I. Gorton Dependable Self-managing Systems
S18 [120] W. Heaven, D. Sykes, 2009 A case study in goal-driven

J. Magee & J. Kramer architectural adaptation
S19 [137] D. Kim & S. Park 2009 Reinforcement learning-based dynamic

adaptation planning method for architecture-
based self-managed software

S20 [119] J. Yang, G. Huang, W. Zhu, 2009 Quality attribute tradeoff through
X. Cui & H. Mei adaptive architectures at runtime

S21 [100] J. Lee, S. Kang 2009 Software architecture evaluation methods
& C. Kim based on cost benefit analysis

and quantitative decision making
S22 [21] I. Epifani, C. Ghezzi, 2009 Model evolution by run-time

R. Mirandola parameter adaptation
& G. Tamburrelli

S23 [88] R. Calinescu 2009 Using quantitative analysis to implement
& M. Kwiatkowska autonomic IT systems

S24 [105] He. Christensen, K. Hansen 2011 Lightweight and continuous architectural
& B. Lindstrøm software quality assurance using

the asqa technique
S25 [18] R. Pooley & A. Abdullatif 2010 Cpasa: continuous performance assessment of

software architecture
S26 [97] F. Faniyi, R. Bahsoon, 2011 Evaluating security properties of architectures

A. Evans & R. Kazman in unpredictable environments:
A case for cloud

S27 [86] N. Esfahani, E. Kouroshfar 2011 Taming uncertainty in self-adaptive software
& S. Malek

S28 [138] R. Calinescu, K. Johnson 2011 Using observation ageing to
& Y. Rafiq improve Markovian model learning

in QoS engineering
S29 [81] R. Calinescu, L. Grunske, 2011 Dynamic QoS management and optimization

M. Kwiatkowska, in service-based systems
R. Mirandola
& G. Tamburrelli

S30 [102] M. Osterlind, P. Johnson, 2013 Enterprise architecture evaluation
K. Karnati, R. Lagerstrom using utility theory
& M. Valja
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Table A.4 Studies included in the review (Continued).

Study# Ref Author(s) Year Title
S31 [44] N. Esfahani, S. Malek 2013 GuideArch: guiding the exploration of

& K. Razavi architectural solution space
under uncertainty

S32 [121] D. Cooray, E. Kouroshfar, 2013 Proactive self-adaptation for improving
S. Malek & R. Roshandel embedded, the reliability of mission-

critical, and mobile software
S33 [122] N. Esfahani, A. Elkhodary 2013 A learning-based framework for

& S. Malek engineering feature-oriented self-adaptive
software systems

S34 [123] C. Ghezzi & A. Sharifloo 2013 Dealing with non-functional requirements
for adaptive systems via dynamic
software product-lines

S35 [124] E. Fredericks, B. DeVries 2014 Towards run-time adaptation of test
& B. Cheng cases for self-adaptive systems in

the face of uncertainty
S36 [45] E. Letier, D. Stefan 2014 Uncertainty, risk, and information value

& E. Barr in software requirements and architecture
S37 [106] V. Eloranta, U. Heesch, 2015 Lightweight Evaluation of Software

P. Avgeriou, N. Harrison Architecture Decisions
& K. Koskimies

S38 [116] B. Ojameruaye, R. Bahsoon 2016 Sustainability debt: a portfolio-based
& L. Duboc approach for evaluating sustainability

requirements in architectures
S39 [139] G. Moreno, J. Camara, 2016 Efficient decision-making under uncertainty

D. Garlan & B. Schmerl for proactive self-adaptation
S40 [126] V. Donckt, M. Jeroen, 2018 Cost-Benefit Analysis at Runtime for

D. Weyns, M. Iftikhar Self-Adaptive Systems Applied to an
& R. Singh Internet of Things Application



Appendix B

Utility and Binomial trees

In this appendix, we present the utility trees, which represent the perception of stakeholders
with respect to different quality priorities and constraints. We then illustrate the binomial
trees generated by the economics-driven design-time evaluation approach introduced in
Chapter 4. These trees along with the approach are used to analyse the trade-offs between
the long-term benefit and costs of DAO. This could aid the architect in selecting the suitable
dao with respect to the context.

B.1 Case 1: Energy Consumption as a Concern

In this section, we plot the rest of utility and binomial trees used for DAO evaluation in Case
1 (Chapter 4).

B.2 Case 2: Response Time and Network Usage as Con-
cerns

In this section, we demonstrate the rest of utility and binomial trees used for DAO evaluation
in Case 2 (Chapter 4). Here, we have two cases: Best Case and Worst Case. For the best
case, we assume that the stakeholders have good knowledge about the IoT domain, and
hence their perception are almost valid for DAO. These are shown in Figure B.9-B.11 and
B.12-B.19. In the worst case scenario, the stakeholders are not confident about their intuition
with respect to DAO utilities. We present the utility and binomial trees related to this case in
Figure B.20-B.31.
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(a) dao5 (b) dao6

(c) dao7 (d) dao8

(e) dao9

Figure B.1 Utility Tree of all options for Case 1.
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Figure B.2 Binomial Tree for dao3 (Energy Consumption Concern, i.e. Case 1).

Figure B.3 Binomial Tree of dao4 for Case 1.
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Figure B.4 Binomial Tree of dao5 for Case 1.

Figure B.5 Binomial Tree of dao6 for Case 1.
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Figure B.6 Binomial Tree of dao7 for Case 1.

Figure B.7 Binomial Tree of dao8 for Case 1.
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Figure B.8 Binomial Tree of dao9 for Case 1.
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(a) Utility Tree for Response time of dao1. (b) Utility Tree for Network Usage of dao1.

(c) Utility Tree for Response time of dao2. (d) Utility Tree for Network Usage of dao2.

(e) Utility Tree for Response time of dao3. (f) Utility Tree for Network Usage of dao3.

Figure B.9 Utility Tree of options dao1, dao2 and dao3 for Case 2 (Best Scenario).
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(a) Utility Tree for Response time of dao5. (b) Utility Tree for Network Usage of dao5.

(c) Utility Tree for Response time of dao6. (d) Utility Tree for Network Usage of dao6.

(e) Utility Tree for Response time of dao7. (f) Utility Tree for Network Usage of dao7.

Figure B.10 Utility Tree of options dao5 to dao7 for Case 2 (Best Scenario).
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(a) Utility Tree for Response time of dao8. (b) Utility Tree for Network Usage of dao8.

(c) Utility Tree for Response time of dao9. (d) Utility Tree for Network Usage of dao9.

Figure B.11 Utility Tree of options dao8 and dao9 for Case 2 (Best Scenario).

Figure B.12 Binomial Tree of dao1 for Case 2 (Best Scenario).
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Figure B.13 Binomial Tree of dao2 for Case 2 (Best Scenario).

Figure B.14 Binomial Tree of dao3 for Case 2 (Best Scenario).
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Figure B.15 Binomial Tree of dao5 for Case 2 (Best Scenario).

Figure B.16 Binomial Tree of dao6 for Case 2 (Best Scenario).
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Figure B.17 Binomial Tree of dao7 for Case 2 (Best Scenario).

Figure B.18 Binomial Tree of dao8 for Case 2 (Best Scenario).
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Figure B.19 Binomial Tree of dao9 for Case 2 (Best Scenario).
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(a) Utility Tree for Response time of dao1. (b) Utility Tree for Network Usage of dao1.

(c) Utility Tree for Response time of dao2. (d) Utility Tree for Network Usage of dao2.

(e) Utility Tree for Response time of dao3. (f) Utility Tree for Network Usage of dao3.

Figure B.20 Utility Tree of dao1 to dao3 for Case 2 (Worst Scenario).



224 Utility and Binomial trees

(a) Utility Tree for Response time of dao4. (b) Utility Tree for Network Usage of dao4.

(c) Utility Tree for Response time of dao5. (d) Utility Tree for Network Usage of dao5.

(e) Utility Tree for Response time of dao6. (f) Utility Tree for Network Usage of dao6.

Figure B.21 Utility Tree of dao4 to dao6 for Case 2 (Worst Scenario).
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(a) Utility Tree for Response time of dao7. (b) Utility Tree for Network Usage of dao7.

(c) Utility Tree for Response time of dao8. (d) Utility Tree for Network Usage of dao8.

(e) Utility Tree for Response time of dao9. (f) Utility Tree for Network Usage of dao9.

Figure B.22 Utility Tree of dao7 to dao9 for Case 2 (Worst Scenario).
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Figure B.23 Binomial Tree for dao1 for Case 2 (Worst Scenario).

Figure B.24 Binomial Tree for dao2 for Case 2 (Worst Scenario).
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Figure B.25 Binomial Tree for dao3 for Case 2 (Worst Scenario).

Figure B.26 Binomial Tree for dao4 for Case 2 (Worst Scenario).
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Figure B.27 Binomial Tree for dao5 for Case 2 (Worst Scenario).

Figure B.28 Binomial Tree for dao6 for Case 2 (Worst Scenario).
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Figure B.29 Binomial Tree for dao7 for Case 2 (Worst Scenario).

Figure B.30 Binomial Tree for dao8 for Case 2 (Worst Scenario).
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Figure B.31 Binomial Tree for dao9 for Case 2 (Worst Scenario).



Appendix C

Other Evaluation Results For The
Proactive Approach

C.1 Plots for RQ4.1.2

In this section, we plot a representation for MAE and RMSE for three quality attributes to
determine the number of training examples for kNN Learner for t+h, where h ∈ {5,8,15}.

(a) MAE (b) RMSE

Figure C.1 The error (MAE and RMSE) over time for 3 quality attributes to determine the number of
training examples for kNN Learner for t+5.

C.1.1 Learning Parameters

In this section, we aim to tabulate the parameters of learners adopted for experiment (RQ
4.1.3,4.2.1, and 4.2.2) in Table C.1.

C.2 Additional Experimental Evaluation

In this section, we show the analysis of RQ4.2.2 in detail for Normal, Case 1 and Case 3.
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(a) MAE (b) RMSE

Figure C.2 The error (MAE and RMSE) over time for 3 quality attributes to determine the number of
training examples for kNN Learner for t+8.

(a) MAE (b) RMSE

Figure C.3 The error (MAE and RMSE) over time for 3 quality attributes to determine the number of
training examples for kNN Learner for t+15.

Table C.1 The parameters for the single and ensemble learners.

Learner Parameter Value
kNN Number of neighbours 3

Perceptron Learning rate 0.025
Fading factor 0.9

SGD Multiclass Learning rate 0.01
FIMTDD Tie threshold 0.5

Learning rate constant
Tree type regression tree

FTM Fading factor 0.9
AddExp Factor for decreasing the weights of experts 0.5

Initial expert weight 0.1
Loss threshold 0.01
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In this section, we show the analysis of RQ4.2.2 in detail for Normal, Case 1 and Case 3.
We also present the analysis of the behaviour of the static, predefined and random approaches.

C.2.1 Analysis of Static, Predefined, and Random Approaches Overall
Behaviour:

• Static-Selection:

– Generally, for the best case scenario, the static-selection for all the cases provided
better mean exponential benefit with lower cost as compared with predefined-
selection and random-selection approaches (Table 6.9). However, its mean expo-
nential benefit and cost were much worse than reactive and proactive approaches,
except for Case 3 (Table 6.9 and 6.10).

– The static-selection approach is ignoring the run-time changes. In this context, it
has deployed only one dao over time (i.e it has zero switches as seen in Table 6.9)
based on the design-time knowledge (i.e. benefit estimations from the architects).
So no matter how this dao will behave over time in terms of benefit, the static-
selection will keep using it. For example, for the best case scenario, a dao has
been selected by the architects, which seemed to provide good mean exponential
benefit (Table 6.9), as compared to predefined and random approaches. However,
for the worst case scenario, the selected dao was always violating the QoS
constraints over time except for Case 2, resulting in a zero mean exponential
benefit (Table 6.9).

• Predefined selection: In all the cases (Table 6.9 and 6.10), the predefined selection
behaved the same. It is providing the lowest mean exponential benefit, highest mean
cost, and highest number of switches (8 switches). This is because it has predefined
DAO for deployment, regardless of their benefit at run-time, it will keep using them.

• Random-Selection: In most of the cases, the random-selection approach produces
low mean exponential benefit with high cost and increased number of switches (Table
6.9) as compared with static-selection, reactive and proactive approaches. Though
the random-selection approach detects the changes in dao’s benefit, it suggests re-
placements to random DAO. In particular, the ad hoc selection in Random-selection
approach caused the approach to recommend DAO which are not always the best,
resulting in poor exponential benefit over time. More detailed representative analysis
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for the behaviour of the random-selection approach is shown after the summary of
results.

• Overall: The static-selection and predefined-selection approaches are biased towards
their design-time decisions, which may (not) provide good mean exponential benefit
and cost (Table 6.9). Further discussion related to how these approaches operate
over time is shown in the representative example (i.e. Case 2) explained after the
summary of results. Finally, the predefined- and random-selection approaches showed
the worst number of switches, mean exponential benefit and cost, as compared with
other approaches (Table 6.9 and 6.10).

C.2.2 Analysis (Best/Worst Case Scenario for Normal):

• For the static-selection approach, it will always use the same option (i.e. dao6)
regardless of exponential benefit changes at run-time (Figure C.5b). In this context,
the current dao showed a gradual reduction with high fluctuation in the exponential
benefit (from about 0.96 to 0.5) till t=75. After that, a significant rise in exponential
benefit to 0.82 has occurred at t = 90, followed by a noticeable oscillation in benefit
till the end. As for the cost, it kept constant (i.e. 0.5) from the beginning till the end.
(Figure C.5c).

• The predefined-selection is similar to static-selection in terms of ignoring the run-time
changes (Figure C.5a and C.5b, and Table 6.9). This has resulted in having a very low
exponential benefit with an average of 0.5268, and relatively high mean cost of 0.5439
in comparison to reactive and proactive approaches, with very high number of switches
(i.e. 8 switches).

• The random-selection approach selects an ad hoc dao, which results in a significant
drop in exponential benefit (from 0.95 to 0.3) till t=25 (Figure C.5b). The random-
selection approach then detected changes in exponential benefit different from the
reactive and proactive approach (Figure C.5b). For instance, in one of 30 runs, it kept
using dao5 from t = 25 to t = 70 because it did not detect any change for this period.
This is due to the gradual rise in exponential benefit till t=30, followed by a steady rate
(i.e. low standard deviation in exponential benefit, which caused no change detection)
till t=70.

• At t=70, the random approach has detected a significant decrease in benefit, which led
to a switch to a random dao (i.e. not always the optimal). This has also resulted in a
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noticeable decrease in benefit over time (from 0.62 to 0.42), as seen in Figure C.5b
and C.5e. Similar changes and selections of dao happened till t=120.

• The reactive and proactive approaches recommended using the same dao (Figure C.4)
as it is still the best one until the 25th timestep.

• After t = 30 (Figure C.4), the reactive and proactive approaches were evaluating dao5

till t = 70. They then detected a significant drop in dao5’s exponential benefit from
about 0.8 to 0.6. Both approaches have analyzed the cost-benefit trade-offs of the DAO

and hence recommended a replacement to dao4.

• From t = 70 to 112, the reactive and proactive approaches provided the best steady
exponential benefit, approximately 0.85, with a cost of 0.52 (Figure C.5b and C.5c).

• At t = 112, the reactive and proactive approaches found that the current dao provides
poorer exponential benefit than previous (from 0.85 to 0.75), as depicted in Figure
C.5b. The reactive approach thus suggested a switch to dao6 (Figure C.4a). The
proactive approach avoided these unnecessary replacements (Figure C.4b), because it
has the ability to evaluate the DAO based on their future benefits. For instance, from
t = 70 till the end, the proactive approach noticed that dao4 provides the most balanced
cost-benefit trade-off.

(a) The selected DAO by reactive ap-
proach

(b) The selected DAO by proactive
approach (t +1)

(c) The selected DAO by proactive
approach (Average Forecasts)

Figure C.4 The selected DAO by reactive/proactive (t+1) approach for Normal for the best scenario.

To this regard, the proactive informed-selection produced almost the same average
exponential benefit and cost as the reactive approach but with less number of switches for the
normal case (Table 6.10).
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(a) Overall behaviour (t + 1,
Best).

(b) Exponential Benefit (t+1,
Best).

(c) Average Cost (t+1, Best).

(d) Overall Behaviour (Avg
Forecasts, Best).

(e) Exponential Benefit (Avg
Forecasts, Best).

(f) Average Cost (Avg Fore-
casts, Best).

(g) Overall Behaviour (t +1,
Worst).

(h) Exponential Benefit (t+1,
Worst).

(i) Average Cost (t + 1,
Worst).

(j) Overall Behaviour (Avg
Forecasts, Worst).

(k) Exponential Benefit (Avg
Forecasts, Worst).

(l) Average Cost (Avg Fore-
casts, Worst).

Figure C.5 The evaluation of the five approaches’ decision-making process for Normal (t + 1,
Average Forecasts) for the best/worst scenario.
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(a) The selected DAO by reactive ap-
proach

(b) The selected DAO by proactive ap-
proach

Figure C.6 The selected DAO by reactive/proactive (Average Forecasts) approach for Case 1 for the
best scenario.

C.2.3 Analysis (Best/Worst Case Scenario for Case 1)

Consider the case where the architect has selected a dao, which seemed to initially provide
the most balanced cost-benefit trade-off to handle the energy consumption strict constraint
(i.e. dao3). We also analyze the results with respect to varying values of h and average
forecast of t +h, where h ∈ {1,5,8,15} (Table 6.10). In the best case, the proactive approach
for varying h values and average forecasts behaved the same. Therefore, we plotted only the
average forecasts in Figure C.7a-C.7c. Next, we discuss the Behaviour of the architecture
evaluation approaches, as follows:

• The reactive and proactive (for all t+h and their average) approaches initially evaluated
dao3, which imposed a significant degradation in exponential benefit at t = 20 (Figure
C.7b). For that, both approaches suggested a replacement to dao6 (Figure C.6a and
C.6b), which provided as well poor benefit (Figure C.7b). Therefore, at t = 25,
the reactive and proactive approaches quickly handled that and thus suggested a
replacement to dao5. This dao provided the most balanced cost-benefit trade-off
(Figure C.7b and C.7c). However, since the fluctuation in QoS was considerably low,
both approaches did not detect any significant deviations in benefit after t = 25.

• Further, we did not benefit greatly from future forecasts. This is due to the too strict
constraint for energy consumption (i.e. various constraint violation has occurred). This
explains why the proactive approach for all t +h and their average provided similar
results to the reactive approach (Figure C.7a-C.7c).
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• As for random- and predefined-selection approaches (Figure C.7a), they provided very
low exponential benefit (i.e. 0.45) with high cost (i.e. 0.55), in comparison to reactive
and proactive approaches.

• The static-selection also provided lower benefit (i.e. 0.7) and higher cost (i.e. 0.5) than
reactive and proactive approaches (Figure C.7a).

(a) Overall Behaviour (Avg Fore-
casts, Best).

(b) Exponential Benefit (Avg Fore-
casts, Best).

(c) Average Cost (Avg Forecasts,
Best).

(d) Overall Behaviour (Avg Fore-
casts, Worst).

(e) Exponential Benefit (Avg Fore-
casts, Worst).

(f) Average Cost (Avg Forecasts,
Worst).

Figure C.7 The evaluation of the five approaches’ decision-making process for Case 1 (Average
Forecasts) for the best/worst scenario.

For the worst case scenario, the proactive approach for varying t+h produced different results
(Figure C.9, Table 6.10), and hence We will report the results below (Figure C.8a-C.8f):

• The predefined-selection approach (Figure C.8a) provided similar output to best case
scenario.

• Additionally, the static, random, and reactive approach produced the same average
exponential exponential (i.e. 0.38) and average cost (i.e. 0.55), as seen in Figure C.8a.
This is because the fluctuation in QoS for dao2 was considerably low. Consequently,
the random and reactive approaches did not detect any changes in benefit (Figure C.8b
and C.8c).
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• The proactive approach for varying h values, where h∈ {1,5,8,15} behaved differently.
Particularly, they triggered changes in benefit and replacements to other dao at different
timesteps. For instance, at 63th timestep, the proactive approach using t +1 suggested
a replacement to dao5 (Figure C.9b), which resulted in a significant reduction in
cost, with slight decrease in benefit (Figure C.8b and C.8c). Further, the proactive
approach using t + 15 recommended three switches to DAO (Figure C.9e), which
caused a gradual improvement in benefit with a slight rise cost at some times, and in
others it caused a slight decrease in benefit with a significant reduction in cost (Figure
C.8k and C.8l). The proactive approach for other t +h values had similar underlying
Behaviour (Figure C.8e, C.8f, C.8h, and C.8i). In this context, there is a trade-off
between the application’s stability and improvement in QoS, which could be adjusted
by the architect to determine the suitable h value with respect to the application’s
requirements.

• The average of forecasts have produced similar results to reactive (i.e. both approaches
did not trigger any changes in benefit). This may be due to the use of mean forecasts.

C.2.4 Analysis (Best/Worst Case Scenario for Case 3)

From this experiment, we can investigate that the proactive approach for t + h, where
h ∈ {1,5,8,15} almost showed same results, except that t +5 recommended lower number
of replacements (i.e three switches instead of four) and average of forecasts suggested two
switches instead of four. This is the second time for the average forecasts to produce different
outcome (i.e. Case 2) than t +h, where h ∈ {1,5,8,15}. Therefore, we present an illustration
for the overall Behaviour of proactive approaches (for t +1, t +5, and average forecasts),
their exponential benefit, and their average cost (Figure C.10- C.11). We also plot the DAO

replacements over time in Figure C.12 for t +1 (as an exemplar for t +8 and t +15), t +5,
and average of forecasts. Similar to Case 1, the proactive approach has evaluated the DAO

over time and the decision-making has benefited from forecasts. In particular, the proactive
approach provided more promising results as compared to reactive and baseline architecture
evaluation approaches. Therefore, in this analysis, we will report a summary of the results.
For instance, for the best case, the approaches act as follows (Figure C.10- C.12 and Table
6.10):

• For the first time, the design-time knowledge has favored the static-selection approach.
The latter has produced very high overall exponential benefit with considerable average
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(a) Overall Behaviour (t + 1,
Worst).

(b) Exponential Benefit (t + 1,
Worst).

(c) Average Cost (t +1, Worst).

(d) Overall Behaviour (t + 5,
Worst).

(e) Exponential Benefit (t+5,
Worst).

(f) Average Cost (t +5, Worst).

(g) Overall Behaviour (t + 8,
Worst).

(h) Exponential Benefit (t + 8,
Worst).

(i) Average Cost (t +8, Worst).

(j) Overall Behaviour (t + 15,
Worst).

(k) Exponential Benefit (t +15,
Worst).

(l) Average Cost (t +15, Worst).

Figure C.8 The evaluation of the five approaches’ decision-making process for Case 1 (t +1, t +5,
t +8, and t +15) for the worst scenario.
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(a) The selected DAO by reactive
approach

(b) The selected DAO by proactive
approach for t +1

(c) The selected DAO by proactive
approach for t +5

(d) The selected DAO by proactive
approach for t +8

(e) The selected DAO by proactive
approach for t +15

(f) The selected DAO by proactive
approach for average forecasts

Figure C.9 The selected DAO by proactive approach (t +1, t +5, t +8, t +15, and average forecasts)
for Case 1 for the worst scenario.

cost (i.e. similar to proactive approach, but without replacements), as compared with
other approaches (Figure C.10a).

• The predefined-selection and random-selection have reacted similarly to what happened
in previous cases (i.e. Normal, Case 1, and Case 2).

• The DAO evaluation conducted by the proactive approach for t +1, t +8, and t +15
provided the same choices for DAO over time (Figure C.12b).

• The major difference between t + 5 (Figure C.10d) and other h values (e.g. Figure
C.10a) is that the former provided almost the same average exponential benefit and
slightly lower average cost, with also lower number of replacements (i.e. three instead
of four).

• On the contrary, the average of forecasts produced slightly lower benefit and cost
(Table 6.10), but with less number of replacements as well (i.e. two switches) as
compared with other t +h (Figure C.11 and C.12d).
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(a) Overall Behaviour (t +1, Best).(b) Exponential Benefit (t + 1,
Best).

(c) Average Cost (t +1, Best).

(d) Overall Behaviour (t+5, Best).(e) Exponential Benefit (t + 5,
Best).

(f) Average Cost (t +5, Best).

(g) Overall Behaviour (t + 1,
Worst).

(h) Exponential Benefit (t + 1,
Worst).

(i) Average Cost (t +1, Worst).

(j) Overall Behaviour (t + 5,
Worst).

(k) Exponential Benefit (t + 5,
Worst).

(l) Average Cost (t +5, Worst).

Figure C.10 The evaluation of the five approaches’ decision-making process for Case 3 (t +1,t +5)
for the best/worst scenario.
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(a) Overall Behaviour (Average
Forecasts, Best).

(b) Exponential Benefit (Average
Forecasts, Best).

(c) Average Cost (Average Fore-
casts, Best).

(d) Overall Behaviour (Average
Forecasts, Worst).

(e) Exponential Benefit (Average
Forecasts, Worst).

(f) Average Cost (Average Fore-
casts, Worst).

Figure C.11 The evaluation of the five approaches’ decision-making process for Case 3 (Average
Forecasts) for the best/worst scenario.
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(a) The selected DAO by reactive ap-
proach

(b) The selected DAO by proactive ap-
proach for t +1

(c) The selected DAO by proactive ap-
proach for t +5

(d) The selected DAO by proactive ap-
proach for Average forecasts

Figure C.12 The selected DAO by reactive/proactive approach for Case 3 (t +1, t +5, and average
forecasts) for the best scenario.
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