
water

Article

Assessing the Potential Economic Viability
of Precision Irrigation: A Theoretical Analysis
and Pilot Empirical Evaluation

Francesco Galioto 1,* ID , Meri Raggi 2 ID and Davide Viaggi 3 ID

1 Department of Agricultural Sciences, University of Bologna, Viale Fanin 50, 40127 Bologna, Italy
2 Department of Statistical Sciences, University of Bologna, Via delle Belle Arti 41, 40126 Bologna, Italy;

meri.raggi@unibo.it
3 Department of Agricultural Sciences, University of Bologna, Viale Fanin 50, Bologna 40127, Italy;

davide.viaggi@unibo.it
* Correspondence: francesco.galioto@unibo.it; Tel.: +39-051-209-6115

Received: 1 November 2017; Accepted: 15 December 2017; Published: 19 December 2017

Abstract: The present study explores the value generated by the use of information to rationalize
the use of water resources in agriculture. The study introduces the value of information concept
in the field of irrigation developing a theoretical assessment framework to evaluate whether the
introduction of “Precision Irrigation” (PI) practices can improve expectations on income. This is
supported by a Stakeholders consultation and by a numerical example, using secondary data and
crop growth models. The study reveals that the value generated with the transition to PI varies with
pedo-climate, economic, technological and other conditions, and it depends on the initial status of
the farmer’s information environment. These factors affect the prerequisite needed to make viable PI.
To foster the adoption of PI, stakeholders envisaged the need to set up free meteorological information
and advisory service that supports farmers in using PI, as well as other type of instruments. The paper
concludes that the profitability of adoption and the relevant impact on the environment cannot be
considered as generally given, but must be evaluated case by case justifying (or not) the activation of
specific agricultural policy measures supporting PI practices to target regions.
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1. Introduction

Climate change is bringing several new challenges to European agriculture. These effects are,
by their very nature, strongly different across macro-regions as well as micro-areas. In Northern
Europe, climate change may produce positive effects on agriculture through the introduction of
new crop species and varieties, higher crop production and the expansion of suitable areas for crop
cultivation. In Southern Europe, the possible increase in water shortages and extreme weather events
may cause lower harvestable yields and higher yield variability. These effects may reinforce the
current trends of intensification of agriculture in Northern and Western Europe and extensification
in the Mediterranean and southeastern parts of Europe [1,2]. The new Common Agricultural Policy
(CAP) reform explicitly addresses this aspect, dedicating funds for advisory weather services, training
and supporting investments to adapt farm structures and production methods [3]. This changing
environmental and institutional context is encouraging the development of new technologies and
modify their patterns of diffusion, with particular reference to irrigation practices.

Good management of irrigation water can increase crop yields, improve crop quality, conserve
water, save energy, decrease fertilizers requirements and reduce nonpoint source pollution [4]. A new
frontier for optimizing the use of water resources is sought in the concept of “Precision Irrigation” (PI).
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PI is a practice, rather than a technique, that can be applied to any type of irrigation method in any
region of the world. PI provides a means to support end users’ decisions with regard to how much to
irrigate, and when, through data acquisition from monitoring devices (sensors) and forecasting tools
(weather predictions), data interpretation, system control, and evaluation mechanisms [5]. PI has the
potential to increase certain economic efficiencies of operations by optimally matching input to yields
in each zone of a field and reducing costs [6]. Thus, PI can refer either to irrigation which is scheduled
precisely (meets crop demand taking into account weather) or irrigation which is adjusted spatially
(in order to account for differences in soil), or both. Any control strategies applicable to irrigation
may be either: (i) “sensor-based”, for which the (simulated) irrigation application is directly adjusted
according to the measurement response (e.g., learning control); and/or (ii) “model-based”, which use
a calibrated soil and plant model for irrigation management (e.g., mathematical programming and
model predictive control). These strategies differ fundamentally in their data requirements and their
use of the crop model [1]. However, whatever is the PI approach adopted and whatever are the
instruments used to apply PI, the effect of this promising innovation is still unclear due to its limited
diffusion and to the varying accuracy of available monitoring devices. Both canopy cover [7] and
soil moisture sensors [8] are often inaccurate and the spatial variability within each management
zones is often significant [9], affecting the reliability of the information used to manage irrigation.
However, a few empirical studies worldwide demonstrate that PI at least enables to lessen the risk of
experiencing adverse situations of crop production and income [6,10,11].

With the adoption of PI, the main changes occur in the way to handle available information
which in turn may affect farmers’ ability to rationalize the use of water resources. A measure of the
value of information (VOI) brought with PI can be estimated by comparing the consequences of the
decisions made using PI with the consequences of the decision made using traditional sources of
information [12]. The magnitude of the consequences brought with PI may be determined by several
factors, which, consequently, may affect positively or negatively its diffusion within a given region [6].

The objective of this paper is to provide a methodology to assess the potential economic viability
of PI in different environments introducing a literature on factors affecting the adoption of PI and
a theoretical framework to calculate the value of the additional information brought with the adoption
of PI. The theoretical framework is supported by a stakeholder consultation involving a structured
group of experts from different geographical European regions and a pilot empirical example to assess
the economic viability of PI. The Stakeholder consultation made it possible to explore divergences and
convergences of factors that may determine the adoption of PI, while the empirical example offered
a dimension of the potential economic and environmental relevance of PI. The paper concludes with
a discussion of the extent to which PI can be considered an instrument capable of meeting the main
concerns addressed by the Water Framework Directive (WFD) and the new CAP reform.

2. Literature on Factors Affecting PI Adoption

Nowadays, the paradigm of innovation for irrigation is shifting from technologies associated
to the way to irrigate (i.e., from sprinkler irrigation to drip irrigation) to technologies related to
the way to handle information for scheduling irrigation intervention (from hand-control irrigation
systems to automated irrigation systems). Currently, however, there is very little literature analyzing
the factors affecting the adoption of PI, while a broad literature contributes to identifying the main
factors influencing the transition from traditional to modern irrigation technologies (MIT); that is,
the transition from sprinkler to drip irrigation. These two different ways to innovate share the common
goal to optimize the use of water resources in agriculture. Factors that affect the optimization of the
use of water resources by the means of MIT [13] may be expected to play a role also in affecting the
viability of PI [6].

The transition from traditional to modern irrigation technologies (MIT) appears to be affected by
environmental, regulatory and structural factors. Climate conditions [7], the quality of land, soil water
holding capacity (WHC) and orography [13–15] are addressed as the most important environmental
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factors conditioning the transition to MIT. In addition, subsidies [8,16–19], water pricing [20–23], and
enforcement and monitoring capacity [22,24] are regulatory factors that may further affect the transition
to MIT. For their part, structural factors such as the type of crops [17,20], farmer networks [25,26],
farmer skills [27,28], the cost of substituting inputs (labor and energy) (for instance, labor and energy
can be considered substituting inputs when considering the transition from furrow irrigation to
sprinkler or drip irrigation systems: furrow irrigation is highly labor intensive, while the other types
of irrigation systems are energy intensive) and output prices [21], and land ownership [7] contribute to
further substantiate under which circumstances the transition to MIT is more likely to occur.

With respect to the environmental factors, scientists have found that the adoption of modern
irrigation technologies (from sprinklers to drip irrigation) is conditioned by the climatic conditions of
a region and by the main types of irrigation water sources. For example, most of the crops for which it
is possible to apply drip irrigation systems (fruit and vegetables) tend to be concentrated in tropical
and temperate climate regions. Moreover, in those regions where underground water is the main
source of irrigation water, the adoption of modern irrigation technologies increases as the unit cost for
pumping water increases. In addition, increasing heterogeneity of field morphology and decreasing
soil WHC increases the benefits brought with MIT. MIT guarantees a more homogeneous application
of water, particularly on irregular fields, and allows to save water, particularly for fields with low
WHC, requiring small amounts of water per intervention and high frequencies of interventions.

With respect to the regulatory factors, scientists have addressed instruments such as subsidies on
investments, water pricing (tariffs) and rules of use (licensing for drilling wells, turns and quotas, etc.).
These instruments can have varying impacts both on the adoption and the resulting water savings
and nutrient leaching reductions. A point of attention where water saving is considered a public
concern, is that subsidies alone may lead to the so-called Jevons paradox. That is, with increasing
irrigation efficiency, also water availability with respect to needs increases, hence favoring the diffusion
of more water intensive crops. To avoid the risk of such an effect, scholars suggest combining subsidies
with water pricing. However, there is little evidence that water pricing affect water uses even when
volumetric water price is applied; the main reason water price is not acting as an incentive to MIT
adoption, however, is that in Europe water is rarely priced, and, when it is, tariff is just paid for
the possibility to use water for irrigation and not for the real amount of water applied [24]. Besides
direct incentive effects, water pricing, which is an instrument commonly adopted by local water
authorities to recover supply costs [29–31], could be also applied to co-finance investments on modern
irrigation technologies [22]. Finally, most of the authors agree that the possibility of imposing rules
of use, with particular reference to quotas and turns, could favor the adoption of modern irrigation
technologies, in order for the farmers to better comply with such type of constraints.

With respect to the structural factors, the authors found that the type of land tenure conditions the
adoption of modern irrigation technologies, as landowners are usually more willing to make long-term
investments than tenants. Besides this, the most important structural factor conditioning the adoption
of MIT is the type of crop. Moreover, the adoption of MIT tends to increase with the increasing costs
of the substituting inputs and output prices and is also conditioned by the quality of human capital,
with particular reference to farm skills and networking capacity.

Unlike MIT, with PI climate and crop factors are less important in conditioning the
potential diffusion of the technology as, theoretically, PI can be applied to any type of irrigation
system (modern and traditional) and in any area of the world where irrigation is practiced [5].
However, presently, most of PI technologies have been developed without considering the knowledge
levels, skills and abilities of farmers and service providers to effectively and economically manage
them. In addition, the equipment is expensive [6]. Accordingly, a farmer’s skills and financial capacity,
coupled with his/her networking capacity and opportunity to consult service providers are considered
the main factors conditioning the adoption of PI.

These cost-side considerations should be matched with benefits from adoption. PI should
guarantee higher economic returns, mainly thanks to a more rational use of inputs (such as energy for
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pumping water and fertilizers) and higher yield, minimizing the risk of having areas in the same fields
that are either too wet or too dry [32,33]. The adoption of PI may be expected to favor higher economic
returns and higher environmental benefits, minimizing nutrient leaching losses and irrigation water
wasted, with increased heterogeneity in field morphology.

One of the most recent novelty in the field of PI is to combine crop growth models estimating
yield responses to water uses with measures of crop evapotranspiration and soil water content and
weather forecasting tools to precisely schedule irrigation in relatively homogeneous regions of a field,
named management zones [34]. The management zone is a sub-region of the field that exhibits
a relatively homogeneous combination of yield limiting factors for which a single rate of specific
crop input (in the present methodology and water) is appropriate [35]. However, it has not been easy
to demonstrate consistently the economic returns from adopting these technologies as the bulk of
the scientific reporting refers to pioneer applications of PI at the case study level [6]. The limiting
factors of this approach are found in the availability of cost effective support tools and instrumentation
for decision-making.

Remote sensing is the most innovative technique to estimate crop evapotranspiration and, thus,
spatial pattern in canopy cover, crop biomass and potential crop yield. The quality of the information
provided through remote sensing is conditioned both by the spatial resolution and by the return
frequencies of images [16]. Because of this, satellite remote sensing is significantly less accurate than
proximal remote sensing. Moreover, remote sensing from satellite images includes biases due to
interferences from soil reflectance at low canopy densities and interferences from cloud cover that
may compromise measures [8]. However, most of these biases in the field of remote sensing have been
consistently reduced since the spatial resolution of satellite images passed from 80 m (with Landsat 1
in 1979) to sub-meter resolution (with WorldView in 2009) and the return visit frequency has improved
from 18 days to 1 day. Yao et al. [36] summarized the major challenges for using satellite remote
sensing for precision agriculture.

The limitation of satellite remote sensing for precision agriculture and PI can be overcome by
applying proximal remote sensing, i.e., measurements made with tractors and hand-held sensors [37].
However, satellite images are significantly less costly than proximal images and the quality of
information provided through satellite images is steadily increasing. Particularly relevant in the
field of PI is thermal remote sensing, based on emission of radiation in response to temperature of the
leaf and canopy, as it captures water stress in crops [38].

To date, a wide range of sensors is also used to measure soil moisture [17]. Even recent research
continues to show that these sensors takes point measurements that are seldom representative of the
average soil moisture conditions of the field, especially for those fields with heterogeneous soil textures.
However, all sensors give information about trends that can be usable for irrigation scheduling.
Scholars suggest to locate sensors in those areas of the field with lowest WHC at the rooting depth
to avoid reaching a water stress level in the other parts of the field [4]. In addition, low cost tools
(e.g., tensiometers) do not provide consistently precise and accurate data on soil moisture status
and require considerable maintenance. To date, a breakthrough in the field of soil sensors was the
introduction of sensors measuring the soil electrical conductivity that have been applied to map spatial
patterns in soil salinity [39], clay content and soil moisture content [40]. However, tools that provide
precise and relatively accurate measurements of soil moisture are generally too expensive for a grower
to utilize in multiple locations at multiple depths across a given field [6].

In any case, whatever is the accuracy of the instruments used to map spatial patterns in soil
moisture content within a field, the issue of handling spatial variability remains. Practical limitation
on the number of management zones collides with spatial variability with a consequent impact on the
accuracy of the information provided [36].

With respect to weather forecasts, the accuracy of seasonal and long-term weather forecasts
remains quite low despite access to satellite data and improved forecasting models. In addition,
the longer the time frame, the higher the possibility of deviation from the forecast. In addition,
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the absence of local weather stations negatively affect downscaling from global climate models (by the
means of weather generators), with additional losses of accuracy [41], especially for predicting extreme
events [42].

The considerations made so far are to highlight that both the spatial and the temporal accuracy of
information contributes in conditioning the reliability of the information itself and consequently the
practicality of PI.

Despite these limitations, a few empirical studies worldwide highlight that farmers who receive
quality, up to date information, and who can use that information, are able to lessen the risk of
experiencing adverse impacts on crop production and income [6,11,43]. It is expected that the diffusion
of PI will play a role in bridging the information gap and in reducing the information differentials
that exists between farmers and between regions. In other words, PI can play the role of better
informing decision makers with regard to the value of data and information. Willingness to pay for
information can be thought of as a derived demand, or demand emanating from the value of services
or information [44].

3. Theoretical Framework

In the following, we develop an analytical approach combining the findings of scholars who have
contributed to the analysis of the development of modern irrigation techniques with those of studies on
new information systems for irrigation [6,7,13,14,44]. Specifically, Miranowski [13] collected a number
of studies highlighting the factors that condition the adoption of MIT and, based on this, he developed
a methodology that up until recently has provided support a number of empirical applications [7,14].
According to the relevant literature [6], some of these factors seem also to hold for PI, in particular
land quality. With increasing soil WHC, PI is less likely to favor higher performances and less likely to
reduce energy and water consumption.

The methodology below describes an assessment procedure to evaluate the economic
consequences generated by the use of new sources of information to schedule irrigation. We assume
that initially the farmer is not in the condition to handle both spatial and temporal variability and he
is applying a fixed calendar irrigation scheme based solely on its past experience. The new source
of information is assumed to allow the farmer to split the field in management zones characterized
by different WHC levels and to provide better forecasts about water requirements in the near future.
This allow the farmer to plan water requirements for the different management zones of its field.

Other relevant assumptions are: (1) the number of management zones is determined a priori;
(2) the amount of water applied is the only decisional variable (no other crop inputs are considered
here); (3) the probability to correctly estimate crop water requirements (quality of information) is
conditioned by both spatial and weather uncertainty (no distinction between the two main sources of
bias); and (4) the probability of correctly estimating crop water requirements is known to the farmer.

To introduce our analytical approach, we start assuming a deterministic environment where crop
income is a function of the amount of water applied for a given irrigation technology. Under such
conditions, a profit maximizing farmer needs to find the optimal allocation of water considering the
heterogeneous WHC of its field. This problem is addressed by the following maximization:

Max ∏(xz) = ∑
z

γz[µyz(xz)− vxz] (1)

where z is a subscript indicating the single management zone of the field; ∏(xz) is crop income; xz is the
decisional variable, per hectare amount of irrigation water applied to the field for each management
zone, z; yz(xz) is the yield, which is function of the amount of water applied; v is the unit cost of water
for irrigation; µ is the unit yield price; and γz is the share of field assigned to each management zone.
To simplify notation, we do not include any additional cost not depending on irrigation decisions.
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By maximizing Equation (1), we derive the optimal amount of water to be applied in each management
zone of the field:

µy′(x∗z ) = v ∀ z ∈ Z (2)

The maximization of Equation (1) is obtained by computing the partial derivative with respect
to the decisional variable xz and equating it to 0. Here, y′(x∗z ) denotes the partial derivative of the
production xz. Thus, the equilibrium is reached when marginal productivity equals marginal costs for
each management zone of the field. This is valid as long as there is no restriction on the amount of
water available for irrigation and assuming that the farmer perfectly knows how much water to apply
in each region of the field.

In fact, the information actually used by the farmer to estimate crop water requirements is far
from being perfect. Under such circumstances the farmer may fail to apply irrigation efficiently.
The following equation better explains farm behavior with respect to irrigation intervention in
a sub-optimal information environment, where it is not possible to handle field heterogeneity:

Max ∏̃(x̃) = ∑
z

γz[µyz(x̃)− vx̃] (3)

Equation (3) differs from Equation (1) mainly for the decisional variable x̃. Here, it is assumed
that the farmer is not able to distinguish different regions of its field and to modulate water application
accordingly. Under such circumstances the farmer will choose to drive the application of water by
mainly referring to that quota of the field which guarantees higher economic benefits:

∑
z

γzµyz
′(x̃∗) = v (4)

Thus far, the amount of water applied by the farmer moves away from the optimum the more
increases field heterogeneity, or decrease land quality. Likewise, with decreasing land quality levels
(increasing number of regions of the field with increasing differences in WHC) increases the potential
value of any additional information acquired to handle irrigation intervention.

The difference between the profit obtained by maximizing Equation (1) and the profit obtained
by maximizing Equation (3) determines the maximum benefit caused by the use of information
instruments to plan irrigation intervention.

The VOI in the present problem is conditioned by the accuracy level of the information itself,
that is, by the capacity to correctly estimate crop water requirement in different region of the field.
This value is calculated by comparing the consequences associated with farmer’s decision of whether
or not to irrigate with and without a new information source.

To move from a deterministic to a stochastic approach, we now also assume that the farmer faces
different states of the nature. States refer to the real water requirement in each sector of the field
during the irrigating season. A probability of occurrence is associated to each of these states, pz,s.
This probability is assumed to reflect farmer’s expectation on states occurrence. Thus, Equation (3) can
be reformulated as follows:

Max ∏(x̃) = ∑
z,s

pz,sγz[µyz,s(x̃)− vx̃] (5)

Let us consider Equation (5) as the benchmark irrigation management condition before receiving
any additional information. Under such circumstances the farmer will choose to drive the application
of water by mainly referring to those state conditions that are more likely to affect production in the
most sensitive region of its field:

∑
z,s

pz,sγz

[
µy′z,s(x̃∗)

]
= v (6)
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Equation (6) reveal that the amount of water applied moves even further away from optimality
than what is shown for Equation (4), to the detriment of crop profitability. The more heterogeneous are
the state of the nature faced by the farmer in each management zone of the field, the more sub-optimal
would be the allocation of water.

In the presence of information, once it has received the information the farmer is assumed to
apply different irrigation criteria in each management zone of its field. This assumption implies that
the accuracy of the information and the heterogeneity in the WHC are both known.

With respect to the benchmark condition, the farmer can receive a set of messages, m. messages
inform the farmer about the amount of water to be applied in each sector of the field during the
irrigating season. messages predict/estimate states of the nature, s. Each message is delivered
with certain probability, pz,m, and with a certain degree of reliability. The degree of reliability is
measured by the probability of occurrence of the predicted state, pz,s|m. By assumption, with respect
to the benchmarking conditions, the information service combines more accurate weather forecasts
with more accurate estimations of crop water requirements per field unit, or management zone.
Consequently, under uncertainty, the maximization problem described in Equation (1) for an informed
farmer can be reformulated in the following equation:

Max ∏(xz,m) = ∑
z,m

pz,m ∑
s

pz,s|mγz[µyz,s(xz,m)− vxz,m] (7)

Differently from the problem described by Equation (5), the informed farmer differentiates
the application of water in the different regions of its field through the messages delivered by
the information service. Indeed, by differentiating Equation (7) with respect to x, we obtain the
following equilibrium:

∑
s

pz,s|mγz

[
µy′z,s

(
x∗z,m

)]
= v ∀ z ∈ Z, m ∈ M (8)

Equation (8) reveals a differentiation on the management of irrigation in the different regions of
the field. The informed condition generates a more efficient outcome than the uninformed condition
when the probability of occurrence of the states predicted by the information service (or states
conditional probabilities) is greater than the relevant states prior probability. With perfect information,
the probability of the state predicted by the message equals 1 and the equilibrium of Equation (8)
equals the equilibrium reached in the ideal condition described by Equation (1). On the other hand,
the informed condition generates less efficient outcomes when the probability of the state predicted by
the message is lower than its prior, justifying the non-use of the service.

Now, let πz,s
(

xi
z,m
)

denote the best income obtained by an informed farmer who differentiate the
irrigation intervention in the different regions of its field through the information service; πz,s(x̃u), the
best income obtained by irrigating as usual. The value associated to the new source of information
(VOI) is obtained by the difference between maximum expected profits of using and not using the new
information source, Ω:

Ω = ∑
m,z

pz,m ∑
s

pz,s|mγzπz,s

(
xi

z,m

)
−∑

z,s
pz,sγzπz,s(x̃u) (9)

From Equation (9) it can be deduced that for each message delivered by the information service
the value of the service is then depending on the differences between “informed” and “uninformed”
expectation on income. The farmer is assumed to choose the action that maximize its profits. This is
conditioned by the consequences faced by the farmer for each of the possible actions under the different
possible states and by the accuracy of the messages delivered by the information service. If the farmer
decides not to follow the message then its actions would equal the actions he would made in the
absence of information.
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The probabilities of receiving messages and the probabilities of state occurrences conditional to
messages, known also as posterior probabilities, are related to the probabilities of states occurrence
(known also as prior probabilities) and the probabilities of receiving messages conditional to states
by the Bayesian rule [12], such that: pz,m pz,s|m = pz,s pz,m|s. This equation can be rewritten as follows:

pz,s|m = pz,s
pz,m|s
pz,m

. The second term on the right hands side of this last equation,
pz,m|s
pz,m

, is the marginal
informativeness of message m given state s. The message provided by the information service is
uninformative when the marginal informativeness equals 1, as posterior probabilities collapse to prior
probabilities. In addition, the more the marginal informativeness is higher than 1, the more posterior
probabilities will differ from prior probabilities, hence improving the farmer’s ability to predict future
events. Prior probabilities may be further distinguished in an objective component, the probability
of occurrence of state s, hs, and a subjective component whose value is conditioned by farmer’s risk
attitudes, ws, such that: ps = wshs, and ∑swshs = 1. The farmer is risk neutral when ws equal 1 for
each state. This way, rather than directly tying risk to farmer’s payoff (Von Neumann-Morgenster
Utility), we portray farmer’s risk as a subjective components conditioning farmer’s expectation about
the occurrence of averse states. This way, the more the subjective component of farmer’s prior belief
increases the perceived uncertainty the more conservative (or cautious) will be the action undertaken
by the farmer decreasing its expectation on crop income.

Finally, the strategy of profit-maximizing irrigation involves a sequential process. First, optimal
expected water use levels under the two informative systems are determined. Then, resulting profits
are compared. The new information system is selected if ∏(x∗z,m) ≥ ∏(x̃∗)+ r, where r is representing
the present cost of the equipment needed to shift from the conventional information system to the new
information system and the transaction costs faced by the farmer in approaching the new information
technology. The traditional technology is used when the difference on expected income between
“informed” and “uninformed” actions is lower than zero.

4. Empirical Analysis: Methods

4.1. General Approach

The empirical analysis was carried out following a two steps approach: (1) identification of the key
factors that may affect the adoption of PI through a Stakeholder consultation; and (2) pilot economic
evaluation to test the theoretical assessment framework and to weight impacts based on some of the
information collected in the first step. The Stakeholder consultation offers a broad overview about
the technological limitation of current PI instruments, about external environmental and institutional
factors that may condition the adoption of PI and about policy instruments that may speed up the
diffusion of PI. This explorative analysis is motivated by the fact that most of the literature on PI is
referring to application of PI in North America, while we focused on European experts to explore
issues specific of this geographical context. The numerical example offers an estimation of the benefits
that may be brought with the use of PI for a given crop, a given irrigation technology and given climate
conditions following the theoretical approach described above. Finally, impacts from the empirical
application are weighted based on the information provided by experts.

4.1.1. Stakeholder Consultation

The consultation was directed to a group of 18 experts of irrigation systems from across
Europe selected through some dedicated European networks (Water European Innovation
Partnership—EIPWATER, European Fruit Research Institute Network—EUFRIN) and from local
networks selected through the Flexible and Precision Irrigation Platform to Improve Farm Scale Water
Productivity (FIGARO) consortium. The group of experts was mainly characterized by researchers
and agronomists, who are already familiar with the concept of PI and its application in the real world
and who can provide insights into where and when these practices will likely yield relevant benefits
for farmers and for the environment.
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The eliciting procedure adopted is a mixture of different techniques [45]. In a first phase of the
consultation process, we adopted a Delphi method. This was followed by a roundtable in a second
phase. The criterion adopted for deciding on sample size for constructing an experts panel was not
a statistical one. The literature on this subject suggests that good results can be obtained with a small
panel of 10–15 individuals with a homogeneous group of experts.

Anonymity was guaranteed during the first phase of the consultation process minimizing the
tendency to follow-the-leader and other psychological barriers to communication. The Delphi Study
was carried through a web survey including two rounds, representing two different stages of the
consultation process, the “exploration phase” and the “evaluation phase”. In the first round, experts
were invited to identify the main limits to the diffusion of Precise Irrigation in the regions where
they operate and to suggest any action, policy measures, that might be implemented to overcome
the observed weaknesses. In the second round, experts had the opportunity to compare their view
surrounding a given issue with other views and were asked to specify whether they agree with
alternative positions.

In the second phase, anonymity was removed and experts had the opportunity to carry
out side conversation and to compare their experiences in a dedicated workshop enriching their
motivations surrounding any convergences/divergences of opinions highlighted in the first phase.
First, experts where asked to motivate their interest on PI. Motivations are a key component of the
policy analysis because they justify the identification of Priority of intervention and the selection
of instruments. Then, experts where asked to explain the conditions under which PI practices
can generate appreciable benefits, identifying target regions and target users, and to highlight the
problem that can prevent farmers from the adoption of PI practices, even when these conditions are
satisfied. Finally, experts where invited to identify/explain any set of actions/measures that might be
implemented to overcome any limitation.

This analysis made it possible to identify an ideal scenario highlighting Strengths, Weaknesses,
Opportunities and Threats (SWOT) with respect to the potential diffusion of PI. Strengths and
Weaknesses are characteristics intrinsic to the technology, whilst Opportunities and Threats relate
to external factors. The combination of Threats and Weaknesses helps identify the main barriers to
adoption. Based on this, experts elaborated some policy suggestions to overcome any barriers.

Finally, an in-depth analysis was carried out asking experts to rank the degree of desirability
and of practicality attached to the selected actions by experts to face any barrier. Three aspects were
considered to assess the practicality of the selected actions: Targeting, the ability to focuses actions
on target regions and target users; Effectiveness, the capacity to affect changes in water use attitudes;
and Transaction costs, the costs that might encounter a regulator with the introduction of new measures
plus the costs needed to monitor compliance.

4.1.2. Pilot Economic Evaluation

In the second step of the methodology, we tested the information economics model described
in the previous section by: (i) selecting a crop with specific physiological characteristics cultivated in
a specific location with a given irrigation technology and under given water and out pricing condition;
(ii) estimating crop water requirements under different soil and weather conditions to calculate the
probability that crop water requirements are above and below specific threshold values, defining
different states of the nature; (iii) estimating a crop–water production function for each state of the
nature and for each soil type; (iv) setting hypothesis about the information environment, level of field
heterogeneity, level of risk aversion, irrigation costs and output prices; and (v) implementing the above
methodology to estimate different VOI scenarios.

For the first point, we decided to focuses our analysis on processing tomato cultivated in a field
experiment located in Mirandola, Italy. The decision to select such location and crop for our analysis is
motivated by the availability of information. Specifically, we used: (1) the tomato model parameters
published by Linker et al. [46]; (2) a historical series of climatic data from the past 20 years (1993 to
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2013) collected by a local meteorological station, available online [47]; and (3) other techno-economic
information from the technical literature [48].

For the second point, we estimated crop water requirement by the means of AQUACROP [49,50],
a well-known FAO crop growth model, using the published parameters for processing tomato. Then,
we altered the soil parameters using the default ones for “Clay” and “Silty” soils from the AQUACROP
library with the aim to create an artificial heterogeneous field condition, keeping constant other factors
(crop variety, irrigation system, shallow water table level, weather conditions, etc.). The model was
then run for the two soil conditions using the weather data collected for each year of the selected period.
The estimated crop water requirements enabled the calculation of a probability density function by
assuming a normal distribution. This procedure allowed to attach a probability to each estimates of
crop water requirements for the simulation period. To keep calculation simple, we assumed that the
farmer is in condition to modify the irrigation strategy when crop water requirement is 20% above and
below the average seasonal crop water requirements. In this way, we defined three relevant states of
the nature: “need water as usual”, “need more water than usual”, and “need less water than usual”
(see Appendix A for more detail).

For the third point, we estimated a crop–water production function by running iteratively
AQUACROP for each state of the nature for both soils with high WHC and soils with low WHC,
gradually reducing the use of water for irrigation, following the methodology recently implemented by
Linker et al. [46]. In such a way, we obtained the set of production functions reported in Appendix A.

For the fourth point, we assume that, in the absence of information, farmer’s expectation of
crop irrigation requirements is conditioned by the probability of occurrence of each state of the
nature and by its risk attitudes. Moreover, it is assumed that the farmer is not in the condition
to differentiate irrigation practices based on the different characteristics of its field. According to
our hypothesis on risk attitudes, states probabilities are the objective component of farmer’s prior
probabilities, that is, farmer’s expectation about future events based on its previous experiences
and with any additional information. The subjective component of farmer’s prior probabilities is
a weighting factor that modifies farmer expectation about future events on the basis of its risk attitudes.
Specifically, with such hypothesis farmer’s perceived uncertainty about states occurrence increase
with increasing risk attitudes. Consequently, farmer’s actions tend to be more cautious, reducing its
prior expectation on crop income. Thus, farmer’s prior probabilities range from 33% (equal probability
attached by the farmer to the occurrence of each state under the hypothesis of maximum risk aversion)
to the calculated objective probability of state occurrence, ps (under the hypothesis of risk neutrality).

Now, the presence of information improves farmers’ expectations about future events, namely,
farmers’ ability to predict weather condition and crop water requirements and to schedule irrigation
intervention accordingly in the different regions of its field. In our simulation, we assumed the
presence of an information service to schedule irrigation. This information service provides messages
that could support farmers in predicting the state of the world they are going to face driving their
irrigation management decision. The quality of information is then conditioned by both the probability
of receiving messages and by the probability to correctly predict states (States posterior probabilities).
If the probability of receiving messages differ from the probability of occurrence of the states predicted
by messages (States prior probabilities), then, the information service will fail to correctly predict
states for at least one state. A necessary, but not sufficient, condition to correctly predict states is
that the probability of receiving messages equals the probability of occurrence of the states predicted
by messages for each state. Thus, assuming that states prior probabilities equal the probabilities of
receiving messages, the quality of information would be depending solely on posterior probabilities.
In this respect, we carried out a sensitivity analysis introducing posterior probabilities which are
increasingly informative with the aim to evaluate the relevant impact of an improvement in the quality
of information.
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We finally calculated the difference between expected “informed” profits and “uninformed”
profits under different pricing condition (output and water prices), field quality characteristics and
farmer’s prior expectation on states occurrence.

5. Empirical Analysis: Results

5.1. Stakeholder Consultation

Table 1 provides the main result of the Consultation process (Delphi method + workshop),
i.e., a SWOT analysis of the main factors conditioning the adoption of PI, while Table 2 shows the
Barriers limiting the diffusion of PI technologies and the main policy suggestions that might help to
overcome such barriers.

Table 1. Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis of the adoption of Precision
Irrigation (PI).

Strengths Weaknesses

Energy saving: the use of energy to irrigate is a key
component for all types of irrigated crops, with particular
reference to maize and potatoes.
Water saving: the possibility of increasing water
productivity with PI is particularly evident for southern
European regions (SR) as it limits the risk of water shortages
and increases irrigation capacity.
Optimizing fertigation: increasing water productivity as an
impact, including in reducing nutrient leaching (addressed
by the respondents from North Europe—NR).

Investment costs: these costs limit the adoption of PI,
mainly for farmers with low financial capacity
(addressed by most of the respondents from SR).
Requirement of highly-skilled labor: in Southern
Europe, aging and low educational levels inhibit farmers’
attitudes to innovation (addressed by most of the
respondents from SR).

Opportunities Threats

Low water availability: where water resources are limited,
water productivity is important (addressed by SR).
Low levels of soil water holding capacity: increasing coarse
soil texture increases the frequency of irrigation interventions
and the opportunity to save water and energy using PI.
High irregularity in filed morphology: irregular field
morphology seems to foster the adoption of PI, as this
technology should guarantee a better adaptation of
water use.

Absence of, or inefficient, water pricing: water pricing
is not part of the debate in most European regions. Water
pricing affects water uses only for a few regions where
irrigation water is in demand.
Reliance on Subsidies: for SR respondents, subsidies
highly impact the adoption of any innovation in due to
financial constraints.
Lack of compliance with rules: low levels of regulatory
clearing in some EU regions affect the effectiveness of
policy initiatives to limit the misuse of water resources
for irrigation.

Table 2. Barriers and Policy suggestions influencing the adoption of PI.

Barriers Policy Suggestions

Absence of incentives
Targeting specific policy measures that enhance the adoption of PI in
those regions where the status of water bodies is compromised
(combining direct/indirect subsidies, water pricing, rules of use, etc.).

Low PI usability Investments in research aimed at increasing the ease of use of crop
growth models and in-farm monitoring tools.

Low level of networking and
absence of extension services

Development of advisory services for supporting farmers in using PI
and promoting farmers’ networks (capacity building) to contrast
farmer’s aversion to innovation.

By focusing on Strength and Opportunities in Table 1, all of the respondents agreed that the
adoption of PI makes it possible to save water and energy, and optimize fertigation reducing nutrient
leaching. The magnitude of such effects varies especially with field heterogeneity, with the frequencies
of irrigation intervention and with the type of crop. From the members group experiences was
revealed that most of the farmers actually applying PI practices are fruit growers as they are already
accustomed to schedule irrigation, fertigation and pest control. Field heterogeneity is an important
issue conditioning the application of PI practices for arable crops and vegetables production while
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is not considered so important for fruit production, as in this case field heterogeneity is an issue
a farmer should deal with through the design of the irrigation system rather than with the application
of PI practices.

By focusing on Weaknesses and Threats, farmers’ financial capacity and skills are considered to
be the main limitations to adoption. Specifically, the group of experts agreed that age and education
are considered the prerequisites conditioning the adoption of PI practices. Distrust and expected labor
efforts are very important factors in limiting the adoption of PI practices. In addition, lack of funding
and the absence of a clear regulatory framework further limit the diffusion of PI.

About barriers and policy suggestions (Table 2), the group of experts highlighted that the
application of policy measures to face barriers and to favor the adoption of PI must be coherent
to the priority of intervention settled by the regulator in a given region. Specifically, any policy
intervention is justified if the adoption of PI practices make it possible to improve social benefits,
but the priority of interest might vary between regions. For some regions, environmental issues,
such as energy saving, water saving and pollutant abatements, might be considered the main priorities
justifying the interest or not interest on PI. In this respect, PI might not be considered the right
instruments to face water saving issues because of the above mention Jevon paradox. For some other
regions, the motivational priority might be food security, that is, guaranteeing that irrigation covers
crop water requirement. Under such condition, the Jevon paradox is no more an issue.

Besides setting the priority of intervention, the instruments considered most relevant by the
members group to drive the adoption of PI are: (1) water saving practices required as a prerequisite to
get access to subsidies; (2) subsidies for the adoption of water saving practices; (3) subsidies for the
provision of advisory services. Instruments considered moderately important in driving the adoption
of PI are: (4) subsidies for the equipment (i.e., water meters and sensors); (5) imposition of volumetric
charges, and (6) discount on water charges for those farmers applying water saving irrigation practices.

Other relevant instruments included by experts are:

• Market driven incentives: Creation of quality standards associated to the correct implementation
of PI practices (i.e., higher dry matter percentage; higher soluble solids content).

• Subsidies for dissemination: Workshops/classes to train/teach farmers about
water–soil–plant–atmosphere interactions in general, and about PI techniques in particular.

• Subsidies to develop a local meteorological network: Web services to predict locally water
requirement for the most important water demanding crops during the growing season.

• Cross compliance with other type of incentives to meet environmental goals (i.e., subsidies to
develop more drought tolerant crops).

Despite the low desirability of the imposition of volumetric charges for irrigation, this instrument
is considered the most practicable one, but in those rare circumstances where farmers are served
on-demand and water for irrigation is metered. This is followed by subsidies for the equipment which
are also not considered that much desirable. High desirability and high practicality was registered for
the provision of advisory services, while High desirability and Low practicality was associated both
for the inclusion of best irrigation practices in the conditionality requirements and for subsidies for
the adoption of water saving practices. Thus, instruments considered practical in conditioning the
adoption of PI practices are not necessarily considered desirable and vice versa. The combination of
subsidies for the provision of advisory services with subsidies addressed to incentivize the adoption
of water saving practices is considered a winning solution because advisors play the role to drive the
adoption, supporting farmers in their investments and in the implementation of water saving practices,
and whether possible PI. On the other hand, the imposition of volumetric charges is considered
an instrument that should be implemented only when water availability is limited.
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5.2. Pilot Economic Valuation

Results show how the variation of few key parameters (water use cost levels, yield price levels,
farmer’s risk attitudes levels, quality of information levels and land quality levels) may cause variation
in the VOI generated with the transition to PI.

Figure 1a depicts the per hectare VOI, which we assume to correspond to the difference between
farmer’s income with and without PI, with increasing differences of the quality of information obtained
with the compared information sources. We remind that the posterior probability ps|m is the proxy used
to assess the quality of information. The quality of information is set to 0 when posterior probabilities
equals their prior, ps|m = ps and to 1 when posterior probabilities equals 1, ps|m = 1.Water 2017, 9, 990 13 of 20 
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Figure 1. VOI (a); and percentage variation in water uses (b) generated with the transition to PI for
increasing differences of the quality of the information obtained through the comparing information
sources (0—no difference between the comparing information sources; 1—maximum difference
between the comparing information sources): example given for processing tomatoes cultivated
on soils with high and low soil WHC levels.

The VOI generated with the transition from traditional sources of information to PI increases
with increasing differences of the quality of information obtained through the comparing sources of
information. Moreover, with increasing quality of information increases also the difference in expected
benefits between low and high soil WHC levels. The differences between the two trends are mainly
attributable to differences in the consequences associated with the farmers’ decisions whether or not
to irrigate. For instance, “Wrong” decisions made for processing tomatoes cultivated in fields with
homogeneous WHC do not significantly affect performance.

Considering the impact on irrigation water uses, the adoption of PI would enable farmers to save
increasing amount of water with increasing quality of information and increasing field heterogeneity.
Indeed, with increasing field heterogeneity the amount of saved water increases (Figure 1b).

Figure 2a shows expected benefits trends with the transition to PI for fields with increasing
heterogeneity in WHC levels. The maximum heterogeneity with respect to field WHC is reached when
the region of the field with low WHC levels reaches 50% of the field. Expected benefits increases
as soil heterogeneity increases. The maximum VOI is obtained when the region of the field with
low WHC levels reaches 60% of the field. The maximum VOI does not coincides to maximum field
heterogeneity because of the differences in maximum production estimated under the comparing soil
WHC conditions.

With the transition to PI, expected economic benefits may also increase with increasing yield
prices (Figure 2c) and with increasing water use cost levels (Figure 2b), particularly for soils with
high field heterogeneity. Finally, Figure 2d describes the VOI trends with respect to farmer’s risk
aversion attitudes. The figure highlights that, with increasing levels of uncertainty about farmer’s
state expectation before receiving the information (farmer’s prior beliefs), it increases also the expected
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values that the farmers associate to the improvement in the quality of information brought with any
additional information. The level of risk aversion ranges from 0 to 1, where 0 correspond to risk
neutrality (in our theoretical framework this is obtained when ws,hs = hs) and 1 to the maximum risk
aversion (in our theoretical framework this is obtained when ws,shs = 0.5).Water 2017, 9, 990 14 of 20 
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Figure 2. Example given for processing tomatoes cultivated on soils with high and low soil WHC
levels. VOI generated with the transition to PI for: (a) increasing region of the field with low WHC
levels, assuming a +68% variation of the quality of information brought with the technology transition;
(b) increasing costs of irrigation intervention; (c) increasing yield prices; and (d) increasing condition
of uncertainty on farmer’s prior beliefs.

The results confirm that, for a given crop and under given climatic conditions, the VOI generated
with the transition to PI increase with increasing quality of information, with increasing yield prices
and water use costs, and decrease with decreasing field heterogeneity. By comparing expected benefits
with the costs for the adoption (equipment and licensing) it would be possible to assess under which
circumstances, and for which degree of “informativeness”, PI can be considered a valuable practice in
terms of profit maximization.

Overall, the figures highlight that the activation of the message service affects farmers’ beliefs and
improve its ability to manage effectively irrigation and to correctly predict irrigation water requirement
under the current climate scenario in the different regions of its field.

6. Discussion

Current literature about PI suffers of the absence of studies highlighting the conditions under
which PI guarantees higher performance and water savings. The present study offers a methodology
to partially fill this gap, using a combination of a stakeholder consultations and a simulation exercises
that incorporates a crop growth model simulating yield responses to water uses within an economic
model. The simulation confirms that expected benefits arising with the transition from traditional
sources of information to PI varies with the quality of the additional information brought with PI,
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with product prices and water use costs, as well as with soil heterogeneity and farmers’ risk attitudes.
All of these factors are considered relevant in conditioning expected benefits also for the qualitative
analysis carried out through the Stakeholder consultation. The Stakeholder consultation further
integrates the quantitative analysis highlighting the fact that the existence of favorable environmental
and regulatory conditions to the adoption of PI may not guarantee its adoption due to cognitive or
attitudinal constraints embedded in farmers’ choices. Here, the whole group of stakeholders agreed
that development of advisory services supporting farmers in using PI is a key policy issue to overcome
farmer’s aversion to the adoption of this innovation.

On the other hand, the quantitative analysis also shows levels of private benefits per hectare which
are relevant but rather low compared with the overall values at stake. As a result, they may be easily
overcome by general transaction costs, learning effort or personal attitudes, as well as risk attitudes. In
addition, it should be considered that the decision space of farmers may not necessarily allow fully
exploiting the information available (e.g., when farmers have to comply with irrigation turns).

One of the main limitations of this paper is the fact of not accounting explicitly for the public value
generated by saving water resources and for the different economic, regulatory and environmental
conditions that might affect the adoption of PI practices. So, while highlighting the potential of PI and
the conditions that would affect such potential, it is not able to strike a balance of costs and benefits of
PI adoption in different situations.

This is also connected to other limitations of the study, especially with the limited coverage of
European contexts for the Stakeholder consultation, potentially resulting in biases in the generalizations
here presented. Indeed, the regions considered in this study displayed very different endowments,
infrastructures and rules. These differences affect the type and priorities of interventions aimed
at improving irrigation efficiency and water savings in those contexts that should benefit from the
diffusion of PI. Thus, a better coverage of European countries may enable to better qualify strength and
weakness related to the intrinsic potentialities of the innovation here analyzed and to better qualify
opportunities and threats related to the environmental and regulatory context that may condition the
diffusion of PI. The same applies and is even more relevant for the quantitative exercise, that only
concerns one single crop in a specific area.

In addition to this, the modelling part also suffers from the fact that the process of decision making
is fully simulated and is not based on actual farmers’ behavior. As a result, it is likely that benefits are
overestimated with respect to reality.

Altogether, this study corroborates relevant factors already identified in closed fields of research
related to irrigation technology and to information systems to support agricultural practices. It however
allows validating these factors for the specific case of PI, as well as to identify some lessons learned,
policy implications and avenues for further research.

7. Conclusions

PI represents a new technological frontier for optimizing the use of water resources in agriculture
and this study constitutes a starting point for investigating the potential of PI in European irrigated
agriculture. The theoretical studies discussed in this paper, together with the Stakeholder consultation,
made it possible to carry out a SWOT analysis on PI adoption and to define a methodology for
the assessment of the economic viability of the innovation. This was further tested through a pilot
economic valuation.

The study highlights that the adoption of PI is strongly conditioned by the environmental,
economic and regulatory framework of a region. Among other factors, soil conditions allow
demonstrating the interplay between context variables and quality of information brought by the
services in determining the benefits of PI. The main message from this exercise is to corroborate the
idea that the profitability of adoption cannot be considered as generally given but has to be evaluated
case by case.
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To enhance the adoption of PI, the stakeholders participating in the consultation process
emphasized the need to set up an advisory service that supports farmers in using PI. This concern is
also confirmed in the literature with scholars reporting that farmers encounter significant problems
in using current agricultural information management systems, notably in terms of functionality,
interfaces and interfacing with the different parties involved [27,28,32]. An advantage of PI is that,
unlike past irrigation innovations, it can be applied to any type of irrigation system and in any region of
the world. Moreover, PI is considered to be a promising innovation for irrigated agriculture in Europe
because it facilitates the accomplishment of current policy goals. Indeed, the new CAP reform explicitly
addresses the need to improve water savings, dedicating funding to advisory weather services and
training and supporting investments aimed at adapting farm structures and production methods [3].
This is subject to several conditions: (1) the existence of a River Basin Management plan (RBP); (2) the
inclusion of specific measures dedicated to the agricultural sector in the RBP; and (3) the existence
of water bodies in poor condition. These aspects concur to support the activation of specific CAP
measures for targeting regions where the status of water bodies is undermined [33].

These potentially favorable conditions do not ensure however that net benefits from the use of PI
are positive everywhere. In light of the upcoming policy context and relevant policy scenarios, further
research is required to determine: (a) if and for which type of regions/areas the diffusion of PI could
be considered a valuable instrument for the achievement of environmental goals; (b) for which type of
users the adoption of PI is more likely to ensure economic benefits; and (c) which type of economic
and regulatory instruments are more likely to guarantee the adoption of PI and the expected impact
on the environment and the farm economy.

In addition, the development of methods for an improved economic evaluation of PI is also
sought. A few pilot experimental sites around Europe would enable to better calibrate yield responses
to irrigation water uses for different geographical regions and to compare the impact on both income
and water uses of PI with traditional sources of information. Then, the integration of spatial data
of crop land coverage and soil characteristics with historical series of climatic data for European
geographical regions provides relevant information, although not sufficient, to estimate the potential
value generated with the improvement of the quality of information brought with PI at a regional scale,
identifying target regions to promote its adoption. In addition, the methodology presented in this study
analyses the economic benefits generated with the transition to PI for single crops. However, most
farms have multiple crops and the most profitable strategy will derive by the overall performance
of PI for this bundle of crops, considering, e.g., common fixed costs. Finally, farmers with differing
characteristics, belief and endowments may perceive differently the economic benefits generated with
the transition to PI.

A major limitation of the assessment methodology provided with the present study is in the
fact that the number of management zone is not determined as part of the optimization process.
However, the possibility to differentiate management zones within the field is conditioned by
the offset between the benefits generated by rationalizing the allocation of water within the field,
which increase with increasing field heterogeneity, and the additional costs faced by the farmer
to manage irrigation practices, which increase with increasing number of management zones [35].
Thus, a further development of the model presented in this study should be its extension to include
management zones as part of the optimization process and its application on different crops at the
farm level. Finally, a key issue to be further investigated is the role played by service providers in
fostering the diffusion of PI, with particular reference to the strategies that they may use to induce
farmers to undertake joint actions or coordinated investments in the use of this practice.
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Appendix A

In the following, we provide the information used to implement the methodology developed in the
present paper. The information provided in Tables A1–A3 was calculated by following the procedure
described in Section 4.1.2. We recall that the assessment example is offered for processing tomatoes
cultivated in Mirandola, northern Italy (Latitude: 44.8851500, Longitude: 11.0690200). Specifically, we
run AQUACROP using available processing tomato crop parameters for that region [46] and local
historical weather information calculating water requirements for a 20-year interval. With such
information, we then computed a probability density function, assuming a normal distribution and
we defined three state of the nature: “need less water than usual”, “need water as usual”, and “need
more water than usual”. The probability associated to the first state of the nature is assumed to be:
P(x ≤ xlow), where xlow is for a lower bound of water requirement and x for a average bound of water
requirements. The probability associated to the third state of the nature is assumed to be: P

(
x ≥ xup

)
,

where xup is for a higher bound of water requirement. Finally, the probability associated to the second
state of the nature is assumed to be: P(xlow < x < xup). Results are reported in Table A1. For each state
of the world, we then calculated relevant expected values obtaining the results reported in Table A2.

Once identified the reference crop water requirement values for each state of the world and field
conditions, we implemented the methodology developed by Linker at al. [38] to calculate the relevant
crop–water production functions. Specifically, for each state of the world and field characteristics
combination, we estimated a second order production function: y = −ax2 + bx + c, where, a, b,
c are the function parameters, y is the production and x is the amount of irrigation water to be
applied. The estimation of the crop–water production function parameters is reported in Table A3.
Finally, to calculate profit functions, we used the information reported in Table A4.

Table A1. Probability of states occurrence calculated by running AQUACROP for processing tomatoes
in northern Italy from 1993 to 2013.

Field Characteristics
States of the Nature

Need Less Water than Usual Need Water as Usual Need More Water Than Usual

High WHC 0.25 0.50 0.25
Low WHC 0.20 0.50 0.30

Table A2. Expected water requirement for each state of the nature calculated by running AQUACROP
for processing tomatoes in northern Italy from 1993 to 2013.

Field Characteristics
States of the Nature

Need Less Water Than Usual Need Water as Usual Need More Water Than Usual

High WHC 250 320 430
Low WHC 320 410 510
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Table A3. Crop water production functions estimated for each state of the nature and field conditions
using the methodology developed by Linker et al. [38].

Field Characteristics State of the Nature
Crop-Water Production Function Parameters

a b c

High WHC
Need less water than usual 0.0005 0.250 44.485

Need water as usual 0.0005 0.319 19.485
Need more water than usual 0.0004 0.344 11.485

Low WHC
Need less water than usual 0.0005 0.320 28.485

Need water as usual 0.0004 0.328 19.485
Need more water than usual 0.0005 0.510 0.000

Table A4. Water use cost and output prices for processing tomatoes published by Ghinassi and
Zamarchi [48].

Parameter Lower Values Average Values Upper Values

Output price (€/t) 76 93 96
Water use cost (€/m3) 0.09 0.13 0.15
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