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Abstract—A double-identity fingerprint is a fake fingerprint 

created by combining features from two different fingers, so that 

it has a high chance to be falsely matched with fingerprints from 

both fingers. This paper studies the feasibility of creating double-

identity fingerprints by proposing two possible techniques and 

evaluating to what extent they may be used to fool state-of-the-art 

fingerprint recognition systems. The results of systematic 

experiments suggest that existing algorithms are highly 

vulnerable to this specific attack (about 90% chance of success at 

FAR=0.1%) and that the fingerprint patterns generated might be 

realistic enough to fool human examiners. 

 
Index Terms—Double-identity fingerprints, presentation 

attacks, ABC systems, minutiae, ridge-line orientations and 

frequencies. 

 

I. INTRODUCTION 

OCUMENT fraud has always been a key enabler for 

organized crime and terrorism. In the last decade, the 

security of e-MRTD (i.e., electronic Machine Readable Travel 

Documents) have been greatly improved by embedding 

electronic features (i.e. chips and encryption) that makes 

forgery very hard. Further, biometric modalities such as face 

and fingerprints have been adopted to link a document (i.e., a 

passport) to its legitimate owner [1].  

While the high uniqueness of biometrics traits should 

ensure a 1-1 link between a document and an individual, 

recent studies demonstrated the feasibility of enrolling a 

double-identity biometrics in e-MRTD with the aim to link a 

single documents to two subjects. The attack described in [2] 

consists of enrolling a face image which is the result of a two 

persons morphing, so that at verification time (i.e. transit 

through an Automatic Border Control gate) the two persons 

can share the same document. Enrolling a double–identity face 

image is highly achievable since: i) in several countries face 

acquisition is not live but relies on printed face photo provided 

by the citizens; ii) officers cannot easily detect morphed faces 

(see experiments reported in [3]).  

This work is aimed at studying the feasibly of creating 

double-identity fingerprints to carry out an attack similar to 

that described in [2]. In fact, even if (unlike face) fingerprint 
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enrolment is always live (i.e., fingerprints are collected at the 

enrollment station), a well manufactured fake fingertip may be 

presented to the scanner if the enrolment procedure is not 

carefully supervised by an officer (often for logistic reasons 

the fingerprint scanner is beyond a glass and is not directly 

visible to the officer).  

An inspiring work on this topic was carried out by Günter 

Schumacher, Jan Löschner and Javier Galbally at the 

European Commission Joint Research Center in Ispra, who 

first proved the feasibility of creating double-identity 

fingerprints1; however, since the creation approach used was 

manual, their conclusions are based on a small number of 

samples, and more systematic evaluations are necessary.  

The idea of fingerprint combination was also explored by 

Othman and Ross in [4] with the aim of creating new virtual 

identities useful to preserve user privacy (by partially 

obscuring information) and to generate cancellable templates. 

It is worth noting that the aim of our technique is exactly the 

contrary: in fact, our double-identity fingerprint should 

produce a high comparison score with the native fingers, while 

Othman and Ross mixed fingerprints are designed to yield a 

low similarity score when compared with the original 

biometrics. 

 A double-identity fingerprint should meet two 

requirements: i) features should be combined in such a way 

that state-of-the-art fingerprint recognition algorithm wrongly 

attribute the resulting fingerprint to both subjects; ii) it should 

be visually realistic (i.e., without evident artifacts) to deceive 

the officer attending the enrolment (who normally has a live 

visual feedback of the user fingerprint).   

Two different approaches (both addressed in this study) could 

be used to combine fingerprints:  

 Feature-level: starts by local orientations, frequencies 

and minutiae derived from original fingerprints and then 

generates a synthetic fingerprint image.  

 Image-level: directly blends portion of original 

fingerprint images. 

The main contributions of this work are: 

 Development of novel fully automatic approaches to 

combine two fingerprints at feature level and image-

level; 

 Comparison of feature- and image-level approaches; 

 Systematic evaluation of the double-identity fingerprint 

attack in a verification scenario typical of an Automatic 

 
1 The outcome of this research is described in a technical report that is not 

publicly available. 
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Border Control (ABC) system. 

The rest of this paper is organized as follows. Section II 

describes the procedures to create double-identity fingerprints; 

Section III reports and comments the experimental results 

obtained; finally Section IV draws some concluding remarks. 

II. DOUBLE-IDENTITY FINGERPRINT CREATION PROCESS 

The aim of this process is to create a new fingerprint that 

includes features (i.e., minutiae, local orientations and 

frequencies) of two different fingers. 

Given two fingerprints 𝐹1 and 𝐹2 from two different 

fingers, the following steps are carried out to produce the new 

fingerprint (Fig. 1): 

A. The two fingerprints are superimposed and the best 

alignment is computed.  

B. The optimal cutline is determined by maximizing the 

ridge pattern similarity nearby the cut. 

C. The new double-identity fingerprint is generated. 

The above steps are described in detail in the following 

sections. Table III in the Appendix provides a summary of the 

symbols used throughout this paper. 

A. Fingerprint Alignment 

The proposed technique aligns the two fingerprints by 

maximizing, for any reasonable translation and rotation, the 

ridge orientation similarity in their intersections.  

The local orientations 𝑂1 and 𝑂2 (Fig. 1) of the two 

fingerprints are estimated blockwise (in steps of 𝑏𝑠𝑖𝑧𝑒  pixels), 

along horizontal and vertical axes, by applying the gradient-

based technique proposed in [5] with an averaging window of 

𝑤𝑠𝑖𝑧𝑒 × 𝑤𝑠𝑖𝑧𝑒  pixels. Each orientation element 𝑜𝑖,𝑗 = (𝜃𝑖,𝑗 , 𝑟𝑖,𝑗) 

consists of an angle 𝜃𝑖,𝑗 ∈ [0, 𝜋[ and a value 𝑟𝑖,𝑗 ∈ [0,1],  

denoting the reliability of the estimation (𝑟𝑖,𝑗  is zero for 

elements belonging to the background region). 

In general, the similarity between two local orientation 

images can be computed as follow: 

 

𝑆(𝑂1, 𝑂2) =
∑ (𝑟𝑖,𝑗

1 +𝑟𝑖,𝑗
2 )∙𝜓(𝜃𝑖,𝑗

1 ,𝜃𝑖,𝑗
2 )

(𝑖,𝑗)∈(𝑉
𝑂1∩𝑉

𝑂2)

∑ (𝑟𝑖,𝑗
1 +𝑟𝑖,𝑗

2 )
(𝑖,𝑗)∈(𝑉

𝑂1∩𝑉
𝑂2)

,  (1) 

 

where 𝜓(𝜃1, 𝜃2) is the similarity between two orientation 

angles 𝜃1, 𝜃2: 

 

𝜓(𝜃1, 𝜃2) = 1 −
2⋅|𝜃1−𝜃2|

𝜋
, (2) 

 

and 𝑉𝑂 contains the coordinates of foreground orientation 

elements of the local orientation image 𝑂. 

 

𝑉𝑂 = {(𝑖, 𝑗)| 𝑜𝑖,𝑗 ∈ 𝑂 ∧ 𝑟𝑖,𝑗 > 0}. (3) 

 

In order to find the best alignment, all possible translations 

(in steps of 𝑏𝑠𝑖𝑧𝑒  pixels) and rotations (in steps of 𝛿𝛾) of 𝑂2 

with respect 𝑂1 are evaluated (Fig. 1) by maximizing the 

similarity (Eq. (1)) between 𝑂1 and the aligned 𝑂2. Moreover, 

to discard alignments with very small overlapping, the 

following condition is enforced: 

|𝑉
𝑂1∩𝑉

𝑂2|

max(|𝑉𝑂1|,|𝑉𝑂2|)
≥ 𝑚𝑖𝑛𝑉𝑅. (4) 

B. Optimal Cutline Estimation 

The optimal cutline is determined by attempting to 

simultaneously achieve the following objectives: 

1. maximize the similarity of ridge pattern in the 

neighborhood of the cutline itself,  

2. preserve a sufficient number of minutiae from both the 

original fingerprints. 

The former objective is aimed at generating a fingerprint 

pattern that looks realistic to the human eye near the cutline 

(i.e., the most critical region). The latter helps to create a 

fingerprint that has a high chance to be matched with 

fingerprints from both the fingers. 

Let (𝑑𝑥∗, 𝑑𝑦∗, 𝛾∗), be the best translation and rotation 

parameters computed as described in the previous section, 

then: 

 𝐹𝐴
2 and 𝑂𝐴

2 are obtained by aligning fingerprint 𝐹2 and its 

local orientations 𝑂2 according to (𝑑𝑥∗, 𝑑𝑦∗, 𝛾∗), 

respectively (Fig. 1).  

 �̂�1 and �̂�2 are the intersection regions of 𝐹1 and 𝐹𝐴
2, 

respectively (Fig. 1). 

 �̂�1 and �̂�2 are the intersection regions of 𝑂1 and 𝑂𝐴
2, 

respectively (Fig. 2). 

The local ridge-line frequencies 𝛶1 and 𝛶2of �̂�1 and �̂�2 are 

estimated as described in [5] (Fig. 3). Each frequency element 

is a value 𝜈𝑖,𝑗 ∈ ℝ, denoting the inverse of the average ridge-

line period estimated in a neighborhood. 

Minutiae templates 𝑇1 and 𝑇2 are extracted from �̂�1 and 

�̂�2, respectively, using the algorithm described in [6] (Fig. 4). 

Each minutia 𝑚 is a quadruple 𝑚 = {𝑥𝑚 , 𝑦𝑚, 𝜃𝑚, 𝑡𝑚}, where 

𝑥𝑚 and 𝑦𝑚 are the minutia location, 𝜃𝑚 is the minutia 

direction and 𝑡𝑚 is the minutia type (i.e., termination or 

bifurcation). 

Let 𝜌 = (𝜌𝑥, 𝜌𝑦) be the barycenter of the intersection 

region; the line 𝑙 passing through 𝑝 with angle 𝛽 is defined as: 

 
𝑎𝑙 ⋅ 𝑥 + 𝑏𝑙 ⋅ 𝑦 + 𝑐𝑙 = 0

𝑎𝑙 = sin(𝛽) , 𝑏𝑙 = cos(𝛽) , 𝑐𝑙 = −𝜌
𝑥

⋅ sin(𝛽) − 𝜌
𝑦

⋅ cos(𝛽). (5) 

 

For each angle 𝛽 ∈ [0, 𝜋[ (in steps of 𝛿𝛽), the following score 

is computed: 

 

𝑆𝑐 = 𝜔𝑜 ∙ 𝑆𝑜 + 𝜔𝜈 ∙ 𝑆𝜈 + 𝜔𝑚 ∙ 𝑆𝑚, (6) 

 

where: 

 𝑆𝑜 and 𝑆𝜈 measure the similarity of the ridge orientations 

and frequencies, respectively, nearby the cutline 𝑙 (with 

the aim of generating a pattern realistic to the human 

eye); 

 𝑆𝑚 is a score derived from the two minutiae templates 

(described in the following paragraphs) with the aim of 

generating a fingerprint that matches with both fingers; 

 𝜔𝑜, 𝜔𝜈 , 𝜔𝑚 ∈ [0,1], 𝜔𝑜 + 𝜔𝜈 +  𝜔𝑚 = 1 are three 

weighting factors. 
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Fig. 1 Functional schema of the double-identity fingerprint creation process. 
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Fig. 2 Detail of the intersection regions between the two aligned local 

orientations in Fig. 1. The orientation elements used to compute 𝑆𝑜 are 

highlighted. P and N represent the positive and the negative side with respect 

to the cutline 𝑙𝑚𝑎𝑥. 

 

 
Fig. 3 Detail of the local ridge-line frequencies estimated from the intersection 

regions in Fig. 1. Light blocks denote higher frequencies. The elements used 

to compute 𝑆𝜈 are highlighted. P and N represent the positive and the negative 

side with respect to the cutline 𝑙𝑚𝑎𝑥. 

 

 
Fig. 4 Detail of the minutiae extracted from the intersection regions in Fig. 1. 
P and N represent the positive and the negative side with respect to the cutline 

𝑙𝑚𝑎𝑥. The dark and gray minutiae are those used in Eq. (11) to compute 

ζ𝑚(𝑇1, 𝑇2) and ζ𝑚(𝑇2, 𝑇1), respectively.  

 

𝑆𝑜 =
∑ (𝑟𝑖,𝑗

1 +𝑟𝑖,𝑗
2 )∙𝜓(𝜃𝑖,𝑗

1 ,𝜃𝑖,𝑗
2 )(𝑖,𝑗)∈𝐶

∑ (𝑟𝑖,𝑗
1 +𝑟𝑖,𝑗

2 )(𝑖,𝑗)∈𝐶

, (7) 

 

𝑆𝜈 =
∑ (1−

|𝑣𝑖,𝑗
1 −𝑣𝑖,𝑗

2 |

(𝑚𝑎𝑥𝐹−𝑚𝑖𝑛𝐹)
)(𝑖,𝑗)∈𝐶

|𝐶|
. (8) 

 

𝐶 contains the element coordinates whose distance from 𝑙 is 

less or equal to 𝑑𝑚𝑎𝑥  and where both local orientation images 

present non-null elements (see the highlighted regions in Fig. 

2 and Fig. 3): 

 

𝐶 = {(𝑖, 𝑗)| (𝑖, 𝑗) ∈ (𝑉�̂�1 ∩ 𝑉�̂�𝐴
2 ) ∧ 𝑑𝑖𝑠𝑡𝑙(𝑖, 𝑗) ≤ 𝑑𝑚𝑎𝑥}, (9) 

 

𝑑𝑖𝑠𝑡𝑙(𝑥, 𝑦) =
|𝑎𝑙∙𝑥+𝑏𝑙∙𝑦+𝑐𝑙|

√𝑎𝑙
2+𝑏𝑙

2
, (10) 

 

𝑆𝑚 = max(ζ𝑚(𝑇1, 𝑇2), ζ𝑚(𝑇2, 𝑇1)), (11) 

 

ζ𝑚(𝐴, 𝐵) =
𝑍(|𝐴|𝑙

𝑃,𝜇𝑚,𝜏𝑚)+𝑍(|𝐵|𝑙
𝑁,𝜇𝑚,𝜏𝑚)

2
, (12) 

 

where |𝑇|𝑙
𝑃 and |𝑇|𝑙

𝑁 denote the cardinalities of the minutiae in 

𝑇 that fall in the positive or negative side of line 𝑙, 
respectively (see Fig. 4): 

 

|𝑇|𝑙
𝑃 = |{𝑚 ∈ 𝑇| 𝜙𝑙(𝑚𝑥, 𝑚𝑦) ≥ 0}|, (13) 

 

|𝑇|𝑙
𝑁 = |{𝑚 ∈ 𝑇| 𝜙𝑙(𝑚𝑥 , 𝑚𝑦) < 0}|. (14) 

 

𝑍 is a sigmoid function, controlled by two parameters (𝜇𝑚 and 

𝜏𝑚), that limits the contribution of the cardinality operator 

(|⋅|), and ensures that the final value is in the range [0,1]. The 

sigmoid function is defined as: 

 

𝑍(𝑣, 𝜇, 𝜏) =
1

1+𝑒−𝜏(𝑣−𝜇). (15) 

 

Finally, the line 𝑙𝑚𝑎𝑥 with the maximum score 𝑆𝑐 is selected 

as the cutline. 

C. Double-Identity Fingerprint Generation 

Two different approaches for generating double-identity 

fingerprints are described. Starting from the information 

computed in Sections II.A and II.B, the former approach 

creates a new synthetic fingerprint starting from combined 

local orientations, frequencies and minutiae, while the latter 

produces a new fingerprint by directly blending the two 

original fingerprints. 

 

1) Feature-level Approach 

As described in [7] [8], a realistic fingerprint can be 

synthetically reconstructed starting from the information 

available in a standard minutiae template and attempting to 

estimate various aspects of the original unknown fingerprint 

(i.e., fingerprint area, local orientations and frequencies).  

Given the cutline 𝑙𝑚𝑎𝑥 , the fingerprint information used to 

reconstruct the positive (𝑝) and the negative (𝑛) portions of 

the new image is selected, on the basis of the resulting number 

of minutiae (see Eq. (12)), as follows: 

 

(𝑝, 𝑛) = {
(1,2) if ζ𝑚(𝑇1, 𝑇2) ≥ ζ𝑚(𝑇2, 𝑇1)

(2,1) otherwise
. (16) 

 

 The double-identity local orientations �̃�, frequencies �̃� and 

minutiae template �̃� (see Fig. 5) are then computed by 

merging the corresponding positive and negative portions: 

(a) 

P 

N 

(b) 

P 

N 

(a) 

P 

N 

(b) 

P 

N 

(a) 

P 

N 

(b) 

P 

N 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

5 

 

�̃�(𝑥, 𝑦) = 𝑤𝑥,𝑦
𝑙𝑚𝑎𝑥 ⋅ �̂�𝑝(𝑥, 𝑦) + (1 − 𝑤𝑥,𝑦

𝑙𝑚𝑎𝑥) ⋅ �̂�𝑛(𝑥, 𝑦), (17) 

 

�̃� (𝑥, 𝑦) = 𝑤𝑥,𝑦
𝑙𝑚𝑎𝑥 ⋅ 𝛶𝑝(𝑥, 𝑦) + (1 − 𝑤𝑥,𝑦

𝑙𝑚𝑎𝑥) ⋅ 𝛶𝑛(𝑥, 𝑦), (18) 

 

�̃� = {𝑚 ∈ 𝑇𝑝, 𝜙𝑙𝑚𝑎𝑥
(𝑚𝑥, 𝑚𝑦) ≥ 0} ∪ {𝑚 ∈ 𝑇𝑛 , 𝜙𝑙𝑚𝑎𝑥

(𝑚𝑥, 𝑚𝑦) < 0}, (19) 

 

where 𝑤𝑥,𝑦
𝑙𝑚𝑎𝑥 ∈ [0,1] is a weighting factor to balance the 

blending nearby the cutline 𝑙𝑚𝑎𝑥: 

 

𝑤𝑥,𝑦
𝑙𝑚𝑎𝑥 = {

1 − max (0,
𝑑𝑚𝑎𝑥−𝑑𝑖𝑠𝑡𝑙𝑚𝑎𝑥

(𝑥,𝑦)

2⋅𝑑𝑚𝑎𝑥
) if 𝑎𝑙𝑚𝑎𝑥 𝑥 + 𝑏𝑙𝑚𝑎𝑥

𝑦 + 𝑐𝑙𝑚𝑎𝑥
≥ 0

max (0,
𝑑𝑚𝑎𝑥−𝑑𝑖𝑠𝑡𝑙𝑚𝑎𝑥

(𝑥,𝑦)

2⋅𝑑𝑚𝑎𝑥
) otherwise

 .

 (20) 

 

Note that, to avoid angle circularity problems [9], the 

computation of angles �̃� (17) is actually performed as 

explained in [10] (i.e., by doubling the angles and summing x 

and y components separately). 

Finally, the double-identity fingerprint 𝐷𝐹  (see Fig. 5.d) is 

synthetically generated by the method  proposed  in [7], using 

�̃�, �̃� and �̃� as input. 

 

 
Fig. 5 Local orientations �̃� (a), frequencies �̃� (b) and minutiae �̃� (c), derived 

from the fingerprints in Fig. 1 used to synthetically generate the double-

identity fingerprint 𝐷𝐹 (d). 

 

2) Image-level Approach 

The double-identity fingerprint is generated by fusing �̂�1 

and �̂�2 according to the cutline 𝑙𝑚𝑎𝑥 . Let �̂�𝑝 and �̂�𝑛 be the 

positive and the negative aligned original fingerprints (with 

respect to 𝑙𝑚𝑎𝑥), respectively, selected on the basis of the 

resulting number of minutiae (see Eq. (16)), the double-

identity fingerprint 𝐷𝐼  (see Fig. 6) is then generated as: 

 

𝐷𝐼  (𝑥, 𝑦) = 𝑤𝑥,𝑦
𝑙𝑚𝑎𝑥 ⋅ �̂�𝑝(𝑥, 𝑦) + (1 − 𝑤𝑥,𝑦

𝑙𝑚𝑎𝑥) ⋅ �̂�𝑛(𝑥, 𝑦). (21) 

 

 
Fig. 6 Double-identity fingerprint 𝐷𝐼 generated starting from the fingerprints 
in Fig. 1 using the image-level approach.  

III. EXPERIMENTAL EVALUATION 

This section describes the experiments carried out to 

evaluate the possibility of success of the proposed attack by 

estimating the behaviour of automatic fingerprint recognition 

in presence of double-identity fingerprints. 

A.  Database and Testing Protocol 

The experiments have been carried out on the FVC2002 

DB1 database [11], containing 800 fingerprints from 100 

fingers (8 impressions per finger) captured at 500dpi using the 

optical scanner “TouchView II” by Identix. This dataset has 

been selected because of its clean background, that is typical 

of high quality scanners used for electronic document 

enrolment.  

For each generation approach, 100 double-identity 

fingerprints (see examples reported in Fig. 7) have been 

produced as follows: 

1. The first impression 𝐹𝑖 of each finger 𝑖 is aligned (see 

Section II.A) with the first impression of 10 other 

randomly chosen fingers  and the optimal cutline is 

computed as described in Section II.B. The first 

impression 𝐹𝑗 of finger 𝑗 (𝑗 ≠ 𝑖) presenting the maximum 

ridge pattern similarity score 𝑆𝑐 with 𝐹𝑖 (see Eq. (6)) is 

selected as the optimal companion for fusion. We limited 

to 10 the size of the search set to prove that finding a 

reasonably good companion fingerprint for creating an 

effective double-identity fingerprint is quite simple. 

2. 𝐹𝑖 and 𝐹𝑗 are fused into a new fingerprint (𝐷𝑖,𝑗
𝐹  or 𝐷𝑖,𝑗

𝐼 ) 

following the procedures described in Section II.C. 

 

(a) (b) 

(c) (d) 
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Fig. 7 Double-identity fingerprints: the results obtained with three fingerprint couples. Two input images (columns 𝐹1 and 𝐹2), the corresponding best alignment 

and the optimal cutline, and the resulting feature- and image-level double-identity fingerprints (columns 𝐷𝐹 and 𝐷𝐼) are reported for each row.  

 

Finally, the following comparisons are performed: 

 genuine – each fingerprint is compared against the 

remaining ones of the same finger. If fingerprint 𝐹𝐴 is 

compared against 𝐹𝐵, the symmetric comparison is not 

executed to avoid correlation in the scores. The total 

number of genuine comparisons is 2800. 

 impostor – the first impression of each finger is 

compared against the first impression of the remaining 

fingers. If fingerprint 𝐹𝐴 is compared against 𝐹𝐵, the 

symmetric comparison is not executed to avoid 

correlation in the scores. The total number of impostor 

comparisons is 4950. 

 double-identity – each double-identity fingerprint 

(𝐷𝑖,𝑗
𝐹  or 𝐷𝑖,𝑗

𝐼 ) is compared against all other seven  

impressions of fingers 𝑖 and 𝑗. The total number of 

double-identity comparisons is 1400 for each generation 

approach. 

Table I reports the parameter values used; all parameters 

have been calibrated on a separate data set containing 80 

fingerprints from 10 fingers (8 impressions per finger). The 

calibration procedure consisted in an exhaustive search over a 

reasonable range of values. 

B. Automatic Fingerprint Recognition SDKs Evaluated 

The experiments have been conducted using two state-of-

the-art fingerprint recognition SDKs: the Neurotechnology 

VeriFinger SDK v6.0 (VF) [12] and the Minutia Cylinder-

Code SDK v2.0 (MCC) [13] [14]. Since the MCC SDK works 

directly with minutiae templates, the minutiae extraction 

algorithm described in [6] has been used to create minutiae 

templates. 

 
TABLE I 

PARAMETER VALUES USED IN THE EXPERIMENTATION 

Parameter(s) Description Value 

𝑏𝑠𝑖𝑧𝑒 , 𝑤𝑠𝑖𝑧𝑒 
Block and window size used in local orientation 
and frequency estimation (in pixel) 

4, 23 

𝛿𝛾 
Rotation step used when searching for the best 

alignment 

𝜋

36
 

𝑚𝑖𝑛𝑉𝑅 

Minimum overlapping between two local 
orientation images to be a candidate for a valid 

alignment 

0.6 

𝛿𝛽 
Rotation step used during the optimal line 

estimation 

𝜋

60
 

𝜔𝑜, 𝜔𝜈, 𝜔𝑚 Weight parameters in (6) 
1

3
,
1

3
,
1

3
 

𝑚𝑖𝑛𝐹 , 𝑚𝑎𝑥𝐹 Minimum and maximum frequency in (8) 
1

15
,
1

5
 

𝑑𝑚𝑎𝑥 
Maximum distance used to define the 

neighborhood of the cutline (in pixel) 
30 

𝜇𝑚, 𝜏𝑚 Sigmoid parameters in (12) 15, 
3

10
 

 

In order to simulate a realistic attack to an ABC system, the 

operational thresholds of both fingerprint recognition software 

have been set according to the FRONTEX guidelines [15] 

𝐹1 𝐹2 𝐷𝐼  𝐷𝐹  Alignment and cutline 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

7 

[16]. In particular, for ABC systems operating in verification 

mode, the fingerprint verification algorithm has to ensure a 

False Acceptance Rate (FAR) equal to 0.1% and a False 

Rejection Rate (FRR) lower than 3%. VF provides the 

corresponding score thresholds in its documentation, whereas 

for MCC, the score thresholds have been computed on the 

basis of about 110000 impostor comparisons performed on a 

disjoint database. 

Table II reports score thresholds for both SDKs and 

different values of FAR. 

 
TABLE II 

THRESHOLDS TO ACHIEVE DIFFERENT VALUES OF FAR FOR BOTH SDKS 

SDK 
FAR (%) 

1 0.1 0.01 

VF 24 36 48 

MCC 0.1083 0.1205 0.1329 

C. Results 

Fig. 8 and Fig. 9 show the score distribution graphs for VF 

and MCC, respectively. Fig. 10 and Fig. 11 report the values 

of Double-identity Acceptance Rate (DAR) and FRR at 

different values of FAR for VF and MCC SDKs, respectively. 

It is quite evident that for both the SDK the majority of attack 

scores are higher than the FRONTEX recommended 

thresholds corresponding to FAR = 0.1%.  

While MCC seems to be slightly more robust than VF 

(compare DAR’s in Fig. 10 and Fig. 11), both algorithms 

demonstrate high vulnerability to double-identity fingerprint 

attacks. 

 

 
Fig. 8 The VF score distribution graph on the FVC2002 DB1 dataset. 

 

The image-level approach proved to be more effective than 

feature-level approach in terms of percentage of successful 

attacks. This behavior is probably due to the particular nature 

of the synthetic generation technique used in the feature-level 

approach [7]. In fact, in order to generate a realistic pattern, it 

involves an iterative filtering procedure that may cause some 

original minutiae to be slightly shifted or completely removed, 

or false minutiae to be introduced. On the other hand, the 

image-level approach exactly preserves the positions of all the 

minutiae that are not close to the cutline, often resulting in a 

higher chance of successful attacks. Furthermore, the image-

level approach allows to generate more realistic images 

(compare the last two columns of Fig. 7), even if in a few 

cases 𝐷𝑖,𝑗
𝐼  presents more artifacts than 𝐷𝑖,𝑗

𝐹  (see Fig. 12). 
 

 
Fig. 9 The MCC score distribution graph on the FVC2002 DB1 dataset. 

 

 
Fig. 10 DAR and FRR values computed at different levels of FAR for VF 
SDK on the FVC2002 DB1 dataset. 

 

 
Fig. 11 DAR and FRR values computed at different levels of FAR for MCC 

SDK on the FVC2002 DB1 dataset. 
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Fig. 12 Example of a double-identity fingerprint where the cutline and the 

blending region are more evident in the image-level result (a), than in the 
feature-level one (b). In particular, note the presence of orthogonal ridge lines 

in the bottom left corner of (a). 

IV. CONCLUSION 

In this paper we introduced two automated approaches to 

create double-identity fingerprints by combining two real 

ones. As discussed in [2] [3], two individuals, a criminal and 

an accomplice (with no criminal record) could combine their 

fingerprints and introduce the resulting double-identity 

fingerprint in an electronic document to be used (by both 

persons) to pass Automatic Border Control gates. We proved 

that two state-of-the-art fingerprint recognition algorithms are 

highly vulnerable to this specific attack (about 90% chance of 

success at FAR = 0.1%) and we guess that the majority of 

existing fingerprint recognition algorithms are vulnerable as 

well.  

To mitigate the risk of this attack, particular care should be 

taken by officers in charge of the enrolment process to avoid 

the possibility that a citizen provides fake fingerprints. 

Presentation attack detection techniques (hardware/software) 

are being continuously improved but nowadays they are still 

far to be perfect [17] so visual inspection of the finger surface 

still remains the preferred option.  

Developing software countermeasures, to detect if a given 

fingerprint is a double-identity fingerprint or not, seems 

feasible, and probably not too hard if the input were a digital 

image such as those printed in Fig. 7. However, we believe 

that the approach in reality is much more complex because the 

digital double-identity fingerprint is used only as starting point 

to fabricate a fake finger whose surface will be acquired by a 

live scanner, thus loosing much of the digital traces that could 

have been detected. 

Finally, fingerprint recognition algorithms to be used in 

ABC could be extended/improved to detect “anomalies” (i.e., 

atypical partial matches) during unattended fingerprint 

recognition. We plan to dedicate some of our future research 

to investigate this option, to explore its efficacy and evaluate 

the risk of FRR increase. For instance, a feasible approach 

could be based on the analysis of minutiae correspondence 

groups, looking for suspicious partial matches with respect to 

the foreground intersection. 

  

(a) (b) 
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APPENDIX 

TABLE III 
DESCRIPTIONS OF SYMBOLS USED IN THIS PAPER 

Symbol Description First introduced in Section 

𝐹1, 𝐹2 The two fingerprints (from two different fingers) to be mixed II 

   
𝑂1, 𝑂2 Local orientation maps of 𝐹1 and 𝐹2 

II.A 

𝑏𝑠𝑖𝑧𝑒 Block size used in local orientation and frequency estimation  

𝑤𝑠𝑖𝑧𝑒 Window size for local orientation and frequency estimation  

𝑜𝑖,𝑗 = (𝜃𝑖,𝑗 , 𝑟𝑖,𝑗) An orientation element [𝑖, 𝑗] with ridge orientation 𝜃𝑖,𝑗 and reliability 𝑟𝑖,𝑗 

𝑆(𝑂1, 𝑂2) Similarity between two local orientation images 

𝜓(𝜃1, 𝜃2) Similarity between two orientation angles 𝜃1, 𝜃2 

𝑉𝑂 Coordinates of foreground orientation elements of 𝑂 

𝛿𝛾 Rotation step used when searching for the best alignment 

𝑚𝑖𝑛𝑉𝑅 Minimum allowed overlapping between two orientation images 

   
(𝑑𝑥∗, 𝑑𝑦∗, 𝛾∗) Best translation and rotation parameters 

II.B 

𝐹𝐴
2 Result of aligning 𝐹2 according to (𝑑𝑥∗, 𝑑𝑦∗, 𝛾∗) parameters 

𝑂𝐴
2 Result of aligning 𝑂2 according to (𝑑𝑥∗, 𝑑𝑦∗, 𝛾∗) parameters 

�̂�1 Portion of  𝐹1 that lies in the intersection with  𝐹𝐴
2 

�̂�1, 𝛶1 Orientations and frequencies of �̂�1, respectively 

�̂�2 Portion of  𝐹𝐴
2 that lies in the intersection with  𝐹1 

�̂�2, 𝛶2 Orientations and frequencies of �̂�2, respectively 

𝜈𝑖,𝑗 Average ridge-line frequency estimated in [𝑖, 𝑗] 

𝑇1, 𝑇2 Minutiae templates extracted from �̂�1 and �̂�2 

𝑚 = {𝑥𝑚, 𝑦𝑚, 𝜃𝑚, 𝑡𝑚} A minutia with location (𝑥𝑚, 𝑦𝑚), direction 𝜃𝑚, and type 𝑡𝑚 

𝜌 = (𝜌𝑥, 𝜌𝑦) Barycenter of the intersection region 

𝛽 Angle that line 𝑙 forms with the horizontal axis 

𝑙 Line passing through 𝜌 with angle 𝛽, as in Eq. (5) 

𝛿𝛽 Rotation step used during the optimal line estimation 

𝑆𝑜 Similarity of the ridge orientations nearby line 𝑙 as in Eq. (7) 

𝑆𝜈 Similarity of the ridge frequencies nearby line 𝑙 as in Eq. (8) 

𝑚𝑖𝑛𝐹 , 𝑚𝑎𝑥𝐹 Minimum and maximum ridge frequency 

𝑆𝑚 Score derived from the number of minutiae in 𝑇1 and 𝑇2 as in Eq. (11) 

𝜔𝑜, 𝜔𝜈, 𝜔𝑚 Three weighting factors in Eq. (6) 

𝑆𝑐 Score maximized to select the optimal cutline 

𝐶 Coordinates of foreground neighborhood elements of line 𝑙 

𝑑𝑚𝑎𝑥 Parameter controlling neighborhood size of line 𝑙  

𝑑𝑖𝑠𝑡𝑙(𝑥, 𝑦) Euclidean distance of point (𝑥, 𝑦) from line 𝑙 

|𝑇|𝑙
𝑃, |𝑇|𝑙

𝑁 Number of minutiae in 𝑇 that fall in the positive (P) or negative (N) side of line 𝑙 

𝑍(𝑣, 𝜇, 𝜏) Sigmoid function, see Eq. (15) 

𝜇𝑚, 𝜏𝑚 Sigmoid parameters in Eq. (12) 

𝑙𝑚𝑎𝑥 Cutline selected by maximizing 𝑆𝑐 

   
�̃�, �̃�, �̃� Double-identity orientations, frequencies, and minutiae 

II.C.1 𝑤𝑥,𝑦
𝑙𝑚𝑎𝑥 Blend weighting factor in Eq. (20) 

𝐷𝐹 The double-identity fingerprint generated using the feature-level approach 

   
𝐷𝐼 The double-identity fingerprint generated using the image-level approach II.C.2 
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